Dunknock Hillfort
Excavations 2009

Data Structure Report

by
Chris Dalglish, Olivia Lelong, Gavin
MacGregor & Dave Sneddon
Table of Contents

Summary 3

Introduction 3
 Location 3
 Archaeological and Historical Background 4
 Research Aims 6
 Methodology 7

Results 7
 Trench E: summary of the 2008 excavations 7
 Trench E: the 2009 excavations 10
 Further excavation of the 2008 trench 10
 Excavation of the 2009 extension 11

Discussion 13

Conclusions 14

Acknowledgements 15

References 15

Appendices 15
 i) Contexts 15
 ii) Small Finds 16
 iii) Samples 16
 iv) Drawings 17
 v) Photographs 17
Summary

In 2008, the SERF Project excavated five trenches on Dunknock (Poller 2008); in 2009, one of these trenches (Trench E) was re-opened and extended in a second phase of work on the site. This report describes the further excavation of Trench E in 2009.

The work, undertaken between the 2nd and the 8th of August 2009, was a collaboration between the Department of Archaeology at the University of Glasgow and Glasgow University Archaeological Research Division. The excavations were directed by the authors of this report and staffed by postgraduate students. In undertaking the work, we had two broad aims: to contribute to the attainment of the research goals of the SERF project; and to pilot learning exercises related to a potential Continuing Professional Development Field School.

In returning to Trench E, our specific aim was to develop a more secure interpretation of the contexts identified in the 2008 trench, with a view to placing the chronology of the site on a firmer footing. The strategy adopted in relation to this aim was to: re-open the 2008 trench and remove all the backfill; to continue excavation down within the horizontal limits of the 2008 trench; and to extend the trench to the NW.

The 2009 excavations were successful in relation to our stated aims. The stratigraphic sequence was extended and clarified in excavating the 2008 trench down to the natural subsoil. In 2008, a series of contexts relating to the construction of a rampart had been identified; in 2009, these rampart-construction contexts were related to an underlying levelling deposit and the old ground surface upon which the rampart had been built. In addition, our understanding of the construction of the rampart was extended by the identification of contexts relating to a wood-and-stone northern rampart face.

The stratigraphy encountered in 2008 was placed in a wider context through the identification and investigation of an adjacent ditch in the 2009 trench extension; this ditch lies some 3.6 m to the north of the rampart.

Following the 2009 excavations, it should now be possible to further our understanding of the chronology of the construction of the rampart and of the use of the hillfort. The 2008 radiocarbon dates from Trench E occupied a range from the 8th century B.C. to the 5th century B.C.; however, the nature of the contexts and materials from which these dates were derived means that the dates do not provide us with a secure understanding of the chronology of this part of the fort. It is anticipated that radiocarbon dating of material recovered in 2009 will provide more secure dates: of particular significance here are charcoal samples recovered from a construction slot for the north face of the rampart. Further corroborative dating evidence may be supplied by the analysis of pottery recovered from the fills of the ditch to the north of the rampart.

Introduction

Location
Dunknock (NGR NO 02314 14312) is a sandy glacial knoll situated immediately to the SE of the village of Dunning, Perthshire. The knoll rises to a height of roughly 95 m above sea level, with extensive views of Dunning to the NW and the low-lying floodplain of Strathearn to the N and E. Immediately to the S the views are constrained by woodland and another glacial mound of similar height.
Archeological and Historical Background

Dunknock (NMRS NO01SW 18) is a prominent natural feature situated in a rich archaeological landscape. The site lies close to the remains of Roman Temporary Camp (NMRS NO01NW 7, NGR 024 150) and on the edge of the village of Dunning. During the Early Historic period, Dunning focused on the church of St. Serf and it was connected, as a thanage, to the earls of Strathearn: it has been suggested that Dunknock may have been a lordly residence or at least a focus of power during this time (Driscoll 1991, 1998).

There is artefactual evidence to suggest that Dunknock was a focus of activity throughout prehistory and into the Middle Ages. This evidence includes a Bronze Age socketed axehead found in 1981 and, from a 1997 fieldwalking survey, finds including a Neolithic stone axe head, fragments of Medieval pottery and pieces of vitrified stone (Donaldson, Allison & Hall 2004).

