
Introduction to Python 3 Programming – Session 1 V 0.1

1

Introduction to Python 3 Programming – Session 1

 V 0.1

e-mail: training@glasgow.ac.uk

web: gla.ac.uk/services/it/training

Introduction to Python 3 Programming – Session 1 V 0.1

i

copyright © University of Glasgow

Course content created by Blair Thompson

 Last edited by Blair Thompson on 26/04/21

Introduction to Python 3 Programming – Session 1 V 0.1

ii

Contents

Contents ... ii

Introduction .. iii

Objectives .. iii

Session 1 .. 1

Session Objectives ... 1

1 Introduction .. 1

2 Write Your First Program/Script .. 1

a. Using IDLE ... 2

b. Saving Your Program ... 3

c. Run Your Program ... 4

d. Other IDEs (Integrated Development Environments) .. 5

3 Comments .. 6

4 Variables .. 7

a. Assignment .. 7

b. Strings .. 8

c. Numbers .. 8

d. User Input... 9

5 Calculations .. 10

6 If Statements (Control Flow Tools) ... 13

b. If – Else Statements ... 13

Appendix 1 Python Built in Functions .. 17

Appendix 2 DOS Commands .. 22

Useful Shortcut keys ... 23

Introduction to Python 3 Programming – Session 1 V 0.1

iii

Introduction

 This course runs in three, three hour sessions. It is designed to be an introduction to
simple programming in Python for non-programmers. It is not a complete Python
programming course. It is intended as course which will enable you to write simple
programs to manipulate and analyse data.

Objectives

 On successful completion of this course participants will be able to:

• Understand what a computer program is.

• Use the IDLE Shell and Editor windows

• Write a simple print script

• Save your program as a Python program

• Run a Python script from the command prompt

• Include comments in Python scripts

• Assign values to variables

• Perform basic calculations

• Use If statements

• Use For and While Loops in Python.

• Use the Completion tool to speed up your coding

• Manipulate text using Python.

• Open and Save text based files within a Python script

• Define functions and use them in your scripts

• Import modules and use their contained definitions

Introduction to Python 3 Programming – Session 1 V 0.1

1

Session 1

Session Objectives

At the end of this session you should be able to

• Understand what a computer program is.

• Use the IDLE Shell and Editor windows

• Write a simple print script

• Save your program as a Python program

• Run a Python script from the command prompt

• Include comments in Python scripts

• Assign values to variables

• Use arithmetic operators in Python

• Use If statements

1 Introduction

 A computer is basically a simple machine that can perform a range of operations very
quickly. The computer is essentially a stupid machine – you need to tell it exactly what to
do. A computer program is a set of instructions for the computer.

 The computer has a Central Processor (in the box), an Input Device (keyboard, mouse),
an Output Device (screen, printer) and storage (Memory, disk drives etc).

 In this course we will write programs using Python. Python makes it easy to write simple
programs and can be used to write complicated programs. Python scripts (programs) are
relatively easy to understand.

2 Write Your First Program/Script

 First a little terminology, you will hear people calling python code by more than one name,
some call the code programs and others call them script. For our purposes it does not
matter, either term is acceptable. The word script is often used to describe code that
needs to have an interpreter installed to be able to run, this is because the code is not
"compiled" (turned into working code the computer can run) until the point in time that you
run it. Python can work in this way, and so in this manual we will refer to our code as
scripts.

Input Device Processor Output Device

Storage

A Simple Diagram of a Computer

Introduction to Python 3 Programming – Session 1 V 0.1

2

 Python can also be used to create pre-compiled code as well, it is a very flexible language,
but we will worry about that further down the line.

a. Using IDLE

 Python scripts are written in text files that can be easily written and edited using any text
editor on just about any computer. So you could use notepad to create and edit scripts if
you wanted to.

 However during this course, for writing scripts we will use a special text processor called
IDLE (Integrated DeveLopment Environment or Integrated Development and Learning
Environment). This is just like Notepad but makes it easier to lay out a script and offers
tools that allow us to run our python scripts as well.

 IDLE has two main window types, the Shell window and the Editor window. It is possible
to have multiple editor windows simultaneously.

