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1 Introduction

Thirty years on since Meese and Rogoff (1983) identified that exchange rate fluc-
tuations are diffi cult to predict using standard economic models, academics and
practitioners are yet to find a definite answer to whether or not macroeconomic
variables have predictive content. In a thorough survey of the recent literature,
Rossi (2013) points out that the answer is not clear-cut. Decisions regarding the
choice of the predictor, forecast horizon, forecasting model, and methods for fore-
cast evaluation, all exert influence in exchange rate predictability. Ultimately, the
predictive power appears to be specific to some countries in certain periods, sig-
nalling the presence of instability in the models’ forecasting performance (Rogoff
and Stavrakeva, 2008; Rossi, 2013). The issue of instability was also pointed out by
Meese and Rogoff (1983) and is echoed in other recent papers including, Bacchetta
and van Wincoop (2004, 2013), Bacchetta et al. (2010), Sarno and Valente (2009),
among others. However, as Rossi (2013) notes, models that take into account these
instabilities, for instance by allowing for time-variation in the coeffi cients, do not
greatly succeed in outperforming a random walk benchmark in an out-of-sample
forecasting exercise.

In this paper, we employ a framework that allows us to pin down several sources
of instability that might affect the out-of-sample forecasting performance of exchange
rate models. The starting point of our analysis is the exact conjecture by Meese
and Rogoff (1983) that time-variation in parameters may play a significant role in
explaining the predictive power of these models. However, unlike prior attempts to
explain this conjecture, we do not assume ex-ante that coeffi cients in the forecasting
regressions change in the same fashion over time (e.g., Rossi, 2006). Instead, we
allow for a range of possible degrees of time-variation in coeffi cients, encompassing
moderate to sudden changes, and even no-change in coeffi cients. We then use a
likelihood-based approach to identify what degree of time-variation in coeffi cients
is consistent with the data. In this framework we can study, for example, whether
allowing for sudden changes in coeffi cients leads to a better forecasting performance,
relative to situations where coeffi cients change gradually over time.

In light of the hypotheses advanced in recent papers, not only the coeffi cients
in an exchange rate model are likely to change over time, but the relevant set of
fundamentals may also differ at each point in time. See for example the scapegoat
theory of exchange rates of Bacchetta and van Wincoop (2004, 2013), as well as
the empirical evidence in Berge (2013), Fratzscher et al., (2012), and Sarno and
Valente (2009). Hence in our setting, in addition to allowing for varying degrees of
coeffi cients adaptivity over time, we also entertain the possibility that, potentially, a
different predictor may be relevant at each point in time. In this unified framework,
we can examine whether models with a certain configuration, characterised by a
specific degree of time-variation in coeffi cients and choice of predictor (fundamental),
can forecast well.

Our key contribution in this paper goes entirely beyond establishing whether
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our model outperforms the typical random walk benchmark. As the evidence on
time-varying forecasting performance suggests, the possibility that a model with
a specific configuration forecasts well in a certain period and country, and not in
another setting, introduces uncertainty regarding the ex-ante choice of the model.
In this context, our unified approach provides the ideal framework to analyse the
sources of model prediction uncertainty. In this regard, and inspired by Dangl and
Halling (2012), we distinguish between (i) model uncertainty due to errors when
estimating the coeffi cients, (ii) model uncertainty originating from time-variation in
coeffi cients, (iii) model uncertainty due to a time-varying set of exogenous predictors,
and (iv) model uncertainty due to random or unpredictable fluctuations in the data.
Thus, we can investigate, for example, how relevant is the issue of time-variation in
coeffi cients relative to the choice of fundamentals when forecasting out-of-sample.

We apply a Bayesian dynamic model selection and averaging approach of the
sort considered in Dangl and Halling (2012) and Koop and Korobilis (2012), among
others. The methodology permits to assign posterior probability weights to models
that differ in the selected fundamental and in the degree of time-variation in coeffi -
cients, in light of the relevant evidence. We can then find the specification supported
by the data at each point in time, based on these weights. The methodology is also
flexible enough in that it enables us to decompose the prediction variance of the
exchange rate into its constituent components.

Our predictive regressions employ information sets from Taylor rules and classic
fundamentals. Engel and West (2005) use an exchange rate model based on Taylor
(1993) rules as an example of models that can be cast within the present-value asset
pricing framework. Molodtsova and Papell (2009) and Molodtsova et al. (2011)
examine the out-of-sample predictive content of different Taylor rule specifications.
They find evidence of predictability for most currencies and horizons they consider.
Nevertheless, consistent with the hypothesis that the relevant set of predictors may
change over time, their results also suggest that the evidence of predictability differs
for different specifications across countries and periods. For instance, in Molodtsova
and Papell (2009) the strongest support is from Taylor rule specifications with het-
erogeneous coeffi cients and interest rate smoothing. In contrast, in Molodtsova et
al. (2011), the most successful Taylor rules impose equality in coeffi cients across
countries, and do not incorporate interest rate smoothing. Molodtsova and Papell
(2012) extend the analysis to incorporate readily available indicators of financial
stress, and find evidence of superior forecasting performance of models augmented
with these indicators.

In line with these results, our model space encompasses many different Taylor
rule specifications, including several augmented with Financial Condition Indexes
(FCIs). In our case however, FCIs for some countries in our sample are not read-
ily available. We therefore construct Financial Condition Indexes (FCIs) using the
Time-Varying Parameter Factor-Augmented VAR approach of Koop and Korobilis
(2014). This approach to constructing FCI’s is attractive since it facilitates greater
flexibility in capturing turning points in financial conditions. In addition, the ap-

2



proach allows us to purge the effect of past and current output and inflation, such
that the resulting FCIs incorporate additional information beyond that already in-
cluded in the standard Taylor rule; see, Hatzius et al. (2010).

In terms of the empirical design, the dataset consists of monthly data spanning
1973M1 - 2013M5 on eight OECD countries’ exchange rates relative to the US
dollar. We use a direct method to forecast recursively, the period-ahead change
in the exchange rate at one-, three-, and twelve-months horizons. The models are
compared to the toughest benchmark — the driftless random walk (RW) (Rossi,
2013). We compute the ratio of the Root Mean Squared Forecast Error of the
fundamentals-based model relative to that of the RW. To evaluate the statistical
significance of the differences in the forecasts we use the Diebold and Mariano (1995)
and West (1996) tests. In order to take account of concerns about data-mining in
light of our search over multiple predictors, we employ critical values computed using
a data-mining robust bootstrap procedure proposed in Inoue and Kilian (2005) and
implemented, for example, in Rapach and Wohar (2006). An additional measure of
relative forecast accuracy is based on predictive likelihoods (see, e.g., Geweke and
Amisano, 2010).

Apart from the research on the role of instabilities in model forecasting perfor-
mance our paper is also related to the literature on forecast combinations. Among
articles that study the importance of instabilities in an exchange rate setting, we
compare our paper to Rossi and Sekhposyan (2011), Bacchetta et al. (2010) and
Giannone (2010). Rossi and Sekhposyan (2011) decompose measures of out-of-
sample forecasting performance into components of relative predictive ability. Their
first component, denoted predictive content, captures whether in-sample fit predicts
out-of-sample forecasting performance. A second component provides the magni-
tude of model’s in-sample over-fitting which does not translate into out-of-sample
predictive power. And a last component captures the relevance of time-variation
in forecasting performance. Their results point to a lack of predictive content and
time-variation in forecasting performance as the main obstacles to models’forecast-
ing ability. However, while they mention that time-variation in parameters of the
models might cause time-variation in forecasting performance, they do not explic-
itly examine the influence of the former in the latter. Thus, our study complements
theirs, as time-variation in parameters is an integral part of our analysis.1

Among papers focusing in pooling exchange rate forecasts, we note contributions
by Wright (2008), Sarno and Valente (2009), Beckmann and Schuessler (2014), and
Li et al. (2014). The main difference with our contribution is that the emphasis on
these papers is on finding whether combined forecasts from several models with a

1Bacchetta et al. (2010) use a theoretical reduced-form model of exchange rate calibrated to
match the moments of the data to examine whether parameter instability could rationalize the
Meese-Rogoff puzzle. They conclude that it is not time-variation in parameters, but small sample
estimation error that explains the puzzle. However, Giannone (2010) disputes these findings and
points out that both, time-variation in parameters and estimation uncertainty, are important in
accounting for the puzzle. As we noted above, we extend the analysis to consider other sources of
instabilities, quantify their relative importance, and our approach is entirely data-based.
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certain configuration are superior to those from a single-variable approach and to
the random walk benchmark. Instead, we focus in the same question and extend
the analysis to examine the sources of model prediction uncertainty. An additional
difference is our use of a data-mining robust bootstrap procedure when evaluating
the forecasting performance of the models.2 ,3

To preview our results, we find that models which allow the relevant set of regres-
sors to change over time and with varying degrees of coeffi cients adaptivity forecast
well. These models significantly outperform the benchmark for most currencies at
all, but one-month forecast horizon. In particular, at horizons greater than one
month, predictive regressions with a high degree of time-variation in coeffi cients
dominate regressions with constant and moderately time-varying coeffi cients. How-
ever, at the one-month forecast horizon our models do better for one quarter of
the exchange rates considered. When examining what obstructs models’predictive
ability over time, we identify uncertainty in the estimation of the coeffi cients and
uncertainty regarding the correct level of time-variation in coeffi cients as the main
sources of time-varying forecasting performance. When the models successfully em-
bed these sources of uncertainty, they yield a satisfactory out-of-sample forecasting
performance. Thus, our findings are consistent with the simulation-based results of
Giannone (2010) and they provide supportive evidence for Rossi and Sekhposyan’s
(2011) conjectures on the causes of time-variation in models’predictive ability.

The rest of the paper proceeds as follows. The next Section lays out the econo-
metric methodology. Section 3 covers data description and forecast mechanics. Re-
sults are reported in Section 4, followed by robustness checks in Section 5. Section
6 concludes.

2 Econometric Methodology

2.1 Predictive Regression

In line with the majority of the literature on exchange rate forecasting we model
the exchange rate as a function of its deviation from its fundamental’s implied
value.4 As advanced by Mark (1995), this fits with the notion that in the short-
run, exchange rates frequently deviate from their long-run fundamental’s implied
level. More precisely, let et+h− et ≡ ∆et+h be the h-step-ahead change in the log of
the exchange rate, and Ωt a set of exchange rate fundamentals. Then, we consider

2Sarno and Valente (2009) use a Reality Check procedure to account for data-mining.
3There are also differences in how the predictors are constructed. In most of the mentioned

papers, the predictors are constituted by each of the variable that defines macroeconomic models
of exchange rate determination (e.g., money supply, inflation, interest rates, among others). In
our setting, the predictors are the fundamentals that originate from the macroeconomic models of
exchange rate determination (e.g., fundamentals from Taylor rules and the Monetary Model). A
more subtle difference is while in our setting the random walk is excluded, in the majority of the
related studies the random walk spans the model space.

4See, for example, Mark (1995), Cheung et al. (2005), Engel et al. (2008), Molodtsova and
Papell (2009), and Rossi (2013).
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predictive regressions of the following form:

∆et+h = X ′tθt + vt+h, vt+h ∼ N(0, V ), (observation equation); (1)

θt = θt−1 +$t, $t ∼ N(0,Wt), (transition equation); (2)

where,

Xt = [1, zt], and θt = [θ0t; θ1t]; (3)

zt ≡ Ωt − et. (4)

As identity (4) indicates, zt measures the disequilibrium between the exchange
rate’s spot value and the level of the fundamentals. When the spot exchange rate
is higher than its fundamental’s implied level, then the spot rate is expected to
decrease, as long as the coeffi cient attached to zt in equation (1) is less than one.
In the next Subsection we discuss what spans our set of fundamentals contained
in Ωt. In this Section we note that the predictive regression given by the system
of equations (1) and (2) allows the coeffi cient linked to the disequilibrium term
zt, and to the constant to change over time. In fact, as equation (2) suggests,
we assume a random walk process for parameter θt, following Wolff (1987), Rossi
(2006), Mumtaz and Sunder-Plassmann (2013), among others. We further assume
that the disturbance terms, vt+h and $t, are uncorrelated and normally distributed
with mean zero and variance matrices V and Wt, respectively.5

The variance of the error term in the transition equation Wt, is crucial in de-
termining the degree of time-variation in the regression’s coeffi cient. Setting this
matrix to zero implies that the coeffi cients are constant over time, and therefore
equation (1) nests a constant-parameter predictive regression. In contrast, if the
variance increases, the shocks to the coeffi cients also increase. While this renders
more flexibility to the model, the increased variability of the coeffi cients translates
into high prediction variance, which increases the prediction error. In light of this,
Dangl and Halling (2012) suggest imposing some structure on Wt. We define this
structure together with the description of the estimation methodology below.

We use Bayesian methods in the spirit of Dangl and Halling (2012) and Koop
and Korobilis (2012) to estimate the parameters of the predictive regression. The
methods described in these papers involve a full conjugate Bayesian analysis. That
is, when prior information on the unknown parameters is combined with the likeli-
hood function, results in a posterior with the same distribution as the prior, hence
no simulation algorithms are required. Specifically, let the prior for the coeffi cients
vector θt be normally distributed, and the prior for the observational variance V
come from an inverse-gamma distribution. In a conjugate analysis, the posteriors

5Note that the variance of the disturbance term associated with the observation equation V , is
constant but unknown. In addition, while we could model this variance as possibly time-varying,
we focus in the constant case to isolate the dynamics of time-varying coeffi cients, from the dynamics
of time-varying variance.
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are jointly normally/inverse-gamma distributed. In Appendix A.1 we provide de-
tails on the updating scheme of the coeffi cients’vector and the observation equation
variance at some arbitrary time t+1, given the information available at time t (Dt).
This information set contains the exchange rate variations, the predictors, and the
prior parameters at time-zero. i.e., Dt = [∆et,∆et−h, ..., Xt, Xt−h, ..., P riorst=0].
For the prior parameters at t = 0, we use a natural conjugate g-prior specification:

V |D0 ∼ IG
[

1

2
,
1

2
S0

]
, (5)

θ0|D0, V ∼ N
[
0, gS0(X

′X)−1
]
, (6)

where,

S0 =
1

N − 1
∆e′(I −X(X ′X)−1X ′)∆e. (7)

The prior for the coeffi cient vector in equation (6) is a diffuse prior centered
around the null-hypothesis of no predictability, with g as the scaling factor that
determines the confidence assigned to this hypothesis. The coeffi cients’variance-
covariance matrix is a multiple of the OLS estimate of the variance in coeffi cients,
S0. The fact that this matrix is multiplied by a large scalar translates into an
uninformative prior, implying that the estimation procedure adapts quickly to the
empirical pattern (Dangl and Halling, 2012). This is consistent with our objective of
examining which instabilities are supported by the data. In the empirical results in
Section 4, we use a g-prior derived from the entire sample, following Wright (2008)
and Dangl and Halling (2012). We also set g = 10 for the main results and examine
cases of g = [1, 50,100], but find similarities in the results, hence we do not report
results based on the other values of g.

