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Abstract

We use the 1972 UK Raising of the School-Leaving Age (RoSLA) to identify and
estimate an equilibrium marriage market model with sorting on academic qualifica-
tions and latent ability. Our identification hinges on a RoSLA-induced discontinuity
in the distribution of qualifications. We disentangle the contributions of qualifica-
tion and ability to marital surplus; we find that they are complements. Ability
increases the probability of ever marrying; a basic qualification does not. The ob-
served marriage gap between basic qualified and unqualified individuals is entirely
due to selection on ability. The RoSLA worsened marital prospects of low ability
individuals, through general equilibrium effects.
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1. Introduction

Estimating the returns to education remains a central question in economics. As David

Card’s influential survey (Card, 2001) notes, accounting for unobserved heterogeneity is

critical to answering this question, since individuals with higher educational attainment

also have unobserved traits, including ability, that make them distinctly different from

those with lower educational attainment. Much research in the past three decades has
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focused on quasi-experimental methods or on finding valid instrumental variables, so that

the effects of education and unobserved ability on individual pecuniary and non-pecuniary

outcomes (Oreopoulos and Salvanes, 2011) can be disentangled.

One potential avenue for a return to education that has recently received increased

attention is via the marriage market. In most developed countries, a substantial majority

of college graduates are now women. Chiappori, Iyigun, and Weiss (2009) and Chiappori,

Salanié, and Weiss (2017) have argued that this is attributable to the secular increase in

the marital return to education for women.1 Since marriage formation is an equilibrium

phenomenon, this literature has relied on structural models of the marriage market, as

pioneered by Choo and Siow (2006), to estimate the payoffs in marriage to the two genders

by their level of educational attainment. Hence, matching is on traits that are observable

to an econometrician, with no role for ability or other latent variables.

This paper takes a first step towards bridging the two approaches by using an educa-

tion reform to estimate an equilibrium model of the marriage market where individuals

differ in academic qualification and in latent ability that is correlated with academic

qualification. The reform allows us to separate the causal effect of holding a basic aca-

demic qualification versus the causal effect of academic ability on the probability of ever

marrying. Our substantive finding is that the causal effect of a basic qualification versus

no qualification on the probability of ever marrying is zero (negative for men) while the

causal effect of ability (medium versus low) is positive and substantial for both genders.

The 1972 Raising of the School-Leaving Age (RoSLA) order raised the school leaving

age in the UK from 15 to 16 for individuals born from September 1957 onwards. The

RoSLA sharply increased the proportion of school leavers who left with the most basic

UK academic qualification from (roughly) 35 to 45 percent, likely due to a large reduc-

tion in the opportunity cost of sitting the exam for this basic qualification.2 However,

the pecuniary returns to the additional schooling and qualification attainment induced

by the RoSLA were small, see Grenet (2013).3 With the exception of reduced criminality,

there is also no evidence of substantial nonpecuniary returns to schooling or qualification

1Zhang (2021) provides an alternative explanation based on differential fecundity.
2By compelling individuals to stay in school up until the point where they could sit the exam for

the most basic UK qualification, the RoSLA substantially reduced the labour earnings that a young
individual would have to forego to acquire a basic qualification.

3Looking beyond the RoSLA, evidence from Europe on the pecuniary returns to schooling identified
from compulsory schooling laws—see Pischke and von Wachter (2008) for Germany, Devereux and Hart
(2010) for an evalution of an earlier British compulsory schooling law, and Grenet (2013) who also
consider a French reform—show much lower returns than comparable evidence from North America—
see Angrist and Krueger (1991) and Oreopoulos (2006).
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attainment at the RoSLA margins.4 Existing empirical evidence on the RoSLA thus

indicate that the observed associations between qualification and earnings and other out-

comes were largely driven by selection on ability, the distribution of which was plausibly

unaffected by the RoSLA.5 Indeed, using the UK National Child Development Study,

which contains measures of ability, we show that the RoSLA strengthened the ability and

qualification attainment correlation.

Guided by these observations, we develop a marriage market model with sorting on

qualification, ability and age and estimate it using UK Labour Force Survey data coupled

with UK Census data and Birth and Mortality data from the UK Office of National

Statistics. Ability is correlated with qualification attainment and is a latent trait, i.e.

observed by marriage market participants, but not by the analyst. We use the model

to compute the causal effects of qualification and ability on marital outcomes and to

evaluate wider marriage market implications of the RoSLA.

We make four contributions. First, we establish a set of novel empirical facts about the

marriage market response to the RoSLA using cohorts born close to the reform thresh-

old. The proportion never married (by age 45) increased among unqualified men and

women born after the reform threshold. Qualification homogamy among the unquali-

fied increased after the reform, while overall qualification homogamy remained largely

unchanged. Marriages, of course, frequently occur across cohorts resulting in a husband-

wife age gap. Across all years, the husband-wife age gap distribution is skewed towards

positive gaps, where the husband is older than the wife, with a mode at one year. We doc-

ument a temporary shift in the age gap distribution: members of the first RoSLA-exposed

cohort are more likely to inter-marry than earlier and later cohorts.

Second, we generalize the influential marriage market model of Choo and Siow (2006)

extended to accommodate latent ability. Under the empirically validated assumption that

the RoSLA strengthened the correlation between ability and qualification attainment, the

reform identifies our extended model. Accounting for latent ability markedly improves

the model’s ability to reproduce the observed marriage market response to the RoSLA.

Both ability and qualification matter for marital surplus, and own and spousal ability,

and own and spousal qualification, are complementary in generating surplus.

4Clark and Royer (2013) use the RoSLA and an earlier change to British compulsory schooling age
to estimate zero returns to education on a number of health outcomes and Silles (2011) find compulsory
schooling laws including the RoSLA delay childbearing, but does not alter overall fertility. Machin,
Marie, and Vujić (2011) show that the RoSLA significantly reduced criminality.

5Ability forms in early life, has a distribution that changes slowly and is not directly under the control
of policy (Cunha, Heckman, and Schennach, 2010).
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Third, we compute causal effects of an academic qualification and of ability on the

probability of ever marrying. For both men and women with medium ability, the causal

effect of holding basic versus no qualification on the ever-marrying rate is negligible. In

contrast, the causal effect of possessing medium versus low ability on the ever-marrying

rate is substantial for individuals without a qualification. For unqualified men (women),

we find that having medium versus low ability increases the ever-marrying rate by up to

10 (5) percentage points. Hence, the entire observed gap in ever-married rates between

individuals with basic and no qualifications is accounted for by selection on latent ability:

unqualified individuals marry less frequently than those with a basic qualification because

they tend to have low ability, not because they lack qualifications per se.6

Fourth, we simulate a counterfactual marriage market without the RoSLA and show

that the reform had general equilibrium effects on the marriage outcomes of individuals

whose minimum school leaving age was not affected by the RoSLA. The typically pos-

itive husband-wife age gap meant that the reform was felt by men in the pre-RoSLA

cohorts. Overall, the reform increased the marital mixing between medium and high

ability individuals, but left low ability individuals isolated in the marriage market.

Choo and Siow (2006, henceforth CS) provided the seminal empirical implementation

of the Becker-Shapley-Shubik transferable utility marriage market model (Shapley and

Shubik, 1971; Becker, 1973). The CS approach groups individuals into a finite number of

observable types, with a systematic marital surplus function that depends on a couple’s

type-profile, and with additively separable individual i.i.d. preferences over partner type.

The CS framework has been extended in various directions and applied in a variety of

contexts.7 The literature has focused on marital sorting on observable traits, with only

one notable exception: similar to us, Chiappori, Costa Dias, and Meghir (2018) allow

for latent ability in the CS framework. They develop a dynamic model of investment

in human capital, marriage and household labor supply, where matching takes place on

the basis of a one-dimensional variable—human capital—which depends on latent ability

and acquired education. Using longitudinal data with information on household labor

supply and long-term earnings, they infer the joint distribution of education and ability,

6Conditional on marrying and on own ability, own qualification predicts spousal qualification. How-
ever, as spousal traits is defined conditional on marriage, this effect is not strictly causal.

7Recent papers that follow Choo and Siow (2006) include Dupuy and Galichon (2014), Galichon and
Salanié (2021), Choo (2015), Brandt, Siow, and Vogel (2016), Mourifié and Siow (2021), Chiappori,
Salanié, and Weiss (2017), and Chiappori, Costa Dias, and Meghir (2018). Following Dagsvik (2000),
Arcidiacono, Beauchamp, and McElroy (2016) set up and estimate a matching model, where individuals
can also choose the terms of the relationship, which they use to analyze high-school relationships.
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and therefore, human capital. Their identification strategy rests on a fully dynamic

model. We focus on short-run marriage market adjustments in a static model where

identification derives from a large reform-induced change in the mapping from ability to

qualification attainment. In this respect, we provide a prototypical example of how the

CS framework can be extended to include a correlated latent type-dimension without

sacrificing tractability, and be identified through a discontinuity in the environment and

the associated changes in the observable marriage outcomes.

