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Abstract

We propose a novel pricing factor for currency returns motivated by the market-
microstructure literature. Our factor aggregates order flow data to provide a measure
of buying and selling pressure related to conventional currency trading strategies. It
successfully prices the cross-section of currency returns sorted on the basis of interest
rates and momentum. The association between our factor and currency returns differs
according to the customer segment of the foreign exchange market. In particular,
it appears that financial customers are risk takers in the market, while non-financial
customers serve as liquidity providers.
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1 Introduction

Motivated by the market microstructure literature, we construct a reduced-form stochastic

discount factor (SDF) model that explains the returns to popular currency trading strate-

gies. Our model is based on customer order-flow data from one of the largest dealer banks

in the foreign exchange market. The risk factor that we consider takes on more positive

values when order flow, aggregated across currencies, indicates that customers are buying

currencies favored by carry trade and momentum signals, and selling currencies disfavored

by these signals. When this factor takes on more negative values, it indicates that customers

are reversing or unwinding these trades. Our model successfully prices the cross-section of

currency portfolios sorted by interest rates and momentum. This reflects the positive (neg-

ative) correlation between our factor and high (low) interest-rate currency portfolios, with

the same pattern prevailing for strong (weak) momentum currency portfolios. A plausible

interpretation of our findings, consistent with the market microstructure literature, is that

when customers receive information that, in the aggregate, encourages them to take larger

speculative positions in favor of both high interest-rate and strong momentum currencies,

this causes these currencies to appreciate. When the arriving information causes them to

reverse these positions, these currencies depreciate.

For those currencies with greater market share, we have access to order-flow classified

according to customer type. These data indicate that the behavior of aggregate order flow

is dominated by that of financial customers (hedge funds and asset managers), and that

there are systematic differences in how the order flow of financial customers and nonfinan-

cial customers (corporate and private clients) relate to currency returns. When the order

flow of financial customers leans more towards taking carry trade or momentum positions,

these investment strategies tend to do well. But we see the opposite pattern for nonfinancial

customers. This suggests that order flow conveys different information to dealers depend-

ing on its origin within the customer base. It also suggests that a certain degree of risk

sharing happens within the customer base, not just between customers and dealers (and

between dealers). This may reflect that there are underlying shocks that drive exchange rate

dynamics, and to which financial and nonfinancial customers have different ex-ante exposure.

Our work is closely related to the empirical microstructure literature that focuses on

the relationship between order flow and bilateral exchange rates.1 Like Lyons (2001) and

1See Sarno and Taylor (2001), Osler (2009), Evans (2011), Evans and Rime (2012), and Evans and Rime
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Evans and Lyons (2002), we show that order flow can explain a large part of exchange rate

variation, as well as, by extension, currency excess returns. They argue that this is because

order flow maps a significant part of customers’ private information into price discovery.

The evidence we find is consistent with Evans and Lyons (2006), who show that there

are significant differences, across customer segments, between the estimated price-impacts

of order flow. Relatedly, Menkhoff et al. (2016) show that financial customer order flow

contains information that has a long-term impact on currency returns, and that financial

and nonfinancial customers trade in opposite directions, thus providing evidence of risk

sharing taking place in the customer market. Ranaldo and Somogyi (2021) also document

heterogeneity across customer segments.

Taking inspiration from this literature, we measure buying and selling pressure in the

foreign exchange market, but do so by aggregating order flow (vis-a-vis the U.S. dollar)

across currencies using standard trading signals for carry trade and momentum strategies.

To illustrate, when we study the carry trade in isolation, our measure of aggregate order

flow sums the value of buy orders for high interest rate currencies and the value of sell orders

for low interest rate currencies, having normalized the measures of order flow to the scale of

the market for each currency. When the value of this aggregate increases, we interpret this

as customers, in general, favoring trades in the direction that carry-trade investing would

predict. When the value of this factor decreases, we interpret this as customers reversing or

unwinding these positions. We take a similar approach when studying momentum strategies

in isolation. In this case, we aggregate the same order flow data but sign order flow based on

a momentum signal. Then we combine our two measures by averaging them. This provides

us a measure of the extent to which trading, in general, favors standard speculative strategies

(or disfavors them).2 We find that this single measure of aggregated order flow is able to price

the cross-section of currency portfolios sorted on the basis of interest rates and momentum.

Our work is also closely related to the large empirical literature that uses SDF models

to explain currency returns.3 Villanueva (2007), Burnside et al. (2011), Burnside et al.

(2011), and Burnside (2012) establish that traditional risk factors used to price equities do

(2019) for comprehensive overviews.
2Since the underlying order flow data are the same, if the carry trade and momentum signals agree at the

level of an individual currency, then the contribution to both measures, and their average, is the same. If the
signals disagree, then the contributions to the two measures are equal in magnitude but take the opposite
signs, and so the contribution to the average is zero.

3Burnside (2012) and Lustig and Verdelhan (2012) review the early literature.
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not correctly price carry trade and momentum portfolios. On the other hand, SDFs based

on risk factors derived from currency-specific data have been reasonably successful in pricing

portfolios of currencies. For example, Lustig et al. (2011) use a “high-minus-low” carry

trade portfolio to price a set of currency portfolios sorted by interest rates. Menkhoff et al.

(2012a) and Menkhoff et al. (2012b) use a measure of global currency volatility to price

these same portfolios, as well as momentum portfolios. In our sample, our model appears

to perform better than either of these traditional models in that it is able to price both the

interest-rate-sorted and momentum-sorted portfolios, and our order-flow factor is robustly

significant.

Another branch of the literature emphasizes currency crashes. Galati et al. (2007) find

that excess returns to carry trades tend to reverse abruptly under market stress. They

provide evidence from international banking data that currency flows are associated with

these reversals. Brunnermeier et al. (2008) emphasize the role of risk averse market dealers

who use the information in order flow to adjust the risk premium when they quote the spot

rate. In their model, investors who engage in carry trades build their positions gradually, but

liquidate their positions quickly, causing a currency crash. When market dealers anticipate

a future unwinding by investors, they increase the risk premium associated with carry trade

portfolios. Differently from Brunnermeier et al. (2008), in this paper we generalize that idea

by extending it to the cross-section of currency returns, and we provide a natural empirical

measure of trading pressure in the foreign exchange market. We find an association between

signed order flow and currency returns that is broadly consistent with their notion of crash

risk.

In Section 2, we describe the currency portfolios used in our empirical work. These

include standard interest-rate-sorted and momentum-sorted portfolios used in the extant

literature, as well as a set of portfolios sorted on the basis of order flow. In Section 3, we

introduce our order-flow related pricing factors. Sections 4 and 5 contain the bulk of our

empirical work, which is based on sample of weekly data from 2001 to 2012. We study the

behavior of various currency portfolios in this period, as well as the performance of standard

risk factors used in the prior literature. We then show cross-sectional asset pricing results

for our order-flow based pricing factor. In Section 6, we discuss the behavior of order flow

when it is disaggregated by customer segment. Section 7 concludes.
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2 Currency Portfolios

Let Sk,t be the exchange rate between the US dollar (USD) and foreign currency k, measured

as foreign currency units (FCUs) per USD. Define sk,t = lnSt. The logarithmic return to

borrowing one USD in the short term money market and investing it in a short-term security

denominated in foreign currency k, is

rk,t+1 = i∗k,t − it − (sk,t+1 − sk,t) (1)

where it is the US interest rate and i∗k,t is the foreign interest rate. The uncovered interest

parity (UIP) condition states that

Et(sk,t+1 − sk,t) = i∗k,t − it, (2)

or, equivalently, that

Etrk,t+1 = 0, (3)

where Et is the expectations operator given information available at time t. That is, if

the foreign interest rate exceeds the US interest rate, the foreign currency is expected to

depreciate by the amount of the interest differential.

Let Fk,t be the one period forward exchange rate between the same currencies, and let

fk,t = lnFk,t. Up to a log approximation, covered interest parity (CIP) implies that

i∗k,t − it = fk,t − sk,t. (4)

That is, the interest differential for currency k against the dollar is equal to currency k’s

forward discount.4 Therefore, assuming that CIP holds, the log return to being long foreign

currency k and short the USD is5

rk,t+1 = fk,t − sk,t+1. (5)

Thus, under CIP, the UIP condition implies forward rate unbiasedness:

Etsk,t+1 = fk,t. (6)

4Given that we quote exchange rates as FCUs per USD, fk,t − sk,t measures how much cheaper it is to
buy currency k forward rather than spot.

