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Abstract

Traditionally, it is assumed that the population size of cities in a country follows a Pareto

distribution. This assumption is typically supported by �nding evidence of Zipf's Law. Recent

studies question this �nding, highlighting that, while the Pareto distribution may �t reasonably

well when the data is truncated at the upper tail, i.e. for the largest cities of a country, the

log-normal distribution may apply when all cities are considered. Moreover, conclusions may

be sensitive to the choice of a particular truncation threshold, a yet overlooked issue in the

literature. In this paper, then, we reassess the city size distribution in relation to its sensitivity

to the choice of truncation point. In particular, we look at US Census data and apply a

recursive-truncation approach to estimate Zipf's Law and a non-parametric alternative test

where we consider each possible truncation point of the distribution of all cities. Results

con�rm the sensitivity of results to the truncation point. Moreover, repeating the analysis

over simulated data con�rms the di�culty of distinguishing a Pareto tail from the tail of a

log-normal and, in turn, identifying the city size distribution as a false or a weak Pareto law.
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1 Introduction

An accurate description of the spatial distribution of population is important for a number

of theoretical and policy relevant issues, ranging from a better understanding of �rms and

people localization decisions to the implementation of national and regional policies in terms

of incentives and transport infrastructures. Unfortunately, the literature is still far from

reaching consensus on such description. Two speci�c distributions, however, are the most

accredited in the literature: the Pareto and the log-normal. Disentangling between the

two has important theoretical implications. For example, a Pareto distribution implies that

cities are the result of agglomeration forces and industry speci�c productivity shocks. A

log-normal distribution, instead, implies that cities grow proportionally and independently

from the initial city size and their distribution results from city-wide rather than industry

speci�c shocks (see Gabaix, 1999, for a discussion).

Consensus view in traditional studies is in favor of a Pareto distribution with shape

parameter equal to one. These studies typically base their conclusions on the evidence of a

minus one relationship between the log-rank and the log-size of cities, a regularity known

as Zipf's Law. For example, Rosen and Resnick (1980) estimate the value of the Pareto

exponent in a sample of 44 countries, �nding a mean exponent of 1.136 with most countries

falling in the [0.8-1.5] range. They also suggest that larger cities grow faster than smaller

cities in most of their sample countries. Soo (2005) updates these results, �nding a mean

Pareto exponent of 1.105 over a sample of 75 countries, but also concludes for a rejection of

Zipf's Law in more than half of cases.1

However, these studies usually consider only the upper tail of the data, i.e. the largest

cities, with a sample truncation point that is usually arbitrarily chosen.2 Moreover, the

1 Other papers search for historical evidence of Zipf's Law concentrating on single countries. Guerin-Pace

(1995), for instance, studies Zipf's Law in France between 1831 and 1990 for a sample including cities with

more than 2000 inhabitants and shows that the estimated Pareto coe�cient may be sensitive to sample

selection criteria. Black and Henderson (2003) construct a data set of US metropolitan areas consistently

de�ned over the period 1900-1990 choosing a minimum relative population threshold in each decade, i.e.

the 1990 ratio of the minimum to the mean metropolitan area urban population. They �nd a yearly Pareto

coe�cient around 0.85. Estimated coe�cients are again sensitive to the choice of sample size. Glaeser et al.

(2011) study almost 200 years of regional changes in the US and show that the empirical evidence tends to

change over time, including Zipf's and Gibrat's Law. See also Gabaix, 1999 and Krugman, 1996.

2Gabaix (1999) shows that Zipf Law may result as the steady state distribution from Gibrat's Law, but,
once again, concentrates on the upper tail only.
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evidence in favor of a Pareto has to be reconciled with other empirical evidence showing

that cities grow proportionally, a phenomenon known as Gibrat's Law, which should instead

lead to a log-normal city size distribution. Di�erently from the above studies, Eeckhout

(2004) suggests that it should be considered the distribution of all cities, rather than just

the upper tail, and proposes an empirical investigation based on the US census dataset

of Census Designated Places (CDPs). He shows that if the true underlying distribution

is log-normal, then the estimated OLS coe�cient of the so-called rank-size rule (i.e. the

estimated parameter of the Pareto distribution) varies depending on the truncation city

size, i.e. the inclusion of smaller (larger) cities in the sample, leads to a smaller (larger)

coe�cient. Furthermore, he argues that city growth does not depend on the initial city size,

providing evidence in favor of Gibrat's Law. Based on these results, Eeckhout concludes

that the size distribution of all cities follows a log-normal, rather than a Pareto.