The other crucial element in the methodology we employ is the predictive den-
sity. This is obtained by integrating the conditional density of ∆et+h over the
space spanned by θ and V . West and Harrison (1997) show that it is a Student
t−distribution with nt degrees-of-freedom, mean ∆̂et+h, variance Qt+h, evaluated
at ∆et+h (for details, see Appendix A.1):

f(∆et+h|Dt) = tnt(∆et+h; ∆̂et+h, Qt+h). (8)

Using this predictive distribution we can recursively forecast ∆et+h.
Recall that the degree of time-variation in the regressions coeffi cient is deter-

mined by the matrix Wt. Since the coeffi cients are exposed to random shocks that
follow a normal distribution with mean zero and variance Wt, when the variance is
low the estimation error shrinks towards zero. In contrast, in periods of high vari-
ance the estimation error increases, affecting the prediction. To capture this direct
relationship between the coeffi cients’estimation error and the variance, we let Wt

be proportional to the estimation variance of the coeffi cients at time t, following
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West and Harrison (1997) and Dangl and Halling (2012):6

Wt =
1− δ
δ

StC
∗
t , 0 < δ ≤ 1; (9)

where, St is the estimate of the variance of the error term in the observation equation,
C∗t is the estimated conditional covariance matrix of θt−1, and δ is a discount factor
that controls the degree of time-variation in coeffi cients.

Effectively, setting δ = 1 implies that Wt = 0, and therefore the coeffi cients
are assumed constant over-time. By contrast, specifying 0 < δ < 1 is consistent
with time-varying coeffi cients, with the underlying variability determined by the
magnitude of increase in the variance by a ratio of 1/δ. For instance, with δ = 0.98
the variance increases by 50% within 20 months. Reducing δ to 0.96, translates into
50% increase in 10 months, suggesting very abrupt changes in coeffi cients. Thus,
in our empirical work we consider δ = [0.96, 0.97, 0.98, 0.99, 1.00] as the possible
support points for time-variation in coeffi cients. We then examine empirically which
support point is consistent with the data in a Bayesian model averaging approach,
which we discuss in the next section.

2.2 Dynamic Model Averaging and Selection

While allowing for time-varying coeffi cients addresses one potential source of insta-
bility in predictive ability, the literature on exchange rate predictability also points
out that the set of relevant predictors appears to change over time (see, e.g., Bac-
chetta and van Wincoop, 2004; Rossi, 2013; and Sarno and Valente, 2009). To
address this latter source of instability, we allow for the possibility that from a set
of k potential predictors, one applies at each time period. Thus, if we let d be
the number of possible discrete support points for time-variation in coeffi cients as
defined by each δ, then our range of possible models is d.k.

The range of predictors we consider follows the recent literature that exploits the
information content from Taylor (1993) rules.7 See for example, Engel and West
(2005), Engel et al. (2008), Mark (2009), Molodtsova et al. (2011), Molodtsova
and Papell (2009, 2012) and Rossi (2013). The premise is that the home and the
foreign central banks conduct monetary policy following the Taylor rule. In line
with this rule, the foreign monetary authority, taken as the United States in our
empirical section, is concerned with inflation and output deviations from their target
values. In addition to these targets and consistent with historical evidence, Engel

6See also Raftery et al. (2010), Koop and Korobilis (2012) for a similar approach in modelling
the variance of the transition equation.

7The Taylor (1993) rule postulates that monetary authorities should set the target for the
policy interest rate considering the recent inflation path, inflation deviation from its target, output
deviation from its potential level, and the equilibrium real interest rate. Then, it follows that they
increase the short-term interest rate when inflation is above the target and/or output is above its
potential level. Note that the Taylor principle presupposes an increase in the nominal policy rate
more than the rise in inflation rate to stabilize the economy.
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and West (2005) assume that the home country also targets the real exchange rate.
It is also common, following Clarida et al. (1998), to consider that central banks
adjust the actual interest rate to eliminate a fraction of the gap between the current
interest rate target and its recent past level, known as interest rate smoothing.
By subtracting the foreign Taylor rule from the home, the following interest rate
differential equation is obtained,

it − i∗t = φ0 + φ1πt − φ∗1π∗t + φ2yt − φ∗2y∗t
+ φ3qt + φ4it−1 − φ∗4i∗t−1 + µt, (10)

and from which, using the Uncovered Interest Rate Parity relationship (UIRP), we
compute the fundamentals Ωt, as:

Ωt ≡ φ̂0 + φ̂1πt − φ̂
∗
1π
∗
t + φ̂2yt − φ̂

∗
2y
∗
t

+ φ̂3qt + φ̂4it−1 − φ̂
∗
4i
∗
t−1 + et, (11)

where, it is the short-term nominal interest rate set by the central bank, asterisks
indicate foreign (United States) variables; πt, is inflation; yt, denotes the output
gap; qt is the real exchange rate defined as qt = et + p∗t − pt; pt, is the log of the
price level; φl for l = 1, ..., 4, are regression coeffi cients, and µt is the unexpected
disturbance term, which is assumed to be Gaussian. Note that in equation (11), et
is the log of the exchange rate.

The form of the home and foreign Taylor rules underlying equation (10) is very
general. In practice, various specifications can be considered based on a number of
assumptions. While the assumptions and the exact form of the rules is provided
in Appendix B, here we note that some Taylor rule specifications are augmented
with indicators of financial conditions (see also Molodtsova and Papell, 2012). This
accord with the recent suggestions that apart from inflation and output gap, central
banks react to financial market conditions, insofar as they signal deterioration in
the economic outlook (Taylor, 2008; Mishkin, 2010).

To construct the measures of financial conditions, or more precisely Financial
Condition Indexes (FCIs), we use the Time-varying Parameter Factor-Augmented
Vector Autoregressive model (TVP-FAVAR) of the sort considered in Koop and
Korobilis (2014). The details are presented in Appendix B.2. The TVP-FAVAR
allows for all the coeffi cients and the weight attached to the FCI to change over
time, providing a framework that can potentially better characterise turning points
in financial conditions. Additionally, and in line with Hatzius et al. (2010), the
approach purges from the FCI the effect of macroeconomic influences, such that
the resulting FCI provides extra information beyond that already contained in the
original Taylor rule.

In total we consider k = 23 potential predictors:

• Fundamentals from 20 Taylor rules specifications, i.e., TR1, ..., TR20, each
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corresponding to a variant of equation (11);8

• Fundamentals from the monetary model (MM), Ωt,MM ≡ (mt−m∗t )−(yt−y∗t ),
(where mt is the log of money supply and yt is the log of income);9

• Fundamentals from the Purchasing Power Parity (PPP) condition, Ωt,PPP ≡
(pt − p∗t ); and

• Fundamentals from the Uncovered Interest Rate Parity (UIRP) condition
Ωt,UIRP ≡ (it − i∗t ) + et.

Selecting one specific model characterised by a certain predictor and degree of
time-variation in coeffi cients, and using it to forecast at time t, requires a method.
Bayesian model selection is a methodical approach that tests the validity of all d.k
models against the observed data. The approach involves assigning prior probabili-
ties to each candidate predictor, as well as prior probability to each possible support
point for time-variation in parameters. Then based on the realised likelihood of the
model’s prediction, the posterior probability of each of the d.k models is updated
according to Bayes rule. In Appendix A.2 we provide details on the exact formulae,
following Dangl and Halling (2012). Note, however, that we elicit diffuse conditional
prior probability for each predictor Mi, and equally, an uninformative prior for the
range of support points for the degree of time-variation in coeffi cients. That is,
the prior probabilities are P (Mi|δj , D0) = 1/k and P (δj |D0) = 1/d, respectively.
Hence, at the beginning of the forecast window, each predictor and model setting
has the same chance of becoming probable.

The overall model’s predictive density is the posterior probability weighted av-
erage predictive density of all k.d models. That is, we perform Bayesian Model
Averaging (BMA) in a setting with time-varying coeffi cients. The flexibility of the
approach implies, for instance, that we can implement Bayesian Model Selection
(BMS), thus selecting the single model with the highest probability at each point
and use it to forecast. We can further let δ = 1, such that all the models exhibit
constant coeffi cients and then average over models with this characteristic (BMA
excluding time-varying coeffi cients). We can alternatively keep δ = 1, but select the
best model at each time-period (BMS excluding time-varying coeffi cients).10 Fur-
thermore, the approach permits us to track all sources of uncertainty with respect
to the prediction in a variance decomposition framework. We elaborate on this
framework in what follows.

8This set of potential specifications encompass the majority of those included in papers em-
ploying Taylor rule fundamentals.

9Note that we have assumed an income elasticity of one in the monetary model, following Mark
(1995) and Engel and West (2005).

10 In fact, as we show in the empirical section, we can analyze several other cases, depending on
specific choices of the model and degree of time-variation, including cases of BMA over time-varying
coeffi cients with single predictors.
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2.3 Variance Decomposition and Sources of instability

The variance decomposition method we employ follows directly from the law of total
variance, as implemented in Dangl and Halling (2012). That is, we decompose the
variance of the random variable ∆e, into its constituent parts. Starting with the
decomposition with respect to different values of δ, we have,

V ar(∆e) = Eδ(V ar(∆e|δ)) + V arδ(E(∆e|δ)), (12)

where, Eδ and V arδ indicate the expected value and the variance with regards to
δ. Since the expected value of the variance of δ, is conditional on specific choice of
model M , it can be further decomposed as follows:

V ar(∆e|δ) = EM (V ar(∆e|M, δ)) + V arM (E(∆e|M, δ)). (13)

Substituting back equation (13) for the expression of the expected value of the
variance of δ in equation (12), and using the expressions of these variances detailed
in appendixes A.1 and A.2, we obtain:

V ar(∆et+h) =
∑
j

[∑
i

(St|Mi, δj , Dt)P (Mi|δj , Dt)

]
P (δj |Dt)

+
∑
j

[∑
i

(X ′tRtXt|Mi, δj , Dt)P (Mi|δj , Dt)

]
P (δj |Dt)

+
∑
j

[∑
i

(∆̂e
j

t+h,i − ∆̂e
j

t+h)2P (Mi|δj , Dt)

]
P (δj |Dt)

+
∑
j

(∆̂e
j

t+h − ∆̂et+h)2P (δj |Dt). (14)

The four individual terms in equation (14) highlight the sources of uncertainty
in the prediction. The first term is the expected variance of the disturbance term
in the observation equation, with (St|Mi, δj , Dt) measuring the time t estimate of
the variance V , given the choice of the predictor and degree of time-variation in
coeffi cients. This provides a measure of random fluctuations in the data, relative to
the predicted trend component. The second term captures the expected variance
from errors in the estimation of the coeffi cients. It can be referred to as estimation
uncertainty. The third term characterises model uncertainty with respect to the
choice of the predictor. The last term also characterises model uncertainty, but
with respect to time-variability of the coeffi cients. Hence, both, the third and fourth
terms capture model uncertainty.
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3 Data, Forecast Mechanics, and Evaluation Methods

3.1 Data

We use monthly data spanning 1973M1:2013M5, for eight OECD countries: Canada,
Denmark, Japan, Korea, Norway, Sweden, Switzerland and the United Kingdom.
The foreign country is taken as the United States. The main data source is the
IMF’s International Financial Statistics (IFS), supplemented by national central
banks. Exchange rates are end-of-month values of the national currencies, relative
to the US dollar. The money supply is measured by the aggregate M1.11

To estimate Taylor rules we need the short-run central bank nominal interest
rate, the inflation rate, and the output gap. We use the central bank’s policy rate
when available for the entire sample period; alternatively the discount rate or the
money market rate. The price level consists of the consumer price index (CPI)
and the inflation rate is defined as the (log) CPI monthly change. The proxy for
the output is monthly industrial production (IP). Following a common practice in
the literature, the output gap is obtained by applying the Hodrick and Prescott
(1997) filter recursively to the output series. However, to correct for the uncertainty
about these estimates at our recursive sample end-points, we follow Watson’s (2007)
method. In this regard, we estimate bivariate VAR(`) models that include the first
difference of inflation and the change in the log IP, with ` determined by Akaike
Information criterion. These models are then used to forecast and backcast three
years of monthly data-points of IP, and the HP filter is applied to the resulting
extended series.12 The data on money supply, IP, and CPI were seasonally adjusted
by taking the mean over twelve months following Engel et al. (2012).13

To construct the FCIs we select the most common variables used in this literature
(see, e.g., Hatzius et al., 2010). Although the specific set considered for each country
in our sample differ, in general we include measures of stock market performance,
long-term and short-term interest rate spreads, exchange rate indexes, house price
indexes (when available), and survey indicators of financial conditions. These data
were obtained from the IMF’s IFS, OECD Main Economic Indicators, Datastream
and country-specific central banks. Refer to Appendix C for extra details on country-
specific variables, sources and data transformation.

3.2 Forecast Mechanics and Evaluation Methods

After preliminary data transformations our effective sample runs from 1974M1 to
2013M5. We use the period from 1974M1 to 1978M12 to initialise the recursions in

11 In cases where the M1 aggregate is unavailable, we use a broader aggregate. This is M3 for
Sweden and Belgium; and M4 for the UK. For extra details on Data, see Appendix C.

12We have also experimented with estimating an AR(`) model for ∆ ln(IPt) instead of a VAR(`)
model. The resulting output gap series were similar to those based on the VAR forecasts, suggesting
small differences in the forecast precision between the two models. Note that we use the standard
HP smoothing parameter for monthly data frequency (i.e., 14400).

13Data limitations prevent us from using real-time data for the countries we consider.
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the estimation of Taylor rule fundamentals, as well as in the forecasting regression
that we consider in the next section when examining other competing models. Thus,
our forecasting window begins in 1978M12+h for most models.14

We use a direct, rather than an iterative, method to forecast the h-month-ahead
change in the exchange rate for h = 1, 3, 12. According to Wright (2008) both
methods yield a similar forecasting performance. The forecasting exercise is based
on a recursive approach using data available up to the time the forecast is made.
Thus, the output gap, the FCIs, the Taylor fundamentals are also computed without
using future information. For example, a three-month ahead forecast of the change
in exchange rate for 1995M1 is made using data available up to 1994M10.

The forecasts of our models are compared to those of the driftless random walk
(RW). According to Rossi (2013) this is the toughest benchmark. We compute the
ratio of the Root Mean Squared Forecast Error (RMSFE) of the fundamentals-based
exchange rate model relative to RMSFE of the RW, known as the Theil’s U-statistic.
Hence, models that perform better than the RW benchmark have a value of Theil’s
U less than one.

To assess the statistical significance of the differences in the forecasts, many
papers employ the Diebold and Mariano (1995) and West (1996) tests (hereafter
DMW), and/or the Clark and West (2006, 2007) test (hereafter CW). The DMW
tests whether two competing forecasts are identical under general conditions (Diebold,
2012). The CW tests whether the benchmark model is equivalent to the competing
model in population. However, Clark and West (2006) show that when comparing
nested models, the DMW test is undersized, hence, the RMSFE differential should be
adjusted by a term that accounts for the bias introduced by the larger (fundamental-
based) model. On the other hand, Rogoff and Stavrakeva (2008) make the case for
using the bootstrapped DMW test, rather than the CW test, arguing that the latter
does not always test for minimum mean squared forecast error. Additionally, Rogoff
and Stavrakeva (2008) recall that the asymptotics of the CW test are well-defined
when forecasting in a rolling, rather than recursive framework. Thus, we construct
bootstrapped p-values of the DMW test-statistic in the spirit of Kilian (1999) and
Rogoff and Stavrakeva (2008). In light of our search over several predictors however,
we employ the bootstrap in a context of a data-mining environment as proposed by
Inoue and Kilian (2005) and applied, for instance, in Rapach and Wohar (2006).
See Appendix D for full details on the procedure. Bootstrapping also accounts for
the fact that for h > 1, the forecast errors are likely to be serially correlated.15 ,16

14The exception occurs for one of the competing forecast combination method we consider in the
next Section, which is based on a discount mean squared prediction error, and therefore requires a
holdout out-of-sample period.