5Mancini-Griffoli and Ranaldo (2010) and Du et al. (2018) document that during and after the global
financial crisis of 2008 there were substantial deviations from CIP as measured using money market interest
rate data and bid-ask spreads. Prior to the financial crisis, these deviations were much less common and
much smaller.
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2.1 Carry Trade Portfolios

Carry trade strategies generally involve systematically managing a portfolio in which the

investor borrows funds in low interest rate currencies and invests (or lends) in high interest

rate currencies. Under uncovered interest parity, however, we would not expect this strategy

to be profitable because Etrk,t+1 = 0. However, the empirical failure of the UIP condition

is well-documented.6 In fact, it is widely understood that nominal exchange rates are well

approximated, empirically, as random walks; i.e. Etsk,t+1 ≈ sk,t.
7 When this is true

Etrk,t+1 ≈ i∗k,t − it = fk,t − sk,t. (7)

This fact provides motivation for carry trade strategies because it suggests that by system-

atically borrowing low interest rate currencies and lending in high interest rate currencies,

the investor can expect to earn profits equal to the forward discount.

We base our empirical work on currency portfolios studied in the previous literature.

Following Lustig et al. (2011), at each date t, we allocate the available currencies into five

portfolios, labeled C1, C2, C3, C4 and C5, with C1 corresponding to the currencies with the

lowest interest rates (equivalently, small values of the forward discount), and C5 containing

those currencies with the highest interest rates (equivalently, large values of the forward

discount). Each portfolio holds an equally weighted long position in its constituent currencies

financed by borrowing dollars. Hence, the log return of the ith portfolio is

rCi
t+1 =

∑
k∈Ki,t

1

Ni,t

(fk,t − sk,t+1) =
∑
k∈Ki,t

1

Ni,t

rk,t+1, (8)

where Ki,t is the set of currencies in the ith portfolio and Ni,t is the number of currencies in

the ith portfolio.

Lustig et al. (2011) use C1–C5 to construct two additional portfolios: the DOL portfolio

and the HMLC portfolio. Their version of the DOL portfolio is an equally weighted average

of the C1 through C5 portfolios. By contrast, we construct DOL as the equal weighted

average of the currency excess returns for nine of the G10 currencies:8

rDOL
t+1 =

1

9

∑
k∈{G10}

rk,t+1. (9)

6Hansen and Hodrick (1980), Bilson (1981), Fama (1984) provide early tests. More recently, Engel (1996)
and Burnside (2014) provide updated tests of UIP.

7The classic reference is Meese and Rogoff (1983).
8The nine currencies are the euro (EUR), Japanese yen (JPY), British pound (GBP), Swiss franc (CHF),

Australian dollar (AUD), New Zealand dollar (NZD), Canadian dollar (CAD), Swedish krona (SEK), and
Norwegian krone (NOK). The USD is left out as it is the base currency in our analysis.
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This ensures that our DOL portfolio has a consistent definition across the different currency

samples that we use by always measuring the tendency of the USD to depreciate or appreciate

against the other G10 currencies.

The HMLC portfolio is a standard “high-minus-low” portfolio which takes a long position

in the C5 portfolio and a short position in the C1 portfolio. In this sense, it can be thought

of as a carry-trade portfolio that takes long positions in the highest interest rate currencies,

financed by borrowing the lowest interest rate currencies. Its return is

rHMLC
t+1 = rC5

t+1 − rC1
t+1. (10)

For the 2001–12 period, we form the C1–C5, HMLC and DOL portfolios using data for

a set of 20 of the most liquid currencies according to trading volume.9 The portfolios are

formed on a weekly basis, each with a holding period of one week. Descriptive statistics are

summarized in Table 1, with returns being expressed in percentage points per annum. Table

1 shows the mean return, standard deviation, skewness, kurtosis, Sharpe ratio, and the first

order autocorrelation coefficient of the returns. We also report two coskewness measures

relative to the returns to the DOL portfolio.10 Portfolios with higher coskewness earn higher

returns when global volatility is high. Thus, greater coskewness is often interpreted as

making a portfolio more effective as a hedge against global volatility.

As Table 1 shows, the mean returns monotonically increase from portfolio C1 to portfolio

C5 with the lowest return being 1.4% (on an annual basis) and the highest being 12.6%. The

mean return of the DOL portfolio is 5.3%. This suggests that investors require a positive

risk premium to invest in non-US short-term securities. Volatility also displays an increasing

pattern moving from C1 to C5, but it does not rise in proportion to the expected return,

9The currencies in our data set are the EUR, JPY, GBP, CHF, AUD, NZD, CAD, SEK, NOK, MXN,
BRL, ZAR, KRW, SGD, HKD, TRY, HUF, PLN, CZK, and SKK. We observe the exchange rates from the
first week of November 2001 to the fourth week of March 2012. The appendix provides further details.

10Following Harvey and Siddique (2000) a direct measure for coskewness is

βSKS =
E[εt+1ε

2
M,t+1]

E[ε2t+1]
1/2E[ε2M,t+1]

,

where εt+1 is the innovation of the excess return of a portfolio, and εM,t+1 is the innovation of the excess
return of some market factor (here we use the DOL factor). The innovations are constructed using first order
autoregressive models for both the portfolio return and the DOL return.
The second coskewness measure is based on the regression

rt+1 = β0 + β1r
DOL
t+1 + βSKD(r

DOL
t+1 )2 + ut+1,

where rt+1 is the return on some portfolio and (rDOL
t+1 )2 is a proxy for market volatility.
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so the Sharpe ratios also increase from C1 to C5. So high interest rate currencies still yield

higher returns after a standard adjustment for risk. The HMLC portfolio (equivalent to

C5-C1) has a large mean return (11.6%), and Sharpe ratio (0.99). The returns of all of

the portfolios are negatively skewed, indicating the possibility of large negative realizations.

However, for portfolio C1 the skewness coefficient is approximately zero, suggesting that it

is less subject to large losses.

2.2 Momentum Portfolios

As documented by Burnside et al. (2011), Lustig et al. (2011), and Menkhoff et al. (2012b),

momentum strategies in the foreign exchange market are also profitable. These strategies

involve buying a basket of currencies with previously high returns and selling a basket with

previously lower returns.

Similar to our approach for the carry trade, we form five momentum portfolios (M1,

M2, M3, M4 and M5) based on the average value of each currency’s log return over the

previous four weeks. Portfolio M1 contains the currencies with the smallest lagged returns

and portfolio M5 has the currencies with the largest lagged returns. In this regard, our

portfolios are similar to those studied by Burnside et al. (2011), Menkhoff et al. (2012b),

Fan et al. (2022), and Zhang (2022), which are formed on the basis of the previous month’s

return. However, in our case investors reshuffle their positions each week, rather than each

month. We also consider a “high-minus-low” momentum portfolio that we denote as HMLM.

Its return is equal to the return on the M5 portfolios minus the return on the M1 portfolio.

Table 1 provides a variety of summary statistics for these portfolios. The mean returns

increase from portfolio M1 to portfolio M5 with the lowest return being 2.9% (on an annual

basis) and the highest being 10.7%, although the pattern is not quite monotonic (portfolio

M3 being the outlier). Consistent with the prior literature, we find that a strategy of holding

the HMLM portfolio was profitable in historical data, with a large mean return (7.9%) and

Sharpe ratio (0.75).

2.3 Order Flow and Exchange Rates

We also form portfolios based on order flow data. To do so, we use a unique data set, from one

of the top foreign exchange dealers, covering more than eleven years (2001–2012) of weekly

7



end-user order flow for up to 20 currencies.11 Let xk,t+1 denote the aggregate order flow (the

total value of buy orders, net of sell orders) for currency k in the interval between periods

t and t + 1. Typically, empirical implementations of order flow models relate the change of

the exchange rate to this flow, as well as to changes in observable fundamentals (such as

the interest differential between the two currencies), and an error term. Our intention, here,

is not to implement a specific order flow model. Instead, in our preliminary analysis, we

demonstrate the apparent correlation between order flow and exchange rate changes at the

weekly frequency.

In Table 2 we present estimates of the following equation for each currency:

sk,t+1 − sk,t = ak + xk,t+1bk + uk,t+1, (11)

where uk,t+1 is an error term, and k indexes the currencies. Given that we measure exchange

rates in FCUs per USD, and xk,t+1 measures net buy orders of the foreign currency, we

expect negative estimates of bk. In fact, this is what we see in Table 2, with bk being

negative and statistically significant for 17 of our 20 currencies. This evidence is suggestive

that order flow data may be useful in explaining exchange rate changes and the returns

to currency investments. Order flow being significant at the weekly horizon mirrors the

findings of Menkhoff et al. (2016), who demonstrate the predictive power of order flow over

several days. It also reflects the results of several studies using longer-than-daily sampling

frequencies that are surveyed by King et al. (2013).