These results have sparked further investigations on the distribution of cities beyond the

upper tail. Using the same data of Eeckhout (2004), Levy (2009) presents a log-log plot of

rank and city size and argues that the distribution of city size can be divided into two parts:

a power law �ts well the upper part, a log-normal �ts better the bottom and middle parts.

Eeckhout (2009) highlights the caveats of log-log plots. Instead, he proposes looking at the

con�dence bands of the log-normal estimates generated by a Lilliefors test and argues that

the upper tail is also log-normal. Recently, Giesen et al. (2010) look at data for all cities

in 8 countries and, using non-parametric and parametric goodness of �tness tests, conclude

that the distribution of all cities is a Double Pareto Log-Normal (DPLN), i.e. a distribution

that is Pareto in the upper and lower tails and log-normal in between. However, the DPLN

distribution uses a larger set of parameters compared to the Pareto or the log-normal, which

are de�nitely more parsimonious with only two parameters. Hence, the improvements of a

novel distribution, such as the DPLN, in terms of �tness should be evaluated in relation to

their dependence on a larger set of parameters.

When looking at all cities to compare the Pareto and the log-normal distributions, Eeck-

hout (2004) highlights the sensitivity of the Pareto coe�cient to the truncation point. More-

over, Eeckhout (2009) underlines the di�culty of discriminating between a Pareto upper tail

and the tail of a log-normal and hints at what may turn out to be a critical, and yet over-

looked, point in the literature: �With all the data available, and given that one nonetheless

does not want to use all data, the question arises what the appropriate truncation point is.

The choice of the truncation point becomes endogenous and can be chosen subjectively to

favor one hypothesis over another�. (Eeckhout, 2009, pag. 1682). Hence, a particular dis-

tribution may be favored in empirical studies depending on the chosen truncation point.
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On a more general and methodological note to discriminate between di�erent inverse

power laws, Perline (2005) de�nes di�erent strengths of the Pareto Law: strong, weak and

false. A strong Pareto law arises when �an inverse power law �ts the full, untrucated range

of the distribution of interest�; a weak one when �only some upper portion of the distribu-

tion follows an approximate inverse power law � and a false when �the largest observations

(extremes) of the samples drawn from certain exponential type, and especially log-normal

distributions, can closely mimic an inverse power law � (Perline, 2005, p. 75-76). Hence, the

point where the sample is truncated may indeed turn out to be critical in discriminating

between alternative distributions. Both traditional and recent studies do not thoroughly

address this issue.

This paper, then, proposes a reappraisal of the debate on the city size distribution in

relation to the speci�c issue of the truncation point. Similarly to Eeckhout (2004), we do not

constrain the investigation to the upper tail, but look at all cities. However, we look at all

possible truncation points of the empirical distribution of all cities in order to discriminate

between the two most accredited alternative theoretical distributions: the Pareto and the

log-normal.

Speci�cally, we explore the same year 2000 US Census data of Eeckhout (2004) and

the 2010 data for comparison, using a recursive approach where we begin by considering the

largest cities and then add one smaller city at the time until we consider all cities. Using this

approach, we reassess some of the methods used in the literature to investigate the city size

distribution. First, we estimate the Pareto exponent from the typical rank-size equation for

each possible truncation of data. Collecting the recursive estimates, and respective con�dence

intervals, we can statistically assess the adherence of Zipf's Law for each truncated sample

of the distribution of all US cities. According to Eeckhout (2004), the estimated parameter

should be invariant to the truncation point under the Pareto distribution and it should

decrease as we extend the sample from the upper tail to the entire distribution (or increase

as we move to the top of the distribution) under the log-normal.

Second, we apply the method recently suggested by Clauset et al. (2009) to estimate the

lower bound of a Pareto distribution and, using a Kolmogorov-Smirnov test, we compare the

relative �tness of the data to the Pareto and the log-normal distribution.