The fort on Dunknock was first recognised from aerial photography taken by the RCAHMS in 1978. At that time, the N flank of the hill had been ploughed and cropmarks evidenced a series of roughly concentric ditches (Figure 1). All of the ditches appear to terminate at their NE end, suggesting that this was the location of an entrance to the hillfort. The inner ditch may also terminate at the SW end, perhaps indicating the location of a second entrance. However, the other ditches continue to the SW into a field which was under pasture in 1978 and where cropmarks were not visible. Various other features were visible as cropmarks towards the summit of the hill. Evidence of later use of the hill takes the form of rig-and-furrow cultivation remains.
In August 2008, the University of Glasgow Strathearn and Royal Forteviot (SERF) project excavated five trenches in various locations on Dunknock (Figure 2; Poller 2008). These excavations were directed by Tessa Poller. The excavations provided evidence for multiple phases of activity and destruction on the site. Evidence for the fort ramparts suggested that they were composed of the natural sandy soil, probably retained and consolidated by timber structures and/or faced with stone. Traces of a possible rectangular scooped structure were identified immediately within a possible entrance to the fort. A single post-hole lay underneath this structure. Within the interior of the fort, near the summit of the hill, a small test pit yielded evidence for multiple phases of activity, including a stone feature and a substantial pit.

The 2009 excavations reported below re-opened and extended one of the five trenches first excavated in 2008: Trench E. In 2008, excavation of Trench E identified contexts relating to one of the fort’s ramparts (Poller 2008; a more detailed summary is provided in the ‘Results’ section below). These excavations indicated that the rampart had been constructed of stone, timber and earth/turf and that it had been destroyed. A layer of cobbles set in sand (591) was the earliest level reached at the south end of the trench (the excavations did not reach the natural subsoil). This sand and cobble layer was interpreted as a disturbed stony surface. A layer of packed gravel (586) covered much of the trench. Above these layers, several deposits interpreted as collapsed earthen rampart material were found sloping into the trench from the south (i.e. from higher up the slope).

Three layers of collapsed rampart material (590, 578 and 575) were dated by radiocarbon to the 8th-5th centuries BC.
Figure 2: Location of the trenches excavated in 2008 and 2009 with the transcription of the cropmarks representing the hillfort at Dunknock. (Transcription © RCAHMS)

Research Aims
The aims of the 2008 excavations were:

1. to characterise the defences noted on the aerial photograph;
2. to identify the presence of any internal features;
3. to retrieve dating evidence and record stratigraphic relationships in order to define a chronology for the archaeological features.

Trench E was positioned on the line of an outer ditch and rampart of the fort. The trench encountered significant evidence relating to aims 1 and 3: the archaeology of Trench E has allowed initial interpretation of the character of the fort’s defences and some of the contexts interpreted as rampart collapse have been dated by radiocarbon assay.

However, the aim of the work in 2008 was to investigate a targeted sample of the fort’s archaeology, and some important issues of character and chronology could not be resolved without further work. In particular, the formation of the ‘rampart’ contexts and their place within the full stratigraphic sequence on this part of the site were not fully understood. As such, the significance of the dates derived from these contexts could not be assessed fully.

In returning to Trench E, the aim of the 2009 excavation was to interpret the contexts and dates from this trench more fully, with a view to placing the chronology of the site on a more secure footing. More specifically, the aims of the 2009 excavation were to enhance understanding of the 2008 evidence by:

1. establishing a more secure interpretation of the contexts previously encountered in Trench E (particularly those which have produced dating evidence) and of their place within the stratigraphic sequence;
2. gaining an understanding of the sequence of activity in the wider area around Trench E, particularly as this relates to the adjacent defences lying outwith the confines of the 2008 trench.

In achieving these aims, the 2009 fieldwork sought to contribute to the attainment of a broader research aim of the SERF project: namely, characterisation of the nature and sequence of the development of hillfort defences, elucidating more clearly when these monumental features were constructed and destroyed.

Methodology

The dimensions of Trench E in 2008 were 6 m by 1.5 m; the trench was not excavated down to the natural subsoil.

In 2009, the earlier trench was re-opened to its original dimensions, removing the 2008 backfill by hand. Excavation proceeded down within the limits of the 2008 trench, removing previously-unexcavated archaeological deposits until the natural subsoil was encountered and confidently identified. This vertical extension of the trench was intended to provide a more secure understanding of the stratigraphy and chronology of the deposits identified within the trench in 2008. In 2008, the trench had been stepped either side of a line running down the middle of its long axis (see Figures 3 & 4); in 2009, this step was removed (i.e. the higher, SW side of the trench was excavated down to the same level as the lower NE side).

Trench E was also extended to the NE (down slope) to explore previously-unexcavated deposits in that direction. This extension was intended to provide a more secure interpretation of the deposits encountered in 2008 by relating them to the wider context of the fort defences in this area. The trench was extended on the axis established in 2008 and with the same width of 1.5 m. The length of the extension was 6 m; therefore, the overall dimensions of the 2009 trench were 12 m by 1.5 m.