2.4 Order Flow Portfolios

Order flow is not easily compared across currencies, due to heterogeneity in the volume of

trade. To make such comparisons, we adjust currency k’s order flow at time t+ 1 using the

standard deviation of the order flow of currency k. To do this, we recursively define the

sample variance of currency k’s order flow as

σ̂2
k,t =

1

t

t∑
s=1

(xk,s − x̄k,t)
2 with x̄k,t =

1

t

t∑
s=1

xk,s. (12)

Then we define adjusted order flow as

yk,t+1 =
xk,t+1

σ̂k,t

. (13)

11The appendix provides further details of our data set.
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We have found our results to be qualitatively robust to using a rolling-window definition of

the standard deviation, as well as the full-sample standard deviation.12

At each week t, we sort the 20 currencies into five portfolios according to yk,t, which are

labeled O1, O2, . . . , O5 where O1 consists of the currencies with greatest selling pressure

(lowest, or most negative, order flow) and O5 consists of the currencies with the greatest

buying pressure (most positive order flow). These are not tradable portfolios at time t − 1

because the measure of order flow is contemporaneous to the return. Our purpose in studying

these portfolios is, in fact, to measure the degree to which order flow and the returns are

associated. We also define a buy-minus-sell (BMS) portfolio, which is long portfolio O5 and

short portfolio O1.

Table 3(A) shows summary statistics for these portfolios. There is a clear monotonically

increasing pattern in the average returns and Sharpe ratios across the O1–O5 portfolios.

Unlike the interest rate sorted portfolios, C1–C5, the standard deviations of the returns do

not vary much across the five portfolios. Unsurprisingly, the average of the O1–O5 portfolios

(indicated by ‘Avg’ in Table 3) behaves similarly to the DOL portfolio in Table 1. The

BMS portfolio earns a large positive average return, with a very large Sharpe ratio. These

results, in a sense, confirm the notion that contemporaneous order flow is strongly positively

correlated with exchange rate changes and currency returns.

Cerrato et al. (2011) argue that order flows from different segments of the customer

market reflect the different information available to each segment, as well as their different

motivations for trade. It is easy to imagine, for example, that leveraged hedge funds and

corporate customers participate in the market for different reasons. To investigate whether

there are systematic differences in the relationship between order flow and returns across

customer-type we use data on order flow that are disaggregated into four categories: Asset

Manager (AM), Hedge Fund (HF), Corporate (CO), and Private Client (PC). However,

these data are only available for the nine G10 currencies, so we sort the currencies into four

portfolios based on the magnitude of order flow in each of the customer segments. These

results are reported in Table 3(B). For asset managers and hedge funds—referred to here as

financial customers—the pattern across portfolios is the same as for aggregate order flow. The

portfolios with the most buying pressure earn the largest returns. For corporate customers

and private clients—referred to here as nonfinancial customers—the pattern is reversed,

12Duplicates of many of our tables using the full-sample standard deviation are available on request.
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and sharply so for the latter category. The portfolios with the most buying pressure from

nonfinancial customers earn negative returns, while the ones with the most selling pressure

earn positive returns. Cerrato et al. (2011) show that these nonfinancial customers tend to

act as liquidity providers. The evidence in Table 3(B) seems consistent with this view, in

that currencies being bought by financial customers do better, while the opposite is true for

nonfinancial customers.

Next, we compare the informational content of order flow with that of forward discounts

and volatility innovations. Menkhoff et al. (2012a) show that a global volatility proxy con-

tains important information which can be used to price returns of carry trade portfolios. Re-

latedly, Menkhoff et al. (2012b) show that momentum strategies are more profitable among

currencies that have greater idiosyncratic volatility. In both cases, the implication is that

volatility has an association with the riskiness of, and return to, holding different currencies

and currency portfolios. We believe that the apparent importance of volatility is strongly

linked to order flow and that, in fact, order flow contains the relevant information to price

the returns of carry trade and momentum portfolios.

To provide the reader with a first intuitive view of this, we double-sort our currencies in

two different ways with the results being shown in Tables 4 and 5. In Table 4, we first sort

our currencies into three portfolios based on their forward discounts. Thereafter, within each

portfolio, we sort currencies into two bins based on the magnitude of order flow.13 The main

conclusion of Table 4 is that even after conditioning on the forward discount (i.e., choosing

a column in the table), buying a portfolio with the highest buying pressure (high order flow)

and selling a portfolio with the highest selling pressure (low order flow), gives a positive and

statistically significant return. In other words, taking forward discounts into account does

not drive out order flow as an important apparent determinant of currency returns.

In Table 5, we first sort our currencies into three portfolios based on their idiosyncratic

volatility innovation, and thereafter on the magnitude of order flow.14 Again, even after

conditioning on the idiosyncratic volatility innovations (i.e., choosing a column in the ta-

ble), a portfolio of the currencies with the highest buying pressure has an economically and

13We build a total of just six portfolios due to the limited number of currencies in our sample.
14The idiosyncratic volatility innovations is measured in a similar fashion to how Menkhoff et al. (2012a)

construct their risk factor, DVOL. For each week, and each currency, we average the absolute daily spot
rate changes to proxy for the volatility of that currency in that week. We then model the volatility time
series of each currency as an AR(1) process and take the residual term from the model as a proxy for the
idiosyncratic volatility innovation of that currency.
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statistically significantly higher return than the one with the greatest selling pressure.

3 Order-Flow Factors

The empirical results presented in Tables 3–5 suggest that order flow contains significant

information that could be relevant for pricing the returns to currency portfolios. In this

section, we propose novel pricing factors based on order flow that are motivated by mi-

crostructure models and the prevalence of carry and momentum trading in foreign exchange

markets.

3.1 A Carry-Trade Order-Flow Factor

Our first factor is an aggregate order flow measure motivated by carry-trading considerations.

This factor, which we denote as CO, is defined as

COt+1 =
1

Nt

∑
k∈Nt

yk,t+1 · sign(fkt − skt), (14)

where Nt denotes the total number of foreign currencies in the available data. If investors

build portfolios based on carry-trade considerations, we might expect yk,t+1 to be positive

for currencies for which fkt − skt is positive, and negative for currencies for which fkt − skt

is negative. Thus, we would expect CO to generally be positive.15 But yk,t+1 should also

reflect news that arrives after investors form their portfolios, because it measures order flow

between periods t and t + 1. If arriving news is favorable to carry trades, we would expect

CO to be especially high. On the other hand, if news arrives that induces investors to cash

out their carry trade positions, CO will fall, and possibly even turn negative. In a sense,

therefore, CO can be interpreted as a factor that measures the degree of sentiment in favor

of carry trading as reflected in customer order flow.16

15This intuition is based on the notion that investors form carry-trade portfolios from the perspective of a
US investor, going long (short) those currencies whose interest rates are higher (lower) than the US interest
rate. If, instead, investors form these portfolios from a dollar-neutral perspective, the relevant signal variable
might reflect the size of the interest differential relative to the median in the sample of currencies.

16Burnside (2012) suggests that a significant part of trading activity in foreign exchange markets is trig-
gered by carry trade investors. Breedon et al. (2016) show that there is a strong relationship between order
flow data and currency forward premia.
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3.2 A Momentum Order-Flow Factor

Our second factor is an aggregate order flow measure motivated by momentum-trading con-

siderations. This factor, which we denote as MO, is defined as

MOt+1 =
1

Nt

∑
k∈Nt

yk,t+1 · sign(r̄4t), (15)

where

r̄4kt = rkt + rkt−1 + rkt−2 + rkt−3. (16)

If investors build portfolios based on momentum considerations, we might expect yk,t+1 to

be positive for currencies for which r̄4kt is positive, and negative for currencies for which r̄4kt

is negative. Thus, like CO, we would expect MO to generally be positive.17 If arriving news

is favorable to momentum trades, we would expect MO to be especially high. On the other

hand, if news arrives that induces investors to cash out their momentum positions, MO will

fall, and possibly even turn negative. In a sense, therefore, MO can be interpreted as a

factor that measures the degree of sentiment in favor of momentum trading as reflected in

customer order flow.

3.3 An Overall Currency Speculation Factor

Our third factor is motivated by the following discussion. Suppose that at time t, currency

k has a higher interest rate than the USD, and has positive momentum. This means that

yk,t+1 is counted positively in the construction of CO and MO, and contributes the same

amount to both measures. If we then observed that yk,t+1 was large and positive, it would

suggest that, for whatever reason, customers are increasing traditional speculative positions

in currency k, in general. If we observed that yk,t+1 was large and negative, it would suggest

that customers are reversing traditional speculative positions in currency k, in general. A

similar interpretation is possible when the interest rate and momentum signals are both

negative.

If the carry and momentum signals take on different signs, however, it is difficult to assign

the same meaning to the value of yk,t+1. Suppose, for example, that, at time t, currency k has

a high interest rate and has negative momentum. This means that yk,t+1 is counted positively

17As for carry, this intuition is based on the notion that investors form momentum portfolios from the
perspective of a US investor, going long (short) those currencies which have positive (negative) momentum
versus the USD. If, instead, investors form these portfolios from a dollar-neutral perspective, the relevant
signal variable might reflect the size of r̄4kt relative to the median in the sample of currencies.
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in the construction of CO, but negatively in the construction of MO. If we then observed

that yk,t+1 was large and positive, it would suggest that, for whatever reason, customers are

increasing carry positions in currency k, but decreasing momentum positions in currency k,

given that momentum would suggest a negative value of yk,t+1.