1 In the Start menu select, Python 3.8, IDLE
(The names will be similar to above, but don’t worry if the numbers are a little
different)

The IDLE program will start. IDLE opens an interactive Shell window. The
interactive Shell window allows you to run Python commands live on your
computer. It is very useful for trying out pieces of code that you intend to run within
your scripts.

2 Try typing the following:

print (“hello world\n”)

3 Press Enter on your keyboard

You should see your first piece of code run within the interactive Shell! The shell is

Introduction to Python 3 Programming – Session 1 V 0.1

3

OK for trying out snippets of code, but if you want to build a more substantial script,
you will want to create your own file.

4 From the File menu select New File.

A new window will open, this is the Editor window. The editor window allows you
to write your module and then to run the code.

5 Enter the following lines of code in text editor that appears:

First Script
print ("Hello World\n")
print “This is my first Python script”

b. Saving Your Program

 Before we can run our first Python script we must first save it.

1 Click File then Save

2 The Save As dialogue box will appear

3 Navigate to where you wish to save your files during this course, If you are
learning in our classroom C:\coursefiles\ is a good location, at home you might
prefer to place the files in your Documents folder

4 Use the New Folder tool to create a new folder

5 The folder will be created and you will be prompted to name it. Type Introduction
to Python then Enter

Introduction to Python 3 Programming – Session 1 V 0.1

4

6 Double click the folder that you have just created

7 In the File name: box type helloWorld

8 Check that Save as type is set to Python files

9 Click Save

c. Run Your Program

 You can run a python program in a number of ways. If you are editing it using IDLE, the
simplest way to run your program is via the run command.

1 Click Run then Run Module

2 The interactive shell window will display the output from your code.

3 Congratulations. You have just run a script.

4 You may also run your python code using the command line:

5 Click the windows button on your task bar

Introduction to Python 3 Programming – Session 1 V 0.1

5

6 Type “cmd”

7 Hit Enter or click on cmd.exe

8 A command line window will appear

9 Type cd “c:\coursefiles\introduction to python” replacing the folder address with the
address you saved to

10 Hit Enter

11 Type python helloWorld.py

Note: Depending how your computer has been set up you may be able to run the
script omitting the word python at the beginning i.e. helloWorld.py

12 Close the Editor Window

d. Other IDEs (Integrated Development Environments)

 For this course we have decided to use IDLE as our development environment. We chose
IDLE because it is installed with Python and offers a convenient way to run your python
scripts. The internet is full of opinions as to which is the best IDE to use when developing
your python scripts, some offer very complex sets of tools to help you.

 Once you are comfortable programming basic scripts using IDLE you can try other IDEs
and find the right set of tools for yourself.

Introduction to Python 3 Programming – Session 1 V 0.1

6

3 Comments

 Most python scripts are a bit more complex than Hello World, so to make it easy to follow
what the code is doing you can include comments in your code.

 Any text that follows a # will be ignored by the computer. You can use this to insert
comments to describe what the code should be doing. In our helloWorld.py script, the first
line was a comment. We can also add comments in this way to the end of individual lines
of code.

 Now we will add a longer comment to our helloWorld.py program:

 TASK: Adding Comments to a Python Script

1 Click back into your Editor window at the end of your code.

2 Type the following at the beginning of your code

3 # Hello World is the name that we give to the first piece
of code that we write when we learn a new programming
language

4 Notice the code highlights in red when we write our comment this way.

5 Run your script again.

6 Notice that the code runs exactly the same way as before. The new text (being a
comment) is completely ignored by the python interpreter!

7 Save your Script (CTRL + S)

8 Close the editor window

 It is good programming practice to comment clearly and to comment often. It helps
others who are reviewing your code to understand what you are trying to
accomplish. It is also helpful when you revisit your own code.

 Comments are also very useful for disabling lines of code. By "commenting out" the line of
code you prevent it from running but without deleting it. This can be handy when we are
replacing lines of code (whilst keeping a record of what worked before) or when we are
debugging (finding and eliminating problems in our code) and need to see if a particular
line of code is causing an issue in a script.

Introduction to Python 3 Programming – Session 1 V 0.1

7

4 Variables

 A variable is a label for a location in the computer’s store where a value can be stored and
retrieved within our script. It can be treated like a mathematical variable. A variable can
contain a number or a string of characters. Almost all python scripts will need to contain
variables to help accomplish their purpose.

a. Assignment

 An assignment statement is the way that we create variable in Python. A typical statement
looks like this:

my_number = 4

 The expression my my_number = 4 can be translated as… variable my_number will
contain the value 4.

