

Maintenance of Model Resilience in Distributed Edge Learning Environments

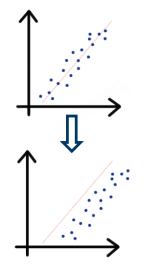
<u>Qiyuan Wang</u>, Christos Anagnostopoulos, Jordi Mateo Fornes, Kostas Kolomvatsos, Andreas Vrachimis

27-30 JUNE 2023 @ 19th International Conference on Intelligent Environments (IE'23

Quick Review

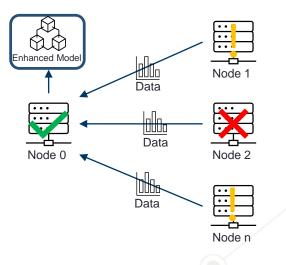
Problem

Concept Drift



Environment

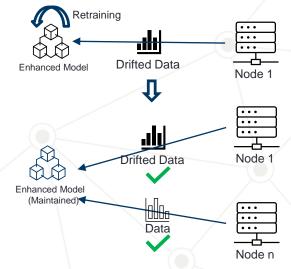
"Enhanced" Models



School *of* Computing Science Knowledge & Data Engineering Systems

Target

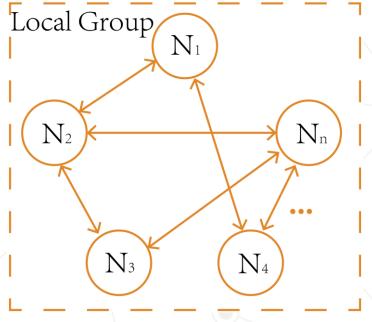
Successful Maintenance



Background

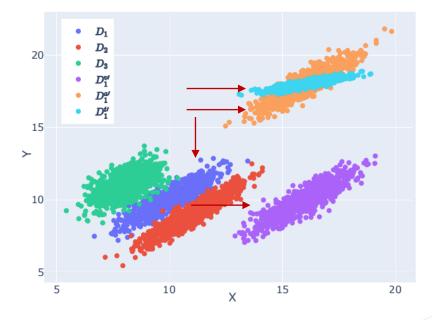
System Formulation

- EC system with *n* distributed nodes: $\mathcal{N} = \{N_1, ..., N_n\}$
- Node N_i has its own local data $D_i = \{(x, y)_l\}_{l=1}^{L_i}$, with L_i input-output pairs $(x, y) \in \mathcal{X} \times \mathcal{Y}$
- The input $x = [x_1, ..., x_d]^\top \in \mathbb{R}^d$ is a *d*-dim feature vector, which is assigned to output $y \in \mathcal{Y}$ used for regression (e.g., $\mathcal{Y} \subseteq \mathbb{R}$) or classification predictive tasks (e.g., $\mathcal{Y} \subseteq \{-1,1\}$)
- The neighbourhood of $N_i: \mathcal{N}_i \subseteq \mathcal{N} \setminus \{N_i\}$



Background

Predictive Services: Regression



Drift Classification Virtual Drift: $P(x) \neq P(x') \land P(y) = P(y')$

Actual Drift: $P(x) \neq P(x') \land P(y) \neq P(y')$

Total Drift: $P(x) \neq P(x') \land P(y) \neq P(y')$ $\land P(y \mid x) \neq P(y' \mid x')$

Effects of Concept Drifts

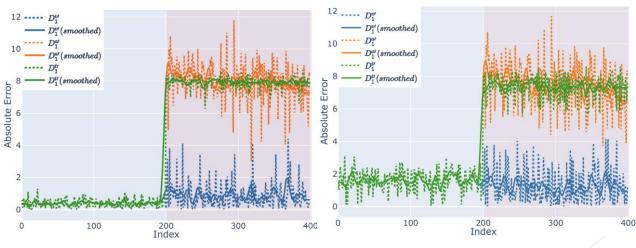


TABLE I Performance of Different Models

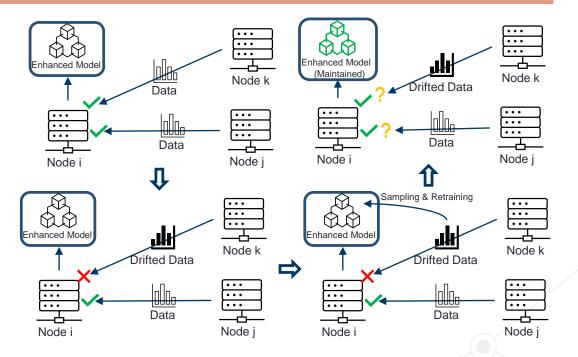
	RMSE			
Model	D_1	$D_1^{v\prime}$	$D_1^{a\prime}$	$D_1^{t\prime}$
f_1	0.47	1.29	8.06	7.93
$\bar{f}_2^{GS}(SVR)$	1.73	1.69	7.57	7.41
$\bar{f}_2^{CG}(SVR)$	1.69	1.68	7.57	7.41
$\bar{f}_2^{\bar{G}S}(GBR)$	1.54	2.19	6.26	6.12
$\bar{f}_2^{CG}(GBR)$	1.50	2.17	6.29	6.15