Throughout the trench, all contexts were excavated by hand. Contexts were recorded by written description on pro forma sheets, in plan and section by measured drawing (as appropriate) and by digital and chemical photography. The locations of all artefacts were recorded in three dimensions. Bulk samples were taken of well-sealed deposits and of potentially-informative deposits, with a view to the recovery of further dating evidence as well as palaeobotanical remains. Samples of carbonised material were also taken from specific contexts for dating purposes.

Results

This section describes the results of the excavations. Description of the 2009 results is preceded by a summary description of the stratigraphy of the 2008 trench (cf. Poller 2008 for full details).

Trench E: Summary of the 2008 Excavations

The topsoil in Trench E (565) was preceded by a layer of pinkish orange sand (572) interpreted as hillwash (Figure 3). Hillwash (572) extended throughout the 2008 trench. It was as little as 0.1 m thick at the SE end of the trench, but thickened to 0.5 m to the NW (i.e. down slope). A further topsoil/hillwash layer (577) was encountered in the SW end of the trench, but was not excavated.
Beneath hillwash (572) lay a series of contexts interpreted as collapsed and slumped rampart material. This material separated into two sequences: one to the north and one to the south. The boundary between these sequences was defined by an upright slab which forms part of a grouping of sub-angular stones (585) interpreted as collapsed rampart facing (this slab is visible in the section illustrated in Fig 4).

To the north of the upright slab, hillwash (572) lay over a deposit of possible rampart make-up consisting of ashy silty sand with charcoal flecks (576); a fragment of vitrified stone (SF 024) was found within this layer. Underneath silty sand (576) was a second layer of silty sand and ash, rich in charcoal (578); this layer (578) contained a distinct lens of silt and ash (590) and stones forming part of the possible collapsed rampart face (585). Both silty sand (576) and silty sand (578) terminated against the upright slab forming part of (585). Underlying deposits (578) and (590) was a compact layer of cobbles and gravel (586).

Together the above contexts can be interpreted as a cobble/gravel rampart base (586) overlain by several layers of rampart make-up material (590, 578, 576) defined and faced to the south by stone slabs (585).

To the south of the upright slab (585), a series of deposits had accumulated around a large boulder (587) which was up to 1.2 m wide and 0.8 m high. In this part of the trench, hillwash (572) lay over another probable hillwash layer (570). This in turn lay above an ashy, silty sand layer (575) similar in composition to layer (576). To the south of the large boulder (587), silty sand (575) overlay another layer of silty sand (589) within which was a group of stones (588). Underneath boulder (587) were two silty sand deposits (592 & 593) which appear to have slumped or washed down slope. These silty sand deposits (592 & 593) overlay a deposit of cobbles and sand (591) which represents a surface.

Together, the above contexts can be interpreted as a cobble/sand surface (591) lying to the south of the hillfort rampart (585, 586, 590, 578, 576) and overlain by a series of deposits and materials which have collapsed from the rampart or washed/rolled down the hill to rest against its southern face (boulder 587, layers 592, 593, 589, 588, 575, 570).
Figure 3: Plan and section of Trench E in 2008 (Poller 2008, Figure 13).

Figure 4: Trench E in 2008 from the SE
Trench E: 2009 Excavations (Figure 5)

Further Excavation of the 2008 Trench

In 2009, the 6 m by 1.5 m 2008 trench was re-opened and excavation continued down until the natural subsoil was confidently identified and its relationship to the overlying stratigraphy established.

Stratigraphically, the lowest deposits identified in 2008 were cobble/gravel layer (586), interpreted as a base for the rampart, and a deposit of cobbles and sand (591) interpreted as a surface to the south of the rampart. Both of these contexts (586 & 591) were identified in the eastern side of the trench; excavation in the western side of the trench did not extend down to the same depth in 2008 (there was a step in the trench; see Figures 3 & 4).

Excavation in 2009 removed the step in the trench floor level; in the process, the sequence of deposits established in 2008 was confirmed. Fragments of charcoal (SF No. 3) were recovered from the previously-unexcavated section of the lower earth/turf rampart make-up layer (578). In addition, excavation of silty sand (576) revealed a spread of sub-angular and sub-rounded stones (607). (Stone spread (607) lay within context (576).) The individual stones forming this spread measured between 0.2 m and 0.6 m across and they were spread over an area of 2.3 m NW/SE by 1.5 m transversely. The stones formed no coherent pattern. However, they lay within the northern part of silty sand (576); the latter deposit has been interpreted as the slumped and spread remains of a rampart make-up layer and stones (607) may represent a collapsed stone face to the northern, downhill side of the rampart (with silty sand (576) spreading out to cover and surround stones (607) after their collapse). This interpretation is strengthened by the nature and sequence of the contexts encountered in the trench extension also excavated in 2009 (See below).