Central to our approach is that we study outcomes for cohorts born sufficiently close

that it can be plausibly assumed that preferences are stable. This provides an interesting

contrast to Chiappori, Dias, and Meghir (2020) who use the CS approach to decompose

changes in marriage patterns over time into supply and preference changes. Noting that

assortative matching occurs when the marital surplus—reflecting preferences—exhibits

supermodularity, they argue, using data on educational attainments and marital outcomes

in US cohorts born over a long timeframe (1930s through to the 1970s), that assortative

matching has increased, and particularly so at the top of the education distribution.

Our extended model retains the standard CS assumptions, most notably the existence

of a set of finite types where all market participants observe each other’s type, including

their latent ability. There are three qualifications levels—none, basic and advanced—and

three ability levels—low, medium and high. Identification of the marital surplus matrix

hinges on three restrictions. First, we assume that the RoSLA discontinuously shifted the

distribution of academic qualifications, but not the distribution of latent ability. Second,

we interpret the RoSLA as having reduced the opportunity cost of obtaining a basic

qualification, which tightened the selection on ability into holding a qualification, and

increased the ability-qualification correlation. Those who responded to the reform by

obtaining a basic qualification were medium ability individuals who, in the absence of

the reform, would have remained unqualified. Third, the husband-wife cohort-profile

(determining their age-gap) is assumed to enter additively in the marital surplus. This

restriction is tested and not rejected. We also need that some marriages occur between

individuals born pre- and post-reform respectively. This is trivially confirmed in the data.

Identification of the roles of qualifications and ability for marital matching reflects

the stylized facts referenced above. If ability did not matter for marital surplus—only

qualifications did—then, as the RoSLA made unqualified individuals scarce, unqualified

individuals should obtain a larger share of any marital surplus and marry more fre-

quently. As this is opposite to what we observe, the data decisively indicates that the
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reform induced a marriage-surplus-relevant compositional change among the unqualified.

Conversely, if only ability—not qualifications—mattered for marital surplus, there is no

reason for the husband-wife age gap distribution to respond to the reform.

2. Data Sources

We use data for England and Wales where the academic year runs from September 1st

to August 31st in the following calendar year. Individuals born September 1957 through

August 1958 thus belong to the 1957 academic cohort, the first exposed to the RoSLA. We

focus on a set of academic cohorts C = {1953, ..., 1960} born around the RoSLA and work

with three ordered qualification levels, z ∈ Z = {z0, z1, z2}, representing no academic

qualifications, a basic academic qualification, and an advanced academic qualification. A

basic qualification refers to an Ordinary Level (O-Level) or a Certificate of Secondary

Education (CSE) qualification, which is the very first tier of accredited examinations in

England and Wales. An advanced qualification refers to an Advanced Level (A-Level)

qualification, which is a prerequisite for entry into higher education.

2.1. Labour Force Survey

The UK Labour Force Survey (LFS) is representative of the UK population and contains

information on year and month of birth and qualifications held for each household member

and on relationships between household members. We pool all individuals observed in

the 1984 - 2014 LFS, born in the UK and resident in England and Wales, and who are

from some academic cohort c ∈ C.8 We use the LFS data to estimate the impact of

the RoSLA on academic qualification rates and to characterize the marriage patterns in

terms of couples’ cohort and qualification profiles.9 Table 1 provides descriptive statistics

for the LFS sample by gender and marital status.

2.2. ONS Population Statistics and Census Data

We use birth statistics from the ONS to calculate academic cohort size by gender for

England and Wales.10 As a general characterization, the cohorts that we are studying

8The LFS is annual during 1983-1991, but became a quarterly rotating panel in 1992 where we use
first interviews. We focus on England and Wales as other data are available only for these countries.

9The LFS provides information about the respondent’s current marriage. Our analysis assumes that
the observed current marriages are representative of first marriages in terms of spousal characteristics.

10We apply gender-cohort mortality rates to calculate academic cohort size at age 25. The gender-
specific mortality rates by age were obtained from the ONS’s principal projection of historic and projected
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Table 1: Pooled LFS Sample of Individuals from Academic Cohorts 1953-1960

Males Females

All Single Married All Single Married

Age in Years 38.86 38.05 39.25 38.99 39.44 38.80
[9.11] [9.56] [8.86] [9.12] [9.41] [8.98]

Academic cohort 1956.60 1956.93 1956.44 1956.60 1956.86 1956.49
[2.29] [2.28] [2.28] [2.30] [2.30] [2.29]

No Qualification z0 0.35 0.38 0.34 0.32 0.35 0.31

Basic qualification z1 0.38 0.36 0.39 0.43 0.40 0.45

Advanced qualification z2 0.27 0.26 0.27 0.24 0.25 0.24

Observations 147,878 47,832 100,046 156,549 47,059 109,490

Notes: The sample pools all individuals observed in the 1984-2014 Labour Force Surveys from
academic cohorts 1953-1960 with non-missing information on age, qualification and marital status.
Standard deviations in square brackets. Basic qualification refers to CSE/O-Level qualifications,
and advanced qualifications refer to A-Level or higher qualifications. See main text for details.

were steadily increasing in size by on average 3 percent per year, from around a cohort

size of 650,000 towards the mid-1950s to close to 800,000 by 1960.

We commissioned tabulated data from the ONS based on the 2011 Census in order to

characterize never-married rates by gender, academic cohort and qualification. We adjust

the data to account for first marriages occurring past the age of 45, leaving us with the

proportion never-married by age 45 by gender, academic cohort and qualification.11

2.3. National Child Development Study

The National Child Development Study (NCDS) sample individuals born in England,

Scotland and Wales in a particular week of March, 1958.12 The NCDS follows the sampled

individuals via a set of “data sweeps” that combines questionnaires and administrative

information from e.g. schools. We make use of the 1974 (at age 16) and 1991 (at age

33) data sweeps which contain information on the cohort members’ academic ability, and

their preferred and realized school leaving age, and their qualification attainment.

The NCDS data does not contain information on spouses and is therefore not suit-

able for marriage market analysis per se; instead, we use the NCDS data to inform the

specification of our main extended CS model. To be consistent with the LFS data, we

mortality rates from the 2010 UK Life Tables. Migration is ignored in the population supply calculations.
11First marriages past the age of 45 are rare. We use ONS Cohabitation and Cohort tables on the

proportions of never-married individuals by cohort. We assume that the rate of entry into first marriage
beyond age 45 is homogenous across qualification groups.

12The initial survey, the “Perinatal Mortality Study,” established a sample of 17,415 cohort members.
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restrict the NCDS sample to individuals born in England and Wales.

3. The 1972 Raising of the School Leaving Age

3.1. The Reform

In the UK, individuals become eligible to leave school at the end of the academic year

in which they reach the minimum age requirement, rather than on the day they reach

the specified compulsory school leaving age. The UK Government introduced Statutory

Act 444, known as the Raising of School Leaving Age (RoSLA) Order, in March, 1972.

The RoSLA came into operation on September 1st, 1972, raising the minimum school

leaving age requirement by one year to age 16, affecting individuals born from September

1st, 1957. In England and Wales, the RoSLA prompted a dramatic 25 percentage points

increase in the proportion of individuals leaving education at age 16, rather than at age

15. The effect was limited to the lower end of the education distribution, with evaluations

routinely concluding that the reform had no effect on the probability of leaving at ages

17 or above (see e.g. Chevalier, Harmon, Walker, and Zhu, 2004; Clark and Royer, 2013).

There are two levels of national accredited exams sat during school in England and

Wales. The first tier, which we label a basic qualification, led to O-Level or CSE qualifi-

cations.13 First tier examinations are available at the end of the academic year in which

an individual turns 16. If an individual remains in school beyond that point, then at the

end of the academic year in which they turn 18, a second tier of academic examinations

can be taken, leading to A-Level qualification, which we label an advanced qualification.

3.2. The Impact of the RoSLA on Qualifications

As exposure to the RoSLA was determined by a threshold date of birth, we estimate

the reform-induced shifts in the qualification rates using a regression discontinuity design

(RDD), see e.g Hahn, Todd, and der Klaauw (2001) and Imbens and Lemieux (2008).