 $D_1^{v'}$ corresponds to virtual drifted D_1 $D_1^{a'}$ corresponds to actual drifted D_1 $D_1^{t'}$ corresponds to total drifted D_1

Performance of local model f_1

Performance of enhanced model $\overline{f_2}$ (SVR)

Objective

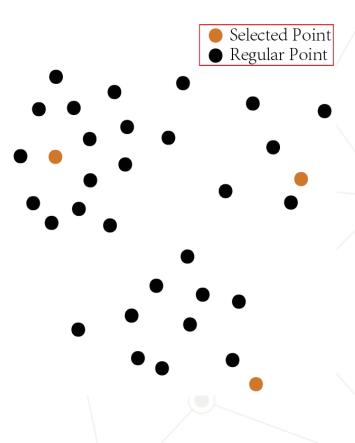


- O1: Minimize $E\mathcal{L}\left(\overline{f_i'}(D_k')\right)$ (for node N_k)
- **O2**: Minimize $E\mathcal{L}\left(\overline{f_i'}(D_j)\right)$ (for node N_j)
- O3: Reduce inter-node data transfer between nodes N_i and N_k (during maintenance)

Model Maintainability Strategies – GS (Sampling)

- N_i : Node with **enhanced** model, with local data D_i
- N_j : Node to be **surrogated**, with local data D_j
- In this context, $N_j = N_k$, $D_j = D_k'$
- Based on **random sampling** of D_j , i.e., $\Gamma(D_j) \subset D_j$
- Sample mixing rate $\alpha = \frac{|\Gamma(D_j)|}{|D_j|} \in (0,1)$, controlled by N_i
- Incremental learning supported?
 - Yes: maintain model with $\Gamma(D_j)$
 - No: Training from scratch with $\overline{D_i}' = \overline{D_i} \cup \{\Gamma(D_j)\}$

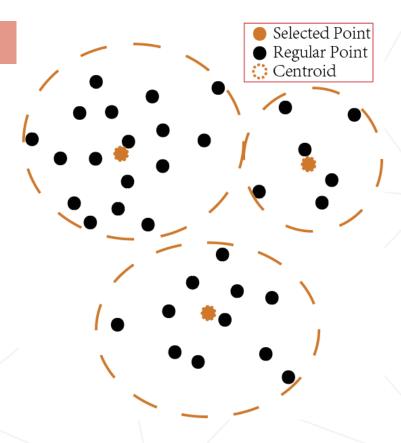
School of Computing Science Knowledge & Data Engineering Systems



Model Maintainability Strategies - CG (Centroid)

- Input-output space $\mathcal{X} \times \mathcal{Y}$ of D_j is **quantized**
- The number of clusters *K* depends on the size $L_i = |D_j|$ and **mixing rate** α i.e., $K = \alpha |D_j|$
- $\Gamma(D_j) = \bigcup_{k=1}^{K} \{w_{jk}\}$
- Does not transfer real data

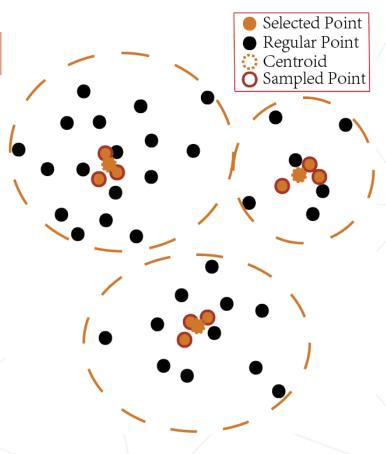
School of Computing Science Knowledge & Data Engineering Systems



Model Maintainability Strategies – ECG (Centroid+)

- Input-output space $\mathcal{X} \times \mathcal{Y}$ of D_j is **quantized**
- λ introduced to control the **duplication** of centroids
- The number of clusters $K = \frac{\alpha |D_j|}{\lambda}$
- For each cluster, sample the **centroid and** $\lambda 1$ **points** (\hat{x}, \hat{y}) from $\mathcal{N}(w_{jk}, \sigma_j^2)$
- $\Gamma(D_j) = \bigcup_{k=1}^{K} \{ w_{jk} \cup \{ (\hat{x}, \hat{y}) \sim \mathcal{N}(w_{jk}, \sigma_j^2) \} \}$
- Does not transfer real data