Excavation of cobble/gravel layer (586) identified the matrix of this stone surface as a compact orangey brown silty sand (598). Beneath cobble/gravel layer (586) was a deposit of yellow brown silty sand (603) c.0.05m deep which contained frequent pebbles and cobbles. This deposit (603) extended over an area of 2.5 m by 0.4 m and filled a number of hollows in the underlying surface. It may have been a levelling deposit laid prior to the deposition of cobble/gravel layer (586).

Beneath deposit (603) was a firm pink/brown moderately-coarse sand (597). This sand deposit (597) was also found to underlie cobble/sand surface (591) in the southern end of the trench. Coarse sand (597) had inclusions of charcoal flecks and burnt bone; these inclusions concentrated towards the upper surface of the deposit. Coarse sand (597) is interpreted as an old ground surface, weathered off the underlying natural subsoil (604). This old ground surface (597) was not visible to the north of the rampart, but appears to have been preserved beneath the rampart and the separate surface (591) to the south of the rampart.

Under old ground surface (597) was a grey/brown silt sand containing pebbles and gravel (609). This pebble/gravel layer (609) was c.0.05 m deep and represents an interface between natural subsoil (604) and the overlying old ground surface (597).
Figure 5: W-facing section of Trench E with 2009 extension
Excavation of the 2009 Extension

In 2009, the trench was also extended 6 m to the north. In this extension, the topsoil (565) was found to continue throughout the length of the trench; the topsoil was numbered 501 in the 2009 excavations. Topsoil (501/565) overlay an orange brown silty sand layer (594). Silty sand (594) is the same context as the hillwash layer (572) identified in 2008.

In the 2008 excavations, hillwash layer (572) was seen to overlie silty sand (576), interpreted as the upper of a sequence of rampart make-up layers. Silty sand (576) extended into the 2009 trench extension, petering out c. 1 m beyond the northern edge of the 2008 trench. This tapering, northern extent of silty sand (576) contained the spread of stones (607) interpreted above as a collapsed northern rampart face.

The removal of silty sand (576) and stone spread (607) revealed a linear cut [610] and its associated fills. The cut [610] had a U-shaped profile with a sharp break of slope at top and near vertical sides returning to a curved base. The cut was 0.9 m wide (NW/SE) and up to 0.35 m deep.

Linear cut [610] had two fills. The lower fill (605) was a black and dark brown, charcoal-rich sandy silt. This deposit (605) was up to 0.15 m deep and it included the occasional rounded cobble and several patches dense with charcoal. The density of charcoal in this layer perhaps relates to the former presence of a wooden structure placed in cut [610]. The upper fill of cut [610] was a brown/grey sandy silt (599) up to 0.2 m in depth.

On its north side, linear feature [610] cut through the natural subsoil (595; same as 604); on its south side, the feature cut through the compact layer of cobbles and gravel (586) identified in 2008 as a possible rampart base layer. Linear cut [610] is therefore stratigraphically subsequent to the cobble and gravel rampart base (586). An isolated patch of cobbles and gravel (600) lay to the north of linear cut [610] and this patch may relate to cobble/gravel layer (586) (either being a now-isolated former part of that layer or a distinct layer formed at the time of deposition of rampart base (586)).

Sandy silt (599), which is the upper fill of cut [610], lay under the possible collapsed rampart face (607) and slumped rampart make-up layer (576). Both the stone rampart face (607) and the rampart make-up material (576) it retained appear to have slumped forward over construction slot [610]. In addition, this cut [610] is aligned with the various rampart layers (586, 590, 578, 576) and with the stone face (585) of the rampart to the south; it seems to be part of the same structure. Linear cut [610] can be interpreted as the construction slot for a timber structure defining and probably retaining the northern face of the rampart. This construction slot [610] was cut after the laying of rampart base (586) and it is probably to be associated with the stones forming context (607).

Neither of the fills of cut [610] returned any finds, but bulk samples of both contexts (599 & 605) were taken (Sample Nos 2 & 5); a separate sample of the larger fragments of charcoal was taken from lower fill (605) (Sample No. 8).

Located immediately to the north of cut [610] was a single stakehole (611). This had been pushed into the natural subsoil (595) and its fill was a dark brown silty sand. The stakehole was roughly circular in plan and measured c.0.05 m across; it was 0.12 m deep and had a near-vertical axis. This stakehole (611) may be associated with the wooden structure represented by the adjacent cut [610].
To the north of feature [610], hillwash layer (594/572) lay directly on the natural subsoil (595) for the most part. However, in the far north-western end of the trench, a linear feature [602] was identified cutting into the natural subsoil (595) and intervening, stratigraphically, between that natural subsoil (595) and hillwash layer (594).

