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Abstract. I examine strategic behaviour for a duopoly in a noisy environment. Firms
attempt to learn the value of the rival’s privately observed demand shocks via a noisy
signal of price, and at the same time firms attempt to obfuscate that signal by producing
excess output on the publicly observable signals, that is, they signal jam.

In a dynamic setting firms also distort the intertemporal structure of output keyed to
the publicly observable demand shock process in order to disguise their private shocks.
The net outcome is to radically increase the persistence of output over its full-information
value.
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2 B. TAUB∗

1. Introduction

Firms are continually buffeted over time by shocks to demand, some of which they learn
about through direct common observation, some through private observation, and some of
which they attempt to extract from information in price signals indirectly from their rivals’
private knowledge. In this paper I examine what happens in a dynamic setting where firms
keep learning over time about past shocks, and internalize how their actions affect a rival’s
information and future actions. I thus take on a longstanding challenge set by Mirman,
Samuelson and Urbano [42] who observe that “the most appropriate model [is] an infinite
horizon model in which the parameters of demand curves are subject to continual shocks.
Firms are then repeatedly forced to draw inferences about unknown demand curves and to
consider the effects of their actions on their rival’s beliefs.”

The structure of the model is as follows. There are two firms. Demand evolves according
to a stationary and persistent autoregressive stochastic process with three independent
components: a publicly-observed component, and two additional components each of which
is observed privately by each of the two firms in the duopoly.1 The firms also observe
price, but only via a noisy signal, with the noise shock process common to both firms.
Each firm combines the information extracted from the history of price signals with that in
the history of its privately- and publicly-observed demand shocks to determine how much
to produce, separately for each demand shock. A key element of the model is that the
underlying persistence of the public and privately observed demand shocks (as indexed by
the autoregressive parameters) can be different.

Because the fundamental demand shock processes are stationary, the equilibrium output
strategies are stationary linear functions of the history of private signals and prices. The
solution determines these functions and the resulting output processes by characterizing
their coefficients, i.e., the weights put on shocks and prices.These linear functions are then
the focus of the analysis. Each firm’s profit maximisation problem can then be expressed
as a variational problem in the so-called frequency domain, in which the firms choose these
linear functions. The game between the firms can then be re-posed in the space of these
functions, with the equilibrium a fixed point in the space.

The resulting equilibrium stochastic processes of output can have persistence properties
that are radically different from the exogenous demand shock processes, due entirely to the
strategic incentives to interfere with the information extraction of the rival firms, that is,
to signal jam.

Related literature. The analysis of oligopolistic competition in supply schedules with
demand uncertainty dates back to Klemperer and Meyer [36]. They argue that competition
in supply schedules better describes strategic competition between firms than competition in
prices or quantities, because it more realistically allows firms to adjust to market conditions.
In particular, in a supply schedule equilibrium, firms adjust to market conditions in an
optimal manner given their rival’s behavior—given knowledge of the market-clearing price,

1Although it is possible to include cost shocks in the model, I eschew this dimension for notational simplicity.
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they have no incentive to adjust outputs. In contrast, with stochastic Bertrand or Cournot
competition, firms would want to alter their actions after learning something about demand.

Bernhardt and Taub [13] analyze the static counterpart to the dynamic model in this
paper. That model is related to Vives [59]. In his static setting, firms receive private noisy
signals about costs, and costs are correlated across firms, so one firm’s signal is relevant
for a rival. Firms compete in supply schedules and there is no demand uncertainty. As a
result, the market-clearing price is privately fully revealing: in equilibrium, a firm’s own
cost signal and price yield the same forecast of its costs as when a firm also sees each rival’s
cost signals. 2

An early signal-jamming literature explores belief manipulation in two-date models,
where firms are symmetrically uninformed about demand or costs and learn from prices
(Riordan [44] , Aghion et al. [2], [3], Mirman, Samuelson and Urbano [42], Caminal and
Vives [18], Harrington [27], Alepuz and Urbano [4]). Firms condition date-2 output on
date-1 price, inducing firms to over-produce at date 1 to lower price to try to persuade
rivals that the market is less profitable. With no private information, firms perfectly learn
in equilibrium at date 2.3

Keller and Rady [34] analyze symmetric learning in a continuous-time duopoly setting in
which demand evolves according to a two-state Markov process and a firm perfectly observes
its rival’s actions.4 By contrast, in this setting, the learning process is entangled with the
strategic efforts of firms to manipulate the beliefs of rivals. Bergin and Bernhardt [12]
analytically characterize the stationary entry and exit dynamics of a competitive industry
when both common value demand and individual firm costs evolve according to Markov
processes.

A large literature analyzes collusion with imperfect monitoring and common unobserved
public shocks (e.g., Green and Porter [24], Abreu et al. [1], Sannikov [49], Hackbarth and
Taub [25]). In these dynamic models, actions by rivals are unobserved, but are perfectly in-
ferred in equilibrium because firms have the incentive to follow equilibrium “recommended”
actions, and this means that punishments can be exacted for the failure to implement the
recommended actions; this threat structure then supports the equilibrium. Similarly, with
privately-observed costs, Athey and Bagwell [6] analyze collusion in a procurement auction
game in which a firm’s costs evolve according to a two-state Markov process, and firms make
cheap-talk announcements about costs before bidding. Histories matter for incentives, but,
with cheap talk, are not used to glean information about fundamentals. In contrast, in the
model of this paper, inferences about a rival’s privately-observed fundamentals are obscured
by noise; because actions cannot be directly inferred it is not possible to threaten direct
punishments. The equilibrium therefore rests on the strategic interaction between learning
about primitives from prices and belief manipulation.

2Bergemann et al. [11] also analyze a static model with learning in which agents learn from private signals
and prices.
3There is also a literature in which firms have private information about demand or costs, and take actions
(e.g., limit price) to signal it. See Harrington [27], [28], Caminal [17], Bagwell and Ramey [7], or Mailath
[39].
4Foundational papers on learning and experimentation by a monopolist include McLennan [41], Aghion et
al. [2](1991), Harrington [29], Rustichini and Wolinsky [48] and Keller and Rady [34].
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The model shares similarities of information and equilibrium structure with the financial
speculation models descended from the model of Kyle [37] and [38]. In these models,
informed traders interact with uninformed market makers who observe a noisy signal of the
informed trades. The market makers extract information from that signal using Kalman
filtering to determine price; the informed trader understands this and shades his trades
accordingly to husband his information. In [37], the informed trader understands the net
impact of his trades on price—he submits a demand schedule—and the market maker
similarly understands that the price determination is simultaneous with this.

Similarly, the model here assumes that the firms possess private information about a
fraction of the demand shocks and choose their output simultaneous with that observation.
But in addition, just as in the Kyle model, they understand the impact of their output on
price and therefore net out that impact from the noisy signal of price; thus there is no delay
between the observation of price and the determination of output in response to the net
information in price; all actions and observations are simultaneous.

This approach is also used by Bonatti, Cisterna and Toikka [16]. In their continuous-time,
finite-horizon model, firms receive private-value cost shocks at the outset, Brownian motion
demand shocks shift the equilibrium price, and firms learn about a rival’s costs via price
histories. As in this model, firms strategically manipulate price signals by overproducing.

A key feature of Kyle’s model and its descendants is that informed traders disguise
their trades so that when their trading orders are combined with the those of the noise
traders, the resulting total flow of trade is indistiguishable from the noise trade with a
higher variance, thus preventing market makers from inverting the total order flow to infer
the informed traders’ private information; this is known as “inconspicuousness.” In the
model here the firms behave similarly: the output process on public shocks has the same
dynamic character—autoregressive structure—as the output on the private shock processes,
thus preventing a rival from inferring the private demand shock process by inverting the
price signal.

Frequency-domain methods. In the usual time-domain approach, each period, given the
history of signals, a firm’s period output function maximizes expected profits given correct
beliefs about a rival’s past and future optimization. Due to the model’s linear-quadratic,
Gaussian, time-separable, stationary structure, optimal policy rules are linear weightings
of information histories. Along an equilibrium path these weights do not change: they are
independent of the realized shock history, and hence remain optimal in the future: along
an equilibrium path, optimal strategies are stationary. Frequency-domain methods provide
an algebraic approach to determine these strategies.

Frequency domain applications in the literature. Hansen and Sargent [26] noted that the
first-order conditions stemming from models in which expectation of future endogenous
variables could be z-transformed, i.e., mapped to the frequency domain, and solved; the
idea is akin to Fourier transforming a function. Whiteman [60], building on the work of
Davenport and Root [20], saw that the optimization problem itself could be z-transformed
and the optimization expressed as a variational problem and solved in the frequency domain.
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Appendix A sets out these techniques and also validates the equivalence of the method with
conventional time-domain optimization.

This paper also relates to research on the “forecasting the forecasts of others” endoge-
nous information problem. Several papers attack the problem using frequency domain
methods. Kasa [33] uses frequency-domain methods to show that the forecasting prob-
lem alone, which arises in rational expectations models with atomistic agents, simplifies
in the frequency domain, as the infinite regress that would appear in the time domain
collapses to a single function in the frequency domain. Kasa, Walker and Whiteman [32]
also model information heterogeneity in an infinite-horizon, infinite history setting, taking
advantage of the ability of frequency domain method to handle this complication. Rondina
and Walker [45] model an endogenous information equilibrium problem, characterizing the
equilibrium signals as a non-invertible reduced-form matrix of functions in the frequency
domain. Makarov and Rytchkov [40] study a model with small, risk-averse investors who
behave competitively, showing there is no finite representation of the equilibrium: because
the endogenous variables have infinitely many poles, the equilibrium time domain processes
cannot have Markovian dynamics—equivalently, finitely many state variables. Huo and
Takayama [31] also find that if information is endogenous, an infinite regress problem de-
velops and no finite representation is possible. These results echo similar findings in Seiler
and Taub [51] who also demonstrate an infinite poles result.

Nimark [43] looks at endogenous information aggregation in a linear rational expectations
model. He iterates on the Euler equation from a representative agent’s optimization problem
in a setting with endogenous variables such as prices, accounting for the dependence of those
variables on the solution to the Euler equation. Using Hilbert space methods, he derives
a contraction property to obtain the equilibrium. Seiler and Taub [51] and Bernhardt, et
al. [14] carry out an analogous iteration in the frequency domain, leading to a contraction
property.

Plan of the paper. The plan of the paper is as follows. In the next section I set out
a recapitulation of the static model of Bernhardt and Taub [13], but with an exploration
of some additional facets of the model that serve as intuitive benchmarks for the dynamic
model. In section 3 I set up and provide the solutions for equilibrium firm behaviour. I
then characterise the dynamic behaviour of output and prices in the dynamic setting in
section 4. In section 5 I illustrate the characterisations with numerical simulations for three
canonical examples.

Following the conclusion there are seven appendices. Three of these appendices are
pedagogical in nature: Appendix A describes the frequency-domain methods used here
in greater detail, Appendix F describes the state-space numerical methods that must be
used to simulate the model, and Appendix G illustrates the algebra of spectral densities that
underlies the simulation results. The other appendices, Appendices B-E, contain derivations
and proofs for the substantive elements of the paper; existence is demonstrated using a fixed
point argument for the appropriate space of functions in Appendix D.
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2. A benchmark static model

To develop intuition I set out an abbreviated version of the static duopoly model in
Bernhardt and Taub [13]. There is a homogeneous-good duopoly, where firms 1 and 2 face
stochastic demand, which is the sum of three mean-zero independent shocks: a with variance
σ2a, which is publicly observable, a1, and a2, each with variance σ2a, and which are privately
observable by firms 1 and 2 respectively. Firms cannot observe price directly; instead they
see a noisy signal of price, with a common noise source, p + e, where e ∼ N(0, σ2e) is
an independently-distributed unobservable demand shock. I normalize production costs to
zero.5 Define the vector of shocks by

(1) X ≡ (a, a1, a2, e).

Price is determined by these shocks and output:

(2) p = a+ a1 + a2 − (q1 + q2)

However firms cannot observe price directly; instead they see a noisy signal of price, with a
common noise source:

(3) p+ e = a+ a1 + a2 − (q1 + q2) + e

where e ∼ N(0, σ2e) is an independently-distributed unobservable demand shock.

The firms simultaneously observe the signal of price, which determines their output,
whilst at the same time influencing the price with their output. However the firms are
aware of their influence on price, and they net out the influence of their own output on
price and then react to the net information in the price signal to determine output. Thus,
output decisions and their effect on the price are partially decoupled, just as they would be
if price were observable with a lag. The model can therefore be viewed as allowing firms
to obtain a noisy signal of the rival’s privately observed demand shock via the noisy price
signal.6 To maintain the spirit of the model I assume that firms cannot see realized profit
without noise either, and because of this they cannot invert profit to infer the price.7

Firms compete in supply schedules. Because the model is linear, this means that rather
than choosing output in response to price directly, they choose a linear coefficient on the
price signal, which I term the intensity, which then determines output. Firm i’s supply
schedule, Qi : (p + e; a, ai) 7→ R, is a differentiable function that maps each possible price
signal, and demand shocks a and ai into an output level. A price function π : (q1, q2, X) 7→ R
is market clearing if it is consistent with the supply schedules. Thus, for each X,

(4) q1 = Q1(p+ e; a, a1), q2 = Q2(p+ e; a, a2), and p = π(q1, q2, X).

This implicitly defines a fixed point problem in the space of functions containing π, Q1, and
Q2.

5This is not a benign assumption, as production costs are private-value in character, in contrast to the
common-value nature of demand shocks. As was demonstrated in Bernhardt and Taub [13], the equiibrium
response to these shocks is then fundamentally different from the response to common-value shocks.
6Thus, as discussed in the introduction, the information structure is similar to that in the papers of Kyle
[37] and Bonatti, Cisterna and Toikka [16].
7For example, ongoing inflation can add noise to the value of money in the calculation of profit.
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I next verify the existence of an equilibrium in which supply functions are linear, taking
the form

(5) Qi(p; a, ai) = αiai + βiā+ δi(p+ e).

Definition 1. A linear equilibrium is a pair of supply functions Qi∗(·; ·, ·) with weights
(αi, βi, δi) satisfying (5) for i ∈ {1, 2}, and a market-clearing price function πP∗(·, ·; ·)
such that for each (a, a1, a2, e): Qi∗(pP∗; a, ai) maximizes firm i’s expected profit given
{pP∗, ā, ai}; and prices and output are market clearing.

To construct a linear equilibrium, substitute the conjectured linear form for a rival firm’s
supply function into the market-clearing price,

p = a+ a1 + a2 − qi − (α−ia−i + β−iā+ δ−i(p+ e)) ,

yielding the noisy price signal,

p+ e =
ai + (1− α−i)a−i + (1− β−i)ā+ e− qi

1 + δ−i

Because in equilibrium firm i knows its own output qi and also ai, β−i, δ−i and a, the net
information in the price signal is

(6) (1− α−i)a−i + e.

Substituting for p into firm i’s quadratic profit maximization problem yields, given firm
−i’s conjectured linear supply schedule, and with firm i explicitly accounting for its impact
on price,

(7) max
qi∈R

E

[(
ai + (1− α−i)a−i + (1− β−i)ā− δ−ie− qi

1 + δ−i

)
qi

∣∣∣∣ai, a, p+ e

]
.

Solving yields the conjectured linear form of output:

(8) qi =
(1− β−i)ā+ ai + λi[(1− α−i)a−i + e]

2

where λi is the linear projection of (1−α−i)a−i−δ−ie on the net information (1−α−i)a−i+e
in the noisy signal of price, p+ e.

2.1. Directly optimizing the supply functions. Because equilibrium strategies are lin-
ear, it is possible to simplify the analysis by assuming that strategies are linear and optimiz-
ing the supply functions themselves—i.e., optimize directly over the parameters αi, βi, and
δi of the linear strategy rather than over output, as in (7)—to obtain the supply function.
The first step in this approach is to posit that both firms have linear output functions as
conjectured above:

(9)
qi = αiai + βia+ δi(p+ e)

q−i = αia−i + β−ia+ δ−i(p+ e)

Thus, this approach takes as given that firm i’s output is linear in its information. It is also
key that the rival firm’s coefficients α−i, β−i, and δ−i of the rival firm’s supply are taken
as fixed by firm i, which is equivalent in this linear setting to taking the rival firm’s supply
function as fixed.



8 B. TAUB∗

It further simplifies the analysis to posit that firms optimize over the intensity on net
information in price, (1− α−i)a−i + e directly via λi

2 , rather than over δi. Substituting the
conjectured linear structure into the price function, the objective becomes
(10)

max
αi,βi,λi∈R

E

[(
(1− αi)ai + (1− α−i)a−i + (1− β−i − βi)a− δ−ie− λi

2 ((1− α−i)a−i + e)

1 + δ−i

)

×
(
αiai + βiā+

λi
2

((1− α−i)a−i + e))

) ∣∣∣ai, a, (1− α−i)a−i + e)

]
The next step is to carry through the expectation operator, exploiting the mutual indepen-
dence of the shocks ai, a−i, a and e. This yields the modified objective

(11)

max
αi,βi,λi∈R

{
(1− αi)αiσ2a + (1− α−i)

(
1− λi

2

)
λi
2

(1− α−i)σ2a

+ (1− β−i − βi)βiσ2a −
(
δ−i +

λi
2

)
λi
2
σ2e

}
Note that the 1 + δ−i denominator has been dropped because it does not affect the optimi-
sation for firm i. The first order conditions are

(12)

αi =
1

2

βi =
1− β−i

2

λi =
(1− α−i)2σ2a − δ−iσ2e

(1− α−i)2σ2a + σ2e

Substituting these equations into the conjectured linear form of output duplicates the results
obtained from output optimisation in (8).