Finally, we reassess the above methods using simulated data of alternative distributions:

a Pareto, a log-normal and a mixture of the two, where the upper tail is Pareto and the

main body is log-normal. Our results add to the debate on the distribution of city size,

highlighting some novel results in terms of the sensitivity of tests to the truncation point
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and showing some pitfalls of existing parametric and non-parametric methods to distinguish

between the two distributions. The arbitrary choice of truncation point may, indeed, lead

researchers to incorrectly conclude for a speci�c distribution. Our tests and simulations

seem to con�rm the di�culty to distringuish between a Pareto upper tail and the tail of a

log-normal and, consequently, identify the city size distribution as a weak or a false inverse

power law.

The rest of the paper is organized as follows. The next section presents the empirical

strategy and the results of recursive Zipf's Law equations and Kologorov-Smirnov tests.

Section 3 replicates the methodology using simulated data. Section 4 concludes.

2 A Recursive approach to the distribution of all cities

A long tradition of papers underlines the di�culty of discriminating between a Pareto tail

and log-normal distribution. For example, in reference to the use of log-log plots, which

provide a visual assessment of the rank-size rule, Macauley (1922) states that the linearity

of the tail of a frequency distribution charted on a logarithmic scale is not informative of

a Pareto distribution, as it is a common feature of various types of frequency distributions.

Parr and Suzuki (1973) similarly a�rm that : �[...]truncation of the log-normal distribution

at an appropriately high level enables the truncated portion to be regarded as not signi�cantly

di�erent from the rank size distribution�. This point is illustrated in �gure 1 that compares

log-log plots for the upper tail and for the entire distribution. While the left quadrant clearly

points to a Pareto, the right seems to point to a log-normal.
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Figure 1: Log-log rank-size plots (�rst 1000 largest cities vs entire distribution).

More formally, Eeckhout (2004) shows that a variable P obeys a Pareto distribution if

its density function, φ(P ), and cumulative density function, Φ(P ), are:

φ(P ) =
aP a

P a+1
∀P ≥ P ,

Φ(P ) = 1−
(
P

P

)a

∀P ≥ P ,

where a is a positive shape parameter and P is the scale parameter or the truncation city

size, i.e. the minimum value of population P . The parameter a is also known as the Pareto

coe�cient and is a tail index. As mentioned above, in a log-log plot the distribution is

represented by a straight line and Zipf's law satisifes Pareto with a = 1.

According to Clauset et. al (2009), few phenomena seem to obey the Pareto distribution

for all values and, as discussed above, most studies on the city size distribution �nd that

the Pareto distribution is a good representation just for the upper tail, i.e. above a mini-

mum threshold. However, even when a researcher intends to investigate just the upper tail,

the choice of P may be critical, as a truncation point that is too high (low) may shorten

(lengthen) the �right� size of the upper tail biasing tests of the appropriate distribution.

The identi�cation of the right truncation point may be interesting also for another issue.
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If, as sustained in some literature, the upper tail is Pareto and the entire distribution is

log-normal, is there a switching point between the two distributions? This issue has received

some attention in physics and statistics (see, among the others, Mitzenmacher, 2004; Perline,

2005; Clauset et al., 2009), but, with the exception of Eeckhout (2004), it has been largely

ignored in economics, where the choice of threshold is usually arbitrary.3

In order to investigate the sensitivity of the distribution to the truncation point, we

apply a recursive approach to the distribution of all cities. Following Eeckhout (2004),

to consider �all� cities we use US Census data covering almost all the US population in

�incorporated� and �unincorporated� places in the years 2000 and 2010.4 For the year 2000,

the dataset covers 25,359 places and 208 millions US residents of the total 281 millions and,

for the year 2010, 29,494 places and 230 millions US residents of the 308 millions total. The

di�erence in number of places is due to changes introduced by the US Census Bureau: 24,841

are identical in the two years. Even though they may not coincide with the economically

more meaningful de�nition of city, and previous work has considered Metropolitan Areas as

the reference unit (see Gabaix, 1999; Ioannides and Overman, 2003), we prefer �places� as

reference units in order to make our result comparable with Eeckhout (2004) and account

for a larger population size. Here, for robustness we replicate the analysis for the two years.

2.1 Recursive Zipf's Law

As mentioned above, we use a recursive approach to observe the adherence of the data to

Zipf's Law for all possible truncation points of the distribution of all cities. As standard

in the literature, we estimate the Pareto coe�cient using simple rank-size OLS regressions

where, following Gabaix and Ibragimov (2007), the rank is shifted by 0.5 to correct for the

potential bias in small samples highlighted by Gabaix and Ioannides (2003), so that the

estimating equation is:

3 Bee et al. (2011) consider some related methodological issues. First, di�erent tests often provide

di�erent results. Second, sample size may matter as well as truncation. Finally, under the hypothesis of

log-normal distribution, when the threshold is high, i.e. when we use few observations, the tail seems to

follow a Pareto.