Linear feature [602] is interpreted as the southern edge of the middle of five ditches visible as cropmarks on aerial photographs of the site (See Figures 1 & 2). Ditch [602] was aligned NE/SW and was only partially exposed within the trench. Within the trench, the extent of the feature was 1.5 m NE/SW by 1.45 m NW/SE by 1 m deep. The cut had a sharp break-of-slope at the top, sloping down sharply to the NW to form a near-vertical edge before changing incline to form a gentler slope. The bottom of the cut was not reached within the confines of the trench.

Ditch [602] had three fills. The lowest of these was a fine sand (606), dark black/brown towards its upper surface graduating to pink/grey towards its base. This deposit had a depth of 0.5 m within the confines of the trench and it had a fairly level upper surface. Fill (606) was similar in character to the natural subsoil (595) and, as a result, the boundary between the two contexts (i.e. cut [602]) was often hard to determine with any precision. Fill (606) appears to be a ditch-fill deposit whose parent material is the natural subsoil (595); this fill (606) appears to have been formed through the erosion of the natural (595) as exposed by the ditch cut [602].

The middle fill of ditch [602] was a brown and orange sand (601), graduating from orange towards its upper surface to brown towards its interface with lower fill (606). (As a result, the interface between fills (601) and (606) was diffuse.) Middle fill (601) was up to 0.25 m deep.

The upper fill of ditch [602] was a pink and brown sand (596). The depth of this upper fill was c0.3 m and its boundary with the layer below (601) was, again, diffuse.

A series of finds was recovered from the three fills of ditch [602]. A number of pottery sherds was recovered from the lower fill (606) (SF Nos 13-18) and further pottery sherds were recovered from middle fill (601) (SF Nos 5, 7-12). A sherd of glass was recovered from upper fill (596) (SF No. 6).

Discussion

Together, the results of the Trench E excavations in 2008 and 2009 evidence the middle of five rampart-and-ditch defences visible on aerial photographs of Dunknock. In summary, the stratigraphy of the trench as it is now understood can be interpreted as follows.

The natural subsoil (595/604) was identified throughout the trench. Underneath the rampart and under the surface (591) to the south of it, an old ground surface (597) has been preserved. This old ground surface is separated from the natural sand (595/604) by an interface of sand, pebbles and gravel (609).

Hollows in the old ground surface appear to have been levelled through the deposition of sand, pebbles and cobbles (603) before the laying of a cobble/gravel rampart base (586) (matrix: (598)) and a cobble-and-sand surface (591) to the south of this. Isolated cobble-and-gravel spread (600) may also have been deposited at this time.
The rampart constructed on cobble/gravel base (586) had three main elements: the body of the rampart; the northern face; and the southern face. Three contexts representing the body of the rampart were identified within the trench: (590), (578) and (576). The character of deposit (578) suggests that it should be interpreted as a turf basal layer to the rampart. Deposit (576) above may have been formed of earth or earth and turf. The northern face appears to have been constructed of timber and stone. Linear cut [610] (filled by (605) and (599) represents the construction slot for a timber structure, and stakehole (611) may be associated with this structure. Deposit of stones (607) represents a stone component of the northern rampart face, slumped forward over construction slot [610] (after the removal/decay of the wooden structure placed in that slot?). To the south, the rampart appears to have been faced in stone (585).

Some 3.6 m to the north of construction slot [610] was the southern edge of a large ditch [602]. The chronological relationship between the digging of this ditch [602] and the construction of the rampart to the south is not evident from the stratigraphy encountered in Trench E. However, both events are assumed to be contemporary, or near contemporary. Ditch [602] had three fills: (596), (601) and (606).

After or co-incident with the collapse or removal of the northern and southern rampart faces, and the consequent slumping of the rampart structure, a series of deposits and materials accumulated to the south of the rampart: (592), (593), (587), (588), (589) and (575). Some of these materials may derive from the rampart structure, and others may have been washed down the hill from the south. Boulder (587) appears to have rolled down the hill from the south and come to a rest against or near the face of the rampart.

The final deposits to accumulate on this part of the site were a series of hillwash layers ((570), (572/594), (577)) and the topsoil (501/565).

The most significant finds from the 2009 excavations are the pottery sherds recovered from the lower and middle fills of ditch [602] (contexts (606) & (601); SF Nos 5, 12-18). Further analysis of this assemblage may add to our understanding of the chronology of the site and, in particular, of the sequence of deposits associated with ditch [602].

Also of particular potential significance in dating terms are the charcoal fragments (SF No. 3; Sample No. 8) recovered from the basal fill (605) of construction slot [610].

