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|dea: Federated Learning on Excess Energy

Federated Learning (FL) is an emerging machine learning technique that enables distributed model

training across data silos or edge devices without sharing data.

From a scheduling perspective, we are dealing with a iterative execution of distributed batch jobs
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Use Cases

For our problem setting, we require FL clients with significant computing
capabilities and electricity demand, for example:

e On premise
o Health institutions training common models on confidential patient data
o Financial institutions building credit score predictors
e Edge computing
o Smart energy grids
o Smart transportation services
o Smart water distribution
e Powerful edge devices
o Autonomous vehicles



Challenges

1. Efficiency: FedZero is designed with performance and energy efficiency in mind

2. Common power budgets: FedZero treats energy as a shared and limited
resource during client selection and at runtime

3. Fairness of participation: FedZero ensures that all clients participate similarly,
even if the availability of excess resources is imbalanced

4. Robustness against forecasting errors: FedZero remains functional if excess
energy or load forecasts have a high error

5. Scalability: FedZero’s comes with a low overhead and runtime complexity



FedZero Protocol
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Clients provide the following information:

number of training samples

maximum computational capacity (batches/timestep)
energy efficiency (energy/batch)

control plane addresses



FedZero Protocol
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FedZero Protocol

Preliminary Round i Roundi+1
Smm— A A

I)Powgr A & A . - )
oman ? Iv 7y Iy

Client

\ |

 J

~ B [

T"‘ y Training '.'
~ | f

I .

|

I

=TI A

" Tralnmg — “
[ [] i
Client >

|

poman | A \ /f«ffd“fj‘. /
| .
|

\

A

Register Collect Select partici- Train locally on Aggregate
clients forecasts pating clients excess resources updates



Client Selection

Iterative algorithm for reduced optimization problem complexity

e lteratively try out different maximum round durations
e Given a specific round duration, a mixed integer optimization problem (MIP) tries to select n
clients with sufficient computing capacity and energy

Heavy filtering of invalid solutions highly reduces the search space, e.qg.

e Remove power domains without sufficient energy
e Remove clients without sufficient capacity and/or energy
e Remove clients that over-participated in the past

Over-participation is regulated by blocklisting clients after participation and removing
them from the blocklist with a probability that corresponds to their statistical utility
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Executing Training Rounds
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Experimental Setup

e Evaluation is based on Flower (https://flower.dev) and simulated virtualized energy systems
e 100 clients of three sizes; load based on Alibaba GPU cluster traces
e Two energy scenarios o . -
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We simulate training in 1-minute timesteps for up to 7 days. In each round we select 10% of all
clients, who are supposed to perform between 1 and 5 local epochs.
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https://flower.dev/
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Fairness Under Imbalanced Conditions
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Fairness Under Imbalanced Conditions
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Robustness Against Forecasting Errors
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Overhead

number of time steps
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1440 timesteps correspond to 1 day in
minutely resolution
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Conclusion

Summary

e FedZero is a system design for fast, fair, and efficient training of FL models
using only renewable excess energy and spare computational capacity
e It is robust against forecasting errors and highly scalable

Future work

e Integrate FedZero into existing client selection strategies

e Explicitly take energy storage and grid energy consumption into account

e Better understand the impact of periodic patterns in excess energy availability
on training performance

Contact: Philipp Wiesner, wiesner@tu-berlin.de
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