15While to account for this serial correlation a common practice is to use Newey and West (1987)
Heteroskedasticity and Serial Correlation (HAC) robust estimator, Nelson and Kim (1993) point
out that there is a strong tendency for the resulting test-statistic to increase with the forecast
horizon. Therefore, inference based on bootstrapping is preferred relative to standard asymptotic
distribution when testing the null of no predictability. Note than in our bootstrap we use HAC
standard errors, with a lag truncation parameter of int{Sample0.25}, following Rossi (2013).

16The Diebold and Mariano (1995) and West (1996) test is computed as: DMW = f
√
P/[sample
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4 Empirical Results

We begin by examining the out-of-sample forecasting performance of the model that
allows predictors and coeffi cients to change over time, as well as restricted versions
of it. Specifically, we report results from the following fundamental-based predictive
models:

• BMA including Time-varying Coeffi cients (BMA incl. TVar-Coeff.): This
model constitutes the Bayesian model average over all individual models and
with varying degrees of coeffi cient evolution.

• BMA excluding Time-varying Coeffi cients (BMA excl. TVar-Coeff.): This is
a restricted version of the above, as it represents the Bayesian model average
over all individual models, but it excludes time-variation in coeffi cients. This
corresponds to conventional Bayesian averaging as implemented, for example,
in Wright (2008).

• BMS including Time-varying Coeffi cients (BMS incl. TVar-Coeff.): This
model is determined by the individual models that receive the highest pos-
terior probability, among all individual models and with varying degrees of
coeffi cient variation.

• BMS excluding Time-varying Coeffi cients (BMS excl. TVar-Coeff.): This
specification is nested in the BMS incl. TVar-Coeff model. It includes the
individual models that receive the highest posterior probability, among all
individual models excluding time-variation in coeffi cients.

• Single Predictor including Time-varying Coeffi cients with most posterior prob-
ability (Single Predictor incl. TVar-Coeffs.): These models consider only a sin-
gle predictor at a time, and the degree of time-variation in coeffi cient with the
highest posterior probability among the range of all degrees of time-variation
considered.

• Single Predictor excluding Time-varying Coeffi cients (Single Predictor excl.
TVar-Coeffs.): This is a restricted version of the Single Predictor incl. TVar-
Coeff model. It includes only one predictor at a time in a setting excluding
time-variation in coeffi cients.

While the above models are based on Bayesian methods, we also consider com-
bination forecast methods based on frequentist approaches. In this case the combi-
nation forecast of ∆et+h made at time t, is a weighted average of the k individual

variance of f̂t+h−f ]
1/2

; where P is the number of out-of-sample forecasts, f̂t+h = f̂e
2

1,t+h− f̂e
2

2,t+h,

with f̂e1,t+h denoting the h-step-ahead forecast error of the RW, and f̂e2,t+h the corresponding

forecast error of the FM. Note that f is the mean of f̂t+h.
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models’ forecast based on OLS estimate of equation (1), excluding time-varying
coeffi cients:

∆̂e
c

t+h =
k∑
i=1

ωi,t∆̂e
i

t+h, (15)

where, {ωi,t}ki=1 are the ex-ante combining weights formed at time t. Following Stock
and Watson (2004) and Rapach et al. (2010) we consider the following forecasts
combination methods:

• Mean Combination: The combined forecasts are obtained by setting ωi,t =
1/k, for i = 1, ..., k in equation (15). Thus, the weights are constant over time.

• Median Combination: The median combination forecasts is the median of
{∆̂e

i

t+h}ki=1.

• Trimmed Mean Combination: The combined forecasts are obtained by setting
ωi,t = 0 for the smallest and largest individual forecasts, and ωi,t = 1/(k − 2)
for the remaining forecasts in equation (15). As in the median combination
and the DMSPE combination method below, the weights change over time.

• DMSPE Combination: In this method, the combining weights are related to
the historical forecasting performance of the individual models in the holdout-
out-of-sample period. The discount mean squared prediction error (DMSPE)
method uses the following weights: ωi,t = Φ−1i,t /

∑k
i=1 Φ−1i,t , where Φ−1i,t =∑t−1

so ϑt−1−so(∆eso+h − ∆̂e
i

so+h)2 and so is the end of the in-sample portion.
The parameter ϑ denotes the discount factor applied to the mean squared
prediction error. Based on results in Rapach et al. (2010) and Stock and
Watson (2004), we set its value to 0.9.17 This is consistent with attaching
greater weight to the individual models that performed better in the holdout-
out-of-sample period. We set this holdout-out-of-sample period to five years,
implying that for this combination method, the forecast evaluation period
starts five years later relative to that of the other models.

The motivation to consider the Bayesian restricted versions of the model that
allows predictors and coeffi cients to change over time is to differentiate the influence
of repeated updating of dynamic coeffi cients within a model, from the influence
of the BMA that changes weights between models depending on past performance
(Dangl and Halling, 2012). In contrast to Bayesian model averaging, Bayesian
model selection fix a specific choice of predictors and degree of time-variation in
coeffi cients. In addition, examining combined forecasts from models which exclude
time-variation in coeffi cients, allows us to further check the sources of differences in

17 In Rapach et al. (2010) and Stock and Watson (2004) the best forecasting performance is
achieved with a discount factor of 0.9, in a set that includes 0.95 and 1.0.
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Table 1: Forecast Evaluation: Multiple Predictor Models

Panel A: Models that allow predictors and coeffi cients to change over time

BMA incl. TVar-Coeff. BMS incl. TVar-Coeff.
h=1 h=3 h=12 h=1 h=3 h=12

Canada 1.009 0.967* 0.843* 1.013 0.970 0.842*
Denmark 1.000 0.959** 0.912* 1.001 0.952** 0.907*
UK 0.996 0.960* 0.894* 0.991** 0.962* 0.886*
Japan 1.005 0.968* 0.859** 1.003 0.966 0.839**
Korea 0.995** 0.978 0.932 0.995** 0.976* 0.927
Norway 1.008 0.985 0.924 1.006 0.988 0.920
Sweden 1.014 0.960* 0.861** 1.012 0.964* 0.858**
Switzerland 1.004 0.992 0.985 1.001 0.990 0.989

Panel B: Models that allow predictors to change over time, excl. TVar-Coeffs.

BMA excl. TVar-Coeff. BMS excl. TVar-Coeff.
h=1 h=3 h=12 h=1 h=3 h=12

Canada 1.000 0.997 1.035 1.000 0.996 1.035
Denmark 0.998 0.975** 0.977 1.000 0.978* 0.979
UK 0.991*** 1.004 0.962 0.990*** 1.005 0.960
Japan 1.005 0.988 0.985 1.005 0.988 0.983
Korea 0.997** 0.991 0.936 0.997** 0.992 0.939
Norway 1.007 1.000 1.046 1.007 0.999 1.048
Sweden 1.003 0.987 0.925 1.004 0.987 0.925
Switzerland 1.003 1.014 1.041 1.003 1.012 1.045

Panel C: Combined forecasts, excl. TVar-Coeffs.

OLS-Mean Combination OLS-Median Combination
h=1 h=3 h=12 h=1 h=3 h=12

Canada 1.002 0.999 0.991 1.002 1.000 1.000
Denmark 1.003 1.001 0.931 1.005 1.005 0.935*
UK 1.005 1.007 1.000 1.005 1.009 1.003
Japan 1.003 1.000 0.974 1.005 1.003 0.990
Korea 0.998** 0.992 0.995 1.000* 0.996 1.003
Norway 1.008 1.013 1.053 1.007 1.011 1.051
Sweden 1.006 1.010 1.022 1.006 1.011 1.029
Switzerland 1.003 1.001 0.957 1.001 0.999 0.953

OLS-Trimmed Mean OLS-DMSPE Combination
h=1 h=3 h=12 h=1 h=3 h=12

Canada 1.001 0.999 0.993 1.002 0.999 0.979
Denmark 1.003 1.001 0.931* 0.999* 0.991 0.920
UK 1.005 1.009 1.005 1.003 1.003 0.988
Japan 1.004 1.002 0.980 1.005 1.004 0.979
Korea 0.998** 0.993 1.003 0.998* 0.990 0.958
Norway 1.008 1.013 1.056 1.003 1.002 1.004
Sweden 1.005 1.010 1.027 1.000 0.992 0.956
Switzerland 1.003 1.002 0.961 1.001 0.996 0.974

Notes: RMSFE of the fundamentals-based models (FM) - detailed at the beginning of this Section,
relative to the RMSFE of the driftless Random Walk (RW). Values less than one indicate that the
FM generates a lower RMSFE than RW. The Table also reports the DMW test-statistic, with p-
values based on a data-mining robust semi-parametric bootstrap. Thus, asterisks ( *10%, **5%,
***1%) denote the level of significance at which the null hypothesis of equal RMSFE is rejected,
favouring the alternative that the FM has a lower RMSFE. The forecast evaluation period begins
in 1978M12+h in all, but the OLS-DMSPE Combination case (1983M12+h).
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forecasting performance and better understand the importance of time-variation in
coeffi cients.

After establishing the main results in terms of the forecasting performance of
the competing models, we then proceed and study in detail the characteristics of
the BMA including time-varying coeffi cients model. In this respect, we analyse the
sources of prediction uncertainty, the degree of time-variation in coeffi cients consis-
tent with the empirical findings, and which macroeconomic fundamentals exhibit
higher posterior probabilities when predicting exchange rates.

4.1 Out-of-Sample Forecast Evaluation

Table 1 summarises in three panels the results from the predictive regressions that
allow predictors and coeffi cients to change over time, and all the restricted versions
that take into account multiple predictors. Comparing the panels, for most countries
the regressions that allow predictors and coeffi cients to change over time significantly
outperform the RW benchmark at all forecast horizons, except at h=1 month. In
fact, as the forecast horizon increases over one month, there is a notable reduction in
the RMSFE. For example, in the case of the BMA including time-varying coeffi cients
model in Panel A, the improvement in terms of the reduction in the RMSFE is of at
least 0.8% and maximum of 4.1% at h=3, and a minimum of 1.5% and maximum
of 15.7% at h=12. However, at h=1 these regressions still generate a lower RMSFE
than RW for two out of eight exchange rates; but in this case the performance is
similar to the models that allow only predictors to change over time, excluding time-
variation in coeffi cients, in Panel B. Thus, at h=1 the gains from allowing predictors
and coeffi cients to change over time are modest relative to models that only allow
predictors to change. At the same time, these gains are small but greater than
the best performing model within the class of models that combine forecasts from
all predictors excluding time-varying coeffi cients, the OLS-DMSPE combination in
Panel C.18

Results in Table 1 also reveal that allowing only predictors to change over time
yields a smaller RMSFE than RW for over half of the currencies and horizons greater
than one month. This is the case for the BMA and BMS models excluding time-
varying coeffi cients in Panel B. However, the differences in RMSFEs are usually not
significant at the levels of significance we compute using the data-mining robust
semi-parametric bootstrap. Additionally, the reduction in the RMSFE is typically
smaller than obtained with the more flexible models in Panel A. For instance, the
reduction in RMSFE never exceeds 2.5% at h=3 and 7.5% at h=12. Thus for these
models, our results are consistent with the findings of Wright (2008).19

18We also experimented other forecast horizons over one month (i.e., h=6, 24, and 36 months)
and found that models with time-varying coeffi cients still do better than the RW for most exchange
rates. However, we do not report these results to save space.

19Wright (2008) finds that in a setting of tighter priors and shrinkage towards the null of no
predictability, the BMA model excl. TVar-coeffs improves upon the RW, although the improvement
in terms of reduction in the RMSFE is small. However, with loose priors and less shrinkage, the
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Table 2: Forecast Evaluation: Single Predictor and BMS incl. TVar-Coeffs

Predictor
Can. Den. U.K. Jap. Kor. Nor. Swe. Swi.

h = 1

TR1 1.016 1.009 1.005 1.002 0.998** 1.014 1.002 1.003
TR2 1.004 1.011 1.006 1.002 1.006* 1.013 0.997** 1.000
TR3 1.015 1.000 1.002 1.001 0.993*** 1.010 1.002 1.003
TR4 1.003 1.000* 1.011 1.008 1.001* 1.002 1.007 1.011
TR5 1.001 0.995** 1.013 1.001 1.007 1.001 1.012 0.999**
TR6 1.012 1.010 1.014 1.002 0.999** 1.003 1.014 1.020
TR7 1.008 1.010 1.015 1.009 1.001* 1.018 1.006 1.007
TR8 1.000 1.006 1.010 1.000* 0.998** 1.014 0.999** 0.999*
TR9 1.001 1.010 1.015 1.009 1.000* 1.003 0.998** 1.021
TR10 1.007 1.002 1.004 1.009 1.001* 1.023 1.009 1.001
TR11 1.014 1.000* 1.008 1.001 1.003 1.002 1.015 1.002
TR12 1.008 1.013 1.010 1.003 1.000** 1.018 1.009 1.021
TR13 1.000* 1.007 1.000 1.007 1.004 1.002 1.005 1.018
TR14 1.001 1.009 1.015 1.003 1.000* 1.018 1.007 1.019
TR15 1.000* 1.009 1.014 1.002 0.999** 1.016 1.008 1.019
TR16 1.015 1.011 1.014 1.004 0.991** 1.006 1.000* 1.018
TR17 1.012 0.999* 1.002 1.013 0.995** 1.002 0.997*** 1.002
TR18 1.000* 1.009 1.011 1.003 1.011 1.007 1.002 1.000*
TR19 1.002 1.000* 1.013 1.009 0.983*** 1.004 1.000* 1.007
TR20 1.001 1.000* 1.011 1.004 1.019 1.007 1.005 0.999**
MM 1.014 1.008 1.010 1.000* 1.027 1.011 0.998** 1.020
PPP 1.010 0.998** 1.012 1.006 0.986*** 1.010 1.003 1.015
UIRP 1.008 1.002 0.993** 0.995** 0.985*** 1.008 0.972*** 0.999*

h=3

TR1 0.990 0.977 0.982 0.969** 1.000 0.979 0.976 0.993
TR2 0.957** 0.988 0.992 0.988 0.986 0.998 0.980 0.987
TR3 0.990 0.975 0.997 0.983 0.978* 1.000 0.982 0.980
TR4 0.979 0.982 1.020 0.984 0.966* 1.000 0.978 0.982
TR5 0.992 0.982 0.978 0.989 0.974* 0.980 0.983 0.992
TR6 0.991 0.971** 0.989 0.978 0.989 0.975* 0.999 0.983
TR7 0.983 0.982 1.017 0.984 0.964 0.996 0.978 0.985
TR8 0.985 0.972 1.003 0.979 0.985 0.994 0.978 0.977
TR9 0.980** 0.980 0.995 0.987 0.980 0.998 0.987 0.985
TR10 0.953*** 0.981 0.982 0.989 0.982 0.993 0.980 0.984*
TR11 0.988 0.976 0.977* 0.983 0.985** 0.997 0.977 0.986
TR12 0.980 0.978 0.999 0.989 0.969 0.998 0.980 0.987
TR13 0.967* 0.969** 0.997 0.981 0.983 1.001 0.976 0.987
TR14 0.976 0.977 1.000 0.985 0.981 0.994 0.976 0.979*
TR15 0.985 0.979 0.974* 0.988 0.990 0.996 0.995* 0.990
TR16 0.996 0.972* 0.980 0.981 0.991 0.991 0.972** 0.992
TR17 0.999 0.978 1.000 0.985 0.980 0.998 0.977* 0.996**
TR18 0.978 0.966** 0.988 0.975 0.974** 0.997 0.977 0.978
TR19 0.968** 0.977 0.984 0.986 0.980 0.998 0.974* 0.986
TR20 0.970** 0.981 0.987 0.988 0.966** 1.000 0.977* 0.986
MM 0.995 0.972* 0.991 0.981 0.959 0.976** 0.946*** 0.981
PPP 0.978** 0.970*** 0.964** 0.971** 0.883* 0.954*** 0.994*** 0.972***
UIRP 0.982 0.989 0.95** 0.965* 0.986 0.980 0.962** 0.981