4An incorporated place is an entity (populated area) with its own municipal government (city, town,
village, borough and so on). Unincorporated places are, instead, areas lacking of own municipal government.
In the US Census, these take the name of Census Designated Places (CDPs). The CDPs have been included
for the �rst time in the year 2000.
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Table 1: Estimated coe�cients for chosen truncation thresholds. Dependent variable ln
(Rank-0.5).

2000 Census Data 2010 Census Data

N P k̂(s.e.) â(s.e.) [GI s.e.] R2 P k̂(s.e.) â(s.e.) [GI s.e.] R2

135 155,554 21.955 1.423 0.992 178,395 22.532 1.460 0.993
(0.137) (0.011) [0.173] (0.139) (0.011) [0.178]

2,000 19,383 20.747 1.322 0.997 21,039 20.870 1.322 0.995
(0.045) (0.004) [0.042] (0.057) (0.005) [0.042]

5,000 6,592 18.623 1.129 0.984 7,273 18.721 1.137 0.983
(0.052) (0.005) [0.023] (0.057) (0.006) [0.023]

12,500 1,378 15.954 0.864 0.960 1,556 16.064 0.866 0.961
(0.036) (0.004) [0.011] (0.037) (0.004) [0.011]

25,000 42 13.187 0.553 0.875 193 13.899 0.630 0.922
(0.021) (0.003) [0.005] (0.021) (0.003) [0.006]

29,000 _ _ _ _ 35 13.136 0.538 0.882
(0.018) (0.003) [0.005]

Dependent variable ln (Rank-0.5). N is the number of cities above the truncation
threshold. P is the relative population, k̂ is the constant, GI stands for Gabaix-Ibragimov

ln(rank − 0.5) = k − a lnP, (1)

where k is a constant and P is the population size. Standard errors are given by (2/n)0.5 â.

The parameter â is estimated for recursively truncated samples of the city size distribution,

starting with the ten most populated cities and then adding one (less populated) city at

the time until, like Eeckhout (2004), we consider all cities. Collecting the estimates of the

Pareto exponent together with the respective 95% con�dence interval, we can statistically

assess the validity of Zipf's Law for each truncated city size distribution. In particular,

while the estimated Pareto coe�cient should be invariant to the truncation point, it should

increase under the log-normal (Eeckhout, 2004).

Table 1 extracts the recursive OLS estimates of equation (1) for the six truncation points

reported in Eeckhout (2004). These results seem consistent with previous work.5 The

estimated Pareto coe�cients seem, indeed, �threshold sensitive�: the �longer� the upper tail,

the lower the estimated coe�cient. As already indicated in Eeckhout (2004), the coe�cients

decrease together with the truncation point. It is also interesting to compare the estimated

parameters for the two di�erent census years. The 2010 Census contains a larger number

of observations mostly thanks to the improved accuracy in the de�nition of unincorporated

places, as many CDPs present in the Census 2000 dataset have been split into two or more

CDPs especially in the middle and in the lower tail of the distribution. The presence of these

5Notice that for the year 2000 we use the same data of Eeckhout (2004), but employ the Gabaix and
Ibragimov (2007) correction. Standard OLS results seem to be, indeed, downward biased in smaller samples.
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new observations does not seem to a�ect our results.6

In �gures 2a and 2b we present the full recursive estimates. Figure 2a focuses on the

largest 1,000 cities to look more closely at the upper tail. Over this range, the estimated

Pareto coe�cient looks quasi-constant, indicating a potential Pareto distribution.

The coe�cient shows some degree of �uctuation in the very �rst observations, probably

due to the in�uence of individual observations in a smaller sample, and then increases. In

terms of statistical signi�cance, estimates are indi�erent from one for the �rst observations

and are then statistically di�erent from one, settling around the average estimated parameter

of 1.4. Hence, Zipf's Law seems to be rejected, if not for the very �rst observations.7

Interestingly, this information was not evident by looking at table 1, where it was only

possible to see the rank-size rule as a diminishing threshold process, but it was not possible

to fully gauge the adherence of the data to Zipf's law for the upper tail.