Let w be an individual’s date of birth, the running variable. There is a deterministic

mapping from date of birth w to academic cohort c ∈ C and we normalize w such

that 1 (w ≥ 0) indicates RoSLA exposure. Let z ∈ Z denote an individual’s (highest)

academic qualification level, and let yz be an indicator for attaining level z. Cast in the

potential outcomes framework, yz = yz0 1(w < 0) + yz1 1(w ≥ 0), where yz1 and yz0 are the

13Since 1987, the first tier qualification is known as a General Certificate of Secondary Education
(GCSE).
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potential outcomes with and without RoSLA exposure, respectively.

The RDD regression of interest is the linear probability model

yz = α0 + t0(w) + t1(w)1 (w ≥ 0) + φ1 (w ≥ 0) + ϵ, (1)

where t0(w) and t0(w) + t1(w) are the pre- and post-RoSLA trends, respectively, with

t0(0) = t1(0) = 0. If the potential outcome regression functions E[yz0|w] and E[yz1|w]

are continuous functions of w, the OLS estimator of φ in (1) consistently estimates

E [yz1 − yz0|w = 0], the causal effect of the RoSLA on the level-z qualification rate at the

reform threshold w = 0.

We estimate (1) by gender and qualification levels z ∈ Z using the LFS data described

above (see Table 1). We include linear trends in the running variable w on either side of

the threshold w = 0, as advocated by Gelman and Imbens (2019), and employ the Lee

and Card (2008) procedure for correcting standard errors for specification errors arising

from the LFS recording date of birth by month, an inherently discrete variable.

Figure 1: Distribution of Academic Qualifications by Month of Birth
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Notes: The horizontal axes show month of birth normalized to 0 at the RoSLA threshold. The
vertical axes show qualification rates.

Figure 1 is a graphical rendition of the RDD. There is a sharp drop in the rate of

holding no qualification for each gender at the RoSLA threshold, with a corresponding

discontinuous increase in the proportion holding a basic qualification. The RoSLA did

not have any effect on the rate of holding an advanced qualification.
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Table 2: Regression Discontinuity Estimates of the RoSLA-Effect on Qualification Rates

Males Females

(i) (ii) (iii) (iv)

No Qualification −0.099∗∗∗
(0.008)

−0.106∗∗∗
(0.006)

−0.120∗∗∗
(0.009)

−0.128∗∗∗
(0.007)

Basic qualification 0.094∗∗∗
(0.008)

0.106∗∗∗
(0.005)

0.119∗∗∗
(0.010)

0.131∗∗∗
(0.007)

Advanced qualification 0.006
(0.005)

−0.000
(0.005)

0.001
(0.005)

−0.002
(0.004)

Controls No Yes No Yes

Observations 147,878 147,878 156,549 156,549

Notes: The sample used in each regression is described in Table 1. We report
the estimated coefficient on a RoSLA dummy for being born September, 1957
or later from separate regressions with the dependent variable being a dummy
for having a particular level of qualification attainment. Distance of date of
birth from the September, 1957 threshold measured in months is used as
the running variable and is included in linear form and interacted with the
RoSLA dummy. The demographic controls include a third degree polynomial
in age, month of birth dummies, and year of interview dummies. ∗, ∗∗, and ∗∗∗

indicates statistical significance at the 10, 5, and 1 percent levels, respectively.

Table 2 reports estimates of φ in (1) by gender and qualification level z ∈ Z, with and

without the inclusion of demographic controls. The RoSLA reduced the fraction holding

no qualification by about 10 percentage points for men and by about 12 percentage points

for women, effect sizes that are very precisely estimated and in line with previous studies

evaluating the RoSLA-effect on qualification rates.

3.3. RoSLA Effects by Ability: Evidence from the NCDS

All born in March, 1958, the NCDS cohort members were in the first RoSLA-treated

academic cohort. The 1974 NCDS data sweep was conducted in the Spring of that year,

as the NCDS cohort members were turning 16, and a few months before they were due

to sit the O-level/CSE exams that would give them their first academic qualification.

3.3.1. School-Leaving Age and Qualifications. The 1974 data sweep asked NCDS cohort

members two questions about preferred school-leaving age. First, they were asked “At

what age do you think you are most likely to leave school?”, with the lowest option being

16, consistent with this being the minimum school-leaving age for their particular cohort.

Second, after being reminded that they were the first cohort required to stay in school

for an additional year, they were asked “In your case, do you wish that you could have

left when you were 15?”. From these two questions, we define an individual’s preferred
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school-leaving age with options 15, 16 and 17+. The 1991 data sweep, completed at age

33, collected information on realized school-leaving age and qualification attainment.

Using this information, we classify the NCDS cohort members as:14

• “Never-takers”: Individuals who would have preferred to leave school at age 15, and

who, having been required to stay until age 16, left school without a qualification

• “Compliers”: Individuals who preferred to leave school at age 15, but who, having

been required to stay until age 16, left school with a basic qualification

• “Always-takers”: Individuals who preferred to stay until age 16 even if leaving at

age 15 had been an option, and who left school with a basic qualification

Additionally we define as a separate class,

• “Stayers”: Individuals who stayed on past age 16 and gained advanced qualification,

and document how individuals in these four subpopulations differ in academic ability.

3.3.2. Ability and selective RoSLA responses. The NCDS contains measures of cognitive

and academic ability at age 16, including one reading comprehension test and one mathe-

matics test, as well as teacher assessments in English, mathematics and science. We treat

the five measures as noisy indicators of latent academic ability and use a measurement

model to estimate a standardized ability measure (see Appendix A).

Figure 2 plots the density and the cumulative distribution of the NCDS ability for

“Never-takers”, “Compliers”, “Always-takers”, and “Stayers”. The ability distributions

of “Compliers” and “Always-takers” are strikingly similar.15 That is, individuals pushed

by the RoSLA to obtain a basic qualification that they would otherwise not have acquired

(“Compliers”), are of similiar ability as individuals who, even in the absence of the

RoSLA, would have left school with a basic qualification (“Always-takers”).

The ability distribution of “Stayers” stochastically dominates those of “Compliers”

and “Always-takers”, which in turn very dominate that of “Never-takers”. That is, the

14We verify in Appendix A that (i) NCDS preferred school-leaving ages align closely with the pre-
RoSLA LFS qualification distribution, (ii) preferred school-leaving age aligns well with realized school-
leaving age under the constraint that leaving at age 15 is not an option, and (iii) NCDS qualifications
closely resemble those observed in the LFS for the first RoSLA-affected cohort.

15These figures pool across men and women. In Appendix A we provide further details of mean
estimated ability by gender and classification. Geruso and Royer (2018) also use information on preferred
and actual school-leaving age in the NCDS, but do not relate this information to ability measures.
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RoSLA primarily affected qualification attainment among individuals who were (i) more

academically able than the least able, (ii) not as academically able as the most able, and

(iii) of similar ability to those who absent the reform would attain basic qualification.

Figure 2: Ability Distributions by Individual Classification in the NCDS
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Notes: The figure shows distributions of (estimated) academic ability by RoSLA Never-takers,
Compliers, Always-takers, and Stayers in the National Child Development Study. The left panel
shows kernel density plots (Epanechnikov kernel, bandwidth 0.1). The right panel shows the
cumulative distribution of ability. The overall sample size in each panel is 6,365, with 2,054,
1,329, 1,280, and 1,702 individuals respectively in the four classes.

4. The RoSLA and the Marriage Market

4.1. Never-Married Rates

Figure 3 shows the never-married rate by age 45 by gender, cohort, and level of qualifica-

tion. The never-married rates exhibit an increasing trend for all qualification levels. The

never-married rate of men is above that of women for each cohort and qualification level.

The most striking feature of Figure 3 is the increase in the never-married rate for

unqualified individuals at the RoSLA threshold. Indeed, for women the first affected aca-

demic cohort marks a key turning point. Whereas traditionally, the most qualified women

would have been the least likely to marry in their lives, the first RoSLA affected cohort

is also the first for which unqualified women were the least likely to ever marry. Among
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men, the unqualified were already least likely to marry, but at the reform threshold, the

gap in the never-married rates for unqualified and qualified rose distinctly.

Figure 3: Never-Married (by Age 45) Rates by Cohort, Gender, and Qualification
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Notes: Academic cohorts on horizontal axes. Never-married (by age 45) rates on vertical axes.

4.2. Qualification Homogamy

The left panel of Figure 4 shows the qualification distribution of the wives of all married

men born between 1953 and 1960 by the husband’s own qualification level. The right

panel provides the corresponding distribution of husbands’ qualifications by the wife’s own

qualification for the sample of married women. There is clear evidence of qualification

homogamy: For each gender and qualification level, the qualification most frequently held

by the spouse is the same as that held by the respondent.