Notes: RMSFE of the fundamentals-based model (FM), relative to the RMSFE of the driftless
Random Walk (RW). Values less than one indicate that the FM generates a lower RMSFE than
the RW. Asterisks ( *10%, **5%, ***1%) denote the level of significance of the DMW test based
on a semi-parametric bootstrap. Here the FM model is based on a Single Predictor incl. TVar-
Coeffs. TR1 to TR20 correspond to different Taylor rule specifications as in Appendix B; MM-
fundamentals from the Monetary Model, PPP - Purchasing Power Parity; and UIRP- Uncovered
Interest Rate Parity. The forecast evaluation period begins in 1978M12+h.
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Table 3: Forecast Evaluation: Single Predictor excl. TVar-Coeffs

Predictor
Can. Den. U.K. Jap. Kor. Nor. Swe. Swi.

h = 1

TR1 1.003 1.002 1.004 1.001 0.999* 1.006 1.002 1.004
TR2 1.002 1.000* 1.004 1.003 0.993** 1.006 1.000* 1.002
TR3 1.003 1.000* 1.002 1.000 0.998** 1.005 1.002 1.002
TR4 1.002 1.000* 1.006 1.005 0.992** 1.005 1.000 1.002
TR5 1.001 1.002 1.006 1.002 0.998** 1.001 1.003 1.000*
TR6 1.004 1.003 1.004 1.001 0.999* 1.005 1.003 1.004
TR7 1.002 1.000* 1.006 1.004 0.992** 1.006 1.000* 1.002
TR8 1.000 1.000* 1.006 1.000* 0.997** 1.006 1.001 1.002
TR9 1.002 1.000* 1.006 1.005 0.992** 1.005 0.999* 1.002
TR10 1.003 1.003 1.004 1.001 0.997** 1.006 1.003 1.001
TR11 1.004 1.002 1.004 1.001 0.998** 1.003 1.002 1.004
TR12 1.002 1.000* 1.005 1.005 0.992** 1.006 1.000 1.002
TR13 1.004 0.997** 1.000 1.002 0.998* 1.005 1.001 1.002
TR14 1.002 0.999* 1.006 1.005 0.992** 1.006 1.000* 1.002
TR15 1.003 1.002 1.006 1.002 0.998** 1.006 1.001 1.003
TR16 1.004 1.001 1.006 1.002 0.997*** 1.006 1.000* 1.004
TR17 1.002 0.999* 1.002 1.005 0.993** 1.006 0.999** 1.002
TR18 1.000* 0.996** 1.006 1.003 0.998* 1.007 0.999* 1.002
TR19 1.002 1.000* 1.006 1.006 0.992** 1.006 0.998* 1.002
TR20 1.002 1.001 1.005 1.002 0.996*** 1.006 1.001 1.002
MM 1.007 1.007 1.008 1.001 1.002 1.007 0.997** 1.005
PPP 1.003 1.003 1.004 1.002 0.999* 1.004 0.999* 1.003
UIRP 1.004 1.003 1.002 0.997* 1.000 1.004 1.018 1.003

h = 3

TR1 1.004 1.001 1.004 0.995 1.000 1.005 1.000 1.001
TR2 1.000 0.986 1.006 1.005 0.987 1.005 0.994 0.992
TR3 1.003 0.994 1.003 0.994 0.992* 1.004 0.998 0.993
TR4 1.001 0.985* 1.006 0.999 0.980* 1.006 0.995 0.993
TR5 0.999 0.997 1.006 0.999 0.989** 1.005 1.003 1.000
TR6 1.006 0.996 0.998 0.995 0.987** 1.003 0.999 0.997
TR7 1.001 0.986* 1.008 1.002 0.981* 1.006 0.995 0.991*
TR8 1.008 0.989 1.006 0.996 0.988** 1.006 0.995 0.993
TR9 1.002 0.983* 1.005 1.002 0.982* 1.005 0.993 0.992
TR10 0.994* 0.998 0.996 0.999 0.986** 1.006 1.003 0.994*
TR11 1.005 0.994 1.006 0.994 0.991* 1.004 1.002 0.998
TR12 1.000 0.984* 1.004 1.003 0.981* 1.005 0.993 0.993
TR13 0.998 0.984* 1.004 0.996 0.993 1.006 0.997 0.994
TR14 1.000 0.984* 1.004 1.001 0.981* 1.000 0.994 0.992
TR15 1.003 0.995 1.005 0.999 0.993 1.003 0.997* 0.998
TR16 1.005 0.989* 1.005 0.996 0.996 1.004 0.995 1.000
TR17 1.000 0.983* 1.003 1.001 0.987 1.005 0.991** 0.996**
TR18 0.992 0.978** 1.005 0.996 0.990** 1.006 0.989* 0.991
TR19 1.001 0.985* 1.005 1.002 0.987 1.005 0.992 0.994
TR20 1.001 0.993 0.999 0.999 0.986** 1.001 0.996 0.998
MM 1.005 1.005 1.005 1.001 1.001 1.007 0.982* 1.004
PPP 1.000 0.998 0.984* 0.989** 0.977*** 0.999 0.994*** 0.994
UIRP 1.007 1.006 1.000 0.979* 0.996 0.998 1.022 0.997

Notes: As in Table 2, except that here the focus is on the Single Predictor excl. TVar Coeffs
model.
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The combined forecasts based on models that exclude time-variation in coeffi -
cients are more accurate than the RW mostly at h=12. For example, the predictions
of the best performing combination method among the several methods in Panel C,
the OLS - DMSPE combination, are more precise for seven of the eight exchange
rates considered at h=12. Nonetheless, it is again the case that this improvement is
not superior to the BMA and BMS including time-varying coeffi cients models, and
in many cases the differences in the RMSFE are not statistically significant.

Tables 2 and 3 present results for individual predictors including and excluding
time-varying coeffi cients, respectively. To save space here, and in all the subsequent
analyses we focus on h=1 and h=3, as the results for h=12 are qualitatively similar
to those of h=3. In general, the relatively good performance of the regressions that
allow predictors and coeffi cients to change over time over horizons greater than one
month is supported by the individual models with time-varying coeffi cients. In Ta-
ble 2, virtually all the individual models with time-varying coeffi cients generate a
smaller RMSFE than the RW for all countries - though not always significant. By
contrast, in Table 3 not all the individual models excluding time-varying coeffi cients
improve upon the RW, and this appears to be impacting upon the average fore-
casting performance of the model that only allow predictors to change over time.
The evidence suggests overall that allowing for varying degrees of time-variation in
coeffi cients yields an improvement in the out-of-sample forecasting performance of
the fundamentals-based exchange rate models.

4.2 Characterization of the BMA Model Including Time-Varying
Coeffi cients

The results in the previous Subsection imply that Bayesian averaging or selection
over individual models with varying degrees of coeffi cients evolution improves rel-
ative forecasting performance, particularly at horizons over one month. Since this
model emanates from a complex combination of many individual models, under-
standing its characteristics is useful in explaining the sources of difference in fore-
casting performance relative to other competing models and across forecast horizons.
This constitutes a key contribution of this paper.

4.2.1 Sources of Prediction Uncertainty

We begin by analyzing the sources of prediction uncertainty through a variance de-
composition process (see, e.g., Dangl and Halling, 2012). As we noted in Subsection
2.3, the total variance can be decomposed into observational variance, variance due
to errors in the estimation of the coeffi cients, variance due to model uncertainty
with respect to the choice of the predictor, and variance due to model uncertainty
with respect to the choice of degree of time-variation in coeffi cients.

model fails to improve upon the RW.
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Figure 1: Sources of Prediction Variance, h=1
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Notes: Decomposition of the prediction variance into its constituent parts for h=1 month. Panel
A shows all sources of prediction variance: (i) the variance caused by random fluctuations in the
data (Obs.var.); (ii) variance due to errors in the estimation of the coeffi cients (Unc.coef); (iii)
variance due to model uncertainty with respect to the choice of the predictor (Unc.choice of pred);
and (iv) variance due to model uncertainty with respect to the choice of degree of time-variation in
coeffi cients (Unc.TVar). The Panel shows relative proportions of these variances. Panel B excludes
the variance due to random fluctuations in the data (Obs.var.) and shows the relative weights of
the remaining sources of prediction variance, and hence also sum to one.20



Figure 2: Sources of Prediction Variance, h=3
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Notes: As in Figure 1, except that here h=3 months.
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Focusing on a representative selection of four countries, Figures 1 and 2 depict
this decomposition for h=1 and h=3, respectively. In both figures, Panel A illus-
trates the relative weight of each of the components of prediction variance in the
total variance. In all cases, the predominant source of uncertainty is observational
variance. As Dangl and Halling (2012) point out this is normal for asset prices, as
they frequently fluctuate randomly over their expected values. These fluctuations
are expected to be noticeable for the horizons we are considering and to dominate
the predicted trend component.

In Panel B of the same figures we exclude the observational variance allowing
us to focus upon the relative weights of the remaining sources of prediction uncer-
tainty. At both forecast horizons, the variance from errors in the estimation of the
coeffi cients is the dominant source of prediction uncertainty. Between the two fore-
cast horizons however, there are differences with respect to uncertainty regarding
the choice of the correct degree of time-variation in coeffi cients. At the one-month
forecast horizon, the uncertainty originating from this source is detectable through-
out the forecast sample. For example, in the case of Canada and in various periods,
it represents over one fifth of the total variance excluding observational variance,
peaking in periods around financial stresses, such as the 2008 financial crisis. In con-
trast, at the three-month horizon the uncertainty regarding the choice of the correct
degree of time-variation in coeffi cients is clustered at the initial out-of-sample pe-
riod which corresponds to the initial data-points in the expanding window of the
forecasting procedure. As more evidence is accumulated, the uncertainty remains
mostly low. Finally, the variance due to model uncertainty with respect to the choice
of the predictor is for the most part low, except also for the aforementioned initial
data-points in the expanding window.

We interpret these findings are suggesting that although the estimation uncer-
tainty is substantial at both horizons, at the one-month forecast horizon the model
fails to strongly improve upon the RW because of the additional uncertainty regard-
ing the precise level of time-variation in coeffi cients, necessary to capture instabilities
present in the data. That is, there is no certainty about the exact degree of time-
variation in coeffi cients necessary to offset the loss in forecast performance emanating
from estimation uncertainty. By contrast, at the three-month forecast horizon the
model successfully embeds the level of time-variation in coeffi cients present in the
data. Hence, it consistently outperforms the RW by counterbalancing the loss in
the precision in coeffi cient estimation, with increased variability in the coeffi cients.
This signifies that both, estimation uncertainty and coeffi cient instability obstruct
model forecasting performance, and our model adapts to the pattern in the data for
horizons over one month.20

We relate these findings to Bacchetta et al. (2010) and Giannone (2010). Bac-
chetta et al. (2010) calibrate a theoretical reduced-form model of the exchange rate
on actual data to examine whether parameter instability rationalises the Meese and

20Recall that we model the variance of the measurement equation error term Wt, as proportional
to the estimation variance of the coeffi cient vector θt|Dt, see equation (12).
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Rogoff (1983) result of exchange rate unpredictability. They find that estimation
uncertainty is the main factor that hinders model’s forecasting performance and
not time-variation in coeffi cients. However, Giannone (2010) disputes these findings
arguing that both, estimation uncertainty and parameter instability are relevant in
explaining the Meese-Rogoff puzzle.

Giannone (2010) also examines the trade-offs between estimation error and pa-
rameter uncertainty. He observes three stages when forecasting in an expanding
window of data. The first stage is characterised by a high forecast error with the
first few observations. In the second stage, the forecast accuracy increases as the
estimation window is expanded beyond these few initial observations, signalling re-
duction in the coeffi cients’ estimation error. However, in the third stage, further
increasing the window deteriorates model-based forecasting performance relative to
the RW, since gains from reduced estimation error are compensated by losses due
to the presence of structural instabilities. Thus, the recursive ratio of the relative
RMSFE exhibits a U shape. Due to space constraints we show the figures of our
recursive ratio of the relative RMSFE in an Additional Result Appendix. Here we
note that the figures confirm Giannone’s (2010) observations for the first and sec-
ond stages, but not the third stage. In our case, further increasing the window
does not significantly deteriorate model-based forecasting performance relative to
the RW. In fact, for the most part of the forecast period and horizons greater than
one month, the relative RMSFE is below one, favouring the fundamentals-based
model. When read in conjunction with the main sources of instabilities we detect,
this result reinforces the finding that the BMA model including time-varying coeffi -
cients successfully captures the degree of time-variation in parameters necessary to
offset the loss in forecast accuracy due to estimation uncertainty.

To further shed light on these findings we focus in another measure of forecast
accuracy that underlies our Bayesian approach, namely the predictive likelihood,
see Geweke and Amisano (2010). Figure 3 depicts the cumulative log predictive
likelihood of the models with constant-coeffi cients relative to models with time-
varying coeffi cients. A value of zero corresponds to equal marginal support for both
models; negative values are in support of models with time-varying coeffi cients; and
positive values are in favour of models with constant coeffi cients.

Three main results are apparent in Figure 3. First, it confirms that models with
time-varying coeffi cients are empirically plausible, especially at h=3 and h=12. At
these horizons, with the exception of three out of eight countries, the cumulative log
predictive likelihoods become negative after a number of out-of-sample data-points
have been accumulated.21 ,22 Second, for h=3 and h=12 and occasionally excluding
Canada, Korea, and Switzerland, the cumulative log predictive likelihoods shows a
downward trend. This is consistent with additive evidence favouring the model with

21The three exceptions are Canada, Korea, and Switzerland.
22Geweke and Amisano, (2010) point out that it is customary for the results to be sensitive at the

beginning of the out-of-sample period, as this reflects sensitiveness to the prior density. However, as
they emphasize, after a number of observations have been accumulated the results become invariant
to substantial changes in the prior density distribution.
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Figure 3: Cumulative Log Predictive Likelihood: BMS excl. TVar-Coeff. relative to BMS
incl. TVar-Coeff
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are in favour of models with constant coeffi cients.
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time-varying coeffi cients. Third, the Figure shows that observations in the more
recent turbulent-periods, around 2005-2010, contribute highly to the evidence in
favor of the Time-varying coeffi cients model. Overall, our findings remain invariant
to this measure of forecast accuracy.