School of Computing Science Knowledge & Data Engineering Systems



/

School *of* Computing Science Knowledge & Data Engineering Systems

<u>\</u>2

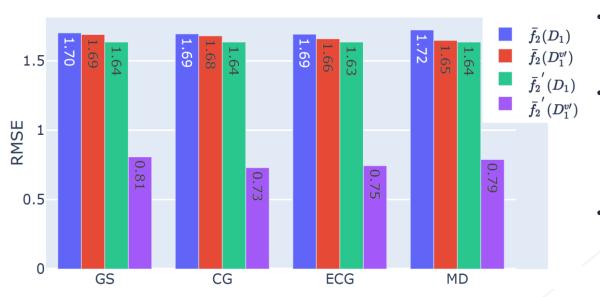
. .

Model Maintainability Strategies - MD (Generative Data)

•
$$\mu_j = \frac{\sum_{m=1}^{|D_j|} x_m}{|D_j|} \in R^d, \ \sigma_j = \sqrt{\frac{1}{|D_j|} \sum_{m=1}^{|D_j|} (x_m - \mu_j)^2} \in R^d, \ \textbf{SEM} \ \overline{\sigma_j} = \frac{\sqrt{\frac{1}{|D_j|} \sum_{m=1}^{|D_j|} (y_m - \frac{\sum_{m=1}^{|D_j|} y_m}{|D_j|})}{\sqrt{|D_j|}} \in R^d$$

- μ_j , σ_j and $\overline{\sigma}_j$, alongside with f_j are sent to N_i for mock data generation
- ϵ_j : random noise sampled from $\mathcal{N}(\mathbf{0}, \overline{\sigma}_j^2)$
- $\Gamma(D_j) = \{ (\widehat{\mathcal{X}}_j, \widehat{\mathcal{Y}}_j) : \widehat{\mathcal{X}}_j \sim \mathcal{N}(\mu_j, \sigma_j^2), \widehat{\mathcal{Y}}_j = f_j(\widehat{\mathcal{X}}_j) + \epsilon_j \}$
- Does not transfer real data

Experiments & Evaluation – Virtual Drifts

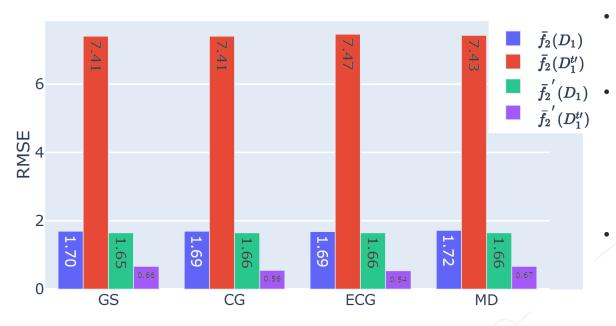


- Virtual drift did <u>not</u> affect the performance of $\overline{f_2}$ negatively (red bar vs blue bar)
- Maintenance was able to improve the performance on $D_1^{\nu\prime}$ further (purple bar vs red bar) while keeping the performance on D_1 (green bar vs blue bar)
- CG & ECG are the best strategies overall

Experiments & Evaluation – Actual Drifts

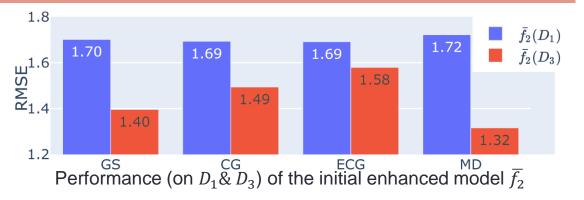
- $\overline{f_2}$ could not handle the actual drift without maintenance (red bar vs blue bar)
- Maintenance was very effective, drastically improved the performance on $D_1^{a\prime}$ (purple bar vs red bar) while keeping the performance on D_1 (green bar vs blue bar)
- CG & ECG are the best strategies
 overall

Experiments & Evaluation – Total Drifts

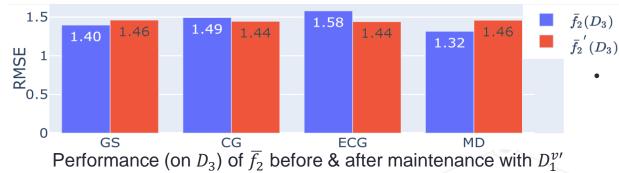


- $\overline{f_2}$ could not handle the total drift without maintenance (red bar vs blue bar)
- Maintenance was very effective, drastically improved the performance on $D_1^{t'}$ (purple bar vs red bar) while keeping the performance on D_1 (green bar vs blue bar)
- ECG is the best strategy overall