 The expression today = “Monday” can be translated as… variable today will contain the
string "Monday".

 When writing python code we do not need to tell python in advance that we are creating a
variable (you do in many other programming languages). It comes into existence at the
point where we write the assignment statement. We also do not have to tell Python what
type of data our variable contains (you do in many other programming languages), Python
will work that out by looking at the value you are assigning.

 Task: Assign a variable and print it

1 Click on File and then New File in any of the IDLE windows

A new Editor window will appear

2 Enter the following:

3 Save the file as variable_example1.py in your practice folder

4 Run the script using the Run Module command (from the run menu)

Introduction to Python 3 Programming – Session 1 V 0.1

8

IDLE will attempt to run the script, but will return a NameError, this is telling you
that the variable that you tried to print is not defined (i.e. it does not exist yet)

5 Click back into your Editor window.

6 Add a # to the very beginning of the second line of code.
This will change it into a comment (This is often described as "commenting out a
line of code")

7 Save your script (try using CTRL + S)

8 Run the script again using the Run Module command (try using the F5 key)

9 Close the Editor window

b. Strings

 When we assign a value to our variable, if we enclose the value in quotation marks the
Python interpreter will create a string. You can use either single quotes ('), double quotes
(") or triple quotes (""") when assigning a string. We will not look too closely at the moment
as to what is best here (they all work) but as we are going to be working with short strings
in our examples, we will be using double quotes (").

c. Numbers

 There are two kinds of numbers within the Python language, integers and floats. Integers
are whole numbers and floats are numbers that contain a decimal point. When you assign
a variable containing a number adding a decimal point is enough to create a float, i.e.

Introduction to Python 3 Programming – Session 1 V 0.1

9

d. User Input

 It is useful for us to be able to use user input to assign variables in Python. This allows us
to create interactive scripts that are flexible. For instance we can request information from
a user (e.g. a keyword to search for or a filename to process) within our script.

 Task: Requesting Variables from the User

1 Enter the following:

2 From the File menu, select Save As

3 Save the file with the name variable_example2.py in your preferred folder

4 Run the script using the Run Module command (from the run menu)

In this task we use input function to assign our variables. Using the input
command forces python to assign the variable user_name as a text string. The
problem is that as a text string we cannot do any arithmetic on it…

5 Look at this line:

num_var = int(input ("Now " + user_name + " input a number: "))

This way of doing things takes the number typed by the user in as a text string and
then changes it into an integer. This changing a variable from one type to another
is called casting.

We can use casting the other way around:
str(num_var) would convert num_var (and integer) into a text string so that for
example you could then concatenate (join strings together) it like this:

print "Your number plus 4 is " + str(num_var)

6 Try adding this to the bottom of your code and running it!

7 Close the Editor window

Introduction to Python 3 Programming – Session 1 V 0.1

10

Note what we did with the text strings in the fourth line of our code. Using the + sign we
concatenated three strings "Now ", user_name and " input a number". This is probably the
simplest way to join strings together using python. We will use this method for just now,
but later in the course we will see better ways to concatenate strings.

 Note The input function has changed between the 2.x versions of Python and the 3.x
versions. In the later version command "input" behaves just like "raw_input" does in older
versions (which is no longer available). If you find code that was designed to run in older
versions of Python, you can just exchange raw_input() for input()

 Additional Task

 Write a short script that takes two numbers from the user and adds them together. The
script should return (use print for this) the answer. Add additional prompts for the user so
that they can understand clearly what they should be inputting.

 If you like you can try some other arithmetic as well.

5 Calculations

 As we saw in our last example, within python are able to perform calculations within our
scripts. Just like any calculation we use operators (e.g. +, -) to tell Python what
calculations to perform.

 Python contains the following operators:

+ Addition Adds values on either side of the operator. 10 + 20 = 30

- Subtraction Subtracts right hand operand from left hand
operand.