Did the RoSLA alter the degree of qualification homogamy? We consider this question

using a qualification homogamy index also used by Eika, Mogstad, and Zafar (2019). Let

g ∈ {m, f} index gender, where m stands for “male” and f for “female”, and use prime

to indicate own variables, and double-prime for the spouse. Then, consider

Sg(z, c) ≡ Prg(z′ = z, z′′ = z|c′ = c)

Prg(z′ = z|c′ = c) Prg(z′′ = z|c′ = c)
, g = m, f. (2)

The homogamy index Sg(z, c), for qualification z, is defined for the population of mar-
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Figure 4: Qualification Homogamy by Gender
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Notes: Each panel shows the spousal qualification distribution by own qualification level.

ried individuals of gender g and cohort c. The numerator is the probability that, for a

randomly drawn individual in this subpopulation, both the individual and their spouse

have qualification z. The denominator is the product of the marginals: the probability of

the individual having qualification z and the probability of the spouse having that same

qualification. Under random matching, Sg(z, c) is unity and rises above unity if both

partners holding qualification z is more common than under random matching.16

We compute Sg(z, c) by qualification, gender and cohort using the LFS sample of

married individuals, and an aggregate index where each Sg(z, c) is weighted by the fre-

quency of qualification z among gender g, cohort c individuals. The cohort profiles of the

homogamy indices are shown in Figure 5 for married men (left panel) and for married

women (right panel). The aggregate homogamy index profile is flat for both genders, a

conclusion that is robust to other homogamy measures, for instance rank-correlation.17

The aggregate index, however, masks considerable heterogeneity. First, the advanced

16A high Sg(z, c)-value may reflect small population shares, high single rates, or it may reflect that
particular subgroups are likely to inter-marry, which increases the numerator in (2). The homogamy
index does not disentangle these mechanisms, and we only deploy it as a descriptive device to pinpoint
changes in marriage market outcomes around the RoSLA.

17Computing the Goodman-Kruskal gamma measure of the rank correlation among males (females), we
get 0.628 (0.638) among the “before” cohorts 1953-56 and 0.633 (0.637) among “after” cohorts 1957-60,
with no statistically significant before-after differences.
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qualified always has the highest index value, and the basic qualified always has the lowest

index value. Since the three qualifications groups are roughly equally frequent in the

married population (see Figures 1 and 3) the clear homogamy index ranking likely reflect

different tendencies for inter-marrying. Second, there is a clearly visible and permanent

increase in the qualification homogamy index after the RoSLA for unqualified men and

women. In part, this increase is mechanical as the unqualified become a smaller share

of the married population. However, an opposite mechanical effect would apply to the

population holding a basic qualification as their proportion increased after the RoSLA.

Yet, for this group we see, at most, a modest decrease in the homogamy index. This

suggests that the post-RoSLA increase in unqualified homogamy may reflect, at least in

part, an increase in the tendency of unqualified individuals to inter-marry.

Figure 5: Qualification Homogamy by Cohort, Gender, and Qualification
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Notes: Academic cohorts on the horizontal axes. The homogamy index (2) on the vertical axes.

4.3. Age Gaps

We define the husband-wife age gap d as the difference in their academic cohorts: d ≡

c′− c, where c and c′ are cohort of the husband and the wife, respectively. The left panel

of Figure 6 shows the husband-wife age gap distribution in the LFS sample of married

individuals. Age gaps of 0, 1 and 2 are the most frequent. There is a sharp drop in
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frequency when moving to negative age gaps, but a fat right tail for positive age gaps.

Figure 6: The Husband-Wife Age Gap Distribution
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Notes: The age gap d is defined as d ≡ c′− c, where c and c′ are cohort of the husband and the
wife, respectively. The left panel shows the aggregate husband-wife age gap distribution. The
right panels show the age gap distribution, by gender and qualification.

In the right panels of Figure 6, we show the age gap distribution, by gender and

qualification. The distribution of husband-wife age gaps for married men born in some

c ∈ C is displayed in the upper panel, while the lower panel does the same for married

women. The right panels of Figure 6 suggests that there is no particular qualification

pattern among individuals who choose to marry with a negative age gap. Among those

marrying with non-negative age gaps, larger positive age gaps are slightly more common

among less qualified individuals, consistent with Mansour and McKinnish (2014).

To explore whether the age gap distribution was affected by the RoSLA, we compare

the cohort-specific distributions to the aggregate distribution around the reform thresh-

old. For each age gap δ ∈ {−3,−2, ..., 3} and cohort c ∈ C we regress 1 (d = δ) on a

cohort-c dummy to determine whether cohort c individuals had a different likelihood of

being married with age gap δ compared to individuals from other cohorts.

The estimated coefficients on the cohort-dummy are plotted in Figure 7. The panels

in the top row consider men in each cohort 1956 to 1958. In each panel, a vertical line

delineates whether the wife is from a pre- or post-RoSLA cohort. For men, the first
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RoSLA affected cohort, the 1957 cohort, is the only cohort with statistically significantly

different age gap frequencies, being about one percentage point more likely to be married

with an age gap 0 or +1, but less likely to marry with a negative age gap.

The bottom row of Figure 7 shows the corresponding results for women. The vertical

lines now delineate whether the husband is drawn from a pre- versus post-RoSLA cohort.

Consistent with the findings for men, the most notable deviations are for early post-reform

women—born in the 1957 and 1958 academic cohorts—who were about one percentage

point more likely to marry with an age gap of 0 and +1 respectively (thus both marrying

1957 cohort men). Our evidence show that the RoSLA temporarily shifted the age gap

distribution, with the early RoSLA-affected cohorts inter-marrying more frequently.18

Figure 7: Deviations from the Aggregate Age Gap Distribution by Cohort and Gender
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Notes: The horizontal axes show age gap δ ∈ {−3,−2, ..., 3}. The vertical axes show regression
coefficients from a regression of 1 (d = δ) on a cohort-dummy for being from cohort c. The
vertical dashed lines delineate when a partner is drawn from a pre- versus post-RoSLA cohort.

18Our findings are largely consistent with those of Geruso and Royer (2018).
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5. Model

5.1. The Choo-Siow Framework

Our theoretical analysis builds on Choo and Siow (2006). Assume continuum sets of

men and women, each of finite Lebesgue measure. Each individual belongs to one of a

finite set of systematic types X , and their systematic type is publicly observed by all

potential partners. Each individual must choose a type of partner in X+ = X ∪ {0},

where choosing 0 corresponds to remaining single. A match between a type-x man and a

type-y woman results in a systematic match surplus Σxy. If an individual remains single,

the systematic payoff that they obtain is normalized to zero. Man i is also subject to

a vector of preference shocks, (εi (y))y∈X+
, where εi(y) is an idiosyncratic incremental

payoff (to man i) from matching with any woman of type y ∈ X (or remaining single if

y = 0). Woman j is subject to a vector of shocks (εj (x))x∈X+
over male systematic types.

The surplus of a match between man i of type x and woman j of type y is

Σxy + εi (y) + εj (x) . (3)

The preference heterogeneity components εi (y) and εj (x) are separable, entering (3)

additively. They depend on the partner’s type, not their identity. The surplus can be

divided in any way the couple chooses.

Under the assumption that the systematic type of every individual is observed by all

market participants, existence and essential uniqueness of a stable matching is guaranteed

(Decker, Lieb, McCann, and Stephens, 2012).19 Chiappori, Salanié, and Weiss (2017)

show that, under separability, a stable matching is characterized by a pair of vectors

(Uxy, Vxy)x,y∈X such that for each x, y ∈ X , Uxy +Vxy = Σxy. Uxy specifies the systematic

component of the payoff to a type-x man when he matches with a type-y woman while Vxy

specifies the corresponding payoff to the woman. The systematic payoff from remaining

single, denoted by Ux0 and V0y, is zero. Each man i of type x maximizes his overall payoff

Uxy + εi(y) by his choice of y ∈ X+, and each women j of type y maximizes Vxy + εj(x)

by her choice of x ∈ X+. As a consequence of these choices, marriage markets clear: for

each pair (x, y), the measure of type x men who choose to marry type y women equals

the measure of type y women who choose to marry type x men.

