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Research Overview

Sustainable Computing

Sustainable Computing - Without the Hot Air: B——— 1|
HotCarbon’22.

e ——— SOlar PV Performance Modeling and
Forecasting: BuildSys’20, MASS’20.

—l Programmable Networked Energy
Systems: BuildSys’17, BuildSys’18,
IGSC’20, COMPASS’20.

—l Electrification in Sub-Saharan Africa:
COMPASS’20, e-Energy’19.

|
Ecovisor: A Virtual Energy System for Carbon- g :
efficient Applications : SoCC’21, ASPLOS’23. .

i

|

CarbonScaler, Acclimator, Delen: Under-review at i
EuroSys’23, SIGMETRICS’23, IoTDI’23.

Equity-aware Energy
Transition

-l Fair Control of Distributed Solar
Capacity: BuildSys’17.

I — Residential Heating Decarbonization:

Resource Overcommitment in Google’s B
Datacenters: EuroSys’21.

Cloud Equity and
Datacenters Fairness

Cost and Wait-time Optimization for Hybrid Cloud BF—-

Datacenters: SC’20, IC2E’20, SoCC’21. | BuildSys’22.
Non-intrusive Power Monitoring in Cloud Datacenters: B ! B Network- & Eguity-aware Qas Network
| Decarbonization: Under-review at Energy

Under-review at SIGMETRICS’23. , ,
Informatics Review and e-Energy’23.



Sustainable Computing - Without the Hot Air*

* Title inspired by the book Sustainable Energy - Without the Hot Air

Noman Bashir - University of Massachusetts Amherst
Appeared at HotCarbon’22



Computing’s Demand is Growing Exponentially
e Society continues to find useful applications
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Exp. Demand 75 Exp. Energy Consumption

 Most optimistic estimates suggest 6% increase
from 2010-2018

Shift from Traditional Datacenters to Cloud
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Grid’s Carbon Intensity Has Been Decreasing

* Energy’s carbon efficiency in the US has improved
by 45.6% over 2001-2017

Computing’s Energy Demand
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Algorithmic Efficiency can be | Datacenter capacity increased
further improved, but has limits § by 6X from 2010-2018

Industry h t | tive t unbotinded] C INi dMLd d |
ndustry has strong incentive to Ibounded] - Crypto-mining an emand is

improve the algorithmic efficiency A - outpacing Moore’s law

E 2

- Industry has strong incentive to

Recent focus on ML training !
. maintain and accelerate growth

and Crypto-mining

_ Cycles per Unit Work x Total Units of Work
Carbon Footprint =

Computing’s Energy Efficiency x Energy’s Carbon Efficiency

[Koomey’s Law: Energy efficiency }
doubles every 1.5-2.6 years] &
transition to cloud, dedicated hardware §

- Zero-carbon energy means carbon
_ efficiency can be infinite

v

[Laundar’s Principle: Theoretical limit
[bounded]

to be reached in 2050, practical sooner] §

¢

<4

- Industry has helped subsidize

[unbounded] ¢
. zero-carbon energy

[Jevon’s Paradox: Historically, gains in
efficiency have not reduced demand] §
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Carbon Accounting and Attribution Methods

 Carbon offsets: offset carbon-intensive grid
energy with the use of zero-carbon energy at
another location and time

. Free” by 2030

All Carbon Offset Subsidize Renewable Energy,
But Stricter the Carbon Offset. the Better

Andrew Chien’s Good Better Best

24/7 carbon offsets

Loosest

{ Annual, location-
i agnhostic

| Carbon-neutral
i since inception

- 24/7 matching is not the panacea

Subsidize the adoption of renewable _,
| energy across the world i |+ Carbon emissions should be attributed to all loads:!

. based on their energy consumption

|+ Still cause significant amount of directj
| carbon emissions ‘

|+ You are carbon free when society is carbon free |

-Google aims to be “Carbon

- Piloted “Time-based Energy}
Attribute Certificates (TEACs)” |
Matching on the same grid in|
the same hour of the day

Stricter Strictest

| Zero
i Carbon
{ Grid



Accounting for and Reducing Embodied Carbon

 Carbon emissions from producing products or services,
e.g., buildings facilities, manufacturing servers

* Your embodied is someone else’s | e Operatlonal IS Completely under
operation

- your control
* Incentivizes buying less or buying | ¢ Operational emissions are not a
different |

solved problem

L Embodled and operatlonal emissions are NOT addltlve
' One is NOT more important than the other

, Focus on embodied can distract from operational ‘
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Implications for Sustainable Computing

__Enable Visibility intVCar | Leverage Computing’s Flexibility

 WattTime and electricityMap f . Change how we operate

|+ Average vs marginal carbon?| |+ Use computing to balance grid |

Carbon | | Carbon
Pre-requisite Intensive | Free
Grid j Grid

Clarify Misunderstandings

Shift “Focus” from Energy to Carbon

“Carbon-free”, “carbon-neutral”, ?- No direct nor financial incentive |
{ “zero-carbon”, “100% renewable”;

_ _ i Indirect incentive exist ff.
mean different things e

1+ Confusing terminology gives false
| Impressions j,
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Key Takeaways

 Operational carbon footprint - NOT a solved problems
* Problem is going to GET WORSE

» Offsets are good, but NOT the panacea

 Embodied and Operational are NOT additive
 Operational is under our DIRECT CONTROL

* | everage computing’s flexibility
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Ecovisor: A Virtual Energy System for
Carbon-efficient Applications

Noman Bashir - University of Massachusetts Amherst
To appear at ASPLOS’23
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Clean Energy is Variable and Unreliable