10 – 20 = -10

*
Multiplication

Multiplies values on either side of the operator 10 * 20 = 200

/ Division Divides left hand operand by right hand
operand

20 / 10 = 2

% Modulus Divides left hand operand by right hand
operand and returns remainder

20 % 10 = 0

** Exponent Performs exponential (power) calculation on
operators

10**20 =10 to the power 20

// A floor division performs the division but then
returns the floor (lower number) of the
answer. To put it another way, it chops off the
digits after the full stop

9/2 = 4.5
9//2 = 4

 In python we can do maths using variables i.e.

Introduction to Python 3 Programming – Session 1 V 0.1

11

 This script simply returns the number 5

 We can also say:

 That looks like an impossible statement. It really means Variable a will contain the value
currently in a plus 5. The old value in a is gone, replaced by a new value.

 This returns the number 10

 Task: Basic Arithmetic

1 Click on File and then New File in any of the IDLE windows

2 A new Editor window will appear

Introduction to Python 3 Programming – Session 1 V 0.1

12

3 Enter the following:

4 Save the file as calculation_example.py in your practice folder

5 Run the script using the Run Module command (from the run menu)

6 Close the Editor window

 Note that when we divided the integer b with another integer a in Python 3 the answer 1.5
is a float. When we instead divided by a float float_a, the answer is also a float. In older
versions of Python dividing integers 2 and 3 would have returned a rounded answer.

 Python 3 will automatically convert number types (cast) for us to make them compatible
with each other.

Unfortunately it does not do this when we try and perform maths on string
variables!

 Additional Task: Numerical.

• Write a program to calculate the perimeter and area of a rectangle, given the width
and height.

• Write a program to calculate area and circumference of a circle given the radius.

How will you get Pi? (Estimate it as 3.14 for this exercise)

𝐴𝑟𝑒𝑎 = 𝜋𝑟2
𝐶𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 2𝜋r

• Write a program to change the inclusive Vat on a number from 17.5% to 20%.

Introduction to Python 3 Programming – Session 1 V 0.1

13

6 If Statements (Control Flow Tools)

 When we write Python scripts often we need the script to take a particular condition is met.
For example, if we needed to count the number of instances of a particular work in a file
the python script would read each word in the file and then add one to the count if the
word was the one it was looking for. We use what are called "Control Flow Tools". These
tools decide what lines of code are run and under what conditions.

 Let's look at the most commonly used tools

b. If – Else Statements

 This code causes things to happen if set conditions are met. When we are working with if
statements we need to be very careful about indentation. Python uses it to understand
which code belongs to the if statement or to put it another way what it should do if the if
statement is true. This is different to a lot of other scripting/programming languages which
enclose these instructions in brackets to achieve the same thing.

 The general Python syntax for a simple if statement is

 if condition :

• do this

 else:

• do this instead!

 The condition must be a logical test that will evaluate to either true or false, e.g:

 if my_number > 5 : # is my_number greater than 5

 or

 if my_number != 3: # is my_number not equal to 3

 If you do not have the else: statement, Python will just continue to the next line of
code in your script should the if statement evaluate as false.

 Task: A simple if Statement

1 Click File and then New File

Introduction to Python 3 Programming – Session 1 V 0.1

14

2 Enter the following code:

3 Save the file as if_else_example1.py

4 Run the script and follow the prompts.

5 Close the Editor window

 Note that a single = is an assignment operator used to assign a value to a variable, a == is
a comparison operator, meaning that things are equal.

 The following comparison operators can be used:

7 < 8 less than 9 5 < 5 10 False

11 <= 12 less than or equal to 13 5 <= 5 14 True

15 > 16 greater than 17 5 > 10 18 False

19 >= 20 greater than or equal to 21 5 >= 10 22 False

23 == 24 equal to 25 'a' == 'b' 26 False

27 != 28 not equal to 29 'a' != 'b' 30 True

 The following membership operators can be used:

 in evaluates to True if it finds a variable in a specified sequence, i.e.

 'Edinburgh' in "Glasgow University" False

 not in evaluates to False if it finds a variable in a sequence, i.e.

 'Edinburgh' in "Glasgow University" True

 This is not a complete list of the operators that can be used within Control Flow
statements, but it will do for just now.

 Task: A more complex if statement

 Write a program that inputs a number and tests whether it is positive or negative.