19Note that existence and essential uniqueness applies equally to our generalized model with a latent
ability, since we shall assume throughout that market participants observe the types of all potential
partners.
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Let µm
y|x denote the equilibrium probability that a man of type x chooses y ∈ X+,

and similarly, let µf
x|y denote the equilibrium probability that a woman of type y chooses

x ∈ X+. The preference shocks εj(x) and εi(y) are assumed to be i.i.d. Type I Extreme

Value distributed,20 such that

log

(
µm
y|x

µm
0|x

)
= Uxy, and log

(
µf
x|y

µf
0|y

)
= Vxy. (4)

Decker, Lieb, McCann, and Stephens (2012) show that the marriage market equilibrium

exhibits natural comparative statics.

In large marriage markets, where the Law of Large Numbers hold, the population

frequencies in (4) can be replace by their sample counterparts. Hence, if types are ob-

servable to the econometrician, Uxy and Vxy, and consequently also Σxy, are identified.

The identification argument in the standard CS framework depends on the systematic

types of the marriage market participants being observable to the econometrician, and

thus restricts attention to marital sorting on observables. This is unfortunate, not least

because the literature typically considers only low-dimensional systematic type-spaces.21

The focus on low-dimensional observable type-space also yield stark comparable static

predictions for marriage market equilibrium responses to changes in the population dis-

tribution resulting from a large education reform as the RoSLA. Consider for instance a

decrease in the supply of males of observable type x, say, men with no academic qualifi-

cations. The CS framework stipulates that men of this type will obtain a larger share of

the marital surplus from a marriage to any type of woman. As a result, type x men are

predicted to marry at a higher rate, i.e. the never-married rate µm
0|x is predicted to fall.

Of course, the never-married rate of the relatively scarce post-RoSLA unqualified men

markedly increased at the reform threshold, cf. Figure 3.22

5.2. A Model with Latent Ability

In our empirical setting, an individual’s type has three dimensions. First, an individual

belongs to an academic cohort c ∈ C. Second, they are endowed with ability a ∈ A.

Finally, they hold an academic qualification, z ∈ Z = {z0, z1, z2}. Hence, an individual’s

20The Extreme Value distribution assumption is standard although Galichon and Salanié (2021) show
that the Choo-Siow framework remains tractable with minimum distributional assumptions.

21Chiappori, Oreffice, and Quintana-Domeque (2012) and Dupuy and Galichon (2014) who use rich
datasets to analyze sorting with high-dimensional systematic type-spaces are notable exceptions.

22Admittedly, the RoSLA shifts population distributions of both genders, but we confirm that the
intuition is useful for interpreting the marriage market responses to the RoSLA.
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type is a triple (c, a, z) ∈ C × A × Z. Informed by the NCDS evidence, we consider a

parsimonious specification with three ability levels, A = {a0, a1, a2}, which we refer to as

low, medium, and high ability, respectively. The academic cohorts in C are split into the

pre- and post-RoSLA cohorts, C0 = {1953, ..., 1956} and C1 = {1957, ..., 1960}.

An individual’s systematic type is observed by prospective partners in the marriage

market, but ability is unobserved by the econometrician. Hence, the identification argu-

ments referenced above no longer apply. Identification will instead derive from a RoSLA-

induced discontinuity in qualifications between cohorts, but not in ability.

Recall that w is date of birth, and let Prg (a|w) be the proportion of individuals of

gender g, born at time w with ability a. We make the following assumption:

Assumption 1. Prg (a|w) is continuous in birth date w for a ∈ A, and gender g ∈ {m, f}.

As the RoSLA sharply increased the proportion holding a basic qualification rather

than no qualification, we focus on modeling a shift in the population proportions with

z = z0 and z = z1. The NCDS evidence in Figure 2 suggest that this shift was driven by

medium ability individuals. Appealing to these observations, Assumption 2 provides an

empirically relevant, yet parsimonious, representation of the qualification process:

Assumption 2. Any individual of low ability, a = a0, is always unqualified, z = z0,

and any individual with high ability, a = a2, always attains an advanced qualification,

z = z2. A gender g and cohort c ∈ Ck individual of medium ability, a = a1 attains a basic

qualification with probability γg
k and remains unqualified with complementary probability

1− γg
k , for k = 0, 1, indicating pre- and post-RoSLA respectively, where γg

1 > γg
0 .

Figure 8 is a graphical representation of Assumption 2. Having low ability a = a0

precludes the attainment of even a basic qualification. Individuals with high ability,

a = a2, are assumed to always find it worthwhile to attain an advanced qualification,

z = z2. The RoSLA changes the expected qualification level of individuals with medium

ability a = a1 for whom a basic qualification z = z1 is assumed attainable. Pre-RoSLA,

a share γg
0 of the gender-g a1-individuals attained a basic qualification. Post-RoSLA, a

share γg
1 of the gender-g a1-individuals attained a basic qualification. Hence, there are

four possible ability-qualification profiles: (a0, z0), (a1, z0), (a1, z1) and (a2, z2). Within

this set, there is variation in ability (low versus medium) among the unqualified, and there

is variation in qualifications (unqualified versus basic) among medium ability individuals.

Let X ⊂ C ×A×Z be the set of full types that can arise and note that |X | = 32.
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Figure 8: Assumed Relation between Ability and Qualification by Education Regime
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Assumption 2 implicitly stipulates that a medium ability individual’s basic qualifi-

cation attainment is determined by some further unobserved heterogeneity unrelated to

marital surplus. We argue that the opportunity costs of attending school is an important

source of such heterogeneity. To obtain a basic qualification, z = z1, an individual must

attend school up to and through the academic year in which they turn 16, and pass the

exams held at the end of that year. While passing the exams generally depends upon

ability, attending school entails an opportunity cost, an important component of which

is foregone labor earnings. Pre-RoSLA, an individual would forego labor income if they

attended school beyond age 15, but paid employment ceased to be an option for a 15-

year old in the post-RoSLA regime.23 Hence, the reform reduced the opportunity cost

of acquiring a basic qualification, z = z1, without altering the ability required to so. In

the assumed setup, consistent with the NCDS evidence in Figure 2, the RoSLA impacted

the qualification rate of a1-individuals who would be weighing the costs and benefits of

sitting the exams for the basic qualification level.24

As the reform eliminated the foregone earnings cost of acquiring a basic qualification

there is a strong ex ante reason to believe that, after the RoSLA, those who had the

23The school leaving age and the minimum age for employment are statutorily linked. The 1933
Children and Young Persons Act for England and Wales sets out conditions for young people work. It
essentially prohibits full time worker whilst in school, and was in force at the time of the RoSLA. In
addition, the 1946 and 1965 National Insurance Acts stipulate that a person can work full time if they
are “being over school leaving age”. The 1965 National Insurance Act was in force at the time of the
RoSLA reform and 1974 and 1980 amendments did not change the wording of who is an insured person.

24Bell, Costa, and Machin (2022) argue that compulsory schooling reduce crime due to dynamic “self-
incapacitation” rather than improved educational outcomes. This is consistent with our interpretation
that schooling entails foregone opportunities (in our case employment, in their case criminal activities.)
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ability to gain a qualification would do so. This imply γg
1 = 1 and we show that this

hypothesis is not rejected. The significance of this finding will be clear just below where

we use a simple 2 cohorts × 2 ability-types × 2 qualification-types specification to argue

that, when γg
1 = 1, g = m, f , the marital surplus matrix Σxy is identified.

For this we need, however, to impose one further separability assumption on the the

systematic component of the marital surplus matrix Σxy. Assumption 3 restricts Σxy to

be additively separable in ability-qualification and cohort profile.

Assumption 3. The systematic surplus function Σxy is additively separable,

Σ(c,a,z),(c′,a′,z′) = ζ (a, z, a′, z′) + λ (c, c′) .

5.3. Identification in the 2× 2× 2 Case

Consider the simple 2 × 2 × 2 case in which there are only two cohorts, {c0, c1}—one

pre-RoSLA cohort c0 and one post-RoSLA cohort c1—two ability types {a0, a1} and two

qualification types {z0, z1} with the ability-qualification mapping as in Figure 8, but

restricted to γg
1 = 1 and ignoring the (observable) advanced-qualified high-ability type.

There would, in this case, be 5 feasible full types for each gender, and thus 25 couple

type-profiles, plus 10 singles rates. However, 20 of these 35 matching- and single rates are

not directly observable. Appendix B tabulates the observable and unobservable rates.

Our main result in this section is the following Proposition:

Proposition 1. Suppose that (i) there are two cohorts {c0, c1}, one pre- and one post-

RoSLA, and (ii) there are two ability levels {a0, a1} and two qualifications {z0, z1}. Under

Assumption 1 with Prg(a|c) = Prg(a), Assumption 2 with γm
1 = γf

1 = 1, and Assumption

3, the complete matching pattern can be inferred and Σxy, Uxy and Vxy are identified.

Proof. See Appendix B.