What happens if we extend the analysis from the upper tail (here, the �rst 1000 cities)

to all cities in the sample? Figure 2b shows all the estimated Pareto coe�cients (and 95%

con�dence intervals) against each recursive truncation threshold. A number of results are

worth mentioning. First, the coe�cient clearly diminishes (increases) as we include smaller

cities (larger cities), a result that, contrary to �gure 2a, corroborates the evidence of log-

normality. Second, in terms of statistical signi�cance, the recursive coe�cients seem to

display non-monotonic behavior. The Pareto coe�cient is not statistically di�erent from

one in the very upper tail, where researchers typically set their cut-o� point to estimate

Zipf's Law (see Black and Henderson, 2003; Soo, 2005), but also for a second range of cities

(between the 7,116th and 8,773rd in the year 2000 and 7,066th and 8,763rd in the year

2010). Hence, the Pareto exponent is not statistically di�erent from 1 for two samples of the

same distribution. Clearly, this result could only emerge by looking at all possible truncation

points. Figure 2b con�rms how picking an arbitrary P may (mis)lead researchers to conclude

in favor of a speci�c distribution. Finally, comparison of the left and right panels shows that

results are robust to the use of di�erent census years and are stable over time, with similar

patterns and hierarchy.8

6For the full samples, the estimated coe�cients are 0.526 and 0.508 for year 2000 and 2010, respecively.
7 Recall that Gabaix and Ioannides (2003) argue that it is compatible with Zipf's Law a Pareto exponent

between 0.8 and 1.2.

8 This also suggests that a more precise speci�cation of the medium-small cities in 2010 does not signi�-

cantly a�ect the results.
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Figure 2: Recursive Pareto coe�cient and 95% Con�dence Interval (Gabaix-Ibragimov s.e.)

(a) Upper tail (1000 largest cities)

(b) All cities

10



2.2 A non-parametric test alternative

In this section, we exploit an alternative non-parametric methodology in order to discrim-

inate between a Pareto distribution and a log-normal distribution. As discussed above,

few phenomena seem to obey the Pareto distribution for all values and most studies �nd

that the Pareto distribution is a good representation just for the upper tail, i.e. above a

minimum threshold. Here we use the method proposed by Clauset et al. (2009) to esti-

mate this minimum threshold, P̂ . The authors suggest testing the equality between the

theoretical and empirical density functions using Kolmogorov-Smirnov tests over recursively

truncated distributions. Our estimate P̂ is then the value of P that minimizes the �recursive�

Kolmogorov-Smirnov statistics, D:

D = sup
p>p
|Φp(x)− Φ(x)|,

where Φp(x) is the empirical cumulative density function for p i.i.d observations, and Φ(x)

is the theoretical cumulative density function. The KS statistic computes the supremum of

the absolute value of the set of distances among the two. Under the null, the di�erence

between the two is zero, i.e. the sample is drawn from the reference distribution. Rejection

of the null, however, should be considered carefully, as the KS test tends to over-reject the

null when the sample is large. P-values for the KS tests are reported in Appendix A and

show clearly that the tests always reject the null as the sample increases. Hence, in order to

conclude in favor of one or the other distribution, especially when the sample size is larger,

we can compare the size of the KS statistics with smaller statistics denoting a better �t.

Figure 3 reports the recursive Kolmogorov-Smirnov statistics. As before, we begin the

recursive analysis with the largest cities and then add smaller ones until we include all cities.

In panel a) of �gure 3, we �rst look at the largest 1000 cities. The overall evidence seems

to favor the Pareto distribution. Interestingly, however, for the very upper tail (exactly,

93 cities in 2000 and 90 in 2010), the KS statistics are visually too close and do not allow

disentangling between the two distributions. For these observations, the p-values of the KS

statistics in �gure A1 con�rm that both theoretical distributions can equally adapt to the

empirical. After this portion of the upper tail, however, the Pareto seems to adapt better to

the data with p-values rejecting the null of the KS test for a large portion of the upper tail.9

9In �gure A1, the KS test is rejected for the Pareto up to around the 1500th truncation point in the year
2000 around the 990th truncation point in the year 2010.
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Figure 3: Recursive Kolmogorov-Smirnov test

(a) Upper tail (1000 largest cities)