For this reason, we propose a third factor, denoted CM, which is the simple average of

CO and MO:

CMt =
COt +MOt

2
. (17)

Suppose that for currency k, sign(fkt − skt) = sign(r̄4kt). Then yk,t+1 contributes the equal

amounts to CO, MO and CM. However, when sign(fkt − skt) ̸= sign(r̄4kt), yk,t+1 contributes

opposite amounts to CO and MO and, therefore, nothing to CM. Therefore, CM measures

signed order flow summed across all currencies for which the trading signals point in the same

direction. Thus, when we observe a large positive value of CM it suggests that customers

are increasing their traditional speculative currency positions, in general. When we observe

a large negative value of CM it suggests that customers are decreasing their traditional

speculative currency positions, in general.

4 The Risk Exposure of Currency Portfolios

In this section, we measure the risk exposures of the portfolios we constructed in Section 2.1.

To do so, we follow the standard approach in the literature, which is to perform time series

regressions of the returns of these portfolios on vectors of risk factors. These risk factors

include ones selected from the literature, as well as the novel order-flow based factors we

introduced in Section 3. Each time series regression is of the form

rei,t = αi + z′tβi + ϵi,t, i = 1, . . . , N, t = 1, . . . , T, (18)

where rei,t is the excess return of portfolio i at time t, zt is an n×1 vector of risk factors, N is

the number of portfolios and T is the sample size. In this part of our analysis, we consider the

five interest rate-sorted currency portfolios, C1–C5, and the five momentum-sorted currency

portfolios, M1–M5.
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4.1 Betas of Traditional Pricing Factors

We begin by considering two risk factors similar to those proposed by Lustig et al. (2011):

DOL and HMLC. Overall, the results, shown in Table 6, are in line with what has been

documented in the empirical literature. The betas for DOL are scaled near unity, although

they are somewhat smaller for C1, C5, M1 and M5 than they are for the other portfolios.

The betas for the HMLC factor increase across the interest-rate sorted portfolios. With a

beta of −0.26, C1 has a negative exposure to HMLC, indicating that it is a hedge against

carry trade risk. By contrast, the beta is large and positive for C5 (0.74), indicating that it is

highly exposed to carry trade risk. These results are not surprising given the construction of

the factors.18 The momentum portfolios have positive exposure to HMLC, across the board.

The betas with respect to HMLC generally decrease from M1, which has by far the largest

beta, to M5.

Table 7 shows results for factors similar to those used by Menkhoff et al. (2012a), which

are DOL and a global volatility innovation factor (DVOL). The DVOL factor is measured

as the cross-sectional average of the intra-week volatility innovation for each currency in

our sample (see footnote 14). In Menkhoff et al. (2012a) the same measure is used but it

is computed on an intra-month basis. Again, the results are in line with what has been

documented in the literature. The pattern in the betas for DOL is similar to what we

observed for the DOL-HMLC model. For DVOL, the betas are positive for the low-interest-

rate currency portfolios (C1 and C2) and negative, and increasingly so, for the high-interest-

rate portfolios (C3, C4 and C5). This indicates that when global currency volatility rises,

high interest rate currencies tend to do poorly, while low interest rate currencies act as a

hedge against increasing volatility. The momentum portfolios have small negative exposures

to DVOL, across the board, although in many cases the estimated betas are not statistically

significant.

4.2 Betas of the Order-Flow Factors

4.2.1 Carry

Table 8 shows results obtained using our aggregate carry-trade order-flow risk factor, CO,

in tandem with the DOL factor. The pattern in the betas for DOL is similar to what we

18This follows from the fact that DOL is similar to the average of C1–C5 while HMLC is C5 minus C1.
See Burnside (2010) for further details.
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observed for the DOL-HMLC and DOL-DVOL models. The results indicate that portfolios

with higher interest rates (C3, C4, and C5) have positive and statistically significant exposure

to CO. The lower interest rate portfolios (C1 and C2) have negative and, in the case of C1,

statistically significant exposure to CO. The betas for C3–C5 are positive and statistically

significant. The betas are monotonically increasing as we move from C1 to C5. These results

mean that when the order flow data suggest stronger trading pressure consistent with the

carry trade, i.e. when CO increases, the high interest rate portfolios earn higher returns and

the low interest rate portfolios earn lower returns. The pattern reverses if investors reverse

their carry trade holdings and CO decreases. Consequently, low interest rate portfolios act as

hedges against a reversal of investors’ carry trade positions, while high interest rate portfolios

are exposed to this risk. The momentum portfolios also have positive exposure to CO, and

in many cases it is statistically significant. The pattern in the betas is generally increasing

from M1 to M5, but M2 breaks the order by having the second largest estimated beta.19

4.2.2 Momentum

Table 9 shows results obtained using our momentum carry-trade order-flow risk factor, MO,

in tandem with the DOL factor. The pattern in the betas for DOL is similar to what we

observed for the DOL-CO model. The carry portfolios (C1–C5) have small and statistically

insignificant exposures to MO. For the momentum portfolios, the betas are monotonically

increasing as we move from M1 to M5. These results mean that when the order flow data

suggest stronger buying pressure consistent with momentum trading, i.e. when MO in-

creases, the currency portfolios with greater momentum earn higher returns and those with

less momentum earn lower returns. Consequently, portfolios with little momentum act as

hedges against a reversal of investors’ momentum positions, while portfolios with the most

momentum are exposed to this risk.

19Bussiere et al. (2018) and Burnside (2019) document structural breaks in standard UIP regressions
(regressions of exchange rate changes on forward discounts) around the time of the Global Financial Crisis of
2008. In previous work, we investigated the stability of the betas for the HMLC, DVOL and CO factors across
subsamples in our data set; in particular, before and after the Global Financial Crisis of 2008. Focusing
on the C1–C5 portfolios, we found betas to be very stable for the DOL-HMLC model, but this is not
surprising given the construction of DOL and HMLC. On the other hand, there was a fairly striking decrease
in the magnitude and statistical significance of the exposures of the different portfolios to DVOL and an
apparent increase in the importance of DOL within the DOL-DVOL model. For the DOL-CO model the
main difference across subsamples was an increase of the exposures of the higher interest rate currency
portfolios (C3–C5) to both factors. These results are available upon request.
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4.2.3 Currency Speculation

Table 10 shows results obtained using our overall currency speculation order-flow risk fac-

tor, CM, in tandem with the DOL factor. The pattern in the betas for DOL is similar to

what we observed for the DOL-CO and DOL-MO models. The betas increase monotoni-

cally across the carry portfolios (C1–C5) and the momentum portfolios (M1–M5). These

results mean that when the order flow data suggest stronger buying pressure consistent with

standard currency speculation strategies, i.e. when CM increases, the currency portfolios

with greater carry or momentum earn higher returns and those with less earn lower returns.

Consequently, portfolios with little carry or momentum act as hedges against a reversal

of investors’ speculative positions, while portfolios with the most carry or momentum are

exposed to this risk.

Figure 1 summarizes the relationship between the betas that are unique to each of the

five models and the average returns of the ten test portfolios. While the betas with respect to

HMLC and DVOL line up reasonably with the expected returns of the carry portfolios, they

capture little of the variation in expected return across the momentum portfolios. For our

MO factor, the betas line up quite well with the average returns of the momentum portfolios,

but not with those of the carry portfolios. However, the betas for our CO factor, and, more

especially, our CM factor, line up quite well with the average returns of all of the portfolios.

5 Cross-Sectional Asset Pricing

In this section, we use a generalized method of moments [GMM, Hansen (1982)] approach

to estimate linear stochastic discount factor (SDF) models, discussed in Cochrane (2009),

and used by Lustig et al. (2011), Burnside et al. (2011), and Menkhoff et al. (2012a) among

many others. Let re be an N × 1 vector of excess returns where N is the number of test

assets. If mt is an SDF for these returns, then

E(rem) = 0 (19)

where E is the unconditional expectations operator. As is standard in the literature, we

specify the SDF as a linear function of a n× 1 vector of risk factors, z:

m = 1− (z − µ)′b, (20)
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where µ = E(z) and b is a n × 1 vector of parameters. Given this definition, the mean of

the SDF is normalized to 1.