Carbon intensity variation: less than 50g to more than 800g across time and
geographical regions.
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Energy’s Reliability Abstraction Limits Computing’s Potential

Computing’s Unique Advantages

Job
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Ecovisor: A Virtual Energy System for Carbon-Efficient Applications

Reliability {
Abstraction

Grid’s Underlying Reality
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Ecovisor: Design and API

‘ | - - — - - '” ‘ Function Name Type Input Return Value Description

3 CO nta | ne rl Zed Ap p CO nta I n e rl Zed Ap p » [| set_container_powercap () Setter ContainerID, kW N/A Set a container’s power cap

! set_battery_charge_rate () Setter kW N/A Set battery charge rate until full

,‘ — | rf AP set_battery_max_discharge () Setter kW N/A Set max battery discharge rate

' E{S App nterface E‘fa App Interface get_solar_power () Getter N/A kW Get virtual solar power output

4 Power/Carbon ‘ Power/Carbon e v Resource Control { get_grid_power () Getter N/A kW Get virtual grid power usage

: Monitoring : Control Ol u get_grid_carbon () Getter N/A g-COy/kW Get current grid carbon intensity

’ ° % get_battery_discharge_rate () Getter N/A kW Get current rate of battery discharge || €¢—
£ ;;F:I :;l ./ 4 get_battery_charge_level () Getter N/A kWh Get energy stored in virtual battery

, — é\n‘ ECO I nte rface = CO ntrOI I nte rfa ce get_container_powercap () Getter ContainerID kW Get a container’s power cap

3 —cO . O O % get_container_power () Getter ContainerID kW Get a container’s power usage

L’ m - o i

¥ o p ’ N/ . \ 3 -.“ tick () Notification N/A N/A Invoked by ecovisor every At
Virtualized Virtualized E 1

$ @) Energy Res. Energy Res. < $ 4

1 S, :‘E % ,‘g % s { Control Power Supply Asynchronous Get Energy System
1 \ 7 Lo 77 Lo < and Demand Notifications Information
o \ J \ J 72 8

{ = =

{ ,

Software Defined Control
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Ecovisor: Design and API

Containerized App

Function Name Type Input Return Value Description
IREI;'{S App Interface set_container_powercap () Setter ContainerID, kW N/A Set a container’s power cap
set_battery_charge_rate () Setter kW N/A Set battery charge rate until full
P(I)\\lllveri/t Carbon t : POWC?’/ (t:arl bon » || set_battery_max_discharge () Setter kW N/A Set max battery discharge rate
onitoring ontro
- . get_solar_power () Getter N/A kW Get virtual solar power output
API get_grid_power () Getter N/A kW Get virtual grid power usage
E{S ECO Interface get_grid_carbon () Getter N/A g-CO/kW Get current grid carbon intensity
m ; ' get_battery_discharge_rate () Getter N/A kW Get current rate of battery discharge
n 4 - N\ ‘. B get_battery_charge_level () Getter N/A kWh Get energy stored in virtual battery “
Virtualized Virtualized get_container_powercap () Getter ContainerID kW Get a container’s power cap
o Energy Res. Energy Res. _ . —
< get_container_power () Getter ContainerID kW Get a container’s power usage
[ ﬁ»\\ IA #\\ e ' - - -
7)) % 89 89 % L tick () Notification N/A N/A Invoked by ecovisor every At
o . /o v, ?
— Control Power Supply Asynchronous Get Energy System
and Demand Notifications Information
A A A
v —
;
Software Defined Control
T T
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| Energx Storage
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Grid

Energy System ‘ Computing System
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Ecovisor: Prototype Implementation
o Software: REST API

- Access to energy APIs and electricityMap

|+ Reducing carbon (ML training, MPI)
| - System (WaitAWhile - Middleware’21)

- Extends LXD; wraps LXD server - App-specific (Wait&Scale - under review)

 Hardware: small-scale prototype » Budgeting carbon (web server)

- System (rate limiting)
- App-specific (budgeting)

- ( , * | everaging batteries (web server, Spark)
i - System (static power)
O

- App-specific (dynamic power)

— = =ik
Battery +
SolorChcrgeCon'rroller gEEEE ‘ E

|« Leveraging solar (MPI, straggler
- System (equal)

- App-specific (progress-based)
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Ecovisor: Optimizing Carbon/Performance Trade-off

o System (WaitAWhile - Middleware ‘21) versus

Application-specific (Wait&Scale) policy
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PyTorch ML Training

.......................... Optlmal Scale — 2X

Under-review work on leveraging
workload elasticity.

BLAST
........................ Optimal Scale = 3X

Embarrassingly parallel job.



Ecovisor: Carbon Budgeting

» System (carbon rate-limiting) versus Application-
specific (carbon budgeting) policy

Carbon Intensity — Workload (Web App 1) --- Workload (Web App 2)
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Conclusion

» Key Point: Many carbon-efficiency optimizations possible if applications have
visibility/control

* Ecovisor exposes useful functions to enable carbon-efficient
applicationsAccess to energy APls and electricityMap

* A Foundation for developing new abstractions to simplify developing carbon-
efficient applications.

* Ongoing Work: Exploiting flexibility to reduce carbon; developing new
abstractions for ecovisor
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Links
» CarbonFirst: http://carbonfirst.org/
* Personal Webpage: https://noman-bashir.github.io/

Collaborators

 UMass: Abel Souza, Walid Hanafy, Qianlin Liang, Jorge
Murillo, David Irwin, Prashant Shenoy, Ramesh Sitaraman,
Mohammad Hajiesmailli

e Caltech: Adam Wierman
e WPI: Tian Guo
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