2.2. Equlibrium. Substituting into the conjectured linear form for output in (9), in equi-
librium the coefficients in (9) must be consistent with the coefficients in (12). Therefore,
following the procedure in Bernhardt and Taub [13],

(ai) :
1

2
= αi + δi

(1− λ−i(1− αi))
2

(13)

(a−i) : λi
1− α−i

2
= δi

(1− λi(1− α−i))
2

(14)

(a) :
1− β−i

2
= βi + δi

(βi + β−i)

2
(15)

(e) :
λi
2

= δi

(
1− λi + λ−i

2

)
(16)

Imposing symmetry yields the solutions

α =
1− λ
2− λ

, β =
1− λ
3− 2λ

, and δ =
λ

2(1− λ)
.(17)
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as in Bernhardt and Taub [13]. In equilibrium, these weights must be consistent with the
solution for the projection coefficient λ, which solves the nonlinear equation

(18) λ =
(1− α)2σ2a − δσ2e
(1− α)2σ2a + σ2e

.

Substituting the solutions in (17) for the output weights into equation (18) yields a
recursion in λ whose fixed point fully describes equilibrium outcomes:

Lemma 1. A λ ∈ [0, 1] such that equations (17) and (18) are satisfied fully characterizes
a symmetric linear equilibrium.

Bernhardt and Taub [13] established existence by using a geometric approach to deter-
mine a fixed point of equation (18). To motivate how I establish existence in the dynamic
game, I use a different approach here: I demonstrate that a contraction property holds for
a variant of the recursion in (18). Net unrevealed private information—the forecast error
variance on the net information in the price signal—is (1− λ)2. Substituting for α and δ
using (17) and defining x ≡ 1− λ, rewrite (18) as a recursion in x:

(19) x =

(
1

2

(1 + x)2σ2e
(1 + x)2σ2e + σ2a

(1 + x)

)1/2

≡ T [x].

Proposition 1. T (x) is a contraction mapping on [0, 1]. Thus, a unique linear equilibrium
λ exists.

The proof is in Appendix B. The second-order condition for firm optimization holds if and
only if λ ∈ [0, 1].8

2.3. Signal jamming basic intuition. In a Cournot duopoly with linear demand and
with a full information demand shock a, equilibrium output for firm i is

(20) qi =
a

3

Similarly, in the noisy price model If the noise is maximized then the price will have no
useful information, and firms will behave as monopolists with respect to their privately
observed shock, so that equilibrium output is the monopoly output

(21) qi =
ai
2

The intensities 1
3 and 1

2 thus provide benchmarks for assessing the noisy price equilibrium.

The noisy-price model generalizes these intensities. Recalling the optimal output function
(8), the key observation to make concerning signal jamming is that in order for output on
the public shock a to increase due to signal jamming, the intensity on β must decrease
relative to its full-information value.

8A firm’s second-order condition is −1/(1 + δ) which becomes positive when λ > 1.
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By solving for λ in terms of δ from (17) and substituting into (8), this yields the asymp-
totic behaviour

(22) β ∼ 1 + 2δ

2(1 + δ)
∼

{
1
3 δ → 0 (σ2e →∞)

0 δ →∞ (σ2e → 0)

as the noise variance approaches infinity or zero respectively.

Thus, as the noise variance shrinks and the usefulness of the price signal increases, the
firms increase the indirect intensity on the public shock in order to diminish price and thus
to make it appear that demand has fallen; the net effect of the reduction in direct intensity
and the increase in indirect intensity is to increase output—the intention of signal jamming.

2.4. The equivalence of the intensity on learned information and signal jamming
intensity. Having established the basic mechanism of signal jamming, I now explore the
interaction of signal jamming and learning. Again solving for λ in terms of δ from (17) and
substituting into (8) , the total output intensity on the “learned” part of the ai shock is

(23)
2δ

1 + 2δ
(1− α)

The “2” in the numerator of the second term comes from the inclusion of the rival firm’s
intensity on ait as well as firm i’s intensity.

Similarly for the public shocks, the total “signal jamming” intensity—that is, the indirect
intensity via price—from both firms is

(24)
2δ

1 + 2δ
(1− 2β)

where the 2β term comes from the fact that both firms’ signal jamming outputs are sub-
tracted from the public demand shock. Thus, α and 2β are behaviourally identical—signal
jamming takes place on learned information.

2.4.1. Recursive feedback. Returning to the equilibrium solution in (13), it is useful to begin
with the β equation. The pair of equations can be written in recursive matrix form as

(25)

(
βi
β−i

)
=

(
1
2
1
2

)
+

(
0 −1

2
−1

2 0

)(
βi
β−i

)
+

(
− δi

2 − δi
2

− δ−i
2 − δ−i

2

)(
βi
β−i

)
If δi is zero, the first part of this recursion is simply the standard Cournot reaction function
equation with equilibrium β = 1

3 . The second part of the equation captures signal jamming:
even though β is the intensity on a, a positive δ—that is, if the price signal has useful
information—then β responds. Notice that the response is strategic: a change in β feeds
into δ−i and then to β−i. The result is that the output intensity on a is reduced—as discussed
previously this then results in higher net output intensity, which is the expression of signal
jamming.

It is also possible to develop some intuition from the equation for αi, writing the equation
from (13) recursively,

(26) αi =
1

2
− δi

(1− λ−i(1− αi))
2
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If the price signal is extremely noisy, then δi will be near zero and the solution is simply the
monopoly intensity, 1

2 . If the price signal is useful then an increase in intensity αi reduces
the signal observed by the rival via λ−i, that is, the rival’s learning. This encourages firm
i to reduce its intensity αi. But this is the same effect as with the intensity on the public
demand shock: it is signal jamming. Except for the λ coefficient, which expresses the
projection or learning about the firm’s private shock by the rival—again, the learning—the
structure is just as in the equation for β.

2.5. Recursive learning and informational externalities. Recalling the solution for
λi from equation (12) and defining

(27) φi ≡
(1− α−i)2σ2a

(1− α−i)2σ2a + σ2e

we can write (12) as

(28) λi = φi − (1− φi)δ−i

which is exactly equation (11) from [13]. Substituting from the equilibrium formula for δi
in (13) yields

(29) λi = φi − (1− φi)
λ−i

2− λi − λ−i

This equation has two parts. The first part, φ, is the direct projection of excess demand
from the unobservable shock on the noisy signal of that shock; this is conventional learning.
The second part is more subtle. First, one can view (1 − φi) as the estimate of the noise
shock. The formula attempts to subtract this estimate from the learned information—but
it is a subtraction of the other firm’s learning.

The ratio λ−i
2−λi−λ−i captures and expresses the idea of feedback. As the rival firm increases

its output in response to the noisy signal in price (via λ−i), this effectively amplifies the
noise, and in response the quality of the signal in price is reduced, causing firm i to reduce
its own intensity on its noisy signal. This effect is further amplified by the denominator
term −λ−i. This is how signal jamming interferes with learning.

The amplification from the denominator term expresses the common pool aspect of the
noise. Because the λi and λ−i terms are subtracted there is positive feedback from the
intensity of both firms, which intensifies the response of both firms. Thus, if we think of
extracting information—learning—from the noisy signal as a kind of fishing, both firms are
reducing the quality of that signal from their intensities without internalising the cost to
themselves.9

9That is, there is an externality connected with the aggregate information source—in this setting, the price—
and that the firms, which because they want to collude, would like to internalise, but cannot. I note that
this issue has been treated by Amador and Weill [5] in the context of economies where agents are small and
non-strategic; Taub [57] treats a similar issue.
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3. The dynamic model

In the benchmark stationary dynamic model, demand evolves stochastically according
to first-order autoregressive processes. The underlying fundamental shocks {ait, at, et},
t ∈ (. . . ,−1, 0, 1, . . . ), i ∈ {1, 2}, are serially-uncorrelated, zero-mean Gaussian processes,
with variances σ2a, σ

2
a and σ2e , respectively. Extending the static model, the period-t price

function becomes

(30) π(q1t, q2t, Xt) = A1(L)a1t +A2(L)a2t +B(L)at − (q1t + q2t),

where Xt ≡ {A1(L)a1t, A2(L)a2t, B(L)at, et} is the driving process vector, and qit is period-t
output by firm i. Here, L denotes the lag operator, i.e., Lxt = xt−1, and, for example, Ai(L)
is a linear function of the lag operator, Ai(L)ait =

∑∞
j=0 ρ

jai,t−j , so that Ai(L) = 1
1−ρL .

Analogously, B(L)at, with B(L) = 1
1−bL , is a publicly-observed common-value demand

process; Ai(L)ait, with Ai(L) = 1
1−ρL , is a common-value demand-shock process privately

observed by firm i; and et is a Gaussian i.i.d. unobservable noise shock that is also indepen-
dent from the demand shocks. Firm i does not see its rival’s demand process A−i(L)a−it.

Firms have discount factor η, which is assumed to satisfy |b| < η−1/2, |ρ| < η−1/2, and

|φ| < η−1/2 so that expected discounted sums such as E[
∑∞

s=0 η
s(Ai(L)ai,t+s)

2] converge.
I assume that there are no costs of production in order to reduce the complexity of the
model.

As in the static model, firms compete in supply schedules. Denote the realized period-t
price that firms receive for their output by pt, the private history of the shocks observed
by firm i by Xt

i ≡ {ai,t−s, āt−s}∞s=0, and the history of its current and past outputs by
qti = {qi,t−s)∞s=0. Denote the price history by pt ≡ {pPt−s}∞s=0.

A supply schedule for firm i is a differentiable function Qit : (pt + et;Xt
i , q

t−1
i ) 7→ R that

maps each period t the price signal, and histories of shocks observed by firm i, prices and
past outputs into an output level. A price function π : (q1, q2, Xt) 7→ R is market clearing
if it is consistent with the supply schedules:

(31) q1t = Q1
t (p

t + et;Xt
1, q

t−1
1 ), q2t = Q2

t (p
t + et;Xt

2, q
t−1
2 ), and pt = π(q1t, q2t, Xt)

This implicitly defines a fixed point problem in the space of functions containing π, Q1, and
Q2.

As with the static model I assume that current and past realized profit do not result in
any improvement in the signal of price.

I only characterize stationary equilibrium path outcomes. With Gaussian shocks, all
possible price histories are consistent with some equilibrium path because the Gaussian
shocks have support over the entire real line, so there are no off-equilibrium beliefs to
specify. 10

I solve for an equilibrium in which the supply functions are linear and stationary, taking
the form

(32) Qi(pt + et, Xt
i ) = αi(L)Ai(L)ait + βi(L)B(L)at + δi(L)(pt + et)

10For a related discussion see Foster and Viswanathan [22], p. 1446.
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Definition 2. A stationary linear equilibrium is a pair of supply functions Qi∗(·; ·) with
linear weighting functions (αi(L), βi(L), δi(L)) satisfying (32) for i ∈ {1, 2}, and a market-
clearing price function π∗(·, ·, ·) such that for each current price pt and history (Xt, Xt

1, X
t
2)

and price signal history pt+et: Qi(pt+et;Xt
i ) maximizes firm i’s expected profit given pt, and

Xt
i ; and prices and output are market clearing, satisfying (31) for all t = . . . ,−1, 0, 1, . . . .

Solution procedure. To find the linear equilibrium I first follow in parallel the steps
used in the static model: conjecture that firm i’s rival’s output is a linear function of its
information history and substitute the rival’s posited linear output functions into the price
function, which is therefore also linear in the history of the fundamental processes. Firm
i’s optimization problem inherits the linearity of the price function, preserving the linear-
quadratic structure of its objective. I then show that firm i’s best response is linear in its
information history.

I then replicate the strategy in the second approach to the firm’s problem in the static
model: optimize over the supply function itself,11 which in a linear setting translates to
optimizing the intensities, which are now functions of the histories of observed public and
private shock realizations and of the history of the price signal.12 I then translate the
optimisation problem to the frequency domain and solve.

To begin I verify the linearity of the output functions.

Lemma 2. Let (i) firm −i’s supply function Q−i(·; ·) be a linear and stationary functional
of the history Xt

−i, the history of prices pt, and (ii) let firm i’s best response in future periods

t+1, t+2, . . . be a stationary linear functional of its information history Xt+s
i , s = 0, 1, . . .

Then firm i’s optimal output is a stationary linear functional of Xt
i and pt.

The first-order condition for the time-domain objective is difficult to solve due to the in-
finitely many future values qi,t+s appearing in the first-order condition, interacting quadrat-
ically with terms at other lags. To proceed, I exploit the equivalence of firms’ optimization
over the functions in the time domain and their optimization in the frequency domain when
the optimal supply functions are linear. In the frequency domain these functions are called
filters, and can be manipulated as algebraic objects.13 The conditional expected profit ob-
jective in the time domain maps into an inner product that is a function of these filters. A
firm’s expected profit maximization problem is then a variational problem that is solved by
the optimal filter, where firms compete in these filters directly.

Transforming the objective to the frequency domain. To transform the model to the
frequency domain, first apply Lemma 2 to firm i, that is, conjecture that the rival’s output
intensity process is determined by linear functions of the lag operator α−i, β−i and δ−i.

11I establish that this is equivalent to conventional time-domain optimization in Appendix A.
12Because the functions that are being chosen explicitly act on information processes, including endogenous
signals, beliefs are automatically taken into account. Thus, any equilibrium that is determined by the fixed
point argument is automatically sequentially rational.
13This algebraic character of the frequency domain is analogous to the algebraic character of the Laplace
transform methods used to solve differential equations. In control systems engineering the frequency-domain
functions would be called transfer functions, with the term filter reserved for the physical implementation
of the solution.
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Analogously with the procedure in the static model, substitute the linear output function
of firm i as a function of its information and the conjectured linear form of its rival (see
Appendix C, equation equation (72)) into the price function to obtain its linear structure

(33)

pt = π(q1t, q2t;Xt) = (1 + δ1(L) + δ2(L))−1
(

(1− α1(L))A1(L)a1t + (1− α2(L))A2(L)a2t

+ (1− β1(L)− β2(L))B(L)at + et

)
.

Next, substitute both the conjectured output strategy for firm −i and firm i’s best response
into price. Substituting this solution for price into firm i’s output function yields its output
as a linear function of the history,

(34) qit = αi(L)Ai(L)ait + βi(L)B(L)at

+ δi(L)(1 + δ1(L) + δ2(L))−1
(

(1− α1(L))A1(L)a1t + (1− α2(L))A2(L)a2t

+ (1− β1(L)− β2(L))B(L)at + et

)
.

I next transform the objective to the frequency domain using these linear expressions.

Details of the mapping. The firm’s profit is the sum of the discounted expected profit;
in each period the discounted time-t expected profit term E[ptqit] appears (omitting condi-
tioning and discounting). Each of the terms pt and qit is the sum of functions operating on
the fundamentals a1t, a2t, at, et and so on, using equations (33) and (34). For example, pt
contains the term

(35) (1 + δ1(L) + δ2(L))−1(1− αi(L))Ai(L)ait,

operating on ait in equation (33), which is cross-multiplied by

(36) αi(L)Ai(L)ait + δi(L)(1 + δ1(L) + δ2(L))−1(1− αi(L))Ai(L)ait

from firm i’s output q1t in equation (34), also operating on ait. The cross-products of
these elements with all other terms are zero because the underlying stochastic processes
are uncorrelated. After carrying out the complicated multiplications of the functions αi(L),
Ai(L) and δi(L), there will be a summation of terms that can be abstractly represented as

(37) E

[(
HjL

jai,t+s
) (
GkL

kai,t+τ

) ∣∣∣∣(ait, at, pt + et)

]
Applying the lag operator and bringing the expectation operator inside then yields

(38) HjGkE

[
ai,t+s−jai,t+τ−k

∣∣∣∣(ait, at, pt + et)

]
where Hj and Gk abstractly represent the complicated products of the coefficient terms in
the functions αi(L), Ai(L) and δi(L).
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As long as s−j = τ−k > 0 this reduces to HjGk, otherwise it is zero, as the fundamental
innovations ait are i.i.d.. Importantly, the conditioning does not add complications because
the innovation processes, which, again, are i.i.d., cannot be predicted from the current and
past values of the realised shocks and noisy signals.