There are five types in the 2 × 2 × 2 model of which three are distinguishable. The

two indistinguishable types are those without qualifications in the pre-RoSLA cohort,

who may be of low or medium ability. The proof of Proposition 1 utilizes that, from the

matches between distinguishable types, we can invoke Assumption 3 to identify λ (c, c′),

c, c′ ∈ {c0, c1}. These parameters in turn provide us with a means of relating matching

patterns of the unqualified individuals in the post-RoSLA cohort, who are of low ability

and therefore distinguishable, to the matching patterns of the unqualified low-ability

individuals in the pre-RoSLA cohort. We show that the unobservable matches satisfy a
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system of non-linear equations in the observables. This system has a unique solution and

yields formulas for the unobservable matching rates. Given the matching matrix, Σxy,

Uxy, and Vxy are identified as in Choo and Siow (2006).25

5.4. Empirical Specification

Our empirical specification enriches the 2× 2× 2 model by (i) including the high ability,

advanced qualified type, (a2, z2), (ii) extending the observation window to eight cohorts,

(iii) allowing for trends in the ability distributions, and (iv) allowing γm
1 ≤ 1 and γf

1 ≤ 1.

Including the (a2, z2)-type is empirically important as they are a sizeable subpop-

ulation who occasionally marry partners with basic or no qualification, but raises no

identification issues as the (a2, z2)-type is, per Assumption 2, an observable type.

Including additional cohorts raises two issues. First, our RDD identifies the increase

in the basic qualification rate only at the reform threshold. Cohort variation in γg
k , within

regime Ck, k = 0, 1, is not distinguishable from variation in the frequency of ability levels

a1 and a0. Assumption 2 makes clear that γg
k , g = m, f are regime-specific time-invariant

parameters. Second, there are evident trends in never-married rates. Ignoring such

trends risk mischaracterizing discontinuities at the RoSLA threshold. Furthermore, with

|C|2 = 64 possible cohort-profiles, it is natural to restrict how marital surplus depends on

the husband-wife cohort profile (c, c′). We postulate the following surplus structure,

Σ(c,a,z),(c′,a′,z′) = ζ (a, z, a′, z′) + λ (c′ − c) + τm (c, a) + τ f (c′, a′) , (5)

where, with a slight abuse of notation, (5) redefines λ(·) as a function of the husband-wife

age gap c′ − c only, and includes gender- and ability-specific trends, τ g(c, a). We specify

λ(·) as fully non-parametric at age-gaps around zero, impose linear effects of age gap

outside the range {−3,−2, ..., 3}, and normalize λ (0) = 0. Marital surplus trends are

piecewise linear functions of c with a single knot at the RoSLA threshold.26

Finally, allowing for γm
1 ≤ 1 or γf

1 ≤ 1 is empirically prudent, but as we shall see, the

case γm
1 = γf

1 = 1 covered in Proposition 1 in fact offers the best fit to the data.

25We note that it is empirically sensible and, in fact, essential to the identification result in Proposition
1 that individuals from the pre- and post-RoSLA regimes operate in a single marriage market.

26Ability-specific trends formally violates the additive structure in Assumption 3, but they are iden-
tified from observable trends by qualification and gender, and crucially, they facilitate the identification
of the RoSLA threshold discontinuities. Details of λ(·) and τg(·, a) are given in Appendix E.
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6. Estimation

The ζ-matrix contains 16 parameters. The age-gap and trend terms add 22 parameters.

We stack these 38 systematic surplus parameters in θ. We must also deal with γ ≡

(γm
0 , γm

1 , γf
0 , γ

f
1 ), the share of a1-men and -women with z = z1 pre- and post-RoSLA.

6.1. The Likelihood Function

Our model has |X | = 32 full types making choices from the set X+.
27 Let µm

y|x (θ,γ) be

the probability that a type-x ∈ X man marry a type-y ∈ X+ woman and let µf
x|y (θ,γ)

be the probability that a type-y woman marry a type-x ∈ X+ man (see Appendix C).

The equilibrium in full types x, y ∈ X is aggregated to yield choice probabilities over

observable types. Let x̃, ỹ ∈ X̃ denote observable types where X̃ ≡ C × Z. Observable

choices are in the set X̃+ ≡ X̃ ∪ {0}. Let µ̃m
ỹ|x̃ (θ,γ) denote the probability that a male

of observable type x̃ ∈ X̃ is matched to a female of observable type ỹ ∈ X̃+. Female

observable choice probabilities are similarly denoted µ̃f
x̃|ỹ (θ,γ). The following equations

describe the aggregation,

µ̃m
c′,z′|c,z (θ,γ) =

∑
a∈A

∑
a′∈A

µm
c′,a′,z′|c,a,z (θ,γ) Pr

m (a|c, z;γ) , (6)

µ̃f
c,z|c′,z′ (θ,γ) =

∑
a′∈A

∑
a∈A

µf
c,a,z|c′,a′,z′ (θ,γ) Pr

f (a′|c′, z′;γ) , (7)

where Prg (a|c, z;γ) is the population proportion of gender-g individuals of cohort c and

with qualification z who are of ability a. These proportions depend on γ and are consistent

with the empirical qualification distribution, see Assumption 2 and Figure 8. Probabilities

for observable types for choosing singlehood are obtained in analogous fashions.

Our data is a pair of gender-specific matrices of marriage frequencies. A generic entry

in the male data matrix is Mm
x̃ỹ, the number of males in our data who are of observable

type x̃ ∈ X̃ and who have made the observable marriage choice ỹ ∈ X̃+. Similarly,

a generic entry in the female data matrix is M f
x̃ỹ, the number of females who are of

observable type ỹ ∈ X̃ and who have made the observable marriage choice x̃ ∈ X̃+. The

27To account for marriages involving partners that are not in C, we extend the full type space slightly
to X+ ≡ X ∪{0,pre,post}, where “pre” and “post” indicate marriages to partners born prior to 1953 and
after 1960, respectively. We approximate pre- and post-spouse marriage probabilities using the relative
weight put on out-of-sample marriages by the age gap function λ(·). See Appendix C for details.
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log-likelihood function is:

logL (θ,γ) =
∑
x̃∈X̃

∑
ỹ∈X̃+

Mm
x̃ỹ log µ̃

m
ỹ|x̃ (θ,γ) +

∑
ỹ∈X̃

∑
x̃∈X̃+

M f
x̃ỹ log µ̃

f
x̃|ỹ (θ,γ) . (8)

Appendix C provides further details on the likelihood function.

6.2. A Three-Step Estimation Procedure

Estimation is in three steps.

Step 1: Assumptions 1 and 2 imply that the observed discontinous increase in the

basic qualification rate at the RoSLA threshold is driven by a proportionately equal

increase in the basic qualification rate of medium-ability individuals. That is,

γg
1

γg
0

=
limw↓0E

g[yz
1|w]

limw↑0Eg[yz1|w]
, for g = m, f, (9)

where yz
1
is an indicator for attaining qualification z = z1 and w is date of birth relative

to the RoSLA threshold date. The RDD estimator of (1) for qualification z1 allows

us to obtain precise estimates of the right hand side of (9), and we therefore treat the

(reciprocal) ratio γg
0/γ

g
1 as known and equal to 0.755 (0.011) for men and 0.738 (0.008)

for women where the numbers in parenthesis are boostrapped standard errors.28

The post-RoSLA z1-qualification rate is the product of γg
1 and the proportion of

individuals who have ability level a1, where the latter cannot exceed the complement of

the proportion holding qualification z2 (as these individuals have ability level a2). This

places a lower bound on γg
1 , denoted γg

1
, which we find to be 0.69 for both genders.29

Altogether, we obtain that the empirically feasible set G for γ is:

G =

{
γ : γg

1 ∈ [0.69, 1] for g = m, g, and
γm
0

γm
1

= 0.755 and
γf
0

γf
1

= 0.738

}
.

The ratio restrictions on γ ∈ G imply that there are only two free parameters in γ.

Interestingly, when γg
1 = γg

1
= 0.69 for g = m, f , all unqualified individuals have

medium ability and no one has low ability. In this limit, everyone is distinguished by

28To see this, note that γg
0/γ

g
1 = 1 − φg

z1/ limw↓0 E
g
[
yz

1 |w
]
where the estimated values of φg

z1 from

(1) are 0.106 (0.005) for men and 0.131 (0.007) for women (see Table 2), and estimates of the values

of limw↓0 E
g
[
yz

1 |w
]
can simply be obtained as the empirical rate of holding qualification z1 among

individuals in the first RoSLA-affected cohort, 0.433 (0.004) for men and 0.499 (0.004) for women.
29The lower bound is defined as γg

1
≡ maxc∈C1

{
Prg

(
z = z1|c ∈ C1

)
/
[
1− Prg

(
z = z2|c ∈ C1

)]}
.
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qualification, there is no latent ability, and our model collapses to a standard CS model.