1 Click File and then New File

Introduction to Python 3 Programming – Session 1 V 0.1

15

2 Enter the following code:

3 Save the file as if_else_example2.py

4 Run the script and follow the prompts.

5 In this script, positive and negative numbers are correctly identified. But we can
refine the script further to make it identify zero values as well.

6 Use the Save As command to save this file as if_else_example3.py

7 Edit the code to look like this:

8 Run the script and follow the prompts. Try inputting the number 0

The change that we have made to our code introduces the elif statement. elif is short for
else if and it allows us to use more than one if statement, executing the second one if the
first is false.

Introduction to Python 3 Programming – Session 1 V 0.1

16

 Bonus Task: Nested Ifs

 If you have time, try this:

1 Using the same file, edit it to look like this:

2 Be very careful with your indentation when you do so!

3 Use File – Save As to save the file as if_else_example4.py

4 Run the script and follow the prompts. Try replying with a value such as 15 or -15.

5 Save and close the file.

 In this example we are placing ifs inside our if and else statements which leads to even
more possible outcomes in our code. We describe this as nesting. When we nest
statements like this we have to be very careful about how we indent, get this wrong and
you might get some unintended actions.

 You are not limited as to how many times you nest in python.

Introduction to Python 3 Programming – Session 1 V 0.1

17

Appendix 1 Python Built in Functions

Function Description

abs() Return the absolute value of a number.

all()
Return True if all elements of the iterable are true (or if the
iterable is empty).

any()
Return True if any element of the iterable is true. If the iterable is
empty, return False.

ascii()
Return a string containing a printable representation of an object,
but escape the non-ASCII characters.

bin() Convert an integer number to a binary string.

bool() Convert a value to a Boolean.

bytearray() Return a new array of bytes.

bytes() Return a new "bytes" object.

callable() Return True if the object argument appears callable, False if not.

chr() Return the string representing a character.

classmethod() Return a class method for the function.

compile() Compile the source into a code or AST object.

complex()
Create a complex number or convert a string or number to a
complex number.

delattr() Deletes the named attribute of an object.

Introduction to Python 3 Programming – Session 1 V 0.1

18

Function Description

dict() Create a new dictionary.

dir() Return the list of names in the current local scope.

divmod()
Return a pair of numbers consisting of quotient and remainder
when using integer division.

enumerate() Return an enumerate object.

eval() The argument is parsed and evaluated as a Python expression.

exec() Dynamic execution of Python code.

filter()
Construct an iterator from elements of iterable for which function
returns true.

float() Convert a string or a number to floating point.

format() Convert a value to a "formatted" representation.

frozenset() Return a new frozenset object.

getattr() Return the value of the named attribute of an object.

globals() Return a dictionary representing the current global symbol table.

hasattr() Return True if the name is one of the object's attributes.

hash() Return the hash value of the object.

help() Invoke the built-in help system.

Introduction to Python 3 Programming – Session 1 V 0.1

19

Function Description

hex() Convert an integer number to a hexadecimal string.

id() Return the "identity" of an object.

input()
Reads a line from input, converts it to a string (stripping a trailing
newline), and returns that.

int() Convert a number or string to an integer.

isinstance() Return True if the object argument is an instance.

issubclass() Return True if class is a subclass.

iter() Return an iterator object.

len() Return the length (the number of items) of an object.

list() Return a list.

locals()
Update and return a dictionary representing the current local
symbol table.

map()
Return an iterator that applies function to every item of iterable,
yielding the results.

max() Return the largest item in an iterable.

memoryview() Return a "memory view" object created from the given argument.

min() Return the smallest item in an iterable.

next() Retrieve the next item from the iterator.

Introduction to Python 3 Programming – Session 1 V 0.1

20

Function Description

object() Return a new featureless object.

oct() Convert an integer number to an octal string.

open() Open file and return a corresponding file object.

ord() Return an integer representing the Unicode.

pow() Return power raised to a number.

print() Print objects to the stream.

property() Return a property attribute.

range() Return an iterable sequence.

repr() Return a string containing a printable representation of an object.

reversed() Return a reverse iterator.

round() Return the rounded floating point value.

set() Return a new set object.

setattr() Assigns the value to the attribute.

slice() Return a slice object.

sorted() Return a new sorted list.

staticmethod() Return a static method for function.