The remaining task is to determine whether there is a usable structure in the remaining
terms of the objective. To generate this structure the following equivalence holds:

(39) E
[
ai,t+s−jai,t+τ−k

]
∼ σ2a

1

2πi

∮
zsz−τ

dz

z
=

{
0, s− j 6= τ − k
σ2a, s− j = τ − k,

where the integral is a contour integral around the unit circle in the complex plane. The
intuition of the contour integral and why the equivalence holds is presented in Appendix A,
but the main conclusion is that the conventional time-domain objective—the conditional
expectation of a complicated summation of future quadratic terms—is exactly equivalent
to a contour integral. Furthermore, the contour integral is of a specific type: it is a convo-
lution, which defines an inner product, involving the functions comprising the firms’ supply
functions and the price process.

These two terms in (35) and (36) thus interact as an inner product, appearing as the
convolution integral

(40)
1

2πi

∮
D(1− αi)(α∗i + δ∗iD

∗(1− α∗i ))AiA∗iσ2a
dz

z
,

using the definition

(41) D(z) ≡ (1 + δ1(z) + δ2(z))
−1.

and where the “∗” notation denotes the conjugate function, which has negative powers of
z,

(42) D∗ ≡ D(ηz−1)

and so on for the other functions.14

Because the fundamental innovations ait, a−it, at, and et are uncorrelated, the frequency
domain formulation of the objective cleaves into parts attached to the variance of each of
the innovation processes ait, at and et. Following the same procedure used to obtain (40),
one obtains the frequency domain version of firm i’s objective:
(43)

max
αi,βi,δi

1

2πi

∮ (
D(1− αi)(α∗i + δ∗iD

∗(1− α∗i ))AiA∗iσ2a +D(1− α−i)δ∗iD∗(1− α∗−i)A−iA∗−iσ2a

+D(1− βi − β−i)
(
β∗i + δ∗iD

∗(1− β∗i − β∗−i)
)
BB∗σ2a + (D − 1)δ∗iD

∗σ2e

)
dz

z
,

and symmetrically for firm −i. See Appendix C for the details of this derivation.

14The coefficients in D∗ are also the complex conjugates of the coefficients in D(z), however due to the
factorization property discussed later it is not necessary to highlight this fact.
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The optimization in (43) is over the intensity functions αi, βi, and δi, taking as given the
rival’s intensity functions α−i, β−i, and δ−i. Just as in the static model, where the choice
of the intensities α, β and δ was equivalent to optimising over output, this approach is
equivalent to the time-domain approach; the general equivalence of frequency-domain and
time-domain optimisation is established and discussed in more detail in Appendix A.4.15

Variational derivatives. I set out the detailed variational derivatives—the Euler equations—
of the frequency domain objective (43) in Appendix C, equation (79). These equations are
asymmetric, reflecting the ability of firms to weight histories of signals, but not future real-
izations of the signals; Euler equations of this type are called Wiener-Hopf equations. This
asymmetry was earlier expressed in the first-order condition (78), and the solution strategy
must account for the asymmetry. That is, the variational first-order condition nominally
resembles the first-order condition for a static quadratic optimization problem, which might
be abstractly represented as an equation

My = Bx,

where the objective is to solve for y. This would be conventionally done by inverting
the M matrix. However, in the frequency domain, this inversion cannot be done because it
implicitly requires putting weights on future realizations of the history, which are inherently
unobservable.

To circumvent this inversion problem, one follows four steps: (i) factor the M matrix
(keeping in mind that the M matrix is a matrix of functions) into the product F ′ F of two
matrices, F and F ′, where F corresponds to the weighting of histories, and F ′ corresponds
to the (infeasible) weighting of future realizations; (ii) invert F ′; (iii) apply a projection to
the resulting right-hand side—the [·]+ operator that eliminates terms that weight future

histories;16 and finally (iv) invert F ; importantly, the inverse of F only weights past and
present but not future realizations. The resulting formula is equivalent to constructing a
linear least squares projection—a regression—on the history.

It is an important detail that the factorisation step, step (i) above, is guaranteed to have
a solution F that is (a) analytic on the domain of interest, (b) is also invertible on that
domain, and (c) has real coefficients. Thus, the inversion that takes place in steps (ii) and
(iv) can always be carried out. This result is due to a theorem of Rozanov [46].

15The frequency-domain approach limits the controls to stationary linear strategies, in the sense that the
same choice of the linear filters αi, βi, and δi is applied in each period when mapped into the time domain,
representing a fixed point of the time-domain first-order condition (78). Thus, if there are also “bubble”
solutions for the output process, i.e., equilibria in which the αi, βi, and δi functions are linear but time
varying, the approach will not find them. It is also implicit that the solutions are dynamically consistent, that
is, the frequency-domain solution finds the linear filter that would be replicated in every period, conditional
on its future structure, in a time-domain approach; this is a quotidian result for additively separable systems
like the one here.
16The projection or “annihilator” operator, [·]+, eliminates terms with negative powers of z from the Laurent

expansion of a function: if f(z) = · · ·+b−2z
−2+b−1z

−1+b0+b1z
1+b2z

2+. . . , then [f ]+ = b0+b1z
1+b2z

2+. . . .
The annihilator operator accounts for the fact that firms can weight histories of observed signals in their
strategies, but not the yet-to-be-observed future realizations of signals.
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Solution of a firm’s variational optimization problem and equilibrium. It is useful
to gather terms by implicitly defining two objects, F and J , which solve

(44) F ∗F ≡ D(1− δ∗1D∗) +D∗(1− δ1D)

(45) J∗J ≡ (1− α∗2)(1− α2)A2A
∗
2σ

2
a + σ2e .

which have, as discussed above, factorizations F and J . The static analogue of F is 2(1−
λ) − λ: it is the projection coefficient structure corresponding to the net information in
the noisy price signal (the 2(1 − λ) term) after a firm has extracted information from the
price signal (the −λ term). The function J is the filter characterizing the information
process from firm 1’s observation of the price signals; it is the dynamic analogue of the net
information (1− α−i)a−i + e in the price in the static setting.

Taking the variational derivatives and exploiting symmetry to solve for the Wiener-Hopf
equations, yields the optimal filters:

Proposition 2. In a symmetric equilibrium firm i’s filters on its direct information sources,
ai and ā are given by

(46)

α = 1− F−1A−1
[
F ∗−1D∗A

]
+

1− β =
1

2
+

1

2
F−1B−1

[
F ∗−1(1− β)D∗B

]
+

Output weights on price signals satisfy the recursive system

(47) J∗J = F−1
[
F ∗−1D∗A

]
+

[
F ∗−1D∗A

]∗
+
F ∗−1 + σ2e

(48) D =
1

2
J−1

[
J∗−1σ2e

]
+

+
1

2
J−1

[
J
D +D∗

1 +D∗

]
+

.

Lemma 3. If analytic functions {α, β, δ} in H2[η] satisfy (46), (41), (47), (48), then the
time-domain version of Qi,t defined in (32) is a stationary linear equilibrium.

Proof. The result is immediate using the equivalence of frequency domain optimization with
time-domain optimization, as consistency is also satisfied. �

Proposition 3. A stationary linear equilibrium exists.

The proof is in Appendix D. The fixed point argument uses the recursive system (47)–(48).
Recalling the relationships between the static weights and λ in equation (17) of the static
model, D as defined in (41) is the dynamic analogue of 1−λ, suggesting that the recursion
in (48) is analogous to its static counterpart. Denoting the right-hand side of (48) by S(D),
write the recursion as

D = S(D),

defining a recursion in D (equation (47) is ancillary). I show that S(D), which is a contin-
uous mapping, is bounded by a function T (D); and that this bounding function T (D) is
itself a contraction on the unit disk and as such has a unique fixed point. It follows that S
has a fixed point. I then use the Szegö form of the function to establish that the fixed point
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is not at D = 0. I believe this approach to demonstrating the existence of a fixed point to
be original.

4. Characterization of dynamic signal jamming and learning

In this section I characterise the behaviour of the dynamic model. There are some initial
building blocks. As a first step I show that even though the firms engage in signal jamming
on public information, neither the public information fundamental shocks nor the outputs
driven by those shocks affect the behaviour of the firms toward their privately observed
shocks. The converse is not true however: signal jamming on public information is fully
shaped by the nature of the private shocks.

As a related point I demonstrate that the intensities α and β are not scalars, that is, the
equilibrium intensity filters alter the underlying autoregressive structure of the fundamental
demand processes to determine output.

With these results in hand I can then characterise the interrelationships between learning
and signal jamming. Not surprisingly the properties of static signal jamming are retained,
however learning is now identified with low frequencies. At low frequencies, where learn-
ing is expressed, the output intensity on public and private learned information converge.
Moreover, one can decompose output into direct, indirect and total output, and this can be
captured using frequency domain methods: surprisingly, as the rival learns about private
shock realisations, it steps up its intensity on them, treating them like public shocks, whilst
the firm actually able to observe the shocks steps back its intensity.

The public component of the demand process, B(L)at, can be netted out of price directly,
leaving the net information in price independent of B(L)at. It follows that B(L)at, does not
affect optimal output weights on prices, and thus does not enter the equilibrium functions
F , J or D. The following is immediate.

Corollary 1. The public information component of demand affects neither the filtering of
the price process by firms, nor firm output weights on private information.

The proofs of this and other propositions from this section are in Appendix E.

The converse to Corollary 1 is not true—the private information components of demand
affect output weights on publicly-known demand both directly, and indirectly via the output
weights on privately-observed demand, via the functionsD and F that appear in the solution
for β—this is signal jamming. Corollary 1 also implies that one could have added any
deterministic component to demand, and solved for the equilibrium: this deterministic
component would have no effects on the portions of output that reflect private information
or information contained in prices.

I next establish that the equilibrium direct intensity filters are not scalar constants, and
have high-order autoregressive structure, with smaller autoregressive parameters than those
of the fundamental demand shock processes, indicating that the autoregressive structure of
output is fundamentally altered.
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Proposition 4. The equilibrium output intensity filters αi and βi are not scalar-valued:
output intensities are not just amplifications of the dynamic shock processes. This autore-
gressive structure reflects strategic behavior and is not just the result of signal extraction
alone.

The non-scalar nature of output responses is not just due to the fact that the firms filter
the price signals via signal extraction, i.e., construct estimates of the exogenous driving pro-
cesses, as they would in a competitive noisy rational expectations equilibrium economy with
informationally-small firms. Firms also internalize the fact that they are informationally
large, actively signal jamming to influence a rival’s inferences. This alters the time series
structure of output in ways that signal extraction alone does not. In particular, I prove
that were firms solely engaging in signal extraction from prices, then the autoregressive
coefficients of the output processes would equal those of the exogenous demand processes.
I then prove that the autoregressive coefficients of these two processes differ and that any
equilibrium output process is of infinite autoregressive order.

4.1. Theoretical results on dynamic signal jamming. I now carry out a couple of
thought experiments in which I vary the dynamic character of the fundamental shock pro-
cesses, specifically the public shock process B(L)at and the privately observable shocks
Ai(L)ait.

In the first experiment, posit that the privately observable shocks are i.i.d, that is, that
the function A(z) is a scalar constant. From Corollary 1, the public information process
does not affect the output intensity on private information, and therefore it is possible to
characterise the output intensity on the private shock processes using only the characteristics
of the private side. Applying the “annihilator” lemma, Lemma 6 from Appendix A, it is
immediate that the private output intensity α(L) will be a scalar constant as well, and also
that the function J will be a scalar constant. (See equations (46) and (47).) This in turn
implies that δ and D will be scalar constants, and then finally that F is a scalar constant.
(See equations (44) and (48).) Examining the formula for β in Proposition 2, we see that
all terms on the right hand side are then scalar constants with the exception of the filter
B(z). As a result, the annihilator formula becomes the identity, and we have

(49)

β = F−1B−1
[
F ∗−1(1− β) (D(1− δ∗D∗)−D∗δD)B

]
+

= F−1B−1F−1(1− β) (D(1− δD)−DδD)B

= F−1F−1(1− β) (D(1− δD)−DδD)

which is a scalar constant. Thus, regardless of the dynamic structure of the publicly observ-
able process, the intensity on the process is a scalar constant. The intensity on the public
shocks reflects conventional static reasoning: firms react only to the current realization of
the public shock to determine output on that shock, even if the shock is serially correlated.

For the second experiment reverse the situation: let the privately observable shocks be
serially correlated, for example A(z) = 1

1−az , but the publicly observable shocks are i.i.d.,

that is, B(z) is a scalar constant. In that case the endogenous functions α, J , δ, D and
F will all have a nontrivial structure; from other theorems that they have infinitely many



20 B. TAUB∗

poles for example. On the other hand the intensity on the public process, β, would, if there
were no further influences, remain a scalar constant. That scalar constant might exceed the
full-information value of 1

3 due to signal jamming, however this is not a solution. Examining
the formula for β in Proposition 2, we see that the functions δ, D and F enter the formula,
and they do not cancel as they are not scalars. We can assert that β must therefore have
at least one pole determined by the δ process. Thus, we have the following proposition:

Proposition 5. Let the public demand shock process B(L)at be i.i.d., that is, B(L) is
a scalar constant, and let the private demand shock process A(L)aitbe serially correlated.
Then direct output on the public shock β(L)B(L)at will be serially correlated.

This is dynamic signal jamming: even though the underlying public demand shock is i.i.d.,
the dynamic structure of the output on the public shock is driven by the structure of the
private shock process. The reason for this is that each firm wants to disguise its output on
its private process by making the output process on the public shock indistinguishable from
the output on the private process.17

4.2. Signal-jamming in the dynamic model. Recall from the development of the static
model that firms carry out signal jamming on the public signal by reducing the intensity β.
The β formula is framed differently in the dynamic model, but a crude argument establishes
that similar behaviour of β occurs in the dynamic model. From Proposition 2 the formula
for the equilibrium β is (under symmetry) can also be written as

(50) β = F−1B−1
[
F ∗−1(1− β)(F ∗F −D∗)B

]
+

Proceeding informally, now consider this equation whilst ignoring the annihilator operator,
allowing cancellations which then yield

(51) β = (1− β)(1− F−1F ∗−1D∗)
Similarly in informal fashion, ignoring the star-conjugation, we have

F ∗F ∼ 2D(1− δD)

so

F−1F ∗−1D∗
D

2D(1− δD)
∼ 1 + 2δ

2(1 + δ)

duplicating equation (22) from the static model, and yielding similar asymptotic behaviour.

Applying this intuitive result in the dynamic model we are interested in discovering the
extent to which signal jamming reduces the intensity β, and at which frequencies. As will be
demonstrated in the numerical simulations this reduction does take place, at low frequencies.

There is an additional effect in the dynamic model as well: as firms’ estimates of their
rival’s private demand shock innovations improve at long lags, that is as they learn, they
treat the learned information as if it is public information. Following the signal jamming
logic above, they then relatively reduce the intensity on this learned information. The

17This echoes the inconspicuousness findings of the literature on informed trading on private information in
stock markets as in the model of Kyle [37].
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treatment is not necessarily identical however because the dynamic structure of the learned
information might differ from the public shocks, that is, the serial correlation might differ.

However it is essential to keep the distinction between the direct intensity on the public
demand shock, namely β, and the total intensity on that demand shock. As a result of signal
jamming the total intensity on the publicly observable process increases at low frequencies,
and similarly, because of the learning that takes place by the rival, so does the intensity on
the privately observed shock. Thus the persistence of output increases overall relative to
its static Cournot structure.

5. Numerical examples

In this section I explore three basic numerical examples. In the first example I suppose
that the noise variance is so high that the signal from price is very noisy, leaving little
scope for signal jamming and learning. In the second and third examples I reduce the noise
so as to make the price signal usable and then explore the how learning occurs and the
consequence of signal jamming on the dynamics of output. In the first of these latter two
examples I suppose that the privately observed demand shocks are highly persistent whilst
the publicly observable shock is not; in the final example I reverse the situation.

I characterise the results in two ways. The first way is to analyse the endogenous poles
that emerge from the numerical estimate of the equilibrium output intensity filters. The
key properties of the model are then determined by the dominant poles.

The second method for characterising the result is to examine the spectral densities of
the relevant filters. I compute and characterise the spectral densities for both the intensity
filters and the output processes that result from applying these filters to the fundamental
shock process filters Ai, B, and the noise process. (More details on the interpretation and
algebraic properties of spectral densities is provided in Appendix G.)

In order to numerically estimate the model I use so-called state-space methods, adapted
from engineering control theory to simulate and iterate the recursion in equation (48).
These methods suppose that the stochastic processes have an autoregressive-moving aver-
age structure, but can otherwise be arbitrary vector processes, i.e., processes that can be
represented as

(52) xt = Axt−1 +But,

where xt and ut can be vector processes, and A and B are appropriately conformable
matrices. In engineering settings, xt is the state process, and the ut process is a serially
uncorrelated and i.i.d. process, i.e., white noise. When xt and ut are scalar-valued and A
and B are scalar constants, this is just an AR(1) process.

To analyze the dynamics of output, one could find the fixed point of the recursion in (48),
use this to calculate the functions α, β, and γ, and then use those formulas to calculate
the equilibrium weights on the input processes. These properties would be embodied in the
poles—the eigenvalues of the A-matrix—of the state space versions of the functions. The
proof of Proposition 4 reveals that there are infinitely many such poles, and to establish the
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pattern of the eigenvalues of the equilibrium A-matrix for δ, one must establish how the
eigenvalues are affected by the recursion in (48).