(b) All cities
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Following the approach of Clauset et al. (2009), we �nd the minimum of the KS statistic

for the 536th city in the year 2000 (D=0.0173) and 695th city in the year 2010 (D= 0.0198),

which implies a minimum population threshold of 57,777 and 55,081 inhabitants, respec-

tively. These tests, then, highlight a Pareto upper tail well before the arbitrary threshold of

100,000 inhabitants typically used by scholars for US data (Soo, 2005). In panel b) of �gure

3, we show KS recursive statistics for all truncated samples up to the entire untruncated

distribution. Again, the evidence in favor of one or the other distribution changes depending

on the truncation point: comparison of the KS statistics shows �rst the Pareto and then the

log-normal as a better �t. Just like for the very upper tail, the two distributions are again

indistinguishable half way to the entire distribution. When the distribution of all cities is

considered, the log-normal appears as the best �t, as indicated by Eeckhout (2004).These

results are in line with those obtained from the Zipf's Law regressions in the previous sub-

section. If we do not take into account the problem of the correct cut-o�, the KS test, also,

could lead to concluding for a Pareto, when the true distribution is log-normal, and viceversa.

Further, the evidence presented cannot rule out that a portion of the distribution of cities,

the upper tail in particular, may be power law distributed and it con�rms the di�culty of

disentangling a Pareto and a log-normal in a portion of the upper tail.

3 Weak or False Inverse Power Law?

The above analysis seems to con�rm the sensitivity of test results with respect to the choice

of truncation point. Moreover, it seems to highlight the distribution of cities as potentially as

either a weak or a false power law, according to the de�nitions of Perline (2005). Indeed, it is

not clear whether �only some upper portion of the distribution follows an approximate inverse

power law � (weak power law) or �the largest observations (extremes) of the samples drawn

from certain exponential type, and especially log-normal distributions, can closely mimic an

inverse power law � (false power law).

To further investigate this issue, we reassess the rank-size regressions and the non-

parametric alternative against simulated data. In particular, we simulate three di�erent

random datasets: a log-normal, a Pareto with shape parameter equal to one (so that Zipf's

law holds) and a �mixture� of Pareto upper tail (�rst 1000 observations) and log-normal

body.10

10In detail, we draw a log-normal dataset with same mean (7.28) and standard deviation (1.75) of the
real data in the year 2000. For the �mixture� data we replace the �rst 1000 observations of the log-normal
distribution with a sample where the �rst observation is twice the second, thrice the third and so on.
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Following the same steps of the previous section, we �rst report the estimated recursive

Pareto coe�cients over the range of the 1000 largest cities and then over the entire distri-

bution. Results are presented in panel a) of �gure 4. Looking at the upper tail, we notice

a quasi-constant behavior of the coe�cient (with di�erent means) for all three simulated

datasets. As expected, the estimated coe�cients are not signi�cantly di�erent from one for

the Pareto and the mixture-distributions. Interestingly, the estimated Pareto coe�cients are

not signi�cantly di�erent from one in the very upper tail to then become di�erent from one

for the simulated log-normal data, exhibiting a similar size and statistical signi�cance to the

real data.

When we look at the entire distribution (panel b) of �gure 4), the estimated Pareto

coe�cients are, unsurprisingly, constant over the entire distribution. They are �atter for the

mixture data, displaying a long Pareto tail. Again, the simulated log-normal displays the

same signature of the real data.

In �gure 5, we repeat the recursive non-parametric approach on the simulated data.

Overall, for the largest 1000 cities in panel a), the KS statistics seem to indicate that the

Pareto distribution is better than the log-normal, irrespective of the type of simulated distri-

bution. However, in the very upper tail the KS statistics for the Pareto and the log-normal

are indistinguishable, just like for the real data.11 When we add smaller and smaller cities

beyond the 1000th in panel b) of �gure 5, results show great concordance between the real

data, the log-normal and the �mixture� distribution, with the latter unsurprisingly exhibiting

a longer upper tail.

Both Zipf's Law and Kolmogorov-Smirnov tests seem to highlight the simulated log-

normal as the most similar to the real data. This result seems to suggest that for a portion

of the upper tail, and especially the distribution of the largest cities, the log-normal may be

a close representation of the real data, as well as the Pareto. This evidence, however, has to

be combined with that from Kolmogorov-Smirnov tests in the previous section, where the

log-normal and the Pareto could both apply to the very �rst observations of the upper tail

(around the largest 100 cities), but when the tail is extended, only the Pareto distribution is

statistically indi�erent from the real data. Hence, we are unable to unambiguously establish

whether the distribution of cities falls in the weak or false power law category.