Conclusions

The research aims of the 2009 excavations on Dunknock were to enhance understanding of this part of the site by:

1. establishing a more secure interpretation of the contexts previously encountered in Trench E (particularly those which have produced dating evidence) and of their place within the stratigraphic sequence;
2. gaining an understanding of the sequence of activity in the wider area around Trench E, particularly as this relates to the adjacent defences lying outwith the confines of the 2008 trench.

The 2009 excavations were successful in relation to these aims. The stratigraphic sequence was extended and clarified in excavating the 2008 trench down to natural. In 2008, a series of contexts relating to the construction of a rampart were identified;
in 2009, these rampart-construction contexts were related to an underlying levelling deposit and the old ground surface upon which the rampart had been built. In addition, our understanding of the construction of the rampart was extended by the identification of contexts relating to a wood-and-stone northern rampart face.

The stratigraphy encountered in 2008 was placed in a wider context by extending the trench and identifying and investigating the adjacent ditch.

Following the 2009 excavations, it should now also be possible to clarify the dating of this part of the site. The 2008 radiocarbon dates from Trench E fell in a range from the 8th to 5th centuries B.C.; these dates derived from context (590), (578) and (575). This range of the 8th-5th centuries B.C. may represent the period of construction and initial use of the hillfort, but that cannot be confidently asserted on the basis of the 2008 dates.

Contexts (590) and (578) are rampart make-up deposits, laid at the bottom of the rampart immediately above its cobble/gravel base (586). However, the radiocarbon dates from contexts (590) and (578) may not relate to the construction of the rampart: they may derive from material already present in the turves cut to construct the rampart. The radiocarbon date from context (575) also does not clearly date the construction of the rampart or use of the hillfort: this layer appears to represent collapsed rampart material or material which has been washed down the hill and come to rest against the back of the rampart.

It is anticipated that radiocarbon dating of material recovered in 2009 will now provide more secure dates for the construction of the rampart: of particular significance here are the charcoal samples recovered from the lower fill of construction slot [610].

Further corroborative evidence may be supplied by the analysis of the pottery recovered from the fills of ditch [602]: this pottery is likely to derive from the use of the hillfort.

Acknowledgements

The authors would like to thank Perth & Kinross Council for their permission, as landowners, to work on the site. We would also like to thank the directors and staff of the SERF project for their assistance in getting this project off the ground. In particular, we would like to thank Tessa Poller for her help in setting up the project and her assistance as it has progressed. Particular thanks also to Lorraine McEwan for drawing Figure 5. We were also greatly assisted in the setting-up of the project by Aileen Maule of GUARD.

Our thanks to those who participated in the excavations, contributing their time, effort and thoughts: Kevin Grant, Dirk Leder, Morgana McCabe, Elanor McCulloch, Cathy McIver and Annachiara Spagna.

References

Appendices

i) Contexts

<table>
<thead>
<tr>
<th>Context</th>
<th>Description</th>
<th>Interpretation/Relationships</th>
</tr>
</thead>
<tbody>
<tr>
<td>501</td>
<td>Dark reddish brown sandy silt</td>
<td>Topsoil (501=565)</td>
</tr>
<tr>
<td>594</td>
<td>Orange brown silty sand</td>
<td>Hillwash below topsoil (594=572)</td>
</tr>
<tr>
<td>595</td>
<td>Firm pink orange fine sand</td>
<td>Natural subsoil</td>
</tr>
<tr>
<td>596</td>
<td>Pink and brown sand</td>
<td>Upper fill of ditch [602]</td>
</tr>
<tr>
<td>597</td>
<td>Pink/brown sandy silt</td>
<td>Old ground surface directly above natural (604)</td>
</tr>
<tr>
<td>598</td>
<td>Orangey brown silty sand</td>
<td>Matrix for cobble/gravel surface (586)</td>
</tr>
<tr>
<td>599</td>
<td>Brown/grey sandy silt</td>
<td>Upper fill of cut [610]</td>
</tr>
<tr>
<td>600</td>
<td>Patch of cobbles and gravel</td>
<td>Same as context (586)</td>
</tr>
<tr>
<td>601</td>
<td>Brown and orange sand</td>
<td>Middle fill of ditch [602]</td>
</tr>
<tr>
<td>602</td>
<td>Linear cut</td>
<td>Cut of ditch</td>
</tr>
<tr>
<td>603</td>
<td>Yellow brown silty sand with pebbles &</td>
<td>Levelling deposit beneath rampart base (586)</td>
</tr>
<tr>
<td></td>
<td>cobbles</td>
<td></td>
</tr>
<tr>
<td>604</td>
<td>Yellow brown silty sand</td>
<td>Natural subsoil (= 595)</td>
</tr>
<tr>
<td>605</td>
<td>Black and dark brown, charcoal-rich sandy</td>
<td>Lower fill of cut [610]</td>
</tr>
<tr>
<td></td>
<td>silt</td>
<td></td>
</tr>
<tr>
<td>606</td>
<td>Pink grey fine sand</td>
<td>Lowest fill of ditch [602]</td>
</tr>
<tr>
<td>607</td>
<td>Spread of large stones</td>
<td>Component of structure forming northern face of rampart</td>
</tr>
<tr>
<td>608</td>
<td>Duplicate number given to 610</td>
<td>-</td>
</tr>
<tr>
<td>609</td>
<td>Grey/brown silt sand with pebbles &</td>
<td>Interface between natural subsoil (604) and old ground surface (594)</td>
</tr>
<tr>
<td></td>
<td>gravel</td>
<td></td>
</tr>
<tr>
<td>610</td>
<td>Linear cut</td>
<td>Construction slot for northern rampart face</td>
</tr>
<tr>
<td>611</td>
<td>Dark brown silty sand</td>
<td>Fill of stake hole</td>
</tr>
</tbody>
</table>