To numerically approximate the equilibrium requires imposing an algorithm that trims
quantitatively unimportant terms after each iteration of (48). I use methods developed in
the engineering literature for such approximations. This literature also establishes error
bounds for the approximations. These methods are described in greater detail in Appendix
F.

5.1. Maximum noise. As the first example I examine the case in which the noise process
has an extremely large variance relative to the variances of the fundamentals of the demand
shock processes. When noise is large, there will be no useful information in price (δ(z) = 0),
so there will be no signal jamming. As a result the firms will treat their private shocks as
monopolists, choosing output intensity filter as simply the scalar α(z) = 1

2 , so that the
output process filter α(z)A(z) = .5A(z). Because there will be no signal jamming, the
output intensity on the public shocks will be the scalar from the static duopoly equilibrium,
β(z) = 1

3 , and the resulting direct output process will be β(z)B(z) = 1
3B(z) from each firm.

I confirm these assertions in the simulations. To begin I choose tolerances for the state
space operations in the simulations, presented in Table 1.

The numerically calculated output intensity functions are presented in Table 3. With
high noise, there is essentially no signal jamming: the intensity on A is close to the static
monopoly value of .5 with very little serial correlation, and the intensity on B is close to
the static full-information duopoly value of .33, again with very little serial correlation.

These effects also show up in the spectral densities. Examining the spectral densities
related to the private process A(L)ait in Figure 8 it is evident that there are essentially no
indirect effects because the signal in price is so weak. The spectral density for total output
thus closely mimics the spectral density for the monopoly output process 1

2A.

The results are similar for the public process, however it is evident in Figure 9 that there
is a noticeable signal-jamming effect: the B process is slightly amplified at low frequencies,
relative to the static full-information intensity of .33.

Again because there is very little usable information in the price signal, Figure 10 shows
that the output on noise is basically zero.

Finally, Figure 11 shows that output tracks the combined full-information output from
the two demand shock processes.

5.2. Persistent at process, low-persistence at process. For the second example I ex-
amine the result of Proposition 5 numerically using the parameterization in Table 4.

Thus, the privately-observed demand shock processes A(L)ait are moderately positively se-
rially correlated, while the publicly observable demand shocks B(L)at are much less serially
correlated. (The serial correlation is not reduced to zero to avoid numerical instabilities.)
The noise is also set at a moderate level—small enough so that there is some incentive for
signal jamming.
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The main prediction of Proposition 5 is that the firms will produce output on the publicly
observable shocks that is much more serially correlated than the shock process itself, and
that the pattern of output will resemble output on the private shocks. This is because if
there is a difference in the serial correlation pattern of output on the two shocks separately,
then signal extraction can extract the private shock more effectively. These effects are
evident in the filters for output on the public shock in Table 5. The private direct intensity
filter α(z) has main pole 2.19, which exceeds 2.0, the pole of the fundamental; the direct
intensity for the public shock also has a nontrivial term with the same pole. Thus, the
output on the public shock is persistent even though the underlying shock is not persistent.

The direct intensities are ultimately of less interest than the total output that combines
the direct intensities with the indirect intensities from price, including the rival’s output on
a firm’s private shocks operating through price. There we see a direct component that is
driven by the same pole, 2.19.

It is also evident that there is significant serially correlated output on the noise alone,
which is assumed to be serially uncorrelated.

It is also possible to draw conclusions by comparing the spectral densities of the processes
in the model. Figure 12 displays the results related to the private shock process A(L)ait.
The first panel displays the spectral density of the private shock process and also the direct
intensity filter for that shock, α(z). One can see that there is positive serial correlation in the
shock process because of the hump in the middle, reflecting higher power at low frequencies.
The spectral density of the direct intensity filter α(z), by contrast, de-emphasizes the low
frequencies, as is evident from the dip in the middle of the plot. Again, because learning
takes time, the learned information is signal jammed at low frequencies; thus, the de-
emphasis at low frequencies reflects the reduction in intensity due to signal jamming on
learned information.

The second panel compares the spectral density of the output resulting from the ap-
plication of the filter to the shock, and compares it to the spectral density of the output
process that would result from the firm choosing monopoly output on the shock, which is
simply to multiply the shock in each period by 1

2 . It is evident that the low frequencies
have been reduced relative to the high frequencies, as is expected from the shape of the
spectral density for α. Thus, the filter can be seen as accelerating output and rendering it
less serially correlated than the input process.

It is also important to notice that the variance of the output resulting from the direct
intensity—corresponding to the area under the spectral density—is reduced relative to the
input process. As we will see this attenuation of output is picked up in the other dimensions
of the model.

Indirect effects. In the second row of Figure 12 we see the indirect intensity on the private
process resulting from the rival’s output on the noisy price signal. In contrast to the direct
intensity, the indirect intensity emphasizes low frequencies, which relatively increases the
long run output stemming from the private shock process. As a result, the spectral density
of the output process driven indirectly via price (second panel in the second row of the
figure) has relatively high persistence.



24 B. TAUB∗

In the third row of Figure 12 we see the firm’s total “own” intensity and output, that is,
the output resulting from the application of the direct intensity and also the output from
the firm’s own indirect output from price. The second panel shows clearly that the “own”
output is significantly attenuated at low frequencies, in contrast to the indirect output effect
in the second row. This emphasizes that the firm “steps back” its own output in response
to the rival’s output on the signals in price, at low frequencies. At the lowest frequencies
the rival completely takes over the output on the private shock!

Total output. The fourth row displays the spectral densities for the total intensities and
the total output on the private shocks. The net effect is to reduce the overall volatility
of the output on private shocks, but to significantly increase its persistence relative to the
underlying demand shock. Thus, even though there is acceleration from the direct intensity,
the net effect is deceleration, that is, increased persistence of output relative to the demand
shock process.

Output on public demand shocks—signal jamming. Figure 13 displays the spectral
densities associated with the publicly observable demand shock process B(L)at. In the
first panel of the first row we have the underlying process as it would appear in a full-
information model: the Cournot intensity is 1

3 . As with the private shocks, the direct
intensity attenuates low frequencies; the right panel shows that the output process has low
frequencies attenuated and high frequencies intensified, having the overall effect of reducing
the serial correlation of output. It is important to note that this does not contradict the
content of Proposition 5, because the proposition refers to the direct intensity, whilst the
total output includes indirect effects as well.

Indirect effects. As with the private shocks, the indirect effect of the price signal is to
accentuate the low frequencies.

Total output. The right panel in the second row displays the spectral density for the total
output on the public shock process. In the total output effect the low frequencies are
blocked; because the spectral density has an inverted shape the output process has negative
serial correlation. The indirect effects are swamped by the direct intensity, which has the
negative serial correlation.

As with the private shocks, the total volatility—the area under the spectral density—is
attenuated relative to the volatility that would prevail in a full-information Cournot setting.

Output from noise. Finally, consider output from noise in Figure 14. It is evident that the
output from the noise process will be highly persistent, even though the noise process itself
is i.i.d.. Moreover, there is a significant amount of power in the output on noise; compared
to the output on the public shocks the power is very high. Thus, much of the signal jamming
effects show up in the noise process rather than the public process per se.
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Total output. Combining these effects in Figure 15, the overall power of the output spectrum
is reduced relative to the full-information outputs that would result from the monopoly and
Cournot output processes; this is because the noise causes an overall pulling back of output
in general. In addition to this however we see that persistence is relatively increased by
signal jamming.

The price process. The spectral density for price is plotted in Figure 16. Not surprisingly,
the price process has significant positive serial correlation, however, there is also a lot
of power at high frequencies. Thus, the price process could be viewed as the sum of a
persistent process and an i.i.d. noise process. The spectral density for the full-information
price process is also presented for comparison. First of all the signal-jamming spectrum is
much higher than the full-information density: this reflects the fact that there is significant
output, and hence variance, on the noise process in the signal-jamming case. Second, it is
clear that in the signal jamming spectral density there is a significant amount of mass at
high frequencies, that is, the price process is relatively noisy. But in addition it is clear
that there is a major low-frequency peak, intensifying further the peak that is driven by the
fundamental demand shock processes A and B. Thus, prices are far more serially correlated
than are the fundamental demand shocks.

5.3. Persistent public demand shocks and low-persistence private shocks. I now
reverse the situation considered in the previous example: I assume that the private shocks
have very low persistence and that the public shocks have high innate persistence (see Table
6. Because the private shocks have low persistence, there is no need for firms to engage in
dynamic signal jamming in the sense of altering the dynamic structure of the B process.
See Table 7 Thus, there is very little deviation of the public output from its full-information
static Cournot value of B/3, as is evident in the panels of Figure 18, because there is very
little indirect output.

The intensity on the A process is relatively flat, so the direct output on A becomes even
less serially correlated than A itself. Moreover, output on A is severely attenuated. Figure
17 shows that what little output on A there is due mostly to the indirect intensity of the
rival, and so total output is driven primarily by indirect intensity from the rival.

Output on noise. Echoing these findings, it is apparent from Figure 19 that there is very
little output on the noise process.

Total output. Adding these effects together in Figure 20, it is evident that total output
clearly resembles the output structure of the combined full-information model, but with
reduced persistence and reduced output volatility overall.

6. Conclusion

There are two main phenomena at work in this model. The first is the interaction of
the two firms on the private information process. The rival firm learns about the private
shocks from the history of price, and as the rival learns about the private shock, it increases
its output intensity on the learned part. Concomitantly, each firm cuts back output on
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its own private demand shocks as the rival learns, and in the long run the rival takes over
completely. (“The long run” and “at long lags” are ways to express the low-frequency
elements of the model.)

The second is dynamic signal jamming on the publicly observable shock process. As the
noise intensity decreases, information in price becomes more usable, which in turn induces
more intense signal jamming output on that shock. The result is a significant reshaping of
the dynamic structure of output on the public shock due to each firm’s desire to disguise it.
The reshaped structure can be complicated: the serial correlation of direct intensity goes
down, while the serial correlation of the indirect intensity, which is the channel through
which signal jamming is effected, increases. The basic numerical examples demonstrated
that the serial correlation of output is raised significantly relative to the underlying serial
correlation of the underlying demand shocks, and also that a significant fraction of output
is driven by noise shocks, and this fraction is also highly serially correlated. The increased
serial correlation is entirely due to the strategic interactions of the firms—signal jamming.
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Appendix A. Frequency-domain methods

This is an augmented version of a similar appendix that appeared in Seiler and Taub
[51], which in turn built on the appendix in Whiteman [60].

Consider a serially-correlated discrete-time stochastic process at that can be expressed
as a weighted sum of i.i.d. innovations:

(53) at =

∞∑
k=0

Aket−k.

While the innovations change through time, the weights Ak remain fixed. The stochastic
process can therefore be written succinctly as a function of the lag operator, L: at = A(L)et.
The list of weights {Ak} can be viewed as a sequence, and by the Riesz-Fischer theorem (
see Rudin [47], pp. 86-90), are equivalent to functions of a complex variable z. The function
of the lag operator A(L) is then mathematically equivalent to a function A(z) of a complex
variable z. The function A(z) can be analyzed with the rules of complex analysis, and this,
in turn, fully characterizes the stochastic process at.

An important aspect of complex analysis is that the properties of a function are char-
acterized by the domain over which they are specified. The unit disk, or sets that are
topologically equivalent to the unit disk, are often the domains of interest. If a complex
function on the disk can be expressed as a Taylor expansion—an infinite series where the
powers of the independent variable, z, range from zero to infinity—then the function is
said to be analytic on the disk. However, some functions, termed meromorphic functions,
when expressed as a generalized Taylor expansion—a Laurent expansion—have both posi-
tive and negative powers of z, defined in an annular region containing the unit circle. This
implies that they correspond to functions containing negative powers of the lag operator,
which means that they operate on future values of a variable. If a variable is stochastic,
this is not permissible, as it would mean that the future is predictable, contradicting its
stochastic aspect. In particular, solutions to an agent’s optimization problem cannot be
forward-looking.

The negative powers of z in meromorphic functions arise from poles. The sum of the
negative powers is the principal part.18 To eliminate negative powers of z in a posited
solution to an agent’s optimization problem, we use the annihilator operator, [·]+. The
annihilator operator sets the coefficients of negative powers of z in the Laurent expansion
to zero, while preserving all coefficients on non-negative powers of z. This leaves a permis-
sible, backward-looking solution to an agent’s optimization problem. A function with both
backward- and forward-looking parts is converted to one with only backward-looking parts
by the application of the annihilator.19

18More precisely, a pole is a singularity located inside a region in the complex plane. Poles are only one
possible type of singularity: there are also so-called essential singularities. Moreover, singularities need not
be isolated points. In this paper the discussion focuses on rational functions, which are characterized by
poles alone. Engineering terminology also refers to a function that is analytic as “causal”, and the presence
of poles makes it non-causal.
19For domain D it would be more appropriate to refer to [·]+ as the projection operator from L2(D) to

H2(D), but the term is in widespread use.
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A second property of a function concerns its invertibility.20 If a serially-correlated sto-
chastic process can be represented by an invertible operator, the innovations of the process
can be completely and exactly recovered by observing the history of the process. That is,
the inverse of the operator applied to the vector of realizations of the process yields the
vector of innovations, exactly as it would if a finite vector of innovations were converted into
a finite vector of realizations by an invertible matrix. A function is invertible on its domain
if it does not take on a value of zero at any point inside the domain, and its inverse is then
analytic. If, instead, an analytic function takes on a value of zero at a point inside the do-
main, then it is noninvertible. The inverse of a noninvertible function is not analytic. Hence,
one cannot recover the vector of innovations by observing the vector of realizations, because
inverting a function with a zero results in a function with negative powers of z. Recovery of
the innovations would then depend on knowledge of future realizations. The factorization
theorem of Rozanov [46] ensures that any process described by a z-transform with either
negative powers of z or zeroes can be converted into an observationally-equivalent process
that is characterized by an operator that is invertible and has only non-negative powers of
z, so that it is backward-looking.

As an elementary example of these issues, reconsider the process in (53); if A(L) ≡ 1−ρL,
then the inverse operator is simply (1− ρL)−1, which in principle could be represented by
the geometric series

∞∑
k=0

ρkLk

but the magnitude of ρ matters for determining whether this series is convergent. When
the operator A(L) is translated to the frequency domain it has an equivalent representation
1−ρz, and in that setting convergence then becomes attached to a domain: in the example,
if |ρ| < 1, then 1−ρz is invertible on the unit disk domain because the corresponding power
series for the inverse (1 − ρz)−1, namely

∑∞
k=0 ρ

kzk, converges for any z inside the unit
disk, but this does not hold outside of the unit disk. Equivalently, the pole of (1 − ρz)−1
is ρ−1, and therefore the function does not have a zero inside the unit disk and is therefore
analytic there.

To illustrate the variational method, I present a simple consumer optimization problem.
Consider an individual whose earnings evolve stochastically according to yt = A(L)et, where
et is an i.i.d., zero mean, “white noise” period innovation to earnings. The consumer’s
problem is to adjust bond holdings {bt}∞t=0 to maximize quadratic utility of consumption,

(54) max
B(·)
−E

[ ∞∑
t=0

βtc2t

]
.

subject to the budget constraint,

(55) ct = yt + rbt−1 − bt
It is possible to formulate this problem by formalising the constraint with Lagrange mul-
tipliers, but to keep the initial exposition simple, substitute the budget constraint into the

20In engineering parlance a function that is analytic and invertible is called minimum phase.
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objective, leaving the modified problem,

(56) max
{bt}
−E

∞∑
t=0

βt(yt + rbt−1 − bt)2,

where r is the gross interest rate satisfying βr > 1.21 The decision problem is to choose not
just the initial value of bt, but the entire sequence {bt}∞t=0. This problem implicitly requires
the choice of functions that react to current and possibly past states. Stationarity results
in the same function applying each period.

The stochastic component of a quadratic utility function is essentially a conditional vari-
ance. If innovations are i.i.d., then the expectation of cross-products of random variables
yields the sum of variances. For white-noise innovations, for k > s, k > r,

(57) Et−k
[
et−ret−s

]
=

{
0, r 6= s

σ2e , r = s,

because of the independence of the innovations. Expressed in lag operator notation, this is

(58) Et−k
[
(Lret)(L

set)
]

=

{
0, r 6= s

σ2e , r = s.

Notice that the “action” is in the exponents of the lag operators. From Cauchy’s theorem
(Conway [19]), it is equivalent to write

(59) σ2e
1

2πi

∮
zrz−s

dz

z
=

{
0, r 6= s

σ2e , r = s,

where the integration is counterclockwise around the unit circle. In Cauchy’s theorem, z,
which is a complex number with unit radius (it is on the boundary of the disk), is represented
in polar form: z = e−iθ. Now a more conventional integral can be undertaken, integrating
over θ ∈ [0, 2π]. Using Euler’s theorem, which represents complex numbers in trigonometric
form, e−iθ = cos θ− i sin θ, gives θ the interpretation of a frequency, so that z and functions
of z are in the frequency domain.