Introduction to Python 3 Programming – Session 1 V 0.1

21

Function Description

str() Return a str version of object.

sum()
Sums the items of an iterable from left to right and returns the
total.

super()
Return a proxy object that delegates method calls to a parent or
sibling class.

tuple() Return a tuple

type() Return the type of an object.

vars()
Return the __dict__ attribute for a module, class, instance, or
any other object.

zip()
Make an iterator that aggregates elements from each of the
iterables.

__import__() This function is invoked by the import statement.

Introduction to Python 3 Programming – Session 1 V 0.1

22

Appendix 2 DOS Commands

Command Function Example

cd Change Directory cd.. go back a directory

cd c:\perl\myscripts\

Mkdir Make a new directory in the
current folder

“Mkdir newfolder”

Copyfile copies file1.pl to file2.pl “Copy file1.pl file2.pl”

Del

deletes file1.pl – be careful! Del file1.pl

Doskey starts remembering
commands.

Exit

: closes command prompt

Introduction to Python 3 Programming – Session 1 V 0.1

23

Useful Shortcut keys

Using keyboard shortcuts can help you become more efficient when creating documents in
Microsoft applications. Most keyboard shortcuts require you to use two or more keys at
the same time. To use a keyboard shortcut first press and hold down the modifier key or
keys (i.e. SHIFT, CTRL, ALT) and then press the corresponding standard key on your
keyboard.

Function Shortcut

Save and run your script (in IDLE) F5

Open CTRL+O

Save CTRL+S

Close ALT + F4

Cut CTRL+X

Copy CTRL+C

Paste CTRL+V

Select all CTRL+A

Indent line CTRL+I or Tab

Cancel Esc

Undo CTRL+Z

Re-do CTRL+SHIFT+Z

Find CTRL+F

Replace CTRL+H

Show Completions CTRL+SPACE

	Contents
	Introduction
	Objectives
	 Understand what a computer program is.
	 Use the IDLE Shell and Editor windows
	 Write a simple print script
	 Save your program as a Python program
	 Run a Python script from the command prompt
	 Include comments in Python scripts
	 Assign values to variables
	 Perform basic calculations
	 Use If statements
	 Use For and While Loops in Python.
	 Use the Completion tool to speed up your coding
	 Manipulate text using Python.
	 Open and Save text based files within a Python script
	 Define functions and use them in your scripts
	 Import modules and use their contained definitions

	Session 1
	Session Objectives
	 Understand what a computer program is.
	 Use the IDLE Shell and Editor windows
	 Write a simple print script
	 Save your program as a Python program
	 Run a Python script from the command prompt
	 Include comments in Python scripts
	 Assign values to variables
	 Use arithmetic operators in Python
	 Use If statements

	1 Introduction
	2 Write Your First Program/Script
	a. Using IDLE
	1 In the Start menu select, Python 3.8, IDLE (The names will be similar to above, but don’t worry if the numbers are a little different) The IDLE program will start. IDLE opens an interactive Shell window. The interactive Shell window allows you t...
	2 Try typing the following: print (“hello world\n”)
	3 Press Enter on your keyboard You should see your first piece of code run within the interactive Shell! The shell is OK for trying out snippets of code, but if you want to build a more substantial script, you will want to create your own file.
	4 From the File menu select New File. A new window will open, this is the Editor window. The editor window allows you to write your module and then to run the code.
	5 Enter the following lines of code in text editor that appears: # First Script print ("Hello World\n") print “This is my first Python script”

	b. Saving Your Program
	1 Click File then Save
	2 The Save As dialogue box will appear
	3 Navigate to where you wish to save your files during this course, If you are learning in our classroom C:\coursefiles\ is a good location, at home you might prefer to place the files in your Documents folder
	4 Use the New Folder tool to create a new folder
	5 The folder will be created and you will be prompted to name it. Type Introduction to Python then Enter
	6 Double click the folder that you have just created
	7 In the File name: box type helloWorld
	8 Check that Save as type is set to Python files
	9 Click Save

	c. Run Your Program
	1 Click Run then Run Module
	2 The interactive shell window will display the output from your code.
	3 Congratulations. You have just run a script.
	4 You may also run your python code using the command line:
	5 Click the windows button on your task bar
	6 Type “cmd”
	7 Hit Enter or click on cmd.exe
	8 A command line window will appear
	9 Type cd “c:\coursefiles\introduction to python” replacing the folder address with the address you saved to
	10 Hit Enter
	11 Type python helloWorld.py Note: Depending how your computer has been set up you may be able to run the script omitting the word python at the beginning i.e. helloWorld.py
	12 Close the Editor Window

	d. Other IDEs (Integrated Development Environments)