ii) Small Finds

<table>
<thead>
<tr>
<th>Find No.</th>
<th>Context No.</th>
<th>No. of Pieces</th>
<th>Material</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>565</td>
<td></td>
<td></td>
<td>Finds from topsoil</td>
</tr>
<tr>
<td>2</td>
<td>594</td>
<td></td>
<td></td>
<td>Finds from hillwash</td>
</tr>
<tr>
<td>3</td>
<td>578</td>
<td>1</td>
<td>Charcoal</td>
<td>Fragments recovered for dating purposes</td>
</tr>
<tr>
<td>4</td>
<td>597</td>
<td>1</td>
<td>Bone</td>
<td>Burnt</td>
</tr>
<tr>
<td>5</td>
<td>601</td>
<td>1</td>
<td>Pot</td>
<td>Large black rim sherd</td>
</tr>
<tr>
<td>6</td>
<td>596</td>
<td>1</td>
<td>Glass</td>
<td>Thin green glass shard</td>
</tr>
<tr>
<td>7</td>
<td>601</td>
<td>4</td>
<td>Pottery</td>
<td>Pottery sherds</td>
</tr>
<tr>
<td>8</td>
<td>601</td>
<td>1</td>
<td>Pottery</td>
<td>Pottery sherds</td>
</tr>
<tr>
<td>9</td>
<td>601</td>
<td>1</td>
<td>Pottery</td>
<td>Pottery sherds</td>
</tr>
<tr>
<td>10</td>
<td>601</td>
<td>6</td>
<td>Pottery</td>
<td>Pottery sherds</td>
</tr>
<tr>
<td>11</td>
<td>601</td>
<td>3</td>
<td>Pottery</td>
<td>Pottery sherds</td>
</tr>
<tr>
<td>12</td>
<td>601</td>
<td>6</td>
<td>Pottery</td>
<td>Pottery sherds</td>
</tr>
<tr>
<td>13</td>
<td>606</td>
<td>4</td>
<td>Pottery</td>
<td>Pottery sherds</td>
</tr>
</tbody>
</table>
iii) Samples

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Context No.</th>
<th>Size</th>
<th>Reason for Sampling</th>
<th>Pot</th>
<th>Bone</th>
<th>Lithics</th>
<th>Botanics</th>
<th>Other</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>586</td>
<td>1L</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Wet sieving</td>
</tr>
<tr>
<td>2</td>
<td>599</td>
<td>1L</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Wet sieving</td>
</tr>
<tr>
<td>3</td>
<td>601</td>
<td>2L</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Wet sieving</td>
</tr>
<tr>
<td>4</td>
<td>597</td>
<td>1L</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Wet sieving</td>
</tr>
<tr>
<td>5</td>
<td>605</td>
<td>1L</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Wet sieving</td>
</tr>
<tr>
<td>6</td>
<td>599</td>
<td>1S</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sample of charcoal chunks</td>
</tr>
<tr>
<td>7</td>
<td>606</td>
<td>1L</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Wet sieving</td>
</tr>
<tr>
<td>8</td>
<td>605</td>
<td>1S</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sample of charcoal chunks</td>
</tr>
<tr>
<td>9</td>
<td>611</td>
<td>1S</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Wet sieving burnt soil</td>
</tr>
</tbody>
</table>