4.2.2 Analysis of the Degree of Time-Variation in Coeffi cients

As the preceding results indicate, at the one-month horizon the uncertainty regard-
ing the degree of time-variation in parameters is not trivial, but at longer forecast
horizons the uncertainty become low as more evidence is gathered. However, the em-
pirically estimated amount of time-variation was not evoked. Figure 4 provides this
information. It depicts the total posterior probability of each of the support points
for time-variation in coeffi cients, δ. At h=1 in Panel A, none of the support points
consistently accumulates higher weight than the others for an extensive period. For
example in the case of Canada and the United Kingdom, most weight is attributed
to δ = 1, consistent with constant-coeffi cients. Nonetheless, there are still shifts in
these weights, dropping substantially around the 2008 financial crisis. For the other
countries, the shifts in the support points are even more pronounced, impacting
upon the uncertainty about the correct expected degree of coeffi cient variability.

In contrast, at h=3 in Panel B, very dynamic models with δ = 0.96, exhibit the
highest posterior probability, while constant-coeffi cient models typically receive the
lowest support. Interestingly, Giannone (2010) finds that to match the pattern of
exchange rate unpredictability present in the data, a significant amount of time-
variation in coeffi cients were necessary in his simulations. Beckmann and Schuessler
(2014) show in a Monte Carlo Simulation that a time-varying parameter model like
ours, i.e., which allows for gradual to high degree of time-variation in coeffi cients, is
well suited to recover the patterns in the data. As well, in an application to equity
returns, Dangl and Halling (2012) find that models with moderate (δ = 0.98) to
high (δ = 0.96) degree of time-variation are empirically supported. In the present
case, the preponderance of δ = 0.96 over the other support points, is reflected in the
low uncertainty with respect to the degree of time-variation in coeffi cients.23

4.2.3 Analysis of the Importance of Individual Predictors

Another characteristic to explore in the BMA including time-varying coeffi cients
model is the importance of individual predictors. Figure 5 shows which predictors
accumulate the highest probability at each point in time. Overall and in most cases,
after the initial data-points in the sample, there is less variability in the predictor
that exhibits the largest posterior probability. This is consistent with the low un-
certainty with respect to the choice of the predictor that we found. However, the
predictors that receive the highest weight differ over forecast horizons and countries.
In the case of the United Kingdom for example, while fundamentals from the Taylor

23 In an Additional Results Appendix we zoom in Figure 4 to illustrate the values of δ with the
highest probability at each period.
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Figure 4: Posterior Probabilities of Degrees of Time-variation in Coeffi cients, δ
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Notes: Posterior probabilities of values of δ (support points for time-variation in coeffi cients), for
a representative selection of countries. Panel A is for h=1 and Panel B for h=3. These are the
weights employed to produce the average forecasts in the BMA incl. TVar-Coeff. model. (For all
countries, see the Additional Results Appendix).
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Figure 5: Predictors with the Largest Posterior Probability at Each Period
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Notes: Predictors with the highest probability at each point in time for a representative selection of
countries. Panel A is for h=1 and Panel B for h=12. The forecasts from the BMS incl. TVar-Coeff.
model are based on these predictors. (For all countries, see the Additional Results Appendix).
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rule with homogeneous coeffi cients and interest rate smoothing (TR2) are dominant
at h=1, at h=3 fundamentals based on UIRP receive the highest weight.

Some of the fundamentals in our set are constituted by Taylor rules augmented
with FCIs (TR5, TR10, TR15 and TR20). In the selection of countries represented
in Figure 5, one of the specification (TR5) dominate other fundamentals for some
period in the case of Japan at h=1. In the extensive results reported in an Additional
Results Appendix, other specifications also predominate for the most part of the
sample (TR10 for Switzerland at h=3; TR15 for Canada (h=12); and TR20 for
Korea at h=1).

5 Robustness Checks

We verified the robustness of the empirical findings in the previous Section in three
dimensions. First, while plots of cumulative log predictive likelihoods allowed us
to examine the forecast accuracy over the entire path of the forecast window; we
also experimented with changing the beginning of the forecast window.24 ,25 In par-
ticular, we considered an evaluation period starting in 1989M12+h, as in Wright
(2008), or in more recent periods, 2005M12+h. We focused in the BMA models
including/excluding time-varying coeffi cients. Overall, in both forecast windows, re-
sults in Table 4-Panel A are still supportive of models with time-varying coeffi cients
for horizons greater than one month. For example, at h=3 and h=12, the relative
RMSFE is less than one for at least seven, out of eight countries in the case of the
BMA model including time-varying coeffi cients. On the contrary, the BMA model
excluding time-varying coeffi cients achieves small reductions in the RMSFE for no
more than five currencies at the same horizons; once again, confirming Wright’s
(2008) results.

Second, we changed the base numeraire to the UK Pound in place of the US dol-
lar, following Chen et al. (2010). Focusing on the BMA model including/excluding
time-varying coeffi cients, results in Table 4-Panel B remain largely unaffected. The
corresponding analysis of prediction variance, based on the example of Japan in
Figure 6, also reveals the pattern we documented: estimation uncertainty and un-
certainty with regards to the exact degree of time-variation are the main obstacles
to model’s forecasting performance.

Third, we estimated directly the degree of time-variation in coeffi cients following
the approach in Koop and Korobilis (2013), instead of inferring from model’s poste-
rior probability. In this case the estimated δ is: δ̂ = δMin + (1− δMin)exp(Lg.v

2
t+h),

where δMin is the minimum value of support points for time-variation in coeffi cients

24Giacomini and Rossi (2010) formalize the issue of forecast robustness over different windows
in presence of instabilities by developing appropriate test statistics. However, their tests require a
use of a rolling or fixed estimation window approach when producing the forecasts, rather than our
recursive scheme.

25Due to computational cost of implementing the bootstrap for the d.k. models and each sen-
sitivity analysis we consider, in this Section we evaluate our forecasts solely on the basis of the
relative RMSFE.
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Table 4: Out-of-Sample Forecast Evaluation: Robustness Checks

Panel A: Sensitivity to change in the forecast window

BMA incl. TVar-Coeff. BMA excl. TVar-Coeff.

1989M12+h 1989M12+h

h=1 h=3 h=12 h=1 h=3 h=12
Canada 1.012 0.975 0.857 1.000 1.000 1.051
Denmark 1.011 0.981 0.929 1.005 1.001 1.009
UK 1.014 0.964 0.942 1.005 1.020 1.008
Japan 1.008 0.996 0.837 1.003 1.009 0.995
Korea 0.998 0.983 0.984 1.001 0.996 0.974
Norway 1.009 0.978 0.975 1.007 1.006 1.076
Sweden 1.020 0.965 0.922 1.006 0.997 0.984
Switzerland 1.013 1.009 0.910 1.005 1.009 0.985

2005M12+h 2005M12+h

h=1 h=3 h=12 h=1 h=3 h=12

Canada 1.015 0.991 0.920 0.999 0.992 1.024
Denmark 1.002 0.991 0.952 1.001 0.998 0.999
UK 1.019 0.899 0.934 1.004 1.008 1.002
Japan 1.006 0.980 0.816 1.001 0.996 0.927
Korea 1.000 0.998 0.976 1.000 0.997 0.973
Norway 1.005 0.958 1.007 1.003 1.007 1.008
Sweden 1.023 0.972 0.982 1.004 1.033 0.988
Switzerland 1.017 1.002 0.923 1.000 1.003 0.985

Panel B: Sensitivity to change in base currency to Pound Sterling

BMA incl. TVar-Coeff. BMA excl. TVar-Coeff.

h=1 h=3 h=12 h=1 h=3 h=12

Canada 1.022 1.012 0.806 1.004 1.003 0.947
Denmark 1.009 0.995 0.854 1.001 1.003 0.941
U.S 1.002 0.967 0.901 0.992 1.006 0.965
Japan 1.000 0.962 0.804 0.996 0.985 0.955
Korea 1.017 1.001 0.912 1.007 0.996 0.984
Norway 1.010 1.002 0.911 1.005 1.002 0.996
Sweden 1.021 0.988 0.957 1.002 0.997 0.974
Switzerland 1.009 0.988 0.808 1.003 0.995 0.933

Notes: Robustness analysis of the results in the Empirical Section. The entries in the Table are
the RMSFE of the fundamentals-based models (FM) - BMA incl/exc. TVar-Coeff, relative to the
RMSFE of the driftless Random Walk (RW). Values less than one indicate that the FM generates a
lower RMSFE than RW. Panel A focus on changing the beginning of the forecast evaluation period
to 1989M12+h and 2005M12+h. Panel B reports the sensitivity to change in the base currency to
the U.K. Pound.
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Figure 6: Prediction Variance: Sensitivity to Change in base Currency to the Pound
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Notes: As in Figures 1 and 2, except that here the exchange rate is defined relative to the Pound
Sterling, and hence all the data employed in the predictive regression are redefined relative to the
U.K.

Table 5: Estimated Degree of Time-Variation in Coeffi cients

Horizon Quartiles Can. Den. U.K. Jap. Kor. Nor. Swe. Swi.
First 0.980 0.970 0.970 0.970 0.980 0.970 0.970 0.960

h =1 month Second 0.990 0.980 0.990 0.980 0.990 0.980 0.980 0.980
Third 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

First 0.970 0.960 0.960 0.960 0.970 0.960 0.960 0.960
h =3 months Second 0.980 0.970 0.970 0.970 0.980 0.970 0.970 0.960

Third 0.990 0.980 0.990 0.980 0.990 0.990 0.990 0.980

First 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960
h =12 months Second 0.970 0.960 0.960 0.960 0.960 0.960 0.960 0.960

Third 0.990 0.970 0.970 0.970 0.970 0.960 0.960 0.960

Notes: Estimates of the degree of time-variation in coeffi cients, δ. For each country, we first
estimate δ̂ as we run the predictive model excluding time-variation in coeffi cients for each t. We
then average the estimates over predictors and obtain a series of δ̂. From this series we compute
the first, second and third quartiles. The forecast evaluation period begins in 1978M12+h.
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considered (we set δMin = 0.96), exp is the exponential function, Lg is a constant
scaling parameter and vt+h is the predictive regression’s error. Overall, results are
consistent with the degree of time-variation in coeffi cients we obtained in the em-
pirical section above. As shown in Table 5, at h=1 the median (2nd quartile) δ̂ is
between 0.98 and 0.99, and for over 3/4 of the out-of-sample data-points its value is
above 0.97. However, as the forecast horizon increases, the value of δ̂ is consistent
with more time-variation in coeffi cients, with median δ̂ = 0.97 for h=3 and most
countries, and δ̂ = 0.96 for h=12 and virtually all countries.

6 Conclusion

The literature on exchange rate forecasting points out that the out-of-sample pre-
dictive power of fundamental-based exchange rate models is erratic. Models that
forecast well for certain currencies and periods, often fail when applied to other
exchange rates and samples (Rogoff and Stavrakeva, 2008; Rossi, 2013). While
this signals presence of instabilities, attempts to account for them, for example by
considering regressions with time-varying coeffi cients, have not yet produced over-
whelming results (Rossi, 2013). In this paper we employ a systematic approach to
properly take into account time-variation in the coeffi cients of exchange rate fore-
casting regressions. The approach also incorporates the idea that the relevant set
of regressors may change at each point in time; see, for example, Bacchetta and
van Wincoop (2004, 2013), Berge (2013), and Sarno and Valente (2009). Inspired
by recent advances in Bayesian methods (e.g., Dangl and Halling, 2012; Koop and
Korobilis; 2012), we further employ our systematic framework to investigate all
sources of uncertainty in the predictive models, through a variance decomposition
procedure.

In our findings, fundamentals-based models significantly outperform the driftless
random walk benchmark for most currencies at all the forecast horizons we consider,
except at the one-month horizon. The key to improving upon the benchmark is
forecasting with predictive regressions that capture both, the possibly changing
set of explanatory variables, and the appropriate time-varying weights associated
with these variables. At horizons greater than one month, i.e., h=3 and h=12,
our regressions successfully embed these characteristics. Models which allow for
switching sets of regressors and sudden, rather than smooth, changes in the time-
varying weights of these regressors are empirically plausible. By contrast, at the
one-month forecast horizon our predictive regressions fail to successfully capture the
suitable time-varying weights associated with the regressors; yielding poor model’s
forecasting performance. Thus, in line with the prevailing view in the literature, we
affi rm that it is hard to beat the no-change benchmark at the one-month forecast
horizon (Rossi, 2013).

We then proceed and track the sources of uncertainty in the regressions. In this
regard we find that the uncertainty in the estimation of the models’coeffi cients, and
the uncertainty regarding the correct level of time-variation in coeffi cients, are the
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main factors hindering models’predictive ability. When the uncertainty emanating
from these sources is low or is successfully embedded in the model, the out-of-sample
forecasting performance of the models is satisfactory. In further characterization
of our model, we find that while the relevant set of predictors generally differs
between forecast horizons and between countries; the uncertainty about selecting
any individual predictor is generally low within a specific country-horizon. We
view our results as providing a direct evidence towards the prevalent conjectures
or simulation based evidence that time-variation in parameters of the models might
cause time-variation in the models’forecasting performance (Giannone, 2010; Meese
and Rogoff, 1983; Rossi, 2013; Rossi and Sekhposyan, 2011).
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A Forecasting and Averaging in a Bayesian Framework

This Appendix provides details on the methods used to forecast with the dynamic
linear model defined by equations (1) and (2) in the main text, as well as the
averaging approach. We follow closely Dangl and Halling (2012) and West and
Harrison (1997).

A.1 Bayesian Estimation of the Parameters of the Predictive Re-
gression

For convenience we begin by transcribing the system of equations from Section 2.1
in the main text:

∆et+h = X ′tθt + vt+h, vt+h ∼ N(0, V ), (observation equation); (A.1)

θt = θt−1 +$t, $t ∼ N(0,Wt), (transition equation); (A.2)

The essential components of the Bayesian approach we employ are the priors for V
and θt, along with a method to estimate Wt; the joint or conditional posterior dis-
tribution of V and θt; and in the context of our predictive regression, the predictive
density. Finally, we also require an updating scheme for the priors after observing
the data.