When equation (19) is combined with equation (20) it becomes

E(re) = cov(re, z)b. (21)

Our other moment restriction is

E(z) = µ. (22)

This motivates the use of the following GMM estimators for b and µ

b̂ = (C ′WC)−1C ′Wr̄e, (23)

µ̂ = z̄, (24)

where r̄e is the sample mean of re, z̄ is the sample mean of z, C is the sample covariance

matrix between re and z, and W is some positive definite weighting matrix. For the results

reported in this paper, we set W = IN .
20

Letting Σz = E[(z − µ)(z − µ)′], equation (21) can also be written as

E(re) =
[
cov(re, z)Σ−1

z

]
(Σzb) = βλ, (25)

with β = cov(re, z)Σ−1
z being an N × n matrix of factor betas, and λ = Σzb being a n × 1

vector of risk prices. This is the beta representation of the pricing model, which we also

estimate using GMM, as described in Cochrane (2009), and in the appendix to Burnside

(2011). Our estimation procedure is equivalent to Fama and MacBeth (1973)’s method,

with standard errors being calculated as per Shanken and Zhou (2007).

When estimating either the SDF representation of the model or the beta representation, it

is important that the matrix cov(re, z) has full column rank (i.e. its rank should be n). When

this condition fails, the model is not properly identified, both estimators have non-standard

asymptotic distributions, and tests for the validity of the model also have non-standard

distributions as discussed in Burnside (2016). Therefore, we perform the tests proposed by

Kleibergen and Paap (2006) (KP) for testing the rank of cov(re, z). We mainly work with

models where n = 2. If cov(re, z) has rank 0, it means neither risk factor is correlated with

the return vector; i.e. all the elements of cov(re, z) are 0. If cov(re, z) has rank 1, it means

20Details of the computation of the parameter estimates and standard errors are provided in the online
appendix to Burnside (2011).
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one risk factor is uncorrelated with the return vector or a linear combination of the two risk

factors is uncorrelated with the return vector; i.e. one of the columns of cov(re, z) is zero or

the two columns of cov(re, z) are proportional to one another.

As test assets, we use the returns to the ten portfolios described above (C1–C5 and M1–

M5). In the tables that follow, we report parameter estimates, and standard errors. When

estimating the SDF representation, we report Hansen and Jagannathan (1997)’s distance

measure as a test of the model’s fit. When estimating the beta representation, we report the

results of a test for whether the pricing errors are zero.

5.1 The DOL-HMLC Model

In Table 11, we start with the DOL and HMLC factors proposed by Lustig et al. (2011).

Qualitatively, the results are in line with what has been documented in the existing literature.

The SDF parameter (b) for the HMLC factor is positive, although only statistically significant

at around the 12% level. The associated risk price (λ) is positive and statistically significant

at the 7% or 1% level depending on the procedure used to compute standard errors. For the

DOL factor both parameters are positive, but neither is statistically significant.

The cross-sectional fit of the model is modest, with an R2 = 0.39. The modest fit of

the model can also be seen in Figure 2 which plots the model-predicted expected returns,

Cb̂, against the average returns of the ten test assets, r̄e. While the model does quite well

in fitting the carry portfolios (C1–C5), it does rather poorly in explaining the momentum

portfolios (M1–M5). In fact, it predicts that the M5 portfolio should have a lower expected

return than the M1 portfolio. This is not puzzling: As we saw above, the M1 portfolio has

a much larger exposure to HMLC risk than the M5 portfolio does.

While the model passes the Hansen-Jagannathan specification test (p-value of 0.16), it

is rejected based on the Fama-MacBeth specification test (p-value of 0.01). The KP test

strongly rejects the null of reduced rank.

5.2 The DOL-DVOL Model

Table 12 shows results for a model similar to the one used by Menkhoff et al. (2012a), which

includes DOL and DVOL as factors. Qualitatively, the results are in line with what has

been documented in the existing literature. The SDF parameter and the risk price of DVOL

are both negative, indicating that portfolios with greater exposure to higher volatility (i.e.
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lower returns when volatility increases) have higher mean returns. However, neither b̂DVOL

nor λ̂DVOL is statistically significant at conventional significance levels, except when we use

the Fama-MacBeth method.

The cross-sectional fit of the model is slightly better than that of the DOL-HMLC model,

because the model fits the momentum portfolios somewhat better, and the carry portfolios

almost as well. This is illustrated in Figure 3.

While the model passes the Hansen-Jagannathan specification test (p-value of 0.30), it is

rejected based on the Fama-MacBeth specification test (p-value of 0.02). On the other hand,

the KP test only rejects the null hypothesis of reduced rank at the 24% level. This may

reflect the degree of imprecision with which the betas are estimated for the DVOL factor.

5.3 The DOL-CM Model

Rather than working with the three different order-flow related models from Section 4, here

we focus on a model that uses the DOL factor in tandem with the overall currency speculation

order-flow factor, CM. Table 13 shows cross-sectional asset pricing results for this model.

The empirical evidence in Table 13 strongly supports CM as a pricing factor. The SDF

parameter (b) and risk price (λ) for the CM factor are positive and statistically significant.

Thus, portfolios with more positive exposure to CM carry larger risk premia. The cross-

sectional fit of the model is good, with R2 = 0.70. The fit of the model is illustrated in

Figure 4. Comparing this graph to Figures 2 (DOL-HMLC) and 3 (DOL-DVOL), we can

see that model does a little worse at fitting the interest-rate sorted portfolios (C1–C5) than

the DOL-HMLC model, but it does much better than both models in fitting the momentum

sorted portfolios (M1–M5). The overall degree of fit is substantially better.

The model is not rejected at the conventional significance levels based on the HJ distance

measure and the Fama-MacBeth pricing error test. The KP test strongly rejects the null

hypothesis of reduced rank at less than the 1% level.

6 Disaggregated Order Flow

As discussed above, we have data on order flow that are disaggregated by customer segments.

As we saw in Section 2, there are differences in how order-flow is contemporaneously related

to currency returns across customer segments: Portfolios of currencies with more buying

pressure from financial customers have higher returns than those with less buying pressure.
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But the reverse pattern is observed for nonfinancial customers. This suggests that different

customer segments act in systematically different ways. This might reflect that they have

access to different information, or have different motives for trade, possibly rooted in different

ex-ante exposure to risk.

To explore further, we construct alternative order-flow factors corresponding to the Asset

Manager, Hedge Fund, Corporate, and Private Client customer segments. These factors are

conceptually the same as the CO, MO, and CM factors, but they measure whether each

customer type is trading in ways that are consistent with carry trade signals, momentum

signals, or standard currency speculation signals. Consequently, we denote these factors as

COAM, COHF, COCO, COPC (related to CO), MOAM, MOHF, MOCO, MOPC (related

to MO), and CMAM, CMHF, CMCO and CMPC (related to CM). To take Asset Managers

as an example, for each currency we define normalized order flow as

yAM
k,t+1 =

xAM
k,t+1

σ̂k,t

, (26)

where xAM
k,t+1 is raw order flow for the Asset Manager segment, and σ̂k,t is the recursively-

defined standard deviation of order flow summed across all customer segments. Given this

definition our normalized order-flow measures by customer segment aggregate in the same

way as the raw order flow data:

yAM
k,t+1 + yHF

k,t+1 + yCO
k,t+1 + yCP

k,t+1 = yk,t+1 (27)

The COAM factor is defined as

COAMt+1 =
1

Nt

∑
k∈Nt

yAM
k,t+1 · sign(fkt − skt), (28)

The other customer-segment factors are defined similarly.

Table 14(a) shows the correlation matrix between the disaggregated COxx factors and

the CO factor, redefined using only the nine major currencies. It shows that the signed order

flow of financial customers, as measured by COAM and COHF, is quite highly correlated

with overall signed order flow, as measured by CO. However, COAM and COHF are not

highly correlated with each other. The order flow of nonfinancial customers, as measured by

COCO and, especially, COPC, has much lower correlation with CO. We even see negative

correlation between COPC and both COAM and COHF. This suggests systematic trading

differences across customer types.
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Table 14(b) shows the correlation matrix between the disaggregated MOxx factors and

the MO factor, redefined using only the nine major currencies. It shows that the signed order

flow of financial customers, as measured by MOAM and MOHF, is highly correlated with

overall signed order flow, as measured by MO. However, MOAM and MOHF are not highly

correlated with each other. As with the carry trade factors, the order flow of nonfinancial

customers, as measured by MOCO and MOPC, has much lower correlation with MO. Fur-

thermore, both MOCO and MOPC are negatively correlated with MOAM and MOHF. Once

again, this suggests systematic trading differences across customer types.

Table 14(c) shows the correlation matrix between the disaggregated CMxx factors and

the CM factor, redefined using only the nine major currencies. Unsurprisingly, it shows that

the signed order flow of financial customers, as measured by CMAM and CMHF, is quite

highly correlated with overall signed order flow, as measured by CM. However, CMAM and

CMHF are not highly correlated with each other. The order flow of nonfinancial customers,

as measured by CMCO and CMPC, has much lower correlation with CM. Furthermore, both

CMCO and CMPC are negatively correlated with CMAM and CMHF.

These findings suggest a risk-sharing story consistent with the one in Menkhoff et al.