11Of course, for the simulated data the unreported p-values indicate signi�cant KS statistics for both
distributions when we consider the entire sample.
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4 Conclusions

The identi�cation of the correct city size distribution emerges from the literature as contro-

versy with two most likely candidates: the Pareto and the log-normal distributions. Recently,

some commentators (see Eeckhout, 2009, in particular) have suggested the possibility that

part of this controversy may be due to the arbitrary choice of truncation of the distribution

of all cities. A truncation point that is too high, or too low, may bias tests of the appropriate

distribution of the upper tail. Also, a false power law may emerge when the extremes of the

samples closely mimic an inverse power law, especially if drawn from a log-normal (Perline,

2005). Yet, this issues has been substantially overlooked in the economics literature.

In this paper, we investigate the city size distribution with respect to the �truncation

point�. In particular, we propose a recursive-truncation approach to reassess the common

Zipf's Law regression and a non-parametric alternative proposed by Clauset et al. (2009)

against all possible truncation points of the entire distribution of cities.

Some interesting results emerge from this analysis. First, we �nd evidence of Zipf's Law

with the Pareto exponent equal to one in the very upper tail (above the largest 135 cities).

However, when we start lowering the truncation point, adding smaller cities one at the time,

we �nd that the size of Pareto coe�cient �rst becomes statistically di�erent from one and

then starts decreasing, showing a non-monotonic behavior with respect to the truncation

point. Statistically, the coe�cient crosses one for di�erent ranges of truncation points: in

the upper tail and much later when the sample is truncated around the 8000th city. Finally,

in line with Eeckhout (2004), the log-normal seems the best �t when the entire distribution

of cities is considered.

The same recursive approach is also applied using the non-parametric method proposed

by Clauset et al. (2009). This analysis shows that the both distribution can apply to the

upper portion of the distribution of cities (above around the �rst 100 cities). Beyond these

cities, the upper tail conforms better to the Pareto distribution on the grounds of statistical

signi�cance. When the truncation point is extended to include smaller ans smaller cities,

it is not possible to disentangle the two on the grounds of statistical signi�cance, but on

the grounds of the size of the statistics. In general, the Pareto seems a better �t when

we are close to the upper portion of the data and the log-normal seems a better �t when

we approach the entire distribution. Also, the Pareto distribution seems to be longer than

traditionally postulated by previous studies on the grounds of an arbitrary truncation point.

These results seem to support to the claim by Eeckhout (2009) that an arbitrary choice

of the cut-o� of the distribution may mislead scholars to conclude in favor of one or the
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other distribution. While the log-normal seems to best �t the entire sample, truncating

the distribution may lead to conclude in favor of a Pareto, especially in the upper tail.

Even then, however, the analysis returns a kind of non-monotonic behavior indicating that a

Pareto might apply over more than one range of city sizes: in the very upper tail and when

the sample is truncated mid-way to the distribution of all cities.

Finally, we assess whether the distribution of cities can potentially fall into the weak or

false power law categories de�ned by Perline (2005). To this end, we replicate the proposed

recursive rank-size and the non-parametric alternative test of city size distributions using

simulated data drawn from a Pareto, a log-normal and a mixture of the two. While the

rank size regressions seem to point to the distribution of cities as potentially a false power

law with the log-normal simulated data displaying a remarkably similar signature to the real

data, the non parametric test seems less conclusive. In this case, the size of the test statistics

for the simulated log-normal and the real data are also remarkably similar in the very upper

tail. When the upper tail, however, is extended, the test seems to point in favor of the

Pareto. Hence, the non-parametric test seems unable to settle whether the distribution of

cities is a weak or a false power law.

Overall, the analysis seems to provide methodological insights into the issue of discrimi-

nating between alternative city size distributions and the truncation point problem. More-

over, it con�rms the di�culty of distinguishing between the tail of a log-normal and a power

law tail for the population distribution of cities. More reliable tests are probably necessary

to settle this long standing issue.
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A Additional Figures

Figure A1: Kolmogorov-Smirnov Tests p-values (2000 largest cities)
(a) (b)

Horizontal line denotes 5% statistical signi�cance
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