Approaches to programming in first year Physics

Yuliyan Stefanov

2476572S

Introduction

- Its been 70 years since computing became a taught degree and the right teaching method remains unclear.[1]
- Computer Science drop out rates are the highest of any degree (~50%)[1].
- The problem is too complex and ambiguous to tackle as is.
- We must understand student's feelings around programming and uncover the most relevant problems with it.

Background

- Success in programming means ability to divide problems into chunks, solve and organize accordingly.
- Novices tend to think linearly, while experts think of strategies.
- Reasoning and strategy are more important than syntax for beginners.
- PBL (Problem Based Learning) proven to be a more effective strategy than traditional methods when applied to coding.[2]
- Not enough "good"[3] PBL problem sets.

Methods

- Questionnaire 21 quantitative and 5 qualitative questions. Based on categories* of skill/experience and **self**perception.
- Questions constructed on the basis of IOP Physics Deg. criteria [4], UofG Graduate Attributes.[5]
- Analyse qualitative answers by Wordcloud collection and AI sentiment analysis for finer detail. (fig.1 & 2)
- Analyse quantitative answers by examining the correlation between categories (fig.3), analysing their principal factors (PCA) (fig.4) and diluting them into a better set of variables.

singgood technology experience software Limited difficult $\stackrel{\circ}{\neg}$

coding usefu⊥ graphs good s applicable lab**physics** thing

Codi knov

Codi

Codi

Codi

The first **3** principal components account for 60% of the variance. The most important indicators across the **3 principal components** are:

...what are students saying?

Experience w/ Tech

Coding Applicability

Coding Perception

Learning Experience w/ Code

The results are ambiguous. A quantitative approach is needed.

2

What are their **abilities**, experience and interests?

	Category Corr. Matrix - Me					Women	Highest correlation		
g vI.	1.00	0.91	0.86	0.81	0.10	-0.55	-0.68		- 0.75
9 _ t.	1.00	1.00	0.69	0.65	0.20	-0.81	-0.68		- 0.50
g ວ.	0.91	0.92	1.00	0.98	0.47	-0.46	-0.30		- 0.25
g J.	0.87	0.89	0.97	1.00	0.55	-0.49	-0.16		- 0.00
ר _ יו.	0.73	0.77	0.78 MPI	0.87	1.00	-0.57	0.47		0.25
า ff.	0.94	0.93	0.98	0.95	0.69	1.00	0.20		0.50
า _ t.	0.65	0.62	0.81	0.80	0.40	0.85	1.00		0.75
	Coding knowl.	Coding intst.	Coding exp.	Coding appl.	Math knowl.	Tech proff.	Tech Lo intst.	west co	-1.00 rrelation

We see great differences in interest & experience between men and women...

The Key Peformance Indicators

Technical Familiarity and Comfort

4

...students are **unhappy**

What are the **most** important categories? (Key Performance **Indicators**)

Principal Component Analysis (PCA) is used to reduce complexity of a large dataset by identifying the factors that contribute most to a correlation.

[1] Margulieux, L.E., Morrison, B.B. & Decker, A. Reducing withdrawal and failure rates in introductory programming with subgoal labeled worked examples. IJ STEM Ed 7, 19 (2020). https://doi.org/10.1186/s40594-020-00222-7

the variance.

[4] https://www.iop.org/sites/default/files/2019-10/the-physics-degree.pdf [5] https://www.gla.ac.uk/media/Media_183776_smxx.pdf

*Categories

- Coding Interest
- Coding Knowledge
- Coding Experience
- Coding Perception
- Mathematical Knowledge
- Technological Interest
- Technological Proficiency

Results

• Students are **unhappy** with their coding experience.

- Virtually all students believe in the usefulness and applicability of
- programming for their career.
- Dimensionality reduction into **3** principal
- components accounts for **60%** of the
- explained variance. The factors which
- account for most of the variance can now be focused on more concretely.

Conclusion

- New teaching tactics must be employed to tackle improving the **Key Performance** Indicators.
- Some suggestions would include familiriasing students with Computing Basics (such as OS file hierarchies) prior coding and increasing awareness of the
- necessity and applicability of
- programming in their careers. • A strong practical and proven candidate for this would be employing more **PBL** strategies.
- Further research into the differences between men and women in their self perception regarding their technical skills must take place.
- Practices must be put in place to standardise student confidence for a healthier and more productive environment.

References

[2] NUUTILA, E., TÖRMÄ, S., KINNUNEN, P. & MALMI, L. 2008. Learning Programming with the PBL Method. In: BENNEDSEN, J., CASPERSEN, M. E. & KÖLLING, M. (eds.) Reflections on the Teaching of Programming Methods and Implementations Berline: Springer-Verlag

[3] Jackie O'Kelly and J. Paul Gibson. 2006. RoboCode & problem-based learning: a non-prescriptive approach to teaching programming. SIGCSE Bull. 38, 3 (September 2006), 217–221. https://doi.org/10.1145/1140123.1140182

[&]quot;...Coding is useful, but I don't like the way its taught."