(2016), in that different group of customers (i.e. financial and non-financial) appear to trade

in different directions and, therefore, risk sharing takes place in the customer market, not

just in the inter-dealer market as emphasized in the early literature on order flow in currency

markets.21 That said, order flow is dominated by that of financial customers. For example, if

we consider our CMxx factors, the financial order flow variables CMAM and CMHF account

for 95% of the variation in CM (when it is redefined using only the nine major currencies).

Further evidence of systematic differences in behavior across customer segments is found

in Figure 5. There we plot the betas of the disaggregated overall order-flow factors (i.e.

the CMxx factors). In each case, a two factor model, with DOL as the other factor, is

estimated. It is notable that the pattern in the betas for financial customers much more

closely matches the pattern we observed for the CM factor. For both carry and momentum

portfolios, the pattern in the betas is generally increasing as we move from low return to

high return portfolios. When we move to Corporate customers, the pattern is reversed for

the momentum portfolios. Both patterns are reversed for private clients.

21For the equity market, Barber and Odean (2013) show that private investors (i.e. uninformed investors)
tend to lose money from trading.
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7 Conclusion

We have demonstrated that, at the weekly frequency, order-flow is closely associated with

systematic patterns in currency returns. We have shown that if currencies are sorted on

the basis of aggregated normalized order-flow, portfolios of currencies with stronger buying

pressure tend to appreciate relative to currencies with weaker buying (or strong selling)

pressure. At the disaggregated level, we see the same pattern when we use the order-flow

of financial customers (hedge funds and asset managers). However, the pattern is reversed

when we use the order-flow of non-financial customers (corporates and private customers).

This suggests that a form of risk sharing takes place in the foreign exchange market, not just

between dealers and non-dealers, but within the confines of the non-dealer customer base.

We have also used order-flow based risk factors in a traditional SDF approach to cross-

sectional asset pricing. The novel risk factor that we considered increases when customers

buy currencies that are favored by both carry trade and momentum signals, and sell curren-

cies disfavored by both of these signals. We argued that this risk factor acts as a measure

of customers’ willingness to engage in standard currency speculation strategies. The model

that we estimated using this factor is successful in pricing the cross-section of interest-rate

and momentum-sorted currency portolfios in our data set. In this respect, the model appears

more successful than other notable reduced-form models from the literature.
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Table 1: Interest-Rate and Momentum-Sorted Portfolios: Summary Statistics

Portfolio C1 C2 C3 C4 C5 HMLC

Mean(%) 1.36 4.48 5.45 6.44 12.58 11.64
(2.16) (3.01) (3.19) (3.83) (4.04) (3.54)

SD 6.80 9.28 9.34 11.95 12.85 11.72
SR 0.20 0.48 0.58 0.54 0.98 0.99
Skew -0.07 -0.88 -0.61 -1.08 -0.96 -0.78
AC1 0.07 -0.01 0.06 -0.01 -0.10∗ -0.17∗∗∗

Coskew1 0.42 -0.14 -0.09 -0.43 -0.38 -0.44
Coskew2 5.33 -1.50 -1.09 -7.42 -9.98 -14.59

Portfolio M1 M2 M3 M4 M5 HMLM

Mean(%) 2.88 6.34 4.95 7.33 10.74 7.86
(3.28) (3.26) (3.41) (3.22) (3.18) (2.83)

SD 10.97 10.19 9.65 9.37 10.00 10.54
SR 0.26 0.62 0.51 0.78 1.07 0.75
Skew -0.79 -0.60 -0.77 -0.66 -0.51 0.22
AC1 -0.08 -0.03 0.05 0.03 0.02 -0.16∗∗∗

Coskew1 -0.34 -0.20 -0.14 -0.20 0.09 0.28
Coskew2 -7.03 -2.99 -1.72 -2.62 1.85 8.87

Note: The table reports the descriptive statistics for portfolios C1 to C5, which are sorted
on the basis of short term interest rates, and portfolios M1 to M5, which are sorted on
the basis of momentum (measured by previous 4-week returns). It reports statistics for
the “high-minus-low” portfolios HMLC (C5–C1) and HMLM (M5–M1). It reports the an-
nualized mean return (%) (with heteroskedasticity-consistent standard errors reported in
parentheses), standard deviation (SD), Sharpe ratio (SR), skewness (Skew), and first-order
autocorrelation coefficient (AC1) for each return, as well as the significance of the latter
(***0.01%, **1%, *5%). We also report two measures of coskewness between the individual
portfolios and the DOL portfolio. Coskew1 and Coskew2 correspond, repectively, to βSKS

and βSKD as described in the main text.
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Table 2: Exchange Rates and Order Flow for Individual Currencies

ak × 100 bk × 100 R̄2 ak × 100 bk × 100 R̄2

AUD -0.149 -1.148 0.055 KRW -0.060 -1.487 0.024
(0.086) (0.294) (0.069 (0.506)

BRL -0.122 -1.599 0.013 MXN 0.053 -1.107 0.004
(0.098) (0.600) (0.065 (0.841)

CAD -0.066 -0.584 0.018 NOK -0.075 -2.450 0.040
(0.055) (0.200) (0.076 (0.493)

CHF -0.079 -0.372 0.019 NZD -0.167 -4.234 0.099
(0.069) (0.112) (0.079 (0.576)

CZK -0.128 -5.329 0.019 PLN -0.098 -4.077 0.037
(0.083) (1.983) (0.098) (1.108)

EUR -0.174 -0.265 0.063 SEK -0.086 0.481 0.000
(0.064) (0.059) (0.076) (0.451)

GBP -0.020 -0.256 0.017 SGD -0.071 -1.039 0.038
(0.059) (0.085) (0.029) (0.257)

HKD 0.000 -0.038 0.006 SKK -0.141 0.979 -0.002
(0.003) (0.018) (0.072 ) (2.265)

HUF -0.039 -5.783 0.035 TRY 0.072 -4.789 0.094
(0.096) (1.506) (0.085) (0.629)

JPY -0.001 -0.504 0.077 ZAR 0.005 -3.833 0.070
(0.058) (0.087) (0.107) (0.568)

Note: The table reports estimates of equation (11),

sk,t+1 − sk,t = ak + xk,t+1bk + uk,t+1,

where sk,t is the natural log of the exchange rate between the USD and foreign currency k,
measured as foreign currency units (FCUs) per USD, xk,t+1 is the aggregate order flow (the
total value of buy orders, net of sell orders) for currency k in the interval between periods
t and t + 1, and uk,t+1 is an error term. Heteroskedasticity consistent standard errors are
reported in parentheses.
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Table 3: Order-Flow Portfolios: Summary Statistics

O1 O2 O3 O4 O5 Avg. BMS

A) Aggregated order flow/Full sample

Mean (%) -7.45 1.25 9.33 10.15 19.47 5.15 27.37
(4.13) (3.16) (2.96) (3.12) (3.68) (3.52) (2.66)

SD 10.94 9.73 9.51 9.16 10.30 9.34 7.31
SR -0.68 0.13 0.98 1.11 1.89 0.55 3.74

B) Disaggregated order flow/Major currency sample

Asset manager

Mean (%) -7.36 0.74 6.42 16.36 4.04 23.72
(3.82) (3.61) (3.09) (3.19) (3.01) (2.62)

SD 11.25 10.79 10.18 9.72 9.11 8.61
SR -0.65 0.07 0.63 1.68 0.44 2.75

Hedge fund

Mean (%) -10.34 2.12 6.71 17.24 3.93 27.57
(3.59) (3.86) (3.12) (3.24) (3.00) (3.23)

SD 10.63 11.26 9.53 9.97 9.06 8.96
SR -0.97 0.19 0.70 1.73 0.43 3.08

Corporate

Mean (%) 8.55 8.51 4.80 1.66 5.88 -6.89
(3.72) (3.19) (3.40) (3.15) (3.00) (2.42)

SD 10.40 10.35 10.40 10.26 9.01 7.25
SR 0.82 0.82 0.46 0.16 0.65 -0.95

Private Client

Mean (%) 22.39 11.84 -0.42 -6.31 6.88 -28.70
(3.25) (3.82) (3.79) (2.96) (3.04) (2.62)

SD 10.38 10.53 10.34 10.06 9.05 8.14
SR 2.16 1.13 -0.04 -0.63 0.76 -3.52

Note: For each of the portfolios O1–O5, which are sorted by contemporaneous order flow,
this table reports the annualized mean excess return (with heteroskedasticity consistent
standard errors reported in parentheses), standard deviation (SD) and Sharpe ratio (SR) for
currencies sorted on contemporaneous order flow. Column ‘Avg.’ shows the average across
all portfolios. Column ‘BMS’ (buy minus sell) reports the return of holding O5 long and
O1 short. The first panel reports statistics for portfolios based on normalized aggregated
order flow for the full sample of 20 currencies. The lower panels report statistics portfolios
based on disaggregated order flow for a smaller sample of nine major currencies, where the
disaggregation is by customer type.
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Table 4: Double Sorts on Interest Rate and Order Flow: Mean Returns (%)

Interest rate

Order flow Low Medium High HML

Sell -3.58 1.76 3.27 6.85
(2.77) (3.48) (4.28) (3.05)

Buy 7.79 10.38 17.75 9.96
(2.40) (3.10) (4.21) (3.90)

BMS 11.37 8.62 14.48
(2.09) (1.85) (2.72)

Note: This table reports the annualized mean returns (with heteroskedasticity consistent
standard errors in parentheses) for six double-sorted portfolios based on interest rate and
the value of aggregated order flow.