The approach involves a full conjugate Bayesian analysis. The starting point is
the natural conjugate g−prior specification set at t = 0:

V |D0 ∼ IG
[

1

2
,
1

2
S0

]
, (A.3)

θ0|D0, V ∼ N [0, gS0(X
′X)−1], (A.4)

where,

S0 =
1

N − 1
∆e′(I −X(X ′X)−1X ′)∆e, (A.5)

and D0 indicates the conditioning information at t = 0. In general, at any arbi-
trary subsequent period, Dt = [∆et,∆et−h, ..., Xt, Xt−h, ..., P riorst=0]. That is, Dt

contains the exchange rate variations, the predictors, and the prior parameters. At
this arbitrary period we can form a posterior belief about the unobservable coeffi -
cient θt−1|Dt, and the variance of the observation equation error term (observational
variance V |Dt). The use of a natural conjugate prior implies that the posterior dis-
tributions are from the same family as the priors. Specifically, the posteriors are
also jointly normally-inverse gamma distributed:

V |Dt ∼ IG
[
nt
2
,
ntSt

2

]
, (A.6)
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θt−1|Dt, V ∼ N(mt, V C
∗
t ), (A.7)

where, St is the mean of the estimate of the observational variance V, at time t, with
nt as the corresponding number of degrees-of-freedom; mt is the estimate of coeffi -
cient vector θt−1 conditional on Dt and V ; and C∗t corresponds to the conditional
variance matrix of θt−1, normalised by the by the observational variance. Inte-
grating out the distribution given by (A.7) with respect to V, yields a multivariate
t−distribution for the coeffi cients’posterior:

θt−1|Dt ∼ Tnt(mt, StC
∗
t ). (A.8)

The form of the transition equation given by (A.2) suggests that, when updating
the coeffi cients vector, the posterior distribution of θt−1|Dt represented by (A.8)
does not necessarily become the prior for θt|Dt. The equation indicates that the
transition process is exposed to normally distributed random shocks, which widens
the variance but maintains the mean:

θt|Dt ∼ Tnt(mt, StC
∗
t +Wt). (A.9)

The predictive density of the h-step-ahead change in the exchange rate ∆et+h, is
obtained by integrating the conditional density of ∆et+h over the space spanned by
θ and V. To derive it, let ϕ(x;µ, σ2) be the density of a normal distribution evaluated
at x and ig(V ; a, b) be the density of an IG[a, b] distributed variable, evaluated at
V. Then, the predictive density is:

f(∆et+h|Dt) =

∫ ∞
0

[∫
θ
ϕ(∆e;X ′tθ, V )ϕ(θ;mt, V C

∗
t +Wt)dθ

]
×ig

(
nt
2
,
ntSt

2

)
dV

=

∫ ∞
0

ϕ(∆e;X ′tmt, X
′
t(V C

∗
t +Wt)Xt + V )

×ig
(
nt
2
,
ntSt

2

)
dV

= tnt(∆et+h; ∆̂et+h, Qt+h), (A.10)

where, t(∆et+h; ∆̂et+h, Qt+h) denotes the density of a t−distribution with nt degrees-
of-freedom, mean ∆̂et+h, variance Qt+h, evaluated at ∆et+h. The mean of the
predictive distribution is computed as:

∆̂et+h = X ′tmt, (A.11)

and the total unconditional variance of the same distribution is given by:

Qt+1 = X ′tRtXt + St, (A.12)
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with

Rt = StC
∗
t +Wt, (A.13)

where, Rt is the unconditional variance of the coeffi cient vector θt at time t. The
first term in equation (A.12) captures the variance arising from uncertainty in the
estimation of the coeffi cient vector θt. The last term St denotes the estimate of the
variance of the disturbance term of the observation equation.

After observing the exchange rate change at t + h, the priors on θt and V are
updated as described in equations (A.14)-(A.19). The first element, is the prediction
error:

εt+h = ∆et+h − ∆̂et+h, (prediction error). (A.14)

Insofar as the prediction error equals zero, no updating occurs in the coeffi cient
vector, since the forecast matches the value observed in the data.

nt+1 = nt + 1, (degrees-of-freedom), (A.15)

St+h = St +
St
nt

(
ε2t+h
Qt+h

− 1

)
, (estimator of observational variance). (A.16)

Given that the total variance of the forecast is expressed by Qt+h, then E(ε2t+h) =
Qt+h. When the prediction error matches its expectation, i.e., ε2t+h = Qt+h, the
estimate of the observational variance remains unchanged (St+h = St). When the
prediction error is lower (higher) than the expected error, the estimated observa-
tional variance reduces (increases).

An additional element that induces changes in the coeffi cients is the adaptive
vector:

At+h =
RtXt

Qt+h
, (adaptive vector). (A.17)

It characterises the degree to which the posterior of the coeffi cient vector θt changes
to new observation. The numerator of equation (A.17) can be recognised as the
information content of the current observation, and the denominator as the measure
of the precision of the estimated coeffi cients. With the above elements, we are now
in position to update the coeffi cients’point estimate mt and the covariance matrix
C∗t :

mt+h = mt +At+hεt+h, (expected coeff. vector estimator), (A.18)

C∗t+h =
1

St

(
Rt −At+hA′t+hQt+h

)
, (variance of the coeff. vector estimator). (A.19)

The exposition so far does not include a method to estimateWt. However, as we
noted in Section 2.1, to capture the relationship between the coeffi cients’estimation
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error and the variance, we let Wt be proportional to the estimation variance StC∗t
of the coeffi cients θt|Dt at time t. That is:

Wt =
1− δ
δ

StC
∗
t , δ ∈ {δ1, δ2, ..., δd}, 0 < δj ≤ 1. (A.20)

Therefore, the variance of the predicted coeffi cient vector expressed in equation
(A.13) simplifies to:

Rt = StC
∗
t +

1− δ
δ

StC
∗
t =

1

δ
StC

∗
t . (A.21)

This completes the requisites for forecasting with one model. However, the approach
we pursue allows for k candidate predictors and d possible support points for time-
variation in coeffi cients, and therefore, k.d models. Hence, part A.2 of this appendix
extends the analysis to deal with these possibilities in a Bayesian model selection
and averaging approach.

A.2 Bayesian Dynamic Averaging OverModels and Forgetting Fac-
tors

Let Mi constitute a specific selection of a predictor from a set of k candidates,
and δj a specific choice of degree of time-variation in coeffi cients from the space
{δ1, δ2, ..., δd}. Clearly, the mean of the predictive distribution of the forecasts we
computed above (see equation (A.11)) is influenced by these specific choices. Hence,
the point estimate of ∆et+h is now also conditional on Mi and δj :

∆̂e
j

t+h,i = E(∆et+h|Mi, δj , Dt) = X ′tmt|Mi, δj , Dt. (A.22)

The starting point in examining which model setting turns out to be important
empirically, is to assign prior weights to each individual predictor Mi and each
support point δj . We begin with a prior that allows each predictor and each support
point to have the same chance of becoming probable. That is, for each Mi and δj
we set uninformative priors:

P (Mi|δj , D0) = 1/k, (A.23)

P (δj |D0) = 1/d. (A.24)

At time t, the posterior probabilities are updated using Bayes’s rule. We first
update the posterior probability of a certain model, given a value of δj :

P (Mi|δj , Dt) =
f(∆et|Mi, δj , Dt−h)P (Mi|δj , Dt−h)

f(∆et|δj , Dt−h)
, (A.25)
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where,

f(∆et|δj , Dt−h) =
∑
M

f(∆et|Mi, δj , Dt−h)P (Mi|δj , Dt−h). (A.26)

The key ingredient is the conditional density:

f(∆et|Mi, δj , Dt−h) ∼ 1√
Qjt,i

tnt−1

∆et −∆ejt,i√
Qjt,i

 , (A.27)

where, tnt−1 is the density of a Student−t−distribution and ∆ejt,i and Q
j
t,i are the

corresponding point estimates and variance of the predictive distribution of model
Mi, given δ = δj (refer to equation (A.10)). The prediction of the average model
for each of the specific value of δ = δj is given by:

∆̂e
j

t+h =

k∑
i=1

P (Mi|δj , Dt)∆̂e
j

t+h,i. (A.28)

Essentially, for each specific δ, it is the sum of the exchange rate prediction of each of
the k models weighted by their posterior probability. If there was only one support
point for time-variation in coeffi cients, such that d = 1, then equation (A.28) would
complete the averaging approach. However, we are considering several possibilities
for δ, hence we also perform Bayesian averaging over these values.

Starting with the prior probability in equation (A.24), the posterior probability
of a specific δ is:

P (δj |Dt) =
f(∆et|δj , Dt−h)P (δj |Dt−h)∑
δ f(∆et|δ,Dt−h)P (δ|Dt−h)

. (A.29)

We note that using this probability, we can infer the degree of time-variation in
coeffi cients supported by the data (see also equation (14) in the main text).

We are now in position to find the total posterior probability of a model de-
termined by a specific selection of predictor Mi and degree of coeffi cient variation
δj ,

P (Mi, δj |Dt) = P (Mi|δj , Dt)P (δj |Dt), (A.30)

and the unconditional average prediction of the average model,

∆̂et+h =

d∑
j=1

P (δj |Dt)∆̂e
j

t+h. (A.31)

Thus, ∆̂et+h is obtained by averaging over the average models’ prediction, over
degrees of time-variation in coeffi cients.
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B Model Space

This Appendix outlines the fundamentals implied by Taylor rules under various
assumptions. Since some specifications incorporate Financial Condition Indexes
(FCIs), the Appendix also describes the methodology employed in their construction.

B.1 Taylor Rules Specifications and Implied Interest Rate Differ-
entials

Taylor (1993) suggested the following rule for monetary policy:

iTt = πt + τ1(πt − πT ) + τ2yt + rT , (B.1)

where, iTt ,is the target for the nominal short-term interest rate set by the central
bank; πt is the inflation rate; πT , is the target inflation rate; yt = (yt − ypt ), is
the output gap measured as deviation of actual GDP level (yt) from its potential
(ypt ); and r

T ,is the equilibrium real interest rate. In equation (B.1) the central bank
rises the short-term interest rate when inflation is above the target and/or output
is above its potential level. In Taylor’s (1993) formulation, τ1 = 0.5, πT = 2%,
τ2 = 0.5, and rT = 2%.

Rearranging equation (B.1) by aggregating the constant terms and the inflation
terms yields:

iTt = λ0 + λ1πt + λ2yt, (B.2)

where, λ0 = rT −τ1πT ; λ1 = (1+τ1); and λ2 = τ2. Note that, since λ1 = (1+τ1), a
raise in inflation by 1%, induces the central bank to increase the short-term nominal
interest rate by a magnitude superior to 1%, satisfying the Taylor rule principle. If
the central bank targets the real exchange rate qt, as suggested in Clarida et al.
(1998), it follows the following rule:

iTt = λ0 + λ1πt + λ2yt + λ3qt, (B.3)

where, qt = et+p
∗
t−pt; et is the log exchange rate (home price of foreign currency); pt

is the log price level; and asterisk (*) denotes a foreign country’s variable. Including
qt in the rule suggests that the monetary authority is concerned with exchange rate
deviation from the level implied by Purchasing Power Parity (PPP), with an increase
in qt signalling a rise in iTt (see Engel and West, 2005).

The empirical evidence in Clarida et al. (1998) also suggests that central banks
limit volatility in the interest rate by adjusting the current interest rate in a gradual
fashion:

it = (1− ρ)iTt + ρit−1 + ζt. (B.4)
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Substituting in equation (B.3) and rearranging yields:

it = φc + φ1πt + φ2yt + φ3qt + φ4it−1 + ζt (B.5)

where, φc = (1− ρ)λ0; φ1 = (1− ρ)λ1; φ2 = (1− ρ)λ2; φ3 = (1− ρ)λ3; φ4 = ρ.
Denote (B.5) as the home country’s Taylor rule. The foreign country is the US,

and following Clarida et al. (1998) and Engel and West (2005), it is assumed that
the Federal Reserve Bank does not target the real exchange rate. Hence, its Taylor
rule is similar to equation (B.5), except that the real exchange rate is excluded.
Subtracting this US Taylor rule from the home country’s rule yields the following
interest rate differentials:

it − i∗t = φ0 + (φ1πt + φ2yt + φ3qt + φ4it−1)

− (φ∗1π
∗
t + φ∗2y

∗
t + φ∗4i

∗
t−1) + µt, (B.6)

where the term φ0, is obtained by collecting the constant terms from both, the home
and foreign country (φc and φ

∗
c); and hence, it constitutes the sum of the terms

capturing the equilibrium real interest rates and inflation targets. Consequently, if
the equilibrium real interest rates and the inflation targets are equal between the
two countries, the constant term is zero.

The essential mechanism that links the policy actions based on Taylor rules to
exchange rates is UIRP. Under UIRP and rational expectations, a home country’s
policy action characterised by an increase (decrease) in its policy rate relative to the
foreign, translates into an expected depreciation (appreciation) of the home coun-
try’s currency, relative to the foreign country. As the rule suggests, the central bank
reacts when for example inflation is above the target, or the output gap is widening,
or the real exchange rate is above the target. However, the empirical evidence sug-
gests that UIRP fails to hold and this is known as the forward premium puzzle (see,
e.g., Rogoff, 1996). Hence, in linking the interest rate differential equation (B.6) to
the forecasting regression, whilst we can substitute out the interest rate differentials
by the expected change in the exchange rate, we impose no restrictions on the effect
of monetary policy.26

The Taylor rule outlined in equation (B.6) is generic. In practice, various specifi-
cations can be considered based on a number of specific assumptions. We summarise
the exact assumptions in Table (B.1). Here, we outline the general assumptions:

• First, we can assume that the equilibrium real interest rate and the inflation
target of the home and foreign country are identical, such that their aggregate
value captured by the constant term φ0 in equation (10), is zero. Thus, we
can derive sets of fundamentals from Taylor rules with or without the constant
term.

26See also Molodtsova and Papell (2009) and Engel and West (2005) for more discussion on the
links between monetary policy and exchange rates.
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• Second, it can be further imposed that the coeffi cients on variables commonly
targeted by both countries are identical. In equation (B.6), for instance, this
implies that φ1 = φ∗1;φ2 = φ∗2; φ4 = φ∗4. Hence, apart from the specifications
derived under the first assumption we can also have sets of fundamentals from
Taylor rules with homogeneous or heterogeneous coeffi cients.

• Third, the monetary authority can disregard the partial adjustment of the
interest rate towards its target. In this case, the Taylor rule do not allow for
interest rate smoothing, consequently, lagged interest rates from both coun-
tries are excluded from the specification in (B.6). An additional set of funda-
mentals can then be constructed with the above characteristics, but also with
smoothing or non-smoothing.

• Fourth, the home central bank might not be concerned with exchange rate
deviation from its equilibrium level. In this setting, the home and foreign
central bank are symmetric in the sense that both countries exhibit similar
targets. As a consequence, we can obtain Taylor rule implied fundamentals
from asymmetric or symmetric rules.