The equivalence of (58) and (59) is crucial but might not be particularly intuitive. To
see the equivalence, begin by calculating the following integral:∮

|z|=1

1

z
dz

21To make this problem well-defined a (small) adjustment cost must also be included, but we suppress it
here because the net effect of the adjustment cost is just to make the solution stationary. Alternatively, one
could simply impose the requirement that any solution be stationary.
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where the integration is around the unit circle, that is, the contour integral. The the
following steps demonstrate the fundamental equivalence.

∮
|z|=1

1

z
dz =

∮
|z|=1

1

eiθ
deiθ

=

∫ 2π

0

1

eiθ
ieiθdθ

=

∫ 2π

0
idθ

= i

∫ 2π

0
dθ

= i2π

(As an aside, notice that the direction of integration around the unit-circle contour is
counter-clockwise, hence it is proper to have the equivalent limits of integration in the
second line as zero and 2π; clockwise integration would reverse the sign of the integral.)
One can generalize this to functions of the form zk; if k 6= −1,

∮
|z|=1

zkdz =

∮
|z|=1

eikθdeiθ

= i

∫ 2π

0
ei(k+1)θdθ

= i
(
ei(k+1)2π − ei(k+1)0

)
= i(1− 1)

= 0

Thus, defining k = r − s, this validates the equivalence of (58) and (59).

Whiteman [60] showed that a discounted conditional covariance involving complicated
lags can be succinctly expressed as a convolution. Consider two serially-correlated processes,
at and bt, where

at =
∞∑
k=0

Aket−k and bt =
∞∑
k=0

Bket−k.

The discounted conditional covariance as of time t, setting realized innovations to zero, is

(60) Et

[ ∞∑
s=1

βsat+sbt+s

]
= Et

[ ∞∑
s=1

βs

( ∞∑
k=0

Aket+s−k

)( ∞∑
k=0

Bket+s−k

)]
.
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Because cross-product terms drop out, coefficients of like lags of et can be grouped:

β[A0B0+βA1B1 + β2A2B2 + . . . ]Et[e
2
t+1]

+β2[A0B0 + βA1B1 + β2A2B2 + . . . ]Et[e
2
t+2] + . . .

= β[A0B0+βA1B1 + β2A2B2 + . . . ]σ2e

+β2[A0B0 + βA1B1 + β2A2B2 + . . . ]σ2e + . . .

=
βσ2e

1− β

∞∑
s=0

βkAkBk =
βσ2e

1− β
1

2πi

∮
A(z)B(βz−1)

dz

z
.(61)

This is a useful transformation because the integrand is a product. Because the optimal
policy for an optimization problem in which the objective is an expected value like that in
(60), the representation in (61) permits a direct variational approach. Equation (61) is an
instance of Parseval’s formula, which states that the inner product of analytic functions is
the sum of the products of the coefficients of their power series expansions.

A.1. Optimization in the frequency domain. I now apply these insights to a canoni-
cal example, the consumer’s optimization problem. Hansen and Sargent ([26]) showed that
the first-order conditions of linear-quadratic stochastic optimization problems could be ex-
pressed in lag-operator notation, z-transformed, and solved. Whiteman noticed that the
z-transformation could be performed on the objective function itself, skipping the step of
finding the time-domain version of the Euler condition.22 The objective is then a functional,
i.e., a mapping of functions into the real line. One can then use the calculus of variations
to find the optimal policy function.

The first step is to conjecture that the solution to the agent’s optimization problem must
be an analytic function of the fundamental process et:

bt = B(L)et.

The agent’s objective (56) can then be restated in terms of the functions A and B, and the
innovations:

max
B(·)
−E
[ ∞∑
t=0

βt
(

(A(L)− (1− rL)B(L))et

)2]
.

Expressing the objective in frequency-domain form, using the equivalence established in
(61), the agent’s objective can be written as

(62) max
B(·)
− βσ2e

1− β
1

2πi

∮
(A(z)− (1− rz)B(z))(A(βz−1)− (1− rβz−1)B(βz−1))

dz

z
.

It is immediate that a solution exists using standard methods from functional analysis.23

22A similar variational approach in continuous time can be found in Davenport and Root [20], p. 223.
23By reformulating the problem, the Szegö-Kolmogorov-Krein theorem (Hoffman, [30], p. 49) can be applied.
The first step in this application is to re-write the argument of the integral as |1− (1− rz)BA−1|2|A|2, and
then re-interpret |A|2 as the positive measure µ in the theorem. The second step is to transform the objective
with a conformal mapping so that the transformed version of (1 − rz) has a zero at 0 instead of at r−1;
the modification of the control function (1− rz)BA−1 then is an element of A0, the analytic functions with
a zero at 0. The Szegö-Kolmogorov-Krein theorem also provides a method for computing the value of the
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A.2. The variational method. Let ζ(z) be an arbitrary analytic function on the domain

{z : |z| ≤ β
1
2 }, and let a be a real number. Let B(z) be the agent’s optimal choice. His

objective can be restated as

J(a) = max
a
− βσ2e

1− β
1

2πi

∮
(A(z)− (1− rz)(B(z) + aζ(z)))(A(βz−1)

− (1− rβz−1)B(βz−1) + aζ(βz−1)))
dz

z
.

This is a conventional problem. Differentiating with respect to a and setting a = 0 yields
the first-order condition describing the agent’s optimal choice of B(·):

J ′(0) = 0 = − βσ2e
1− β

1

2πi

∮
ζ(z)(1− rz)(A(βz−1)− (1− rβz−1)B(βz−1))

dz

z

− βσ2e
1− β

1

2πi

∮
ζ(βz−1)(1− rβz−1)(A(z)− (1− rz)B(z))

dz

z
.

Observe the symmetry between the two integrals—everywhere βz−1 appears in the first
integral, z appears in the second, and conversely. Whiteman establishes that the two
integrals are in fact equal; we refer to this property as “β-symmetry”. Therefore, the
first-order condition simplifies to

(63) 0 = − 1

2πi

∮
(A(z)− (1− rz)B(z))(1− rβz−1)ζ(βz−1)

dz

z
,

where I have dropped the leading constant βσ2
e

1−β .

The integral in first-order condition (63) must be zero for arbitrary analytic functions
ζ. By Cauchy’s integral theorem, a contour integral around a meromorphic function with
all its singularities inside the domain—a function of z that has no component that can be
represented as a convergent power series expansion within the domain—is zero. Thus, all
that is needed to make the integral in (63) zero is to make the integrand singular inside
the disk, and to have no singularities outside the disk. The assertion is an indirect way of
stating that the contour of integration is treating the outside of the circle (including ∞) as
the domain over which the meromorphic function has no poles so that it is analytic there:
Cauchy’s theorem asserts that the integral in this sense is zero.

Recall that a solution to the agent’s optimization problem must be an analytic function.
The next step in the solution is to separate the forward-looking components in (63) from
the backward-looking components, so that we can then eliminate the non-analytic portion
from our solution. Examining equation (63), note that by construction ζ is analytic, so that
it can be represented as a power series,

ζ(z) =

∞∑
j=0

ζjz
j .

optimized objective, but we use a more direct approach here because we are interested in characterizing the
controls themselves. I am grateful to Joe Ball for suggesting and discussing the application of this theorem
with me.
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This means that ζ(βz−1) has an expansion of the form

ζ(βz−1) =
∞∑
j=0

ζjβ
jz−j ,

which has only nonpositive powers of z. The negative powers of z—all but the first term—
define singularities at z = 0, which is an element of the unit disk. However, the rest of the
integrand in (63), (1 − rβz−1)(A(z) − (1 − rz)B(z)), can have both positive and negative
powers of z in its power series expansion. If it were possible to guarantee that only negative
powers of z appeared in (1 − rβz−1)(A(z) − (1 − rz)B(z)), then its expansion would take
the form

(1− rβz−1)(A(z)− (1− rz)B(z)) =

∞∑
j=1

fjβ
jz−j ,

for some {fj}, and the product of this with ζ(βz−1) would take the form

ζ(βz−1)(1− rβz−1)(A(z)− (1− rz)B(z)) =
∞∑
j=1

gjβ
jz−j .

for some {gj}. Every term in the sum is a singularity, and the integral of the sum is therefore
zero.

The first-order condition (63) can now be broken out of the integral and stated as follows:

(64) (1− rβz−1)(A(z)− (1− rz)B(z)) =
−1∑
−∞

,

where
∑−1
−∞ is shorthand for an arbitrary function that has only negative powers of z, and

hence cannot be part of the solution to the agent’s optimization problem. This type of
equation is known as a Wiener-Hopf equation.

A.3. Factorization. To solve the Wiener-Hopf equation of a stochastic linear-quadratic
optimization problem, we must factor the equation to separate the nonanalytic parts from
the analytic parts. The factorization problem is a generalization of the problem of solving a
quadratic equation, but there is no general formula for the solution. However, if a candidate
factorization can be found, then even if it is not analytic and invertible, there is a general
formula for converting that solution into an analytic and invertible factorization (Ball,
Gohberg and Rodman[9]).

The Wiener-Hopf equation (64) can be restated as:

(65) (1− rβz−1)(1− rz)B(z) = (1− rβz−1)A(z) +

−1∑
−∞

.

At this point it should be emphasized that the solution will be a Wiener filter, as opposed
to a Kalman filter. A Kalman filter recursively reacts to information from the previous
period and converges as the history of information evolves after its initiation. A Wiener
filter explicitly treats history as infinite and therefore a starting date in the infinite past;
the stationarity of the model dictates the use of the Wiener approach.
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It is tempting to solve for B(z) by dividing the left-hand side by the coefficient of B(z),

(1− rβz−1)(1− rz). However, this would multiply the
∑−1
−∞ term by positive powers of z,

making it impossible to establish the coefficients of the positive powers of z in the solution.

The correct procedure is first to factor the coefficient of B(z) into the product of analytic
and non-analytic functions:

(1− rβz−1)(1− rz) = βr2(1− (βr)−1βz−1)(1− (βr)−1z).

Because by assumption 1
r < β1/2, the first factor on the right-hand side, (1− (βr)−1βz−1),

when inverted has a convergent power series (on the disk defined by {z
∣∣|z| ≤ β1/2})) in

negative powers of z. Hence, we can divide through by this factor to rewrite the Wiener-
Hopf equation as

(66) βr2(1− (βr)−1z)B(z) =
(1− rβz−1)

1− (βr)−1βz−1
A(z) +

−1∑
−∞

,

where we use the fact that
1

(1− (βr)−1βz−1

−1∑
−∞

has only negative powers of z. Because the left-hand side of (66) is the product of analytic
functions, applying the annihilator to (66) yields

βr2(1− (βr)−1z)B(z) =

[
(1− rβz−1)

(1− (βr)−1βz−1)
A(z)

]
+

.

Because (β1/2r)−1 < 1, it follows that the inverse of (1− (βr)−1z) is also analytic, so that
we can divide by (1− (βr)−1z) to solve for the optimal B(z),

B(z) =

[
(1− (βr)−1βz−1)−1(1− rβz−1)A(z)

]
+

[(βr2)(1− (βr)−1z)]
.

A more explicit solution for B(z) obtains if the endowment process is ar(1), so that

A(z) =
1

1− ρz
.

Proposition 6 establishes a key result that is used repeatedly: the annihilate when there is
an AR(1) construct can be simply calculated—if A(z) is an ar(1), then

[
f(βz−1)A(z)

]
+

=

f(βρ)A(z).

Proposition 6. (“Annihilator” lemma) If f is analytic on β−1/2 and ρ < β−1/2, then[
f∗(1− ρz)−1

]
+

= f(βρ)(1− ρz)−1.

Proof. Direct computation. See also Seiler and Taub [51]. �

Proposition 7 shows that the proposition about annihilates of first-order AR functions
must be used with caution. If there is a zero in the annihiland, the proposition changes.

Proposition 7. Let a < β−1/2. Then
[
f∗

1− 1
a
z−1

1−az

]
+

= 0.
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Proof. [
f∗

1− 1
az
−1

1− az

]
+

=
1

a

[
z−1f∗

az − 1

1− az

]
+

=
1

a

[
−f∗z−1

]
+

= 0.

�

Using Proposition 6, it follows that

B(z) =
(1− rβ)A(z)

[(βr2)(1− (βr)−1βρ)(1− (βr)−1z)]
.

This formula has a simple “permanent income” interpretation: the agent applies the filter

1− rβ
[(βr2)(1− (βr)−1βρ)(1− (βr)−1L)]

to the endowment process A(L)et in order to smooth consumption.

A.4. Equivalence of time domain and frequency domain approaches. Our focus
has been on generating the Wiener-Hopf equation in the frequency domain and solving it
there. We now illustrate in our consumer optimization problem the general result that the
time domain approach is equivalent, but less convenient.

Going back to the time domain objective in equation (56),

(67) max
{bt}
−E

∞∑
t=0

βt(yt + rbt−1 − bt)2,

we can calculate the first order condition at time t:

0 = −(yt + rbt−1 − bt) + rβEt[(yt+1 + rbt − bt+1)].

This is an Euler equation in which the future value of the choice variable, bt+1, appears,
with the expectation of that future variable conditional on time t information. This makes
the equation non-trivial in general.

The technical challenge is to calculate the expectation of the future value of the choice
variable, bt+1. The solution is to posit that bt has a fixed and stationary structure, described
by a filter. First recall that yt is a serially correlated stationary process described by

yt = A(L)et.

Posit that the choice variable has the stationary structure

(68) bt = B(L)et,

for all t. Because the conjectured structure applies to future values of the choice vari-
able bt, the expectation can be calculated. Note also that we made this conjecture in the
development of the frequency domain approach, but before the optimization step.

For the conjecture to be correct, we must show that if the future and past values of b,
bt+1 and bt−1, take this form, then it is also optimal for bt to take the same form.
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Substituting the structure of yt and the conjectured form of bt into the Euler equation
yields

0 = −(A(L)et + rB(L)et−1 −B(L)et) + rβEt[(A(L)et+1 + rB(L)et −B(L)et+1)].

Consolidate this further by expressing the future and lagged values of the functions using
lag operators:

(1− rL)B(L)et + r2βB(L)et − rβEt[B(L)L−1et] = A(L)et − rβEt[(A(L)L−1et].

The next step is key. One can use the linearity of the expectation operator, and the fact
that the expected value of the conditioning information is an identity, to yield

Et[(1− rL+ r2β − rβL−1)B(L)et] = Et[(1− rβL−1)A(L)et]

Carrying out some algebra yields

(69) Et[(1− rL)(1− rβL−1)B(L)et] = Et[(1− rβL−1)A(L)et].

What remains is to solve this equation for B.

We have yet to specify any structure on B. However, we know that B cannot weigh future
realizations of the innovations et: by construction they are hidden from view. However, it
is possible that the general solution for B in equation (69) contains such terms. So let

us posit that B has two parts, B̂, which weights only current and past values of et, and
B̃, which weights only future values of et, pretending for the moment that this is allowed.
Substituting into (69) then yields

Et[(1− rL)(1− rβL−1)(B̂(L) + B̃(L−1))et] = Et[(1− rβL−1)A(L)et].

We can isolate the B̃ term:

Et[(1−rL)(1−rβL−1)B̂(L)et] = Et[(1−rβL−1)A(L)et]+Et[(1−rL)(1−rβL−1)B̃(L−1)et].

The part on the right hand side will now be zeroed out by the expectation operator because
it entails only future, unrealized and unobservable innovations. We write it suggestively as

Et[(1− rL)(1− rβL−1)B̂et] = Et[(1− rβL−1)A(L)et] + Et[f(L−1)et],

where all we care about is that f only has terms involving L−1, L−2, and so on. Thus,
when the expectation is taken, the result is zero; f can otherwise be arbitrary.

Removing the expectation yields

(1− rL)(1− rβL−1) = (1− rβL−1) + f(L−1).

Formally, the additional step of z-transforming the equation can now be undertaken, yielding
equation (65), the same Wiener-Hopf equation obtained by taking the variational first order
condition of the z-transformed objective, except that here we use the notation f(L−1)

instead of
∑−1
−∞.

As shown in the solution procedure for the frequency domain version of equation (65),
this equation has a solution, validating the conjecture expressed in equation (68) that a
stationary solution to the Euler equation exists. Thus, we have validated our assertion that
the frequency-domain methods yield the same results as the time domain methods, that
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is, optimizing over optimal quantities in the time domain is equivalent to optimizing over
functions in the frequency domain due to stationarity.

While the focus here has been on the familiar example of optimal consumption, all of the
steps in the proof generalize: for a general problem with a quadratic objective and linear
constraints, driven by stationary stochastic processes, one can complete the square of the
objective, yielding a general objective of the form (62); it is helpful to express it in the
equivalent form

(70) max
{B(·)}

−‖A−RB‖22

in which R is generically a non-invertible function. This problem is known as a model-
matching problem in the engineering literature and can be solved via the generalization of
the Wiener-Hopf method outlined above.
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Appendix B. Derivations and proofs for the benchmark static model

Proof of Proposition 1.