Step 2: We estimate θ conditional on γ ∈ G. For each γ-value on a fine grid on G, we

obtain θ̂(γ) ∈ argmaxθ L(θ,γ) and L(θ̂(γ),γ). While this estimation step is interme-

diate, it yields a number of insights which we detail in Appendix D. First, we provide a

numerical counter-example to generic identification of our latent ability marriage market

model in that we identify a set of γ-values for which argmaxθ L(θ,γ) is not a singleton.

Second, reassuringly, our numerical analysis illustrates that non-identification arises only

under knife edge conditions. Third, we confirm that the CS model is a limiting case of

our latent ability model and (unsurprisingly) that the standard CS model is identified.

Step 3: Even though argmaxθ L(θ,γ) may not be singletons for all feasible γ-values,

the conditional likelihood values L(θ̂(γ),γ) can be used to find a (θ,γ) that provides

a best fit to the data. We show in Appendix D that the CS model obtained at γ1 =

γ
1
= 0.69 provides a particularly poor fit. We also show that, across all feasible γ ∈ G,

γm
1 = γf

1 = 1 provide the best and far superior fit to the data, which implies γm
0 = 0.755

and γf
0 = 0.738.30 That is, our estimate of γ is γ̂ ≡ (γ̂m

0 , γ̂m
1 , γ̂f

0 , γ̂
f
1 ) = (0.755, 1, 0.738, 1).

With γ̂m
1 = γ̂f

1 = 1, all individuals with medium ability obtain a basic qualification

in the post-RoSLA regime. This is consistent with the RoSLA dramatically reducing the

opportunity cost of acquiring a basic qualification and imply that the compositional shift

at the RoSLA threshold is at its extreme: prior to the reform, the unqualified comprised

a mix of low- and medium ability individuals, after the reform only low ability types

remain. It is also empirically convenient: with two cohorts, two ability-types, and two

qualification levels, Proposition 1 states that Assumptions 1, 2, and 3 with γm
1 = γf

1 = 1,

ensures that the marital surplus matrix is identified from observed marriage- and single-

rates. Our analysis confirms that this insight carries over to our empirical specification

with high-ability, advanced qualified individuals, eight cohorts, age gap preferences and

trends. Indeed, at γ = γ̂, argmaxθ L(θ, γ̂) is a singleton and θ is identified.

30As robustness we have conducted our empirical analysis for values of each γg
0 between 0.715 and

0.775. This affects the point estimates of the elements of the marital surplus matrix, but does not
qualitatively affect the conclusions of our analysis. Details are available on request from the authors.
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7. Results, Model Fit, and Specification Tests

7.1. Ability-Qualification Profile Contributions to Marital Surplus

The top panel of Table 3 gives the estimates of the systematic surplus function ζ(a, z, a′, z′)

defined over ability-qualification profiles.31 The upper left 2 × 2 sub-matrix shows the

estimated surpluses from marriages where both spouses are unqualified, but with low or

medium ability. This sub-matrix also trivially exhibits increasing differences. Among the

unqualified there is strong complementarity with respect to ability. Similarly, the centre

2× 2 sub-matrix gives the estimated surpluses from marriages where both spouses have

medium ability, but with or without a basic qualification. This sub-matrix too exhibits

increasing differences, indicating strong complementarity with respect to holding a qual-

ification. If we then disregard the medium ability, but unqualified (second column and

second row), the remaining 3× 3 matrix gives the estimated marital surpluses associated

type-profiles where each spouse has an ability and a qualification level that are perfectly

aligned. It too exhibits increasing differences, indicating complementarity with respect

to aligned ability-qualification combinations.

From the top panel of Table 3 we can compute the contribution of ability of unqualified

men and women to marital surplus and the contribution of a basic qualification for men

and women of medium ability. These contributions are reported in the lower panel of

Table 3. The ability and qualification contributions exhibit similar patterns for men and

women. First, from the columns labeled “Basic vs. no qual.”, a basic qualification always

increases marital surplus when the spouse has at least a basic qualification (third and

fourth row), but does not necessarily do so when the spouse is unqualified (first and

second row). Second, from the columns labeled “Medium vs low ability”, medium ability

in itself does not increase marital surplus when the spouse is academically qualified (third

and fourth row); in contrast, when the spouse is unqualified, complementarity in ability

means medium ability increases surplus when the spouse also has medium ability, but

reduces surplus when the spouse has low ability (first and second row), although the

positive contribution when the spouse has medium ability is not statistically significant.

7.2. Model Fit

7.2.1. Never-Married Rates Figure 9 plots empirical and model predicted never-married

rates by cohort, gender and qualification level. The estimated model replicates the key

31The estimated parameters of the age gap and trend functions are presented in Appendix E.
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Table 3: The Marital Surplus Matrix

Marital surplus by ability-qualification profile

Wife type

(a0, z0) (a1, z0) (a1, z1) (a2, z2)

Husband type (a0, z0) −0.580∗∗∗
(0.222)

−3.061∗∗∗
(0.544)

−2.030∗∗∗
(0.139)

−5.042∗∗∗
(0.159)

Husband type (a1, z0) −2.697∗∗∗
(0.559)

−1.472∗∗
(0.669)

−2.234∗∗∗
(0.407)

−4.921∗∗∗
(0.443)

Husband type (a1, z1) −2.500∗∗∗
(0.197)

−2.501∗∗∗
(0.338)

−1.133∗∗∗
(0.083)

−3.064∗∗∗
(0.090)

Husband type (a2, z2) −4.656∗∗∗
(0.208)

−4.271∗∗∗
(0.355)

−2.310∗∗∗
(0.089)

−0.498∗∗∗
(0.090)

Contribution of ability and qualification to marital surplus

Own gender

Male Female

Medium
vs. low
ability

Basic
vs. no
qual.

Medium
vs. low
ability

Basic
vs. no
qual.

Spouse type (a0, z0) −2.117∗∗∗
(0.633)

0.197
(0.522)

−2.481∗∗∗
(0.681)

1.031∗
(0.529)

Spouse type (a1, z0) 1.589∗
(0.943)

−1.029∗
(0.597)

1.225
(0.821)

−0.762
(0.545)

Spouse type (a1, z1) −0.204
(0.514)

1.101∗∗∗
(0.397)

−0.001
(0.511)

1.368∗∗∗
(0.327)

Spouse type (a2, z2) 0.122
(0.565)

1.857∗∗∗
(0.435)

0.385
(0.532)

1.961∗∗∗
(0.344)

Notes: Asymptotic standard errors in parentheses. ∗, ∗∗, and ∗∗∗ indicate
statistical significance at the 10, 5, and 1 percent levels, respectively. In the
bottom panel, the “Medium vs. low ability”-column assumes own qualifica-
tion z = z0. The “Basic vs. no qual.”-column assumes own ability a = a1.

qualitative patterns in the never-married rates across cohorts and qualifications. Specif-

ically, the model predicts increasing never-married rates for both unqualified men and

women at the RoSLA reform threshold. The estimated model also fits the never-married

rates for individuals with basic and advanced qualifications, possibly with the exception

of men with a basic qualification before the reform. Here, the model predicts an increase

in the never-married rate at the RoSLA reform threshold of individuals holding a basic

qualification due to their increased supply. However, there is little evidence of such an

effect in the data.

7.2.2. Qualification Homogamy Appendix E shows that the model reproduces the em-

pirical distribution of spousal qualification by own qualification in Figure 4 very precisely.

Figure 10 shows the predicted homogamy indices Sg (z, c) by gender and cohort as
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Figure 9: Predicted and Empirical Never-Married Rates by Cohort, Gender, Qualification
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Notes: The horizontal axes show academic cohorts. The vertical axes show never-married rates.
Solid lines renders the data (see Figure 3). Dashed lines renders model predictions.

dashed lines, with solid lines representing the data. The model replicates the stability

of the aggregate homogamy index across cohorts. It also replicates the markedly higher

homogamy indices for advanced qualified individuals and the observed increases in the

homogamy indices for individuals with no qualifications at the RoSLA threshold.

7.2.3. Age Gaps The estimated model reproduces the observed age distribution (Figure

6), very accurately (see Appendix E for details, in particular Figure E.2). Our descriptive

analysis highlighted a small temporary shift in the age gap distribution among the cohorts

born just after the RoSLA threshold (Figure 7). For instance, individuals from the 1957

cohort were found to be about one percentage point more likely than individuals from

other cohorts to have married with a zero age gap, suggesting that qualifications matter

for marital surplus. The model captures only a small fraction of this temporary shift.