• Fifth, following the recent financial turmoil, it has been suggested that apart
from inflation and output gap, central banks react to financial market con-
ditions, insofar as they signal deterioration in the economic outlook (Taylor,
2008; Mishkin, 2010). Hence, we can exclude the real exchange rate and the
lagged interest rate in equation (B.6), and augment with indicators of finan-
cial conditions. This provides us with specifications excluding or including
financial condition indexes (FCIs).27

27The methods we use to construct these FCIs are described in part B.2 of this Appendix.
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Table B.1: Interest Rate Differentials Implied by Taylor Rules

Assumption Interest rate differentials
specification

TR1. Homogeneous rule, symmetric, and without
interest rate smoothing.
(i) The equilibrium real interest rate and the in-
flation target of the home and foreign country are
identical, hence their difference is zero; (ii) The
coeffi cients on inflation and the output gap are
equal between home and foreign country; (iii) Cen-
tral banks do not smooth interest rate; and (v)
None of the two central banks targets the real ex-
change rate. In eq. (B.6): φ0 = 0; α1 = φ1 = φ∗1;
α2 = φ2 = φ∗2; φ3 = 0; φ4 = φ∗4 = 0.

it − i∗t = α1(πt − π∗t )
+ α2(yt − y∗t )
+ µt

TR2. Homogeneous rule, symmetric with smooth-
ing
(i) The equilibrium real interest rate and the in-
flation target of the home and foreign country
are identical, hence their difference is zero; (ii)
The coeffi cients on inflation and the output gap
are equal between home and foreign country; (iii)
Central banks smooth interest rates at an iden-
tical magnitude; and (v) None of the two cen-
tral banks targets the real exchange rate. In eq.
(B.6): φ0 = 0; α1 = φ1 = φ∗1; α2 = φ2 = φ∗2;
φ3 = 0; α3 = φ4 = φ∗4.

it − i∗t = α1(πt − π∗t )
+ α2(yt − y∗t )
+ α3(it−1 − i∗t−1)
+ µt

TR3. Homogeneous rule, asymmetric and without
interest rate smoothing.
(i) The equilibrium real interest rate and the in-
flation target of the home and foreign country are
identical, hence their difference is zero; (ii) The co-
effi cients on inflation and the output gap are equal
between home and foreign country; (iii) Central
banks do not smooth interest rate; (v) The home
central bank targets the real exchange rate. In eq.
(B.6): φ0 = 0; α1 = φ1 = φ∗1; α2 = φ2 = φ∗2;
φ4 = φ∗4 = 0.

it − i∗t = α1(πt − π∗t )
+ α2(yt − y∗t )
+ φ3qt + µt

TR4. Homogeneous rule, asymmetric and with in-
terest rate smoothing.
(i) The equilibrium real interest rate and the in-
flation target of the home and foreign country are
identical, hence their difference is zero; (ii) The
coeffi cients on inflation, the output gap and the
interest rate smoothing are equal between home
and foreign country; and (iii) The home cen-
tral bank targets the real exchange rate. In eq.
(B.6): φ0 = 0; α1 = φ1 = φ∗1; α2 = φ2 = φ∗2;
α3 = φ4 = φ∗4.

it − i∗t = α1(πt − π∗t )
+ α2(yt − y∗t )
+ α3(it−1 − i∗t−1)
+ φ3qt + µt
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Table B.1: Interest Rate Differentials Implied by Taylor Rules

Assumption Interest rate differentials
specification

TR5. Homogeneous rule, symmetric, with FCI
and no constant.
(i) The equilibrium real interest rate and the in-
flation target of the home and foreign country are
identical, hence their difference is zero; (ii) The co-
effi cients on inflation and the output gap are equal
between home and foreign country; (iii) Central
banks react to financial market conditions, inso-
far as they signal deterioration in the economic
outlook. In eq. (B.6): φ0 = 0; α1 = φ1 = φ∗1;
α2 = φ2 = φ∗2; φ3 = 0; φ4 = φ∗4 = 0.

it − i∗t = α1(πt − π∗t )
+ α2(yt − y∗t )
+ α5(fcit − fci∗t )
+ µt

TR6. Heterogeneous rule, symmetric and without
interest rate smoothing.
(i) The equilibrium real interest rate and the in-
flation target of the home and foreign country are
identical, hence their difference is zero; (ii) The
coeffi cients on inflation and the output gap are al-
lowed to differ between home and foreign country;
(iii) Central banks do not smooth interest rates;
and (iv) None of the two central banks targets the
real exchange rate. In eq. (B.6): φ0 = 0; φ3 = 0;
φ4 = φ∗4 = 0.

it − i∗t = φ1πt − φ∗1π∗t
+ φ2yt − φ∗2y∗t
+ µt

TR7. Heterogeneous rule, symmetric and with in-
terest rate smoothing.
(i) The equilibrium real interest rate and the in-
flation target of the home and foreign country are
identical, hence their difference is zero; (ii) The
coeffi cients on inflation and the output gap are al-
lowed to differ between home and foreign country;
(iii) Central banks smooth interest rates; and (iv)
None of the two central banks targets the real ex-
change rate. In eq. (B.6): φ0 = 0; φ3 = 0.

it − i∗t = φ1πt − φ∗1π∗t
+ φ2yt − φ∗2y∗t
+ φ4it−1 − φ∗4i∗t−1
+ µt

TR8. Heterogeneous rule, asymmetric and with-
out interest rate smoothing.
(i) The equilibrium real interest rate and the in-
flation target of the home and foreign country are
identical, hence their difference is zero; (ii) The
coeffi cients on inflation and the output gap are al-
lowed to differ between home and foreign country;
(iii) Central banks do not smooth interest rate;
and (iv) The home central bank targets the real
exchange rate. In eq. (B.6): φ0 = 0; φ4 = φ∗4 = 0.

it − i∗t = φ1πt − φ∗1π∗t
+ φ2yt − φ∗2y∗t
+ φ3qt + µt
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Table B.1: Interest Rate Differentials Implied by Taylor Rules

Assumption Interest rate differentials
specification

TR9. Heterogeneous rule, asymmetric and with
interest rate smoothing.
(i) The equilibrium real interest rate and the in-
flation target of the home and foreign country are
identical, hence their difference is zero; (ii) The
coeffi cients on inflation and the output gap are al-
lowed to differ between home and foreign country;
(iii) Central banks smooth interest rates; and (iv)
The home central bank targets the real exchange
rate. In eq. (B.6): φ0 = 0;

it − i∗t = φ1πt − φ∗1π∗t
+ φ2yt − φ∗2y∗t
+ φ4it−1 − φ∗4i∗t−1
+ φ3qt + µt

TR10. Heterogeneous rule, symmetric, with FCI
and no constant.
(i) The equilibrium real interest rate and the in-
flation target of the home and foreign country are
identical, hence their difference is zero; (ii) The
coeffi cients on inflation and the output gap are
allowed to differ between home and foreign coun-
try; (iii) Central banks react to financial market
conditions, insofar as they signal deterioration in
the economic outlook. In eq. (B.6): φ3 = 0;
φ4 = φ∗4 = 0.

it − i∗t = φ1πt − φ∗1π∗t
+ φ2yt − φ∗2y∗t
+ φ5fcit − φ∗5fci∗t
+ µt

TR11. Homogeneous rule, symmetric, without in-
terest rate smoothing and includes a constant.
(i) The equilibrium real interest rate and the in-
flation target of the home and foreign country
are allowed to differ; (ii) The coeffi cients on infla-
tion and the output gap are equal between home
and foreign country; (iii); Central banks do not
smooth interest rates; and (v) None of the two
central banks targets the real exchange rate. In
eq. (B.6): α1 = φ1 = φ∗1; α2 = φ2 = φ∗2; φ3 = 0;
φ4 = φ∗4 = 0.

it − i∗t = φ0 + α1(πt − π∗t )
+ α2(yt − y∗t )
+ µt

TR12. Homogeneous rule, symmetric with inter-
est rate smoothing and a constant.
(i) The equilibrium real interest rate and the in-
flation target of the home and foreign country are
allowed to differ; (ii) The coeffi cients on inflation
and the output gap are equal between home and
foreign country; (iii) Central banks smooth inter-
est rates at an identical magnitude; and (v) None
of the two central banks targets the real exchange
rate. In eq. (B.6): α1 = φ1 = φ∗1; α2 = φ2 = φ∗2;
φ3 = 0; α3 = φ4 = φ∗4.

it − i∗t = φ0 + α1(πt − π∗t )
+ α2(yt − y∗t )
+ α3(it−1 − i∗t−1)
+ µt
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Table B.1: Interest Rate Differentials Implied by Taylor Rules

Assumption Interest rate differentials
specification

TR13. Homogeneous rule, asymmetric, without
interest rate smoothing, and includes a constant.
(i) The equilibrium real interest rate and the in-
flation target of the home and foreign country are
allowed to differ; (ii) The coeffi cients on inflation
and the output gap are equal between home and
foreign country; (iii); Central banks do not smooth
interest rates; (v) The home central bank targets
the real exchange rate. In eq. (B.6): α1 = φ1 =
φ∗1; α2 = φ2 = φ∗2; φ4 = φ∗4 = 0.

it − i∗t = φ0 + α1(πt − π∗t )
+ α2(yt − y∗t )
+ φ3qt + µt

TR14. Homogeneous rule, asymmetric, with in-
terest rate smoothing and a constant.
(i) The equilibrium real interest rate and the in-
flation target of the home and foreign country are
allowed to differ; (ii) The coeffi cients on inflation,
the output gap and the interest rate smoothing
are equal between home and foreign country; (iii)
Central banks smooth interest rates at an identi-
cal magnitude; and (iv) The home central bank
targets the real exchange rate. In eq. (B.6):
α1 = φ1 = φ∗1; α2 = φ2 = φ∗2; α3 = φ4 = φ∗4.

it − i∗t = φ0 + α1(πt − π∗t )
+ α2(yt − y∗t )
+ α3(it−1 − i∗t−1)
+ φ3qt + µt

TR15. Homogeneous rule, symmetric, with FCI
and a constant.
(i) The equilibrium real interest rate and the in-
flation target of the home and foreign country
are allowed to differ; (ii) The coeffi cients on infla-
tion and the output gap are equal between home
and foreign country; (iii); Central banks react to
financial market conditions, insofar as they sig-
nal deterioration in the economic outlook. In eq.
(B.6): α1 = φ1 = φ∗1; α2 = φ2 = φ∗2; φ3 = 0;
φ4 = φ∗4 = 0.

it − i∗t = φ0 + α1(πt − π∗t )
+ α2(yt − y∗t )
+ α5(fcit − fci∗t )
+ µt

TR16. Heterogeneous rule, symmetric and without
interest rate smoothing, and includes a constant.
(i) The equilibrium real interest rate and the in-
flation target of the home and foreign country
are allowed to differ; (ii) The coeffi cients on infla-
tion and the output gap are also allowed to differ
between home and foreign country; (iii) Central
banks do not smooth interest rates; and (iv) None
of the two central banks targets the real exchange
rate. In eq. (B.6): φ3 = 0; φ4 = φ∗4 = 0

it − i∗t = φ0 + φ1πt − φ∗1π∗t
+ φ2yt − φ∗2y∗t
+ µt

49



Table B.1: Interest Rate Differentials Implied by Taylor Rules

Assumption Interest rate differentials
specification

TR17. Heterogeneous rule, symmetric and with
interest rate smoothing and a constant.
(i) The equilibrium real interest rate and the in-
flation target of the home and foreign country
are allowed to differ; (ii) The coeffi cients on infla-
tion and the output gap are also allowed to differ
between home and foreign country; (iii) Central
banks smooth interest rates; and (iv) None of the
two central banks targets the real exchange rate.
In eq. (B.6): φ3 = 0.

it − i∗t = φ0 + φ1πt − φ∗1π∗t
+ φ2yt − φ∗2y∗t
+ φ4it−1 − φ∗4i∗t−1
+ µt

TR18. Heterogeneous rule, asymmetric and with-
out interest rate smoothing and includes a con-
stant.
(i) The equilibrium real interest rate and the in-
flation target of the home and foreign country
are allowed to differ; (ii) The coeffi cients on infla-
tion and the output gap are also allowed to differ
between home and foreign country; (iii) Central
banks do not smooth interest rates; and (iv) The
home central bank targets the real exchange rate.
In eq. (B.6): φ4 = φ∗4 = 0.

it − i∗t = φ0 + φ1πt − φ∗1π∗t
+ φ2yt − φ∗2y∗t
+ φ3qt + µt

TR19. Heterogeneous rule, asymmetric and with
interest rate smoothing and a constant.
(i) The equilibrium real interest rate and the in-
flation target of the home and foreign country
are allowed to differ; (ii) The coeffi cients on infla-
tion and the output gap are also allowed to differ
between home and foreign country; (iii) Central
banks smooth interest rates; and (iv) The home
central bank targets the real exchange rate.

it − i∗t = φ1 + φ1πt − φ∗1π∗t
+ φ2yt − φ∗2y∗t
+ φ4it−1 − φ∗4i∗t−1
+ φ3qt + µt

TR20. Heterogeneous rule, symmetric, with FCI
and a constant.
(i) The equilibrium real interest rate and the in-
flation target of the home and foreign country
are allowed to differ; (ii) The coeffi cients on infla-
tion and the output gap are also allowed to differ
between home and foreign country; (iii) Central
banks react to financial market conditions, insofar
as they signal deterioration in the economic out-
look. In eq. (B.6): φ3 = 0; φ4 = φ∗4 = 0.

it − i∗t = φ0 + φ1πt − φ∗1π∗t
+ φ2yt − φ∗2y∗t
+ φ5fcit − φ∗5fci∗t
+ µt
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B.2 Construction of Financial Condition Indexes

To construct the Financial Condition Indexes (FCIs), we use the Time-varying Parameters
Factor-Augmented VAR (TVP-FAVAR) model as in Koop and Korobilis (2014). More
precisely, let xtdenote the set of variables to be used in constructing the FCI and
Yta set of macroeconomic variables for which we want to purge their effect from the
FCI. Then, the TVP-FAVAR has the following compact representation:

xt = ztγt + %t, %t ∼ N(0, V %
t ), (B.7)

zt = zt−1βt + ξt, ξt ∼ N(0, Qξt ), (B.8)

γt = γt−1 + ιt, ιt ∼ N(0,W ι
t ), (B.9)

βt = βt−1 + ηt, ηt ∼ N(0, Rηt ), (B.10)

where, zt =

[
Yt
ft

]
; γt =

((
γYt
)′
,
(
γft

)′)′
; βt = (B

′
0t, vec(Bt)

′).28 This nota-

tion suggests that γt includes the time-varying regression coeffi cients γ
Y
t and factor

loadings γft , with the factors that constitute our FCI denoted by ft; and βt contains
the time-varying VAR coeffi cients and intercepts. Equations (B.9) and (B.10) indi-
cate that these coeffi cients follow a random walk process. The error terms are all
independent and identically distributed, with mean zero and time-varying variance-
covariance matrices.

Allowing parameters to change over time renders more flexibility to the model,
and Koop and Korobilis (2014) discuss the importance of such flexibility in con-
structing FCIs. One of their results is that FCIs constructed with models of this
sort, can potentially better characterise turning points in financial conditions.

The inclusion of Ytin the above model has also given way to our intention of
constructing FCIs that capture true financial shocks as suggested by Hatzius et al.
(2010). In the cases we consider, Ytcontains the change in the log of the industrial
production index, inflation and the short-term interest rate. Since the FCIs we con-
struct are used to augment Taylor rules which already incorporate the information
from the three variables above, purging these variables allows us to interpret the
FCIs as providing marginal information, i.e., beyond that already embodied in the
standard Taylor rule.