Proof. Define

(71) φ(x) ≡
(

(1 + x)2σ2ε
(1 + x)2σ2ε + σ2a

)
.

Clearly, for x ∈ [0, 1], we have T [x] ∈ [0, 1]. Also, if we treat φ as a constant, then for
x ∈ (0, 1),

0 < |T ′[x]| = φ1/2
(

1

2

)1/2 1

2

∣∣∣∣ 1

1 + x

∣∣∣∣1/2 < 1

2
.

Treating φ as a function of x,

|T ′[x]| = φ1/2
(

1

2

)1/2 1

2
(

1

1 + x
)1/2 +

φ′(x)

φ
φ1/2

(
1

2

)1/2 1

2
(1 + x)1/2

After algebra, we have
φ′(x)

φ(x)
= (1− φ)

2

1 + x
.

Putting it all together,

|T ′[x]| = φ1/2
(

1

2

)1/2 1

2

(
1

1 + x

)1/2

+ (1− φ)φ1/2
(

1

2

)1/2( 1

1 + x

)1/2

= φ1/2
(

1

2

)1/2( 1

1 + x

)1/2(1

2
+ 1− φ

)
.

Noting that φ1/2(32 − φ) achieves a maximum of
(
1
2

)1/2
when φ = 1

2 , we have

|T ′[x]| ≤ 1

2

(
1

1 + x

)1/2

≤ 1

2
.

which completes the argument. �

Appendix C. Dynamic model basic derivations and proofs

Proof of Proposition 2.

Proof. Conjecture that firm −i’s output process is a stationary linear function of its infor-
mation:

(72) q−it = Q−i(pt + et;X
t
i ) = α−i(L)A−i(L)a−it + β−i(L)B(L)at + δ−i(L)(pt + et).

Substituting into price in (30) yields

(73) πP (q1t, q2t, Xt) = (1 + δ−i(L))−1 [A1(L)a1t + (1− α−i(L))A−i(L)a−it

+(1− β−i(L))B(L)at − δ−i(L)ePt − qit
]
.
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To solve firm i’s profit maximization problem, take the conjectured linear filters of firm −i
and the implied linear structure of prices and then optimize, solving

(74) max
qit

E

[ ∞∑
s=0

ηt+s
(
(1 + δ−i(L))−1 (Ai(L)ai,t+s + (1− α−i(L))A−i(L)a−i,t+s

+(1− β−i(L))B(L)at+s − δ−i(L)ePt+s − qi,t+s
))
qi,t+s

∣∣∣pt + et, Xt
i

]
,

using the structure of price from equation (73) (but leaving the price function in the con-
ditioning information abstract to conserve notation).

Define

(75) κ(L) ≡ (1 + δ−i(L))−1 =
∞∑
s=0

κsL
s,

where I assume that (1 + δ−i(L)) is invertible,24 and define the linear function

(76) xit ≡ Ai(L)ait + (1− α−i(L))A−i(L)a−it + (1− β−i(L))B(L)at − δ−i(L)et.

Then firm i’s objective can be written compactly as

(77) max
qit

E

[ ∞∑
s=0

ηt+s (κ(L)(xi,t+s − qi,t+s)) qi,t+s
∣∣∣pt + et, Xt

i

]
.

The first-order condition describing firm i’s best response to its rival’s conjectured stationary
linear strategy is

(78) 0 = E
[
κ(L)(xit − qit)−

∞∑
s=0

ηsκsqi,t+s

∣∣∣pt + et, Xt
i

]
.

The final summation captures qit’s impact on future payoffs via the term (1 + δ−i(L))−1.

The linear structure of price, given the conjecture that the rival’s strategy is linear, means
that the price function is linear. Therefore, the conditional forecast of the net information
in price in the first-order condition (78) is a linear projection on the history of (linear)
prices. Thus, firm i’s best response is also linear, mirroring the conjectured form for firm
−i. Stationarity is immediate: the rival’s conjectured linear strategy was not time-indexed;
so the resulting linear strategy for firm i is also not time-indexed. �

24That is, the power series expansion of 1
1+δ−i(L)

has roots inside the disk {z
∣∣|z| < η−1/2} and thus is

convergent. In the frequency-domain this assumption is not needed: one can manipulate objects that lack
this convergence property—specifically, the zeroes of a function can lie outside the disk, but convergence is
ultimately imposed by the solution procedure, specifically, the factorization step.
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Proof of Proposition 2. The variational first-order conditions,25 for α1 and β1 with
respect to the objective (43) are:

α : α1

(
D(1− δ∗1D∗) +D∗(1− δ1D)

)
A∗Aσ2a = (D − (δ1 + δ∗1)D∗D)A∗Aσ2a +

−1∑
−∞

β : β1

(
D(1− δ∗1D∗) +D∗(1− δ1D)

)
B∗Bσ2a = (1− β2) (D(1− δ∗1D∗)−D∗δ1D)B∗Bσ2a +

−1∑
−∞

Rewrite these Wiener-Hopf equations as

α : α1F
∗FA∗Aσ2a = (D − (δ1 + δ∗1)D∗D)A∗Aσ2a +

−1∑
−∞

(79)

β : β1F
∗FB∗Bσ2a = (1− β2) (D(1− δ∗1D∗)−D∗δ1D)B∗Bσ2a +

−1∑
−∞

(80)

Inverting the ∗ terms on the left-hand side, applying the [·]+ operator, and inverting the
remaining left-hand side coefficients yields the formulas for α and β in Proposition 2.

Derivation of the δ recursion. The next step involves developing a recursion in δ. That
equation will form the initial recursion that will be developed into the recursion (48).

The δ1 Wiener-Hopf equation is

D(1− α1)((1 + δ∗2)D∗2(1− α∗1))A1A
∗
1σ

2
a +D(1− α2)(1 + δ∗2)D∗2(1− α∗2)A2A

∗
2σ

2
a

+ D(1− β1 − β2)
(

(1 + δ∗2)D∗2(1− β∗1 − β∗2)
)
BB∗σ2a

+ (D − 1)(1 + δ∗2)D∗2σ2e

− D∗2(1− α∗1)(α1 + δ1D(1− α1))A1A
∗
1σ

2
a −D∗

2(1− α∗2)δ1D(1− α2)A2A
∗
2σ

2
a

− D∗2(1− β∗1 − β∗2) (β1 + δ1D(1− β1 − β2))BB∗σ2a

− D∗2δ1Dσ
2
e =

−1∑
−∞

.

where I have used the fact that

∂

∂δi
δiD = (1 + δ−i)D

2.

This equation is fairly complicated, but significant simplification is possible because a ver-
sion of the envelope theorem holds: the Wiener-Hopf equations for both α and β are em-
bedded in the δ equation and therefore will drop out. To establish this, first divide out D∗

25In this setting these equations are Wiener-Hopf equations.
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and bring out the factor (1 + δ∗2) to obtain:(
D(1− α1)D

∗(1− α∗1))A1A
∗
1σ

2
a +D(1− α2)D

∗(1− α∗2)A2A
∗
2σ

2
a

+ D(1− β1 − β2)D∗(1− β∗1 − β∗2)BB∗σ2a

)
(1 + δ∗2) + (D − 1)D∗σ2e

− D∗(1− α∗1)(α1 + δ1D(1− α1))A1A
∗
1σ

2
a −D∗(1− α∗2)δ1D(1− α2)A2A

∗
2σ

2
a

− D∗(1− β∗1 − β∗2) (β1 + δ1D(1− β1 − β2))BB∗σ2a

− D∗δ1Dσ
2
e =

−1∑
−∞

.

Define H by

H∗H ≡ (1− α∗1)(1− α1)A1A
∗
1σ

2
a + (1− α∗2)(1− α2)A2A

∗
2σ

2
a

+ (1− β∗1 − β∗2)(1− β1 − β2)BB∗σ2a + σ2e ,

and rewrite the Wiener-Hopf equation as

D∗DH∗Hδ1 = D∗DH∗H(1 + δ∗2)− (D∗σ2e)(1 + δ∗2)

− α1D
∗(1− α∗1)A1A

∗
1σ

2
a − β1D∗(1− β∗1 − β∗2)BB∗σ2a +

−1∑
−∞

with solution

(81) δ1 = H−1D−1
[
DH(1 + δ∗2)−H∗−1

(
σ2e(1 + δ∗2)

+ α1(1− α∗1)A1A
∗
1σ

2
a + β1(1− β∗1 − β∗2)BB∗σ2a

)]
+

To isolate the α and β equations, begin by rearranging the Wiener-Hopf equation for α,
equation (79) as:

(1− α1)
(
D(1− δ∗1D∗) +D∗(1− δ1D)

)
A∗Aσ2a = D∗A∗Aσ2a +

−1∑
−∞

.

Substituting for D = (1 + 2δ)−1 and D∗ = (1 + 2δ∗)−1 this simplifies to:

(82) (1− α1)D
∗D
(

2 + δ∗1 + δ1)
)
A∗Aσ2a = D∗A∗Aσ2a +

−1∑
−∞

.

Dividing out D∗ and grouping terms yields

(83) D
(

1 + δ∗2 − δ1 − α1(2 + δ2 + δ∗2))
)
A∗Aσ2a =

−1∑
−∞

.

Next, examine the α1 elements in the δ1 Wiener-Hopf equation:

D∗D(1− α∗1)(1− α1)(δ1 − δ∗2 − 1) +D∗(1− α∗1)α1A
∗Aσ2a.
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Dividing out the D∗ term (it appears in all of the non-α1 terms as well) and then bringing
out the common factor D yields

D(1− α∗1)
(

(1− α1)(δ1 − δ∗2 − 1) +D−1α1

)
A∗Aσ2a.

The inner terms can be rearranged to yield

−D(1− α∗1)
(

1 + δ∗2 − δ1 − α1(2 + δ2 + δ∗2)
)
A∗Aσ2a =

−1∑
−∞

,

with the last equality following from the Wiener-Hopf equation (79). Thus, these terms all
drop out of the δ1 Wiener-Hopf equation (81).

The β1 Wiener-Hopf equation is

(84)
(

(1− β1 − β2)D∗D(2 + δ2 + δ∗2)−D∗(1− β2)
)
B∗Bσ2a =

−1∑
−∞

.

The β terms from the δ1 Wiener-Hopf equation are(
D∗D(1− β∗1 − β∗2)(1− β1 − β2)(δ1 − δ∗2 − 1) +D∗β1(1− β∗1 − β∗2)

)
B∗Bσ2a.

Consolidating terms yields

D∗(1− β∗1 − β∗2)
(
D(1− β1 − β2)(δ1 − δ∗2 − 1) + β1.

)
B∗Bσ2a.

Adding and subtracting 1− β2 yields

D∗(1− β∗1 − β∗2)
(
D(1− β1 − β2)(δ1 − δ∗2 − 1)− (1− β1 − β2) + (1− β2)

)
B∗Bσ2a.

Consolidating yields

D∗(1− β∗1 − β∗2)
(
D(1− β1 − β2)(−2− δ2 − δ∗2) + (1− β2)

)
B∗Bσ2a =

−1∑
−∞

,

with the last equality following from (84). Thus, the β elements also drop out of the δ1
equation (81).

With the extraneous terms eliminated, the δ1 Wiener-Hopf equation (81) reduces to

(85) D∗D
(

(1− α∗2)(1− α2)A2A
∗
2σ

2
a + σ2e

)
(1 + δ∗2 − δ1) = D∗σ2e(1 + δ∗2) +

−1∑
−∞

.

Next, substitute the definition of J from (45) in the main text, into equation (85) to obtain

D∗DJ∗J(1 + δ∗2 − δ1) = D∗σ2e(1 + δ∗2) +

−1∑
−∞

.

Grouping the terms above yields:

DJ∗Jδ1 = (DJ∗J − σ2e)(1 + δ∗2) +
−1∑
−∞

.
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Solving yields

(86) δ1 = D−1J−1
[
(DJ − J∗−1σ2e)(1 + δ∗2)

]
+
.

To attempt a stable recursion, further manipulation is required. We have

−1∑
−∞

= DJ∗J(1 + δ∗2 − δ1)− σ2e(1 + δ∗2)

= D
(
J∗J(1− δ1

1 + δ∗2
)−D−1σ2e

)
= D

(
J∗J(1− δ1

1 + δ∗2
)− (1 + δ1 + δ2)σ

2
e

)
= D

(
J∗J(1− δ1

1 + δ∗2
)− (1 + δ1 + δ2)σ

2
e

)
.

Now apply the annihilator operator:

(δ1 + δ2)D =

[
−D +D

1

σ2e
J∗J(1− δ1

1 + δ∗2
)

]
+

.

Using symmetry and dividing by 2D yields

(87) δ = −1

2
+
D−1

2σ2e

[
DJ∗J(1− δ

1 + δ∗
)

]
+

,

The static form of this equation exactly mirrors the static δ recursion in Bernhardt and
Taub (2015).

Derivation of the recursion in D. Manipulating the definition of D in equation (87)
yields

1 + 2δ =
1 + 2δ

σ2e

[
DJ∗J

(
1− δ

1 + δ∗

)]
+

.

Dividing out 1 + 2δ yields

(88) σ2e =

[
DJ∗J

(
1− δ

1 + δ∗

)]
+

.

Next undo the annihilator operator and write

(89) (1 + δ∗)σ2e +
−1∑
−∞

= J∗J
1 + δ∗ − δ

1 + 2δ
.

Now substitute

δ =
1

2
(D−1 − 1) and 1 + δ =

1 +D

2D
into the first-order condition for δ, equation (89), to obtain

(90) J∗J

(
1 +

D∗−1 − 1− (D−1 − 1)

2

)
D =

1 +D∗

2D∗
σ2e +

−1∑
−∞

,
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which reduces to

(91) J∗J

(
D∗D +

D

2
− D∗

2

)
=

1 +D∗

2
σ2e +

−1∑
−∞

.

Starting with equation (91) we derive a new recursion in D. We first multiply equation
(91) by 2:

(92) J∗J (2D∗D +D −D∗) = (1 +D∗)σ2e +

−1∑
−∞

.

Next, add and subtract D:

(93) J∗J (2D∗D + 2D − (D∗ +D)) = (1 +D∗)σ2e +
−1∑
−∞

and then rearrange to obtain

(94) 2J∗JD (1 +D∗) = (1 +D∗)σ2e + J∗J(D∗ +D) +

−1∑
−∞

.

Divide by 2(1 +D∗):

(95) J∗JD =
1

2
σ2e +

1

2
J∗J

D∗ +D

1 +D∗
+
−1∑
−∞

.

We have isolated D on the left-hand side and the D∗ terms on the right-hand side, and
the J terms are the compound term J∗J . After dividing by J∗, we impose the annihilator
projection operator and divide by J to obtain the new recursion

(96) D =
1

2
J−1

[
J∗−1σ2e

]
+

+
1

2
J−1

[
J
D∗ +D

1 +D∗

]
+

,

The next step is to express the J∗J terms in terms of D (equivalently δ).

Expressing J in terms of D. First, impose symmetry on equations (44) and (45) to
obtain

(97) F ∗F ≡ D(1− δ∗D∗) +D∗(1− δD)

(98) J∗J ≡ (1− α∗)(1− α)AA∗σ2a + γ∗γCC∗σ2c + σ2e .

In the existence proof in Appendix D, we will assume that σ2c = 0, yielding

(99) J∗J ≡ (1− α∗)(1− α)AA∗σ2a + σ2e .

To elaborate on the structure of J , it is helpful to re-express the solution for α:

α = F−1A−1
[
F ∗−1(D(1− δ∗D∗)−DδD∗)A

]
+
.
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The first step is to convert this to an expression in 1− α. Write

F ∗Fα = (D(1− δ∗D)−D∗Dδ)A+

−1∑
−∞

.

Substitution from equation (97) and further manipulation yields

(D(1− δ∗D∗) +D∗(1− δD))Aα = (D(1− δ∗D∗) +D∗(1− δD))A−D∗A+

−1∑
−∞

.

Bringing the common term over to the left-hand side and factoring yields:

(1− α) (D(1− δ∗D∗) +D∗(1− δD))A = D∗A+

−1∑
−∞

.

Solving yields

(1− α) = A−1F−1
[
F ∗−1D∗A

]
+
.

Notice that if A is a single-pole function, we can apply the annihilator lemma, Lemma
6. The annihilator term will then have the structure of A, multiplied by a constant. The
leading A−1 term will cancel the A term inside the annihilator and thus (1 − α) takes the
form

(100) (1− α) = cF−1,

where c is a constant. Thus,

(101) (1− α)AA∗(1− α∗) = F−1
[
F ∗−1D∗A

]
+

[
F ∗−1D∗A

]∗
+
F ∗−1,

the left-hand side of which appears in equation (99).

Again applying the annihilator lemma, assuming that A is of single-pole form, this ex-
pression becomes

(1− α)AA∗(1− α∗) = f(ηa)2AA∗F−1F ∗−1

where f(ηa) is F (ηa)−1D(ηa), reflecting the result of the annihilator lemma. To complete
the derivation we need to characterize F ∗F in order to characterize J∗J . We have

(1− δD) =
1 + δ

1 + 2δ
=

1

2
D(1 +D−1) =

1

2
(1 +D).