Table 5: Double Sorts on Volatility Innovation and Order Flow: Mean Returns (%)

Volatility Innovation

Order flow Low Medium High HML

Sell 7.70 2.09 -2.26 -9.96
(2.55) (3.25) (4.50) (2.99)

Buy 14.92 10.46 5.84 -9.08
(2.20) (2.76) (4.72) (3.94)

BMS 7.21 8.37 8.09
(1.62) (1.76) (2.97)

Note: This table reports the annualized mean returns (with heteroskedasticity consistent
standard errors in parentheses) for six double sorted portfolios based on volatility innovations
and the value of aggregated order flow.
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Table 6: Betas of the Currency Portfolios for the DOL-HMLC Model

α β-DOL β-HMLC R̄2 α β-DOL β-HMLC R̄2

C1 0.01 0.71 -0.26 0.79 M1 -0.10 0.82 0.32 0.73
(0.02) (0.02) (0.02) (0.03) (0.04) (0.05)

C2 -0.01 0.94 0.00 0.82 M2 -0.01 0.92 0.17 0.82
(0.02) (0.02) (0.02) (0.03) (0.02) (0.04)

C3 -0.01 0.89 0.11 0.84 M3 -0.03 0.90 0.13 0.83
(0.02) (0.02) (0.02) (0.03) (0.03) (0.02)

C4 -0.05 1.04 0.29 0.84 M4 0.03 0.86 0.10 0.77
(0.03) (0.03) (0.04) (0.03) (0.03) (0.03)

C5 0.00 0.71 0.74 0.94 M5 0.10 0.77 0.11 0.56
(0.02) (0.02) (0.02) (0.04) (0.04) (0.06)

Note: We present estimates of the time series regressions

reit = αi + z′tβi + ϵit, t = 1, . . . , T,

where reit is the excess return of portfolio i at time t, and zt is a vector of the two risk factors,
DOL and HMLC. Estimates of αi are scaled by 100. The portfolios are C1, C2, C3, C4
and C5 (the portfolios sorted by interest rate) as well as M1, M2, M3, M4, and M5 (the
portfolios sorted by momentum of past four week returns). Standard errors are reported in
parentheses. We use weekly data, from the last week of November 2001 to the fourth week
of March 2012.
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Table 7: Betas of the Currency Portfolios for the DOL-DVOL Model

α β-DOL β-DVOL R̄2 α β-DOL β-DVOL R̄2

C1 -0.04 0.60 0.19 0.62 M1 -0.04 0.95 -0.13 0.63
(0.02) (0.04) (0.07) (0.04) (0.07) (0.13)

C2 -0.01 0.94 0.10 0.83 M2 0.02 1.00 -0.04 0.78
(0.02) (0.02) (0.09) (0.03) (0.05) (0.11)

C3 0.01 0.94 -0.10 0.83 M3 0.00 0.96 -0.12 0.81
(0.02) (0.03) (0.08) (0.03) (0.03) (0.06)

C4 0.01 1.15 -0.25 0.78 M4 0.05 0.90 -0.10 0.76
(0.03) (0.06) (0.13) (0.03) (0.02) (0.06)

C5 0.14 1.02 -0.45 0.55 M5 0.12 0.81 -0.15 0.55
(0.05) (0.08) (0.20) (0.04) (0.05) (0.09)

Note: We present estimates of the time series regressions

reit = αi + z′tβi + ϵit, t = 1, . . . , T,

where reit is the excess return of portfolio i at time t, and zt is a vector of the two risk factors,
DOL and DVOL. Estimates of αi and β-DVOL are scaled by 100. The portfolios are C1,
C2, C3, C4 and C5 (the portfolios sorted by interest rate) as well as M1, M2, M3, M4, and
M5 (the portfolios sorted by momentum of past four week returns). Standard errors are
reported in parentheses. We use weekly data, from the last week of November 2001 to the
fourth week of March 2012.
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Table 8: Betas of the Currency Portfolios for the DOL-CO Model

α β-DOL β-CO R̄2 α β-DOL β-CO R̄2

C1 -0.05 0.61 -0.31 0.63 M1 -0.04 0.97 0.01 0.63
(0.02) (0.04) (0.06) (0.04) (0.07) (0.11)

C2 -0.01 0.94 -0.05 0.83 M2 0.03 0.99 0.20 0.79
(0.02) (0.03) (0.04) (0.03) (0.05) (0.07)

C3 0.02 0.93 0.21 0.83 M3 0.00 0.96 0.12 0.81
(0.02) (0.03) (0.07) (0.03) (0.03) (0.07)

C4 0.02 1.14 0.34 0.78 M4 0.06 0.89 0.19 0.76
(0.04) (0.06) (0.08) (0.03) (0.03) (0.08)

C5 0.17 1.02 0.54 0.56 M5 0.14 0.80 0.28 0.55
(0.05) (0.09) (0.13) (0.04) (0.05) (0.10)

Note: We present estimates of the time series regressions

reit = αi + z′tβi + ϵit, t = 1, . . . , T,

where reit is the excess return of portfolio i at time t, and zt is a vector of the two risk
factors, DOL and CO. Estimates of αi are scaled by 100. The portfolios are C1, C2, C3,
C4 and C5 (the portfolios sorted by interest rate) as well as M1, M2, M3, M4, and M5 (the
portfolios sorted by momentum of past four week returns). Standard errors are reported in
parentheses. We use weekly data, from the third week of January 2002 to the fourth week
of March 2012.
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Table 9: Betas of the Currency Portfolios for the DOL-MO Model

α β-DOL β-MO R̄2 α β-DOL β-MO R̄2

C1 -0.03 0.59 0.05 0.61 M1 -0.03 0.96 -0.32 0.64
(0.02) (0.04) (0.07) (0.04) (0.06) (0.12)

C2 -0.01 0.94 0.12 0.83 M2 0.02 1.00 -0.05 0.78
(0.02) (0.03) (0.05) (0.03) (0.05) (0.06)

C3 0.00 0.95 0.00 0.83 M3 -0.01 0.97 0.07 0.81
(0.02) (0.03) (0.05) (0.03) (0.03) (0.06)

C4 0.00 1.17 -0.05 0.77 M4 0.04 0.90 0.14 0.76
(0.04) (0.06) (0.08) (0.03) (0.02) (0.10)

C5 0.14 1.06 -0.12 0.55 M5 0.12 0.82 0.32 0.56
(0.05) (0.08) (0.14) (0.04) (0.05) (0.11)

Note: We present estimates of the time series regressions

reit = αi + z′tβi + ϵit, t = 1, . . . , T,

where reit is the excess return of portfolio i at time t, and zt is a vector of the two risk factors,
DOL and MO. Estimates of αi are scaled by 100. The portfolios are M1, M2, M3, M4 and
M5 (the portfolios sorted by momentum), described in the main text. Standard errors are
reported in parentheses. We use weekly data, from the third week of January 2002 to the
fourth week of March 2012.
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Table 10: Betas of the Currency Portfolios for the DOL-CM Model

α β-DOL β-CM R̄2 α β-DOL β-CM R̄2

C1 -0.03 0.60 -0.25 0.62 M1 -0.05 0.98 -0.36 0.63
(0.02) (0.04) (0.10) (0.04) (0.07) (0.15)

C2 -0.01 0.94 0.09 0.83 M2 0.02 1.00 0.13 0.78
(0.02) (0.03) (0.07) (0.03) (0.05) (0.09)

C3 0.01 0.94 0.21 0.83 M3 0.00 0.96 0.19 0.81
(0.02) (0.03) (0.08) (0.03) (0.03) (0.09)

C4 0.01 1.16 0.28 0.77 M4 0.05 0.89 0.34 0.76
(0.04) (0.07) (0.12) (0.03) (0.02) (0.10)

C5 0.15 1.04 0.39 0.55 M5 0.14 0.80 0.63 0.56
(0.06) (0.09) (0.20) (0.04) (0.05) (0.16)

Note: We present estimates of the time series regressions

reit = αi + z′tβi + ϵit, t = 1, . . . , T,

where reit is the excess return of portfolio i at time t, and zt is a vector of the two risk factors,
DOL and CM. Estimates of αi are scaled by 100. The portfolios are M1, M2, M3, M4 and
M5 (the portfolios sorted by momentum), described in the main text. Standard errors are
reported in parentheses. We use weekly data, from the third week of January 2002 to the
fourth week of March 2012.
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Table 11: Estimates of the DOL-HMLC Model