Estimation is implemented through a two-step algorithm. In the first step, con-
ditional on the principal components estimate of ft, denoted f̃t, the parameters of

the TVP-FAVAR are estimated. Thus in this step we have z̃t =

[
Yt
f̃t

]
. In the

second step, conditional on the estimated TVP-FAVAR parameters, the Kalman
filter is employed to obtain the estimate of ft(i.e., the FCI). We describe these steps

28We can equivalently write equations (B.7) and (B.8) as: xt = γYt Yt + γft ft + %t and
[
Yt
ft

]
=

B0t +Bt

[
Yt−1
ft−1

]
+ ξt.
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next.29

The first step begins by defining the prior hyperparameters and initial conditions
for the unknown parameters before observing the data. Thus, at t = 0we define:

f0 ∼ N(0, 10),

γ0 = N(0, 10),

β0 = N(0, VMIN ),

V %
0 = 1× I,
Qξ0 = 1× I, (B.11)

where, VMIN is a Minnesota type prior which shrinks coeffi cients associated with
the more distant lags according to:

VMIN =
{
4, for intercepts
4/ρ2, for the coeffi cient on lag ρ

}
and ρ = 1, ..., 12 lags. Note that the approach in Koop and Korobilis (2014) involves
using Exponentially Weighted Moving Average (EWMA) estimators for the V %

t and
Qξt matrices, whileW

ι
t and R

η
t are proportional to their covariance matrices obtained

from the Kalman filter.
The step proceeds with extraction of the principal components estimate of the

factor, f̃t to obtain z̃t =

[
Yt
f̃t

]
. Conditional on this information set, and given

the initial conditions, estimate γt , βt , V
%
t and Qξt , using the Kalman filter for

t = 1, ..., T . That is, predict the state vectors γt, βt, and their associated covariance
matrices at time t, conditional on information up to t− 1,(i.e., Dt−1):

γt|Dt−1 ∼ N
(
γt|t−1,

∑
γ
t|t−1

)
, (B.12)

βt|Dt−1 ∼ N
(
βt|t−1,

∑
β
t|t−1

)
, (B.13)

where from Kalman filter predicting step,

γt|t−1 = γt−1|t−1, and
∑

γ
t|t−1 =

∑
γ
t−1|t−1 + Ŵ ι

t ; (B.14)

βt|t−1 = βt−1|t−1, and
∑

β
t|t−1 =

∑
β
t−1|t−1 + R̂ηt . (B.15)

The error covariance are estimated using a forgetting factor approach:

Ŵ ι
t = (1− L−13 )

∑
γ
t−1|t−1, (B.16)

R̂ηt = (1− L−14 )
∑

β
t−1|t−1. (B.17)

with L3 = L4 = 0.99. According to the specifications in (B.16) and (B.17), shocks
to the coeffi cients at time t are proportional to the t − 1 variance, by a factor of

29 In estimating the VARs we impose a maximum lag of 12 months.
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(1−L−13 ) and (1−L−14 ), respectively. Hence, the value we set for L3 and L4, implies
a slow time-variation in parameters.

To refine inference about the estimate of the state variables in the Kalman filter
updating step, first obtain the prediction errors:

%̂b,t = xb,t − z̃tγb,t|t−1, and (B.18)

ξ̂t = z̃t − z̃t−1βt|t−1. (B.19)

where b, denotes each of the variable used to estimate the factors (i.e., contained in
xt). Then, estimate V

%
t and Q

ξ
t using EWMA estimators:

V̂ %
b,t = L1V

%
b,t−1|t−1 + (1− L1)%̂b,t%̂′b,t, (B.20)

Q̂ξt = L2Q
ξ
t−1|t−1 + (1− L2)ξ̂tξ̂

′
t. (B.21)

with L1 = L2 = 0.96. With these elements we can now refine inference about γt
and βt at time t. More precisely, for each element in xt we have for γt,

γb,t|Dt ∼ N
(
γb,t|t,

∑
γ
bb,t|t

)
, (B.22)

where, γb,t|t = γb,t|t−1 +
∑ γ

bb,t|t−1z̃
′
t

(
V̂ %
bb,t + z̃t

∑ γ
bb,t|t−1z̃

′
t

)−1 (
xt − z̃tγt|t−1

)
, and∑ γ

bb,t|t =
∑ γ

bb,t|t−1 −
∑ γ

bb,t|t−1z̃
′
t

(
V̂ %
bb,t + z̃t

∑ γ
bb,t|t−1z̃

′
t

)−1
z̃t
∑ γ

bb,t|t−1. And simi-

larly for βt,

βt|Dt ∼ N
(
βt|t,

∑
β
t|t

)
, (B.23)

where, βt|t = βt|t−1+
∑ β

t|t−1z̃
′
t−1

(
Q̂ξt + z̃t−1

∑ β
t|t−1z̃

′
t−1

)−1
(z̃t−z̃t−1β̂t|t−1), and∑ β

t|t =
∑ β

t|t−1 −
∑ β

t|t−1z̃
′
t−1

(
Q̂ξt + z̃t−1

∑ β
t|t−1z̃

′
t−1

)−1
z̃t−1

∑ β
t|t−1. Also update

V %
t and Q

ξ
t at time t:

V %
b,t|t = L1V

%
b,t−1|t−1 + (1− L1)%̂b,t|t%̂′b,t|t, (B.24)

Qξt|t = L2Q
ξ
t−1|t−1 + (1− L2)ξ̂t|tξ̂

′
t|t. (B.25)

where, %̂b,t|t = xb,t − z̃tγb,t|t and ξ̂t|t = z̃t − z̃t−1βt|t.
The second step involves obtaining smoothed estimates of γt, βt, V

%
t , and Q

ξ
t , for

t = T −1, ..., 1. For γt and βt, the updating scheme uses the fixed interval smoother.
That is, given information at t+ 1, each γb,t is updated using:

γb,t|DT ∼ N
(
γb,t|t+1,

∑
γ
bb,t|t+1

)
, (B.26)

53



where DT indicates that we are conditioning on information up to time T , and

γb,t|t+1 = γb,t|t +Gγt

(
γb,t+1|t+1 − γb,t+1|t

)
, (B.27)∑

γ
bb,t|t+1 =

∑
γ
bb,t|t +Gγt

(∑
γ
bb,t+1|t+1 −

∑
γ
bb,t+1|t

)
Gγ′t , (B.28)

Gγt =
∑

γ
bb,t|t

(∑
γ
bb,t+1|t

)−1
. (B.29)

Similarly, βt is updated using:

βt|DT ∼ N
(
βt|t+1,

∑
β
t|t+1

)
, (B.30)

where,

βt|t+1 = βt|t +Gβt

(
βt+1|t+1 − βt+1|t

)
, (B.31)∑

β
t|t+1 =

∑
β
t|t +Gβt

(∑
β
t+1|t+1 −

∑
β
t+1|t

)
Gβ′t , (B.32)

Gβt =
∑

β
t|t

(∑
β
t+1|t

)−1
. (B.33)

The smoothed estimates of V %
t , and Q

ξ
t given information at t+1 are updated using:

(
V %
t|t+1

)−1
= L1

(
V %
t|t

)−1
+ (1− L1)

(
V %
t+1|t+1

)−1
, (B.34)(

Qξt|t+1

)−1
= L2

(
Qξt|t

)−1
+ (1− L2)

(
Qξt+1|t+1

)−1
. (B.35)

Finally, conditional on the estimates of γt, βt, V
%
t , and Q

ξ
t as described above,

the ft is estimated using the standard Kalman filter and smoother.
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D The Bootstrap

The bootstrap is primarily based on Kilian (1999) and Rogoffand Stavrakeva (2008);
but it also includes procedures to account for data-mining as proposed in Inoue and
Kilian (2005). More precisely, we use a semi-parametric bootstrap with the data
generating process (DGP) for the fundamentals specified in an error correction form.
Following Rogoff and Stavrakeva (2008) we also assume cointegration between the
exchange rate and fundamentals. For each country we postulate the following DGP
under the null of no predictability (the country subscript i, is omitted for simplicity):

∆et = vet , (D.1)

∆zt = c0 + t+ Υzt−1 +
`e∑
`=1

Be
`∆et−` +

`z∑
`=1

Bz
` zt−` + vzt , (D.2)

where, ∆et = et − et−1; ∆zt = zt − zt−1; c0 is a constant, t is a trend, and vet
and vzt are i.i.d error terms error terms with covariance matrix Σ. We first estimate
equations (D.1) and (D.2) via OLS, with lag orders `e and `z selected using Akaike’s
Information Criterion (AIC). The AIC also allows us to determine the inclusion or
exclusion of the constant, the trend or both.30 Subsequently we re-sample with re-
placement the residuals matrix (vet ,v

z
t ) in tandem to preserve the contemporaneous

correlation in the original sample. We then use the re-sampled residuals to recur-
sively generate pseudo-samples of et and zt. The first 100 observations are discarded
to avoid potential bias due to using the sample averages as initial values for the
recursions. We then use each of the predictive model (Single Predictor incl./excl.
TVar-Coeff., Mean Combination, Median Combination, Trimmed Mean Combina-
tion, and DMSPE Combination) to forecast using the pseudo-samples, and calculate
the DMW test statistic. We repeat this process 1000 times, providing us with an
empirical distribution of the statistic. The p-value is the proportion of the bootstrap
statistics that are above the test-statistic calculated using observed data.

The bootstrap procedure just described assumes that each predictor is analysed
in isolation, but our forecasting approach allows for many potential predictors. Even
in the cases where a single predictor enters the regression, we are actually consid-
ering and searching over many predictors. To take into account concerns about
data-mining we implement the bootstrap in the context of a data-mining environ-
ment, following Inoue and Kilian (2005). (See also Rapach and Wohar, 2006 for an
application to stock returns). The procedure involves assuming that under the null
of no predictability the DGP comprises:

30 In equation (D.2) the sum of the coeffi cients of the lags of ∆zt is restricted to one to avoid
exploding simulated pseudo data (Rogoff and Stavrakeva, 2008).
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∆et = vet ,

∆z1,t = c1,0 + t+ Υ1z1,t−1 +
`e∑
`=1

Be
1,`∆et−` +

`z∑
`=1

Bz
1,`z1,t−` + vz1,t

...

∆zk,t = ck,0 + t+ Υkzk,t−1 +
`e∑
`=1

Be
k,`∆et−` +

`z∑
`=1

Bz
k,`zk,t−` + vzk,t

where, vet , v
z
1,t,..., v

z
k,t, are i.i.d error terms with covariance matrix Σ. As the system

of equations suggests, we now consider k candidate predictors. Each of the equa-
tion is also estimated via OLS. We then follow the same steps as in the bootstrap
procedure above, except that for each bootstrap we store the maximal DMW sta-
tistic, providing us with an empirical distribution of the maximal statistic. After
ordering the empirical distribution for each maximal statistic the 900th, 950th, and
990th values constitute the 10%, 5% and 1% critical values, respectively. The fore-
cast performance of the BMA incl or excl. TVar-Coeff and the BMS incl or excl.
TVar-Coeff. are evaluated on the basis of these critical values.31

31Note that the same procedure can also be applied to construct bootstrapped critical values
and p-values for the Clark and West (2006, 2007) test statistic, and the Theil’s U-statistic.
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E Additional Results Appendix (Not-for-Publication)

In the Paper, we concentrate on a representative selection of countries and omit
some figures to save space. This Appendix contains all additional figures. These
are:

• Figure E.1: RMSFE of the BMA incl. TVar-Coeff. model relative to the RMSFE
of the Random Walk without drift

• Figure E.2: Variance Decomposition, h=12

• Figure E.3: Posterior Probabilities of Values of δ, h=1

• Figure E.4: Posterior Probabilities of Values of δ, h=3

• Figure E.5: Posterior Probabilities of Values of δ, h=12

• Figure E.6: Values of δ with the Largest Posterior Probability at Each Period,
h=1

• Figure E.7: Values of δ with the Largest Posterior Probability at Each Period,
h=3

• Figure E.8: Values of δ with the Largest Posterior Probability at Each Period,
h=12

• Figure E.9: Predictors with the Largest Posterior Probability at Each Period, h=1

• Figure E.10: Predictors with the Largest Posterior Probability at Each Period,
h=3

• Figure E.11: Predictors with the Largest Posterior Probability at Each Period,
h=12

• Figure E.12: Financial Conditions Indexes - Monthly Frequency

61



Figure E.1: RMSFE of the BMA incl. TVar-Coeff. Model relative to the RMSFE of the
Random Walk
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Notes: Cumulative ratio of the Root Mean Squared Forecast Error (RMSFE) of the models that
allow for predictors and coeffi cients to change over time (BMA incl. TVar-Coeff.) relative to the
RMSFE of the driftless random walk (RW) benchmark. Values less than one are consistent with a
better forecasting performance of the BMA incl. TVar-Coeff. model relative to the RW.
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Figure E.2: Sources of Prediction Variance, h=12
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Notes: Decomposition of the prediction variance into its constituent parts for h=12 months. Panel
A shows all sources of prediction variance: (i) the variance caused by random fluctuations in the
data (Obs.var.); (ii) variance due to errors in the estimation of the coeffi cients (Unc.coef); (iii)
variance due to model uncertainty with respect to the choice of the predictor (Unc.choice of pred);
and (iv) variance due to model uncertainty with respect to the choice of degree of time-variation in
coeffi cients (Unc.TVar). The Panel shows relative proportions of these variances. Panel B excludes
the variance due to random fluctuations in the data (Obs.var.) and shows the relative weights of
the remaining sources of prediction variance, and hence also sum to one.
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Figure E.3: Posterior Probabilities of Values of δ, h=1
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Notes: Posterior probabilities of specific values of degrees of time variation in coeffi cients (δ). These
are the weights employed to produce the average forecasts in the BMA incl. TVar-Coeff. model.
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Figure E.4: Posterior Probabilities of Values of δ, h=3
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Notes: As in Figure E.3, except that here h=3 months.
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Figure E.5: Posterior Probabilities of Values of δ, h=12
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Notes: As in Figure E.3, except that here h=12 months.
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Figure E.6: Values of δ with the Largest Posterior Probability at Each Period, h=1
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Notes: Values of δ (support points for time-variation in coeffi cients) with the highest probability at
each point in time for h=1 month. These are the probabilities used to select the best single model
at each period, and hence determine the BMS incl. TVar-Coeff model.
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Figure E.7: Values of δ with the Largest Posterior Probability at Each Period, h=3
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Notes: As in Figure E.6, except that here h=3 months.
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Figure E.8: Values of δ with the Largest Posterior Probability at Each Period, h=12
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Notes: As in Figure E.6, except that here h=12 months.
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Figure E.9: Predictors with the Largest Posterior Probability at Each Period, h=1
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Notes: Predictors with the highest probability at each point in time for h=1 month (Panel A and
B). The forecasts from the single best model at each period are based on these predictors (i.e., from
the forecasts from the BMS incl. TVar-Coeff.).
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Figure E.10: Predictors with the Largest Posterior Probability at Each Period, h=3
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Notes: As in Figure E.9, except that here h=3 months.
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Figure E.11: Predictors with the Largest Posterior Probability at Each Period, h=12
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Notes: As in Figure E.9, except that here h=12 months.
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Figure E.12: Financial Conditions Indexes - Monthly Frequency
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Notes: Financial Conditions Indexes estimated with the TVP-FAVAR model. Positive values in-
dicate financial conditions that are looser than on average, and negative values indicate financial
conditions that are tighter than on average.
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