Therefore,

(102) F ∗F = (D(1− δ∗D∗) +D∗(1− δD)) =
1

2
(D∗ +D + 2D∗D).

Thus,

(103) J∗J = F−1
[
F ∗−1D∗A

]
+

[
F ∗−1D∗A

]∗
+
F ∗−1 + σ2e

Equations (96), (102) and (103) and comprise a system in the functions D, F and J . These
equations can then be iterated to establish many of the subsequent results.
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Appendix D. Existence of equilibrium in the dynamic model

To establish existence of equilibrium in our dynamic setting, I use the recursive system
in D in equation (96), showing that the associated mapping is bounded by a function that
is, itself, a contraction. In our static existence argument, we assumed that cost shocks were
zero, i.e., σ2c = 0, and we developed a recursion in λ, proving that it was a contraction on
the unit interval. If a wider domain for the recursion is allowed, the geometric approach in
Bernhardt and Taub [13] (2015) shows that fixed points of the recursion can exist outside
the unit interval, but the output associated with the first-order conditions evaluated at
those fixed points is suboptimal for the firms. Also, the contraction property in the unit
interval breaks down if the cost shock variance is too high.

As in the static model, existence fails in the dynamic model when cost shocks are too
volatile, leading us to establish existence of equilibrium in the dynamic model when the cost
shocks are zero. We also note that our recursion captures the restriction to the unit interval
via the factorization operation: when a spectral density is factored—the generalization of
taking a square root—the smaller root is automatically chosen, so that the function in
question has roots inside the unit disk.

Expressing the contraction property via a variational derivative. One would like to
prove that the recursion in (96) is a contraction, just as in the scalar model. In a functional
recursion such as (96), a mapping µ is a contraction if there exists a positive constant ∆ < 1
such that

‖µ(D1)− µ(D2)‖
‖D1 −D2‖

< ∆.

When µ is a differentiable function, we can write

‖µ(D1)− µ(D2)‖
‖D1 −D2‖

≤

∥∥∥µ(D1)−µ(D2)
‖D1−D2‖

∥∥∥ ‖D1 −D2‖

‖D1 −D2‖
=

∥∥∥∥µ(D1)− µ(D2)

‖D1 −D2‖

∥∥∥∥ ∼ ∥∥∥∥ ∂

∂D
µ(D)

∥∥∥∥ ,
where the derivative is the variational derivative. The result is the norm of the derivative,
not the derivative of the norm. To develop intuition, we verify that this condition holds in
a simplified quasi-scalar version of the model, using a conventional derivative rather than a
variational derivative.

Intuition from scalar case. The dynamic model reduces to the scalar model when the
persistence parameters b, ρ and φ are zero. Intuition about the contraction property can be
gleaned by considering the ordinary derivative of a scalar version of (96). Then, D, F and
J become ordinary real variables, not functions of z, so the annihilator operator becomes
the identity, D∗ = D, etc.

We first analyze the second term in the D recursion (96): in the scalar version of

J−1
[
J D∗

1+D∗

]
+

, the annihilator operator is not present, leaving 1
2

2D
1+D = D

1+D . The de-

rivative is
d

dD

D

1 +D
=

1

(1 +D)2
< 1,

as long as D is strictly positive.
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Now consider the first term in (96). In a scalar setting, substituting from (102), equation
(101) becomes

(104)

(1− α)AA∗(1− α∗) = F−1
[
F ∗−1D∗A

]
+

[
F ∗−1D∗A

]∗
+
F ∗−1

∼ (D∗D)(F ∗ F )−2
1

(1− a)2

∼ D2
n

(12(2D + 2D2))2
1

(1− a)2

=
D2

1
4(2D + 2D2)2

1

(1− a)2

=
1

(1 +D)2
1

(1− a)2

where we arbitrarily write the scalar value of A as 1
1−a . The recursion equations (103) and

(96) then become a difference equation system,

(105) J2
n+1 =

1

(1 +Dn)2
1

(1− a)2
σ2a + σ2e

and

(106) Dn+1 =
1

2

1

J2
n

σ2e +
Dn

1 +Dn
.

Notice from the definition of J in equation (45) that the first term is bounded, i.e.,

1

2

1

J2
n

σ2e ≤
1

2
,

and J(0) 6= 0, implying that it is not a fixed point.

We can analyze the nonlinear system (105) and (106) for stability. For large values of Dn,
Jn+1 is approximately σe, so that Dn+1 is driven to approximately 1

2 + 1. For very small
values of Dn, Jn approaches a constant, and therefore Dn+1 also approaches a constant.
Moreover, this fixed point is stable, as (setting σ2a to one and a to zero for simplicity) the
derivative

d

dDn

1

2

1

J2
n

σ2e = σ2e

1
(1+Dn)3(
1

(1+Dn)2
+ σ2e

)2 =

1
(1+Dn)2(
1

(1+Dn)2
+ σ2e

) σ2e(
1

(1+Dn)2
+ σ2e

) 1

(1 +Dn)

is obviously a fraction if Dn is positive. Thus, if the initial value of Dn is positive, this
(scalar) recursion is stable and has a positive fractional fixed point.

Existence proof for the dynamic model. The main recursion, equation (96), is com-
plicated by the presence of the annihilator operator. Were the annihilator operator not
there, we could execute a direct proof of the contraction property. However, the annihilator
operator necessitates an indirect approach. The indirect approach entails finding an ancil-
lary mapping T that (1) bounds the mapping S implicitly defined by the right hand side of
(96), and (2) is itself bounded and a contraction. The ancillary mapping is tractable, so it
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is straightforward to characterize the domain over which it is a contraction. We show that
S also maps this domain into itself and is continuous. It then follows that a fixed point of
S exists.

Lemma 4. Let X be a Banach space. Let T : X → X and S : X → X be mappings such
that

(i) T is bounded and a contraction;
(ii) S is continuous with ‖S‖ ≤ ‖T‖ on a compact and convex subset X of X that

includes the fixed point of T .

Then a fixed point of S exists in X.

The space X in our setting is a Hardy space H2[η], that is, the space of square integrable

functions on the η disk, i.e., the elements z in the complex plane such that {z
∣∣∣ |z| ≤ η−1/2}.

The function D, which is our object of interest, is an element of X. The space H2[η] is
a Hilbert space, and as such is a complete normed vector space, and as such is a Banach
space.26 Because it is a Banach space we can establish that there is a fixed point by invoking
Schauder’s fixed point theorem.

Lemma 4 does not deliver uniqueness of the fixed point. However, we conjecture that
the fixed point and associated equilibrium are, in fact, unique (given sufficiently little un-
certainty about private values).

Proof. The sole issue is to identify the compact subset X. We define the set using the
contraction property. Let x∗ be the fixed point of T . Let

X0 ≡ {x : 0 ≤ |x| ≤ |x∗|} .

This set is closed and bounded. The upper bound of |T [X0]| is finite due to the contraction
property. The upper bound of T [T [X0]] is also finite, and by the contraction property must
be closer to the fixed point |x∗|; and this holds for all iterations T [. . . T [T [x]] . . . ]. Define

X ≡ {x : 0 ≤ |x| ≤ sup |T [X0]|} ,

which is a closed and bounded (compact) set and trivially convex. Because ‖S‖ < ‖T‖,
and because T [X] ⊆ X by the contraction property, S[X] ⊆ X. Because S is a continuous
mapping, we can apply Schauder’s fixed point theorem to establish that a fixed point of S
exists. �

To apply Lemma 4, we first show that our recursion satisfies its key inequality, i.e., there
is a bounding mapping T that is a contraction. Viewing D as an element of H2[η], define
the mapping:

(107) T [D] ≡ 1

2
+

D

1 +D
.

Also define the mapping associated in the recursion in (96) by S. We begin with:

26See Seiler and Taub (2008), Appendix C for properties of H2[η].
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Lemma 5.

(108) |D| = |S[D]| =
∣∣∣∣12J−1 [J∗−1σ2e]+ +

1

2
J−1

[
J

2Re[D∗]

1 +D∗

]
+

∣∣∣∣ ≤ 1

2
+

∣∣∣∣ D

1 +D

∣∣∣∣ .
That is, |S| ≤ |T | .

Proof. The first term is easy. The absolute value (and therefore the norm) passes through
the annihilator operator (see the appendix of Seiler and Taub 2008):∣∣∣∣12J−1 [J∗−1σ2e]+

∣∣∣∣ ≤ 1

2

∣∣J−1∣∣2 σ2e =
1

2

∣∣∣J−1J∗−1∣∣∣σ2e ≤ 1

by the construction of J . For the second term, we have

1

2

∣∣∣∣J−1 [JD +D∗

1 +D∗

]
+

∣∣∣∣ ≤ 1

2

∣∣J−1∣∣ |J | ∣∣∣∣D +D∗

1 +D∗

∣∣∣∣
≤ 1

2

∣∣∣∣D +D∗

1 +D∗

∣∣∣∣
≤ 1

2

∣∣∣∣∣D∗
(
1 + D

D∗

)
1 +D∗

∣∣∣∣∣ ≤ 1

2

∣∣∣∣ D∗

1 +D∗

∣∣∣∣ ∣∣∣∣(1 +
D

D∗

)∣∣∣∣
≤
∣∣∣∣ D∗

1 +D∗

∣∣∣∣ ≤ ∣∣∣∣ D

1 +D

∣∣∣∣ .
�

Note that the cancellation of J and J−1 would not necessarily work were we calculating
the sup norm instead of the absolute value at the same value of z.

The next lemma establishes that the bound mapping T is contractive.

Lemma 6. If the domain of T is such that |1 +D| > 1, then T is a contraction and T is
bounded.

Proof. The final term of T becomes contractive: the variational derivative is∣∣∣∣ ∂∂D D∗

1 +D∗

∣∣∣∣ =

∣∣∣∣ 1

(1 +D∗)2

∣∣∣∣ < 1, when |1 +D| > 1.

�

To establish boundedness, we must prove that |1 +D| > 1 in the vicinity of the fixed point.
We do this in Proposition 3.

Lemma 7. S is a continuous mapping.

Proof. Because the recursion is nonlinear, we establish continuity component by component:
the elements of S include inversion (J−1), the annihilator operator ([·]+), factorization (J),
and the construction of J , which involves D nonlinearly. We must show that each of these
elements preserves continuity. To show that J is a continuous function of D, we use the
Szegö factorization. The Szegö factorization is the generalization of representing a function
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in exponential-log form: for a function f(x), we can write eln f(x). If the function f is a
function of a complex variable and is two sided, i.e., f(z) = A(z)A(z−1), then the Szegö
form allows one to effectively take the square root and recover A(z). One can then indirectly
demonstrate properties of the function A(z).27

Using the Szegö form for the J function, we can write

J(α) = e
1
2

1
2πi

∮ ζ+α
ζ−α ln(J∗(ζ)J(ζ)) dζ

ζ .

Because the exponential function is continuous, we just need to show that J∗J is continuous
in D.

The annihilator operator can be expressed with the Szegö form,[
J∗−1

]
+

= J(0)−1 = e
1
2

1
2πi

∮
ln(J∗−1J−1) dζζ ,

as can the inverse J(z)−1,

J−1(z) = e
1
2

1
2πi

∮ ζ+z
ζ−z ln(J∗(ζ)−1J(ζ)−1) dζζ .

However, because |z| = 1 and in the Szegö factorization, |α| < 1, this expression holds in
the limit.

Recalling equations (102) and (103),

(109) J∗J = 2
[
F ∗−1D∗A

]
+

[
F ∗−1D∗A

]∗
+

(D∗ +D + 2D∗D)−1σ2a + σ2e

and we just need to establish continuity for this object. (D∗ +D + 2D∗D)−1 is continuous
in D for D > 0. We can also establish that

[
F ∗−1D∗A

]
+

is continuous in D by using the

Szegö factorization, but because of the annihilator lemma we calculate it at a (recall that
A = 1

1−az ):

(110)
[
F ∗−1D∗A

]
+

= F (a)−1D(a)A(z) = e
− 1

2
1

2πi

∮ ζ+a
ζ−a ln(D∗D(D∗+D+2D∗D)−1) dζζ A(z)

which is continuous due to the continuity of the product, exponential, and (D∗ + D +
2D∗D)−1. �

To apply Lemma 4 we show that D = 0 is not a fixed point of the recursion S.

Lemma 8. J(0) 6=∞.

Proof. Use the Szegö factorization to write

(111) F−1
[
F ∗−1D∗A

]
+

= e
− 1

2
1

2πi

∮ ζ+a
ζ−a ln(D∗D(D∗+D+2D∗D)−2) dζζ A(z).

The inner term can be written as

D∗D(D∗+D+2D∗D)−2 =
D

( DD∗ + 1 + 2D)

1

(D∗ +D + 2D∗D)
=

1

( DD∗ + 1 + 2D)

1

(D
∗

D + 1 + 2D∗)
.

D
D∗ and D∗

D are bounded away from zero (to see this, express D in polar form). Therefore,
the whole denominator is bounded away from zero at D = 0. Thus, J(0) is finite. �

27See Taub [55] (1990) for a more thorough discussion of the Szegö form.
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Lemma 9. D = 0 is not a fixed point of the bounding function T .

Proof. Substitution yields T [0] = 1
2 . �

To complete the argument, we find a positive lower bound for the mapping S, i.e., a
bound D such that if |D1| > D then |S[D1]| > D, so that any fixed point is then bounded
away from zero.

Lemma 10. There exists a lower bound D such that |S[D]| > D for all D.

Proof. From Lemma 8, we have
∣∣∣12J−1 [J∗−1σ2e]+∣∣∣ ≥ 1

2
σ2
e
σ2
e

= 1
2 . �

Having determined a lower bound we can combine this with the upper bound induced by
the mapping T , leading to the following corollary:

Corollary 2. There is a ξ > 0 with

Xξ ≡ {D : ξ|D| < 1}
such that for D ∈ X,

S[D] ∈ Xξ.

We now have the ingredients to assert

Proposition 8. A fixed point of S exists.

Proof. The contraction property for T requires |1 +D| > 1:

(1 +D)(1 +D) = 1 + 2Re(D) + |D|2 > 1,

so

Re(D) > −|D|
2

2
,

which is satisfied by Re(D) > 0. If we define X0 as the smaller set

X0 ≡ {D : Re(D) > 0}
we satisfy this requirement. Then we just need to show that if Re(D) > 0, then Re(T [D]) >
0, i.e.,

1

2
+ Re

D

1 +D
> 0.

This follows because the denominator of D
1+D has a larger real part than the numerator,

but the same imaginary part. This means that if we represent D in polar form, D = D0e
iθ,

then 1 + D will have the form D̃0e
iθ̃, where

∣∣∣θ̃∣∣∣ < |θ| and D̃0 > D0. In expressing this in

geometric form it is evident that Re D
1+D > 0 and therefore that 1

2 + Re D
1+D > 0. Thus, T

maps X0 into X0, and in addition |1 +D| > 1 and the contraction property holds for T as
defined in equation (107). The properties listed in Lemma 4 are satisfied for S and T by
Lemmas 5, 6, 7.

It remains to verify that the fixed point reflects an optimum, i.e., that the associated so-
lutions of the Wiener-Hopf equations for α, β, and δ are optimal. Consider α. Inspection of
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the objective (43) and the variational first-order condition (79), reveals that the variational
second-order condition for α is

−
∮
F ∗FA∗Aσ2a

dz

z
= −‖FA‖22 < 0.

Thus, the solution for α in equation (46) represents an optimum. The optimality of β and
δ follow similarly. �

Proposition 3 in the main text follows.

Appendix E. Proofs of the characterisation results

Before proving Proposition 4 I begin with a series of preliminary lemmas. The first lemma
establishes a basic property of signal extraction. I then prove that this property is violated
in equilibrium. Finally, I prove that outputs are not just scalar amplifications of the input
shocks.

Consider a first-order autoregressive (AR) process

xt = A(L)et =
1

1− ρL
et.

Because I will treat the problem in terms of poles, write this as

− ρ−1

L− ρ−1
et,

where ρ−1 is the pole. I suppose that this process cannot be observed directly, but that
there is an observable signal process

yt = A(L)et + ut,

where ut is a white noise process, uncorrelated with et.

The signal extraction problem is to construct a filter F (·) that optimally extracts infor-
mation from this noisy signal, producing an output process F (L)(A(L)et + ut):

28

Lemma 11. The poles of the signal extraction output process are the same as the poles of
the input process. Signal extraction is expressed entirely in the moving average part of the
filtered process.

Proof. I use frequency-domain methods. I solve the optimal filtering problem

(112) min
F
E(A(L)et − F (L)(A(L)et + ut)

2

= min
F

1

2πi

∮ (
(A− FA)∗(A− FA)σ2e + F ∗Fσ2u

)dz
z
.

The variational first-order condition is

A∗(A− FA)σ2e − Fσ2u = 0.