Experiments & Evaluation – Effects on Other Node(s)

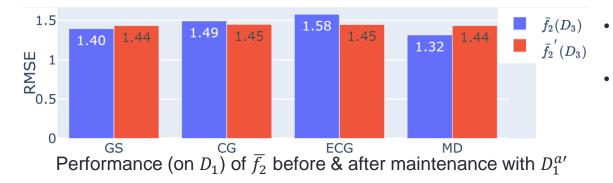


Strategies used to build the enhanced model initially affect the performance of $\overline{f_2}$ on D_3

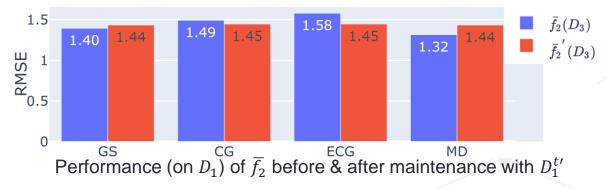


 D_3 is almost **indifferent** to the strategies used for the maintenance

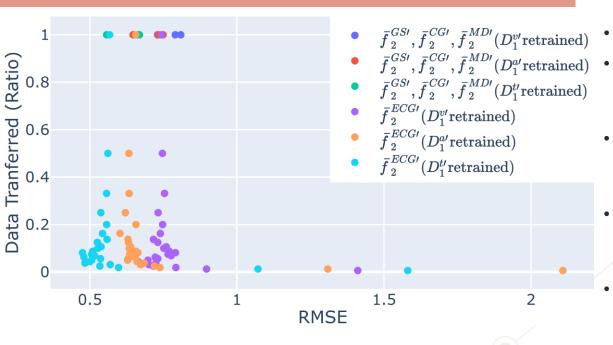
Experiments & Evaluation – Effects on Other Node(s)



- Identical results for maintenance with $D_1^{a'}$ and $D_1^{t'}$
- For all 3 kind of drifts, the maintenance did <u>not</u> affect the other node

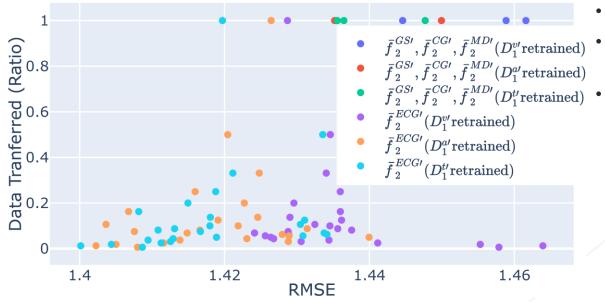


Experiments & Evaluation – Data Transfer



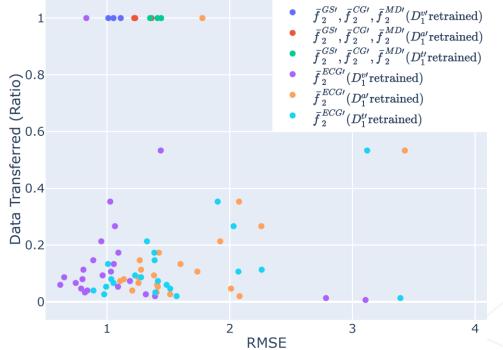
- Performance on $D_1^{\nu\prime}$, $D_1^{a\prime}$, $D_1^{t\prime}$
- Given the same α , both GS and CG transfer the same amount of data
- For MD, the statistics and the model need to be transferred are at the **same scale** of GS and CG
- For ECG, we manipulate **intensity** λ to directly control the amount of transferred data
- Ideal: bottom left

Experiments & Evaluation – Data Transfer



- Performance on D_3
 - The magnitude of variation in performance is **negligible**
 - ECG is working very well in both reducing the data transferred and maintaining the performance

Experiments & Evaluation – Data Transfer



- Results got with realistic dataset: GNFUV*
- Similar results to what we got before
- Only 5% 10% data transfer needed for ECG to achieve the best performance

*: https://archive.ics.uci.edu/dataset/452/gnfuv+unmanned+surface+vehicles+sensor+data

Conclusions

- Investigated the problem of maintaining resilient enhanced models in DML environments
- Proposed 4 model maintainability **strategies**
- Evaluated the effects of these strategies on 3 kinds of drifts
- Proved the effectiveness and efficiency of proposed approaches

Thank you!

School of Computing Science Knowledge & Data Engineering Systems

Qiyuan Wang Qiyuan.Wang@glasgow.ac.uk