	3 Comments
	 TASK: Adding Comments to a Python Script
	1 Click back into your Editor window at the end of your code.
	2 Type the following at the beginning of your code
	3 # Hello World is the name that we give to the first piece # of code that we write when we learn a new programming # language
	4 Notice the code highlights in red when we write our comment this way.
	5 Run your script again.
	6 Notice that the code runs exactly the same way as before. The new text (being a comment) is completely ignored by the python interpreter!
	7 Save your Script (CTRL + S)
	8 Close the editor window

	4 Variables
	a. Assignment
	 Task: Assign a variable and print it
	1 Click on File and then New File in any of the IDLE windows A new Editor window will appear
	2 Enter the following:
	3 Save the file as variable_example1.py in your practice folder
	4 Run the script using the Run Module command (from the run menu) IDLE will attempt to run the script, but will return a NameError, this is telling you that the variable that you tried to print is not defined (i.e. it does not exist yet)
	5 Click back into your Editor window.
	6 Add a # to the very beginning of the second line of code. This will change it into a comment (This is often described as "commenting out a line of code")
	7 Save your script (try using CTRL + S)
	8 Run the script again using the Run Module command (try using the F5 key)
	9 Close the Editor window

	b. Strings
	c. Numbers
	d. User Input
	 Task: Requesting Variables from the User
	1 Enter the following:
	2 From the File menu, select Save As
	3 Save the file with the name variable_example2.py in your preferred folder
	4 Run the script using the Run Module command (from the run menu) In this task we use input function to assign our variables. Using the input command forces python to assign the variable user_name as a text string. The problem is that as a text st...
	5 Look at this line: num_var = int(input ("Now " + user_name + " input a number: ")) This way of doing things takes the number typed by the user in as a text string and then changes it into an integer. This changing a variable from one type to ano...
	6 Try adding this to the bottom of your code and running it!
	7 Close the Editor window

	 Additional Task

	5 Calculations
	 Task: Basic Arithmetic
	1 Click on File and then New File in any of the IDLE windows
	2 A new Editor window will appear
	3 Enter the following:
	4 Save the file as calculation_example.py in your practice folder
	5 Run the script using the Run Module command (from the run menu)
	6 Close the Editor window

	 Additional Task: Numerical.
	 Write a program to calculate the perimeter and area of a rectangle, given the width and height.
	 Write a program to calculate area and circumference of a circle given the radius. How will you get Pi? (Estimate it as 3.14 for this exercise) 𝐴𝑟𝑒𝑎=𝜋,𝑟-2. 𝐶𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒=2𝜋r
	 Write a program to change the inclusive Vat on a number from 17.5% to 20%.

	6 If Statements (Control Flow Tools)
	b. If – Else Statements
	 Task: A simple if Statement
	1 Click File and then New File
	2 Enter the following code:
	3 Save the file as if_else_example1.py
	4 Run the script and follow the prompts.
	5 Close the Editor window

	 Task: A more complex if statement
	1 Click File and then New File
	2 Enter the following code:
	3 Save the file as if_else_example2.py
	4 Run the script and follow the prompts.
	5 In this script, positive and negative numbers are correctly identified. But we can refine the script further to make it identify zero values as well.
	6 Use the Save As command to save this file as if_else_example3.py
	7 Edit the code to look like this:
	8 Run the script and follow the prompts. Try inputting the number 0

	 Bonus Task: Nested Ifs
	1 Using the same file, edit it to look like this:
	2 Be very careful with your indentation when you do so!
	3 Use File – Save As to save the file as if_else_example4.py
	4 Run the script and follow the prompts. Try replying with a value such as 15 or -15.
	5 Save and close the file.

	Appendix 1 Python Built in Functions
	Appendix 2 DOS Commands
	Useful Shortcut keys