iv) Drawings

<table>
<thead>
<tr>
<th>Drawing No.</th>
<th>Subject</th>
<th>Contexts</th>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Plan of trench extension</td>
<td>576, 595, 596, 600</td>
<td>1:20</td>
</tr>
<tr>
<td>002</td>
<td>Plan of surface 586</td>
<td>586, 591, 598</td>
<td>1:20</td>
</tr>
<tr>
<td>003</td>
<td>Pre-ex plan of context 599</td>
<td>586, 599, 600</td>
<td>1:20</td>
</tr>
<tr>
<td>004</td>
<td>Mid ex plan of possible palisade</td>
<td>595, 599, 605, 610</td>
<td>1:20</td>
</tr>
<tr>
<td>005</td>
<td>Plan of possible feature in matrix of 597</td>
<td>597, 604</td>
<td>1:20</td>
</tr>
<tr>
<td>006</td>
<td>Section of possible stake hole</td>
<td>611</td>
<td>1:10</td>
</tr>
<tr>
<td>007</td>
<td>W facing section: N end of trench</td>
<td>501, 594, 595, 596, 601, 602, 606</td>
<td>1:10</td>
</tr>
<tr>
<td>008</td>
<td>W facing section: S end of trench</td>
<td>586, 597, 603, 604, 609</td>
<td>1:10</td>
</tr>
<tr>
<td>009</td>
<td>W facing section: middle of trench</td>
<td>501, 594, 578, 586, 599, 603, 605, 610</td>
<td>1:10</td>
</tr>
<tr>
<td>010</td>
<td>Post-ex plan of trench</td>
<td>586, 591, 595, 596, 598, 599, 610, 611</td>
<td>1:20</td>
</tr>
</tbody>
</table>

v) Photographs

<table>
<thead>
<tr>
<th>Digital camera</th>
<th>Area</th>
<th>Frame</th>
<th>Context No.</th>
<th>Subject</th>
<th>Taken from</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>1</td>
<td></td>
<td></td>
<td>Pre-ex shot of trench, before turf removal</td>
<td>NW</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>Pre-ex shot of trench, before turf removal</td>
<td>NW</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>Pre-ex shot of trench extension to NW, before turf removal</td>
<td>SE</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>591,585,586, 587,588</td>
<td>Interim shot of S end of trench</td>
<td>SE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td>Interim shot of S end of trench</td>
<td>NW</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td>Plan of NW trench</td>
<td>NW</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td>Plan of NW trench</td>
<td>S</td>
</tr>
</tbody>
</table>
Dunknock Hillfort Excavations 2009

4 591,585,586,587,588 Interim shot of S end of trench SE
5 587,588 Interim shot of S end of trench NW
6 Plan of NW trench NW
7 Plan of NW trench S
8 Plan of SE of the trench x2 S

9 Plan of SE of the trench x2 N
10 576 Plan of middle part of the trench N
11 576 Plan of middle part of the trench S
12 599,600 Plan shot of 599, 600 N
13 599,600 Plan shot of 599, 600 S
14 599,600 Plan shot of 599, 600 after overnight weathering N
15 599,600 Plan shot of 599, 600 after overnight weathering E
16 599,600 Plan shot of 599, 600 after overnight weathering W
17 603,597 Plan of 603, 597 N
18 603,597 Plan of 603, 597 S
19 604,597 Plan of 604, 597 W
20 605 General shot of possible palisade W
21 605 General plan shot of possible palisade E
22 609 Plan shot of 609, 595 SW
23 609 Section shot of 609, 595 SW
24 609 Plan shot of 609, 595 S
25 609 Plan shot of 609, 595 NW
26 610 Plan of 610 W
27 609,595 Plan of the top trench and bottom of 609 N
28 609,595 Plan of 606 N
29 610 Plan of 610 E

Film 2

31 Plan of possible features N
32 Plan of possible stick hole W
33 Plan of possible stick hole W
34 611 Plan of possible stick hole 611 W
35 610 Post-ex shot of possible slot W
36 610 Post-ex shot of possible palisade slot in plan E
37 610 W facing section W
38 597 Pre-ex of possible feature W
39 597 Plan of possible feature E
40 610 Post-ex shot of possible palisade slot (no sun shadow) W
41 611 Section of 611 N
42 Post-ex Section-West facing N end 09 Tr. W
43 Post-ex Section-West facing S end 09 Tr. W
44 Post-ex Section-West facing N end 08 Tr. W
45 Post-ex Section-West facing S end 09 Tr. W
46 Post-ex Section-West facing S end 08 Tr. E
47 Post-ex Section-West facing N end 08 Tr. E
48 Post-ex Section-West facing S end 09 Tr. E
49 Post-ex Section-West facing N end 09 Tr. E
50 Post-ex shot of 08-09 Tr. N
51 Post-ex plan shot of S end 09 Tr. W
52 W facing section showing upright 585 08 Tr. W
53 Plan shot showing uprights 585 08 Tr. W
54 Post-ex shot of 08-09 Tr. S
55 General shot after backfill N