GMM Estimates
DOL HMLC R2 HJ

b 3.85 5.93 0.39 11.73
(4.00) (3.78) [0.16]

λ 0.10 0.18
(0.06) (0.10)

Fama-MacBeth Estimates
DOL HMLC R2 χ2

SH

λ 0.10 0.18 0.39 19.26
(0.06) (0.07) [0.01]

KP Rank Tests
Stat. d.f. p-value

Rank(0) 273.6 20 0.00
Rank(1) 206.0 9 [0.00]

Note: We present estimates of the SDF and beta representations of the DOL-HMLC model,
as well as KP reduced-rank tests. The test assets are C1 to C5, the five portfolios sorted on
interest rate, and M1 to M5, the five portfolios sorted on momentum. The first panel shows
the estimates of the SDF coefficients, b, from first stage GMM, corresponding risk prices, λ,
the cross-sectional R2 and Hansen-Jagannathan distance (HJ). Estimates of λ are scaled by
100. The second panel shows estimates of λ obtained using the Fama-MacBeth method with
no intercept. A χ2 measure of fit is also reported. The third panel reports KP rank tests.
In all panels, standard errors are reported in parentheses, and p-values in square brackets.
The Shanken correction is used for the Fama-MacBeth standard errors. We use weekly data,
from the last week of November 2001 to the fourth week of March 2012.
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Table 12: Estimates of the Volatility (DOL-DVOL) Model

GMM Estimates
DOL DVOL R2 HJ

b 0.58 -0.98 0.50 9.54
(5.31) (0.90) [0.30]

λ 0.10 -24.61
(0.11) (22.47)

Fama-MacBeth Estimates
DOL DVOL R2 χ2

λ 0.10 -24.61 0.50 18.67
(0.06) (10.25) [0.02]

KP Rank Tests
Stat. d.f. p-value

Rank(0) 375.4 20 0.00
Rank(1) 11.6 9 [0.24]

Note: We present SDF and beta representation estimates for the DOL-DVOL model, as
well as KP reduced-rank tests. The test assets are C1 to C5, the five portfolios sorted on
interest rate, and M1 to M5, the five portfolios sorted on momentum. The first panel shows
the estimates of the SDF coefficients, b, from first stage GMM, corresponding risk prices, λ,
the cross-sectional R2 and Hansen-Jagannathan distance (HJ). Estimates of λ are scaled by
100. The second panel shows estimates of λ obtained using the Fama-MacBeth method with
no intercept. A χ2 measure of fit is also reported. The third panel reports KP rank tests.
In all panels, standard errors are reported in parentheses, and p-values in square brackets.
The Shanken correction is used for the Fama-MacBeth standard errors. We use weekly data,
from the last week of November 2001 to the fourth week of March 2012.
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Table 13: Estimates of the DOL-CM Model

GMM Estimates
DOL CM R2 HJ

b -0.54 2.17 0.70 11.30
(4.51) (0.71) [0.19]

λ 0.10 17.60
(0.06) (5.69)

Fama-MacBeth Estimates
DOL CM R2 χ2

λ 0.10 17.60 0.70 9.87
(0.06) (5.54) [0.27]

KP Rank Tests
Stat. d.f. p-value

Rank(0) 238.70 20 [0.00]
Rank(1) 40.63 9 [0.00]

Note: We present SDF and beta representation estimates for the DOL-CM model, as well
as KP reduced-rank tests. The test assets are C1 to C5, the five portfolios sorted on interest
rate, and M1 to M5, the five portfolios sorted on momentum. The first panel shows the
estimates of the SDF coefficients, b, from first stage GMM, corresponding risk prices, λ, the
cross-sectional R2 and Hansen-Jagannathan distance (HJ). Estimates of λ are scaled by 100.
The second panel shows estimates of λ obtained using the Fama-MacBeth method with no
intercept. A χ2 measure of fit is also reported. The third panel reports KP rank tests. In
all panels, standard errors are reported in parentheses, and p-values in square brackets. The
Shanken correction is used for the Fama-MacBeth standard errors. We use weekly data,
from the third week of January 2002 to the fourth week of March 2012.
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Table 14: Correlation Matrices of Order Flow Factors Disaggregated by Customer Segment

(a) Carry Trade Factors
CO COAM COHF COCO COPC

COAM 0.70 1
COHF 0.63 0.06 1
COCO 0.27 0.02 -0.04 1
COPC 0.06 -0.12 -0.23 0.03 1
(b) Momentum Factors

MO MOAM MOHF MOCO MOPC
MOAM 0.71 1
MOHF 0.61 0.11 1
MOCO 0.15 -0.11 -0.16 1
MOPC 0.08 -0.15 -0.28 0.13 1
(c) Currency Speculation Factors

CM CMAM CMHF CMCO CMPC
CMAM 0.70 1
CMHF 0.61 0.10 1
CMCO 0.22 -0.06 -0.11 1
CMPC 0.10 -0.11 -0.29 0.14 1

Note: The table reports the correlation matrices for groups of factors defined in Sections 3
and 6.
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Figure 1: Betas of Risk Factors and Average Returns
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Note: This figure shows the betas of our ten currency portfolios (C1–C5 in blue, and M1–M5
in red), calculated with respect to the HMLC, DVOL, CO, MO and CM factors (when each
factor is combined with DOL in a two factor model), plotted against the mean annualized
excess returns of the ten portfolios.
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Figure 2: Cross-Sectional Fit of the DOL-HMLC Model
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Note: This figure illustrates the cross-sectional fit of the DOL-HMLC model (see Table 11).
The model-predicted expected return is plotted against the mean annualized excess returns
of the ten currency portfolios (C1–C5 in blue, and M1–M5 in red).
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Figure 3: Cross-Sectional Fit of the DOL-DVOL Model
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Note: This figure illustrates the cross-sectional fit of the DOL-DVOL model (see Table 12).
The model-predicted expected return is plotted against the mean annualized excess returns
of the ten currency portfolios (C1–C5 in blue, and M1–M5 in red).
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Figure 4: Cross-Sectional Fit of the DOL-CM Model
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Note: This figure illustrates the cross-sectional fit of the DOL-CM model (see Table 13).
The model-predicted expected return is plotted against the mean annualized excess returns
of the ten currency portfolios (C1–C5 in blue, and M1–M5 in red).
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Figure 5: Betas of Disaggregated Order-Flow Risk Factors
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(b) Hedge Funds

C1

C2

C3 C4
C5

M1

M2

M3

M4
M5

2 4 6 8 10 12
-0.6

-0.3

0

0.3

0.6

-C
M

C
O

(c) Corporate
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Note: This figure shows the betas of our ten currency portfolios (C1–C5 in blue, and M1–M5
in red), calculated with respect to the CMAM, CMHF, CMCO, and CMPC factors (when
each factor is combined with DOL in a two factor model). The betas are plotted against the
mean annualized excess returns of the ten portfolios.
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Appendix

Data

Our data set consists of 20 of the most liquid currencies with the largest trading volume:

the euro (EUR), Japanese yen (JPY), British pound (GBP), Swiss franc (CHF), Australian

dollar (AUD), New Zealand dollar (NZD), Canadian dollar (CAD), Swedish krona (SEK),

Norwegian krone (NOK), Mexican peso (MXN), Brazilian real (BRL), South African rand

(ZAR), Croatian kuna (KRW), Singapore dollar (SGD), Hong Kong dollar (HKD), Turkish

lira (TRY), Hungarian forint (HUF), Polish zloty (PLN), Czech krona (CZK), and Slovak

koruna (SKK).

We use price quotes of spot exchange rate from the first week of November 2001 to

the fourth week of March 2012. All exchange rates are quoted against US dollar, and we

normalize on expressing each exchange rate as the number of FCUs per USD. The weekly

and daily spot exchange rates are obtained from WM/Reuters (via Datastream). Weekly

one-week forward rates are available from the same source. One-week log excess returns,

defined in equation (5), are measured using the average of the bid and ask forward and spot

rates.

We use a unique data set, from one of the world’s largest foreign exchange dealers,

that contains weekly customer order flows for the same 20 currencies from November 2001

to March 2012. We have order flow data aggregated across four types of clients—asset

manager (AM), corporate clients (CO), hedge funds (HF) and private clients (PC)—for

nine currencies (EUR, JPY, GBP, CHF, AUD, NZD, CAD, SEK, NOK). Asset managers

and hedge funds are recognized as financial customers. Corporate and private clients are

recognized as nonfinancial customers.

We believe that the order flows collected from this dealer are representative of the end-

user currency demand in the foreign exchange market given that it has significant market

share. The order flows measure the US dollar value of buyer-initiated minus seller initiated

trades of a currency. A positive net order flow indicate net buying of foreign currency.
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