Hence, if anything, the model may be overstating the strength of age preferences.32

32Details of the models fit to the overall age gap distribution and the fit to the distribution by cohort
and gender are available on request.
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Figure 10: Predicted and Empirical Qualification Homogamy by Cohort, Gender, Quali-
fication
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Notes: The horizontal axes show academic cohorts. The vertical axes show the homogamy
index, see (2). Solid lines renders the data. Dashed lines renders model predictions.

7.3. Specification Tests

7.3.1. Latent Ability At γg
1 = γg for g = m, f , our model coincides with a standard CS

model without latent ability: Everybody with no or a basic qualification have medium

ability both pre- and post-reform. Our estimation procedure confirms that this nested

specification yields a lower likelihood value than the specification with γg
1 = 1 for g = m, f .

The lower bound limiting case, however, imposes an additional subtle restriction because

individuals with no or basic qualification share a common medium ability-specific trend.

Alternatively, we can impose that ability does not matter for the ζ(a, z, a′, z′)-component

of marital surplus, but retain the estimated ability distribution and three ability specific

trends. This involves seven restrictions which are rejected (LR = 215.6 ∼ χ2(7) ).

Incidentally, these nested restricted models yield virtually identical likelihood values.

Arguably the most natural CS-counterpart to our latent ability model is a “qualification-

only” model without latent ability but with three qualification level-specific trends. Ap-

pendix F presents estimates of such a model which is not nested within our latent ability

model, but yields a likelihood value that is very close to those of the nested restricted
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models described above (see the “CS”-label in Figure D.1 in Appendix D). The non-

nested nature of the qualification-only model complicates testing against our model with

latent ability, but it is informative to check how the qualification-only model fares in

terms of replicating the empirical marriage market responses to the RoSLA. Figure F.1

in Appendix F shows that the qualification-only model predicts never-married rates of

unqualified individuals to fall at the RoSLA-threshold, when in fact they increased. This

patently counterfactual prediction reflects that the qualification-only model does not al-

low for any compositional change among the unqualified at the RoSLA-threshold, and is

easy to understand based on comparative statics in the CS framework: When a type be-

comes relatively scarce (as the unqualified individuals post-RoSLA), they obtain a larger

share of any marital surplus and therefore become more—not less—prone to marry.

7.3.2. Additively Separable Cohort Preferences and Linear Trends Appendix F shows

that the model, given the empirically verified restriction γm
1 = γf

1 = 1, admits a simple

specification test of the assumption of additively separable cohort preferences and linear

trend terms. The test fails to reject our specification with additive cohort (or age gap)

preferences and gender- and ability-specific piecewise linear trends.

8. Qualifications, Ability and Marriage Market Outcomes

Identification of the causal effects of qualification z and ability a on marriage market

outcomes requires variation in z given a and variation in a given z. Viewed through the

lens of the model, the RoSLA delivers such variation at two margins: Variation in ability,

low and medium, conditional on no qualification, and variation in qualification, no and

basic, conditional on medium ability. We focus on the effects of own qualification and

ability on the probability of ever marrying at these two margins. We also consider whether

own qualification and ability predict spousal qualification and ability. As spousal traits

are conditional on marriage, the latter effects do not have a strict causal interpretation.

8.1. The Causal Effects of Qualifications and Ability on the Ever-Married Rates

The gender-g ever-married rate is Pr(Ever married|c, a, z) = 1−µg
0|c,a,z. Let ∆

g
a(c) be the

causal effect of possessing medium versus low ability, i.e. a = a1 versus a = a0, on the

ever-married rate of individuals with no qualification, z = z0. Let ∆g
z(c) be the causal

effect of basic qualification attainment versus no qualification, i.e. z = z1 versus z = z0,
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on the ever-married rate of medium ability individuals, a = a1. Clearly,

∆g
a (c) ≡ µg

0|c,a0,z0 − µg
0|c,a1,z0 , and ∆g

z (c) ≡ µg
0|c,a1,z0 − µg

0|c,a1,z1 . (10)

Let ∆g(c) be the effect on Pr(Ever married|c, a, z) of having medium ability and a

basic qualification compared to having low ability and being unqualified. Clearly,

∆g (c) ≡ ∆g
a (c) + ∆g

z (c) . (11)

We identify ∆g
a (c) and ∆g

z (c) only for the pre-RoSLA cohorts. In contrast, ∆g (c) is

identified for all sample cohorts, but only directly observable for the post-RoSLA cohorts.

Figure 11: The Causal Effects of Ability and Qualification on Marital Outcomes
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Notes: The horizontal axes show academic cohorts. The vertical axes show the effect of own
ability and basic qualification attainment on the rate of (i) ever marrying (top row) and (ii) the
spouse holding at least a basic academic qualification (bottom row).

The top panels of Figure 11 shows ∆g
a (c), ∆

g
z (c), and ∆g (c) for men and women,

respectively. ∆g (c) grew substantially over the sample cohorts for both men and women,

from two to ten percentage points. For women, the causal effect of basic qualification,

∆f
z (c), is effectively zero. For men, ∆m

z (c), is negative, but small. In contrast, the causal

effects of medium ability, ∆g
a(c), are positive for both men and women. As a result, the

total gap in marriage probability ∆g (c) is exclusively driven by the positive causal effect of

ability. Put differently, the observed gap in ever-married rates between individuals with
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basic and no qualifications is accounted for by selection on latent ability: unqualified

individuals marry less frequently than those with a basic qualification because they tend

to have low ability, not because they lack qualifications per se.

The absence of substantial marriage market returns to qualification once ability is

controlled for is consistent with imprecise estimated effects in Lefgren and McIntyre

(2006) and Anderberg and Zhu (2014) who use instrumental variables that are credibly

consistent with equilibrium formation in the marriage market.33

The causal effects of qualification and ability on the ever-married probability connects

to the literature on “marital premia” which uses that, in the CS framework, differences

in marriage rates across types reflect differences in expected marital utility. As noted

by Chiappori, Salanié, and Weiss (2017), the negative of the log never-married rate for

a given gender-type measures their average marital utility, whereby log differences in

never-married rates across types serve as a measure of a “marriage premium”. Indeed,

− log

(
µg
0|c,a1,z0

µg
0|c,a0,z0

)
≈ ∆g

a(c)

µg
0|c,a0,z0

, and − log

(
µg
0|c,a1,z1

µg
0|c,a1,z0

)
≈ ∆g

z(c)

µg
0|c,a1,z0

. (12)

Our model thus shows positive (medium) ability marriage premia for both men and

women, but no (for men, even negative) basic qualification marriage premia.

8.2. Ability, Qualifications and the Spousal Qualification Gap

Define Ψg
a (c) as the difference in the probability of the spouse holding at least a basic

qualification between those with medium a1 and low ability a0, conditional on being

unqualified z0 and married, for gender g = m, f and cohort c. Similarly, define Ψg
z (c)

as the difference in spouse qualification rate between those with qualification z1 and

those unqualified z0, conditional on medium ability a1 and married, for gender g = m, f .

Finally, define Ψg (c) = Ψg
a (c)+Ψg

z (c) as the total gap in spouse qualification rate between

those of ability-qualification type (a1, z1) and those of type (a0, z0), and being married.

Ψg
a (c) and Ψg

z (c) are identified only for pre-RoSLA cohorts, whereas Ψg (c) is directly

observable and identified for all sample cohorts. The spousal qualification gap is defined

conditional on marriage so Ψg
z (c) and Ψg

a (c) do not have strict causal interpretations.

The lower panels of Figure 11 shows that the probability of being married to an aca-

demically qualified spouse increases with own ability and with own (basic) qualification.

For both men and women, ability and an own qualification have similar positive effects

33These studies lack statistical power to draw conclusive inference which justifies our alternative ap-
proach of modeling a marriage market equilibrium with selection into qualification based on ability.
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on the qualification rate of the spouse. The total effect of both ability and a qualification

is about 30 percent for both men and women, which corresponds to the differences seen

in Figure 4. That is, conditional on marrying, own qualification attainment and own

ability are both important predictors of spousal traits.

9. General Equilibrium Marriage Market Effects of the RoSLA

The RoSLA affected marital outcomes of a wide set of people, including some whose

educational outcomes were not affected by the reform. We demonstrate these general

equilibrium effects by contrasting marriage market outcomes simulated from our esti-

mated model to those obtained from a counterfactual simulation without