28This result was stimulated by a personal exchange with Ken Kasa and Charles Whiteman.
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The right hand side is zero instead of
∑−1
−∞ because the filter is allowed to be two-sided.

The solution is

F = (A∗Aσ2e + σ2u)−1A∗A

The poles of A completely cancel, leaving an ARMA part where the poles (the denominator
part) come from the MA part of the noisy process. When one hits the noisy process with
this filter, the MA part of the noisy process cancels, but the forward-looking part of the
filter’s poles remains.

Repeating the process with a one-sided filter, the variational first-order condition is

A∗(A− FA)σ2e − Fσ2u =
−1∑
−∞

or

−(A∗Aσ2e + σ2u)F +A∗Aσ2e =

−1∑
−∞

.

Define the factor H by

H∗H = A∗Aσ2e + σ2u.

The poles of H are the same as the poles of A. The solution is

F = H−1
[
H∗−1A∗A

]
+
.

Recall that if some function A(z) is an ar(1), then by Lemma 6, [f∗A(z)]+ = f(ηρ)A(z).
Using the assumption that A is the sum of AR(1) terms—that is, that the number of poles of
A exceeds the number of zeroes, and using the linearity of the annihilator operator, one can
apply this fact term by term, with the result that the poles of the annihilate

[
H∗−1A∗A

]
+

are the same as the poles of A. The poles of H, which are the zeroes of H−1, then cancel
the poles of the annihilate. �

When one hits the noisy process—which is characterized by H—with this filter, the H
parts cancel, leaving a sum of AR’s, but weighted differently from the original A process.
The numerator of the filtered process—the MA part—has the signal extraction information.
Importantly, there are no new poles; the original poles, and only those poles, are preserved
in the product FH.

Thus, were signal extraction the only force determining the output process, the poles
of the input process would be preserved in the output process, and there would be no
new poles. We are now prepared to prove Proposition 4 that equilibrium output intensity
filters αi and βi are not scalar-valued—output intensities are not just amplifications of the
dynamic shock processes.

Proof. (of Proposition 4) Because the exogenous shock processes are first-order autore-
gressive (AR(1)) processes, the frequency domain filters A and B have single poles. Suppose
by way of contradiction that the intensities αi and βi, and δi are all scalar. Then, write
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equation (46) (the equation for αi), as

(113)

αi = F−1A−1
[
F ∗−1(F ∗F −D∗)A

]
+

= F−1A−1
(

[FA]+ −
[
F ∗−1D∗A

]
+

)
.

The annihilator operator [·]+ is an identity in the first term on the right hand side. In the
second term because the A(·) function is a single pole form, the projection operator [·]+
yields a constant multiplying A(·) (from the “annihilator lemma”, Lemma 6) . The A(·)
function is then canceled by the A−1(·) term, leaving the right hand side as a pure scalar
if F−1 is scalar. Thus, αi is a scalar if F−1 is a scalar. Similar reasoning applies in the βi
equation.

For F−1 to be a scalar, F must be scalar. The definition of F in equation (44) reveals
that F is scalar only if δ and D are scalar, which is true by our maintained assumption.
For D to be scalar, J would need to be scalar. But J cannot be scalar: in equation (47), a
scalar F and D means that J is driven by the A filter, which is exogenously non-scalar, a
contradiction. �

Appendix F. State space methods in the numerical analysis

In order to numerically simulate and iterate the recursion in equation (48), I constructed
algorithms using so-called state space methods from the control systems engineering liter-
ature. These methods suppose that the stochastic processes in a system have an ARMA
(autoregressive-moving average) structure, but can otherwise be arbitrary vector processes,
that is, a process can be represented as

(114) xt = Axt−1 +But

where xt and ut can be vector processes, and A and B are appropriately conformable
matrices. In engineering settings the xt process would be considered the state process,
and the ut process would be a serially uncorrelated and i.i.d. process, that is, white noise.
When xt and ut are scalar-valued and A and B are scalar constants, this is simply an AR(1)
process. Intuitively, for an AR(1) process to be stable requires that |A| < 1; this stability
notion generalizes: a more general vector-valued system is stable if the eigenvalues of A are
less than one in absolute value.

There might be an output process driven by this state,

(115) yt = Cxt +Dut

where yt can also be a vector process, and C and D are again appropriately conformable
matrices. For example, yt might be the observation of a noisy state that one would want to
estimate using Kalman filter methods.

We can write (114) using the lag operator L:

xt = ALxt + ut
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and if A has the appropriate structure, namely eigenvalues less than one, we can solve:

xt = (I −AL)−1ut.

Substituting into (115) yields

yt = (C(I −AL)−1B +D)ut

that is, the output process is expressed entirely in terms of the underlying fundamental or
driving process ut. This is simply the generalization of an ARMA, not just an AR, process.

It is now convenient to use that fact that was developed in Appendix A, namely that
the lag operator maps into a element of the complex plane, which we denote z, and we can
represent the process yt simply by its z-transform,

(116) C(I −Az)−1B +D

This expression is the generalization of a rational function.

It is convenient to re-express models of this type with the inverse of the A matrix, that
is,

(117) C(zI −A)−1B +D

and the eigenvalues of A now need to exceed one for stability to hold. This engineering
convention will be used in the exposition from this point forward; the eigenvalues are then
referred to as the poles. A process expressed in this way is a state space realization.

Importantly, the realization form in expression (117) is preserved when familiar algebraic
operations are carried out on the expression. For example, the sum of two processes that
are constructed from the same driving process ut can be expressed as
(118)

(C1(zI−A1)
−1B1+D1)+(C2(zI−A2)

−1B2+D2) =
(
C1 C2

)(
zI −

(
A1 0
0 A2

))−1(
B1

B2

)
+
(
D1 +D2

)
which has the same basic form as (117). Because the form is preserved, the engineering
literature has developed a special notation for it:[

A B
C D

]
The addition operation can be expressed in this notation by A1 0

0 A2

B1

B2

C1 C2 D1 +D2

 .
Similarly, multiplication and inversion are expressed as A1 B1C2

0 A2

B1D2

B2

C1 D1C2 D1D2

 .
[
A−BD−1C BD−1

−D−1C D−1

]
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The details of these and other operation can be found in Dullerud and Paganini [21], p. 99,
or in Sanchez-Pena and Sznaier [50], p. 465-470. Other operations such as transposition
and complex conjugation are also straightforward.

There are two other operations that can be expressed using state space methods: an-
nihilation, that is, the annihilation operator [·]+ that was discussed in Appendix A, and
spectral factorization. All of these operations—addition, multiplication, conjugation and
transposition, annihilation, and spectral factorization—are used in the recursion equation
(48).

Finally, it is possible to numerically calculate norms using the realization by solving a
Lyapunov equation; see p. 475 of Sanchez-Pena and Sznaier [50] (1998)).

The realization for a system is not necessarily unique. Specifically, we can construct
transformations of a realization to manipulate the A matrix, that is, we can calculate

CT−1(zI − TAT−1)−1TB +D = C̃(zI − Ã)−1B̃ +D

Such transformations can usefully isolate characteristics of the system, and importantly,
provide ways of it approximating the system with a smaller system, that is, one in which
the dimension of the A matrix is reduced: this is called balanced truncation. In balanced
truncation, the so-called controllability and observability Gramians are calculated via solv-
ing a Lyapunov equation for each. A coordinate transformation is chosen so that these
Gramians are identical. The singular values of the Gramians—the square roots of the
eigenvalues—then can be ordered, with the largest corresponding to the sup norm of the
system in question. The elements of the system associated with the smallest singular values
can then be discarded, if the resulting change in the infinity norm of the resulting system is
dominated by the chosen tolerance. This reduces the number of poles. Moreover, the error
entailed in the reduction of the model has an analytical bound that is a linear function of
the sums of the discarded singular values. We use the balanced truncation algorithm of
Laub and Glover (see p. 319 of Sanchez-Pena and Sznaier (1998)).

There is an additional operation needed in the numerical calculations: minimal real-
ization. A minimal realization generalizes the idea of canceling the poles and zeroes of a
rational function if they are equal. Thus, if we are given a rational function

(1− .2z)(1− .3z)
(1− .2z)(1− .7z)

it is obviously equivalent to
(1− .3z)
(1− .7z)

but what about
(1− .2z)(1− .3z)

(1− .2001z)(1− .7z)
?

The state space approach generalizes rational functions of this sort. As a result of the other
approximations that are carried out from operations such as inversion, spectral factorization,
and balanced truncation, small numerical errors can make the coefficients in the numerator
and denominator that should cancel slightly different; minimal realization algorithms force
the cancellation if the coefficients satisfy a tolerance.
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We use the Kung algorithm to compute the minimal realization (see p. 310 of Sanchez-
Pena and Sznaier (1998)). The algorithm sets up a block Hankel matrix of the system
and uses singular value decomposition (a generalization of diagonalization of a matrix) to
factor the Hankel matrix. The tolerance level removes nearly zero singular values, so that
the remaining system is both controllable and observable—which translates into pole-zero
cancellation when there is numerical noise.

The algorithm. I implemented these operations using Mathematica in order to numeri-
cally approximate a fixed point of equation (48), the algorithm works as follows:

(1) An initial conjecture of the solution of D(z) is posited (not to be confused with the
notation D for the state-space realization);

(2) This conjecture is used in equation (102) where a spectral factorization is carried
out to calculate F , using the method devised in Taub [54], and in turn the calculated
value of F as well as the conjectured value ofD(z) is used in the spectral factorization
in equation (103) to calculate J ;

(3) The resulting value of J and the conjectured value of D are substituted on the
right hand side of the recursion (48) and the requisite multiplication, inversion,
annihilation and addition operations are carried out, resulting in a new value of D,
which becomes the new conjecture;

(4) The iteration terminates when a Cauchy-style convergence criterion is met, that is,
for iteration i, the norm of the improvement ‖Di − Di−1‖2 falls below the chosen
tolerance.

There are some further details of the algorithm that bear mention. Examining equation
(48), it is apparent that there are some inverses in the equation, as well as some spectral
factorizations. These inversions and factorizations increase the number of pole terms on
each iteration. The balanced truncation algorithm trims the insignificant pole terms in the
iteration.

The spectral factorization algorithm must cope with the arbitrary number of pole terms
that arise from the proliferation of poles in the iteration. For this reason a more robust
spectral factorization algorithm is needed, and this is provided by the algorithm in Taub
[54]. This procedure also requires the choice of a tolerance.

There are thus four tolerances that must be chosen to run the algorithm: the spectral fac-
torization tolerance, the balanced truncation tolerance, the minimal realization tolerance,
and the Cauchy criterion for D. Excessively relaxing the tolerances leads to unstable behav-
ior numerically. When appropriate tolerances are chosen, the system converges numerically,
as is predicted by the contraction property established in Appendix D.

Appendix G. A primer on the algebra of spectral densities

Much of our analysis rests on the use of spectral densities. Spectral densities have some
algebraic properties that we review here. Before beginning, we note that the spectral density
is a function, but the essential characteristics of the density can be obtained by plotting the
density.
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The spectral density is defined simply as the absolute value of a function of z, but using
the definition z = e−iθ:

(119) |f |2 = f(z)f(z−1) = f(e−iθ)f(eiθ)

where we plot this as a function of θ. The spectral density can be thought of as the localized
variance of a stochastic process characterized by the filter f(z). The overall variance is then
just the integral under the spectral density. It is identical to the H2 norm of the process,
obtained via the contour integral of the absolute value squared of the filter.

The first key aspect of the spectral density is that it reflects the serial correlation of the
underlying stochastic process. Figure 1 plots the spectral density for a positively correlated
moving average process 1 + .5z and a positively serially correlated first-order autoregressive
process (1 − .5z)−1. Both plots are positively bowed, but the autoregressive process has a
peak in the middle, reflecting the long run persistence of the process. The middle part of
the plot corresponds to low frequencies (θ near zero) and the outer shoulders correspond to
the high frequencies.

������

1/(1-.5 z)

(1+.5 z)
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Figure 1. Spectral densities for positively serially correlated processes.

Increased persistence in the underlying process increases the sharpness of the central
peak (see Figure 2):

������
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Figure 2. Spectral densities for positively serially correlated processes.

Negative serial correlation has the opposite pattern. Figure 3 plots the spectral density for
a negatively correlated moving average process 1− .5z and a negatively serially correlated
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first-order autoregressive process (1 + .5z)−1. Both plots are negatively bowed, but the
autoregressive process has a peak in the middle, reflecting the long run persistence of the
process. The middle part of the plot corresponds to low frequencies (θ near zero) and the
outer shoulders correspond to the high frequencies.
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Figure 3. Spectral densities for negatively serially correlated processes.

Now the long run serial correlation of the autoregressive process is reflected by the higher
power in the right and left shoulders of the plot.

The next key characteristic of spectral densities concerns the arithmetic operation of
multiplication. For two filters f and g then the spectral density of the product fg filter will
be the the product of the two separate densities at each frequency; see Figure 4. Thus, for

������
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Figure 4. Spectral density of a product.

example, firms determine output by applying an intensity filter to the fundamental serially
correlated demand shock process; the spectral density of the resulting output process will
in general be very different from the respective densities of the demand process and the
intensity filter.

The next point concerns addition. The spectral density of a sum is not the sum of the
spectral densities for two filters operating on the same underlying fundamental process.
Figure 5 displays the spectral density for the sum of two of the filters we have seen before.
Figure 6 displays the spectral densities for (1 − .5z)−1 as before, and also for −(1 − .5z).
Notice that the spectral density for −(1−.5z) is identical to the spectral density for (1−.5z).
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Figure 5. Spectral density of a sum.

However it is evident that the spectral density for the sum (1− .5z)−1−(1− .5z) is radically
different from the spectral density for the sum (1− .5z)−1 + (1− .5z) in Figure 5.
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Figure 6. Spectral density of a sum.

There is however dimension in which spectral densities can be added. If we have two
processes operating on two uncorrelated fundamentals then the spectral density of the sum
is the sum of the spectral densities. This reflects the underlying property of variances: the
variance of the sum of two independent random variables is the sum of the variances, and
the spectral density at each frequency is a variance. This is illustrated in Figure 7.
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Figure 7. Spectral density of a sum of independent processes.

Table 1. Numerical algorithm tolerances

Spectral factorization 1× 10−8

Minimal realization .0001
Balanced truncation .1
Cauchy convergence 1× 10−6

Table 2. Base Parametrization

Discount Private Public Noise Private AR Public AR
factor variance variance variance coefficient coefficient
η σ2a σ2a σ2e α b
1 1.0 1.0 10.0 0.5 0.1

Table 3. Output filters

Private Public
demand process A(z) demand process B(z)

2
z−2

10
z−10

Direct Direct
intensity intensity
α(z) β(z)

0.50 + 0.018
1.z−2.0 − 0.02

1.z−22. 0.33 − 0.10
z−4. + 0.05

z−2.19 − 0.04
z−110.

Total output Total output
on A on B

0.05 + 0.02
z−2.04 − 1.03

z−2. 0.07 − 06.18
z−10.0 − .35

z−4.0 − 0.0003
z−2.04 − 0.004

z−2.00

Total output Direct intensity
on e δ

0.002 − 0.05
z−2.04 −0.001 + 0.02

1.z−2.0
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Table 4. Base Parametrization

Discount Private Public Noise Private AR Public AR
factor variance variance variance coefficient coefficient
η σ2a σ2a σ2e α b
1 1.0 1.0 1.0 0.5 0.1

Table 5. Output filters

Private Public
demand process A(z) demand process B(z)

2
z−2

10
z−10

Direct Direct
intensity intensity
α(z) β(z)

0.53 + 0.20
z−2.19 − 0.17

z−22. 0.34 − 0.07
z−4. + 0.05

z−2.19 − 0.04
z−110.

Total output Total output
on A on B

0.05 − 0.74
z−2.19 − 0.33

z−2. − 0.005
1.z−2.62 0.07 − 0.35

z−4. + 0.002
z−2.62 − 0.042

1.z−2.19 − 6.38
z−10.0

Total output Direct intensity
on e δ

0.009 − 0.56
z−2.62 −0.005 + 0.28

1.z−2.05

Table 6. Base Parametrization

Discount Private Public Noise Private AR Public AR
factor variance variance variance coefficient coefficient
η σ2a σ2a σ2e α b
1 1.0 1.0 1.0 0.1 0.5

Table 7. Output filters

Private Public
demand process A(z) demand process B(z)

10
z−10

2
z−2

Direct Direct
intensity intensity
α(z) β(z)

0.52 + 0.78
z−10.58 − 0.02

1.z−110. 0.33 + 0.30
z−10.5822 − 0.12

z−4.0 − 0.006
z−22.

Total output Total output
on A on B

0.05 − 4.43
z−10.58 − 0.72

1.z−10. − 0.08
z−12.17 0.07 + 0.03

z−10.58 + 0.16
1.z−4. − 1.6

z−2. − 0.003
1.z−12.17

Total output Direct intensity
on e δ

0.02 − 2.10
1.z−12.17 −0.008 + 1.08

z−10.04
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Figure 8. Spectral densities for private shock process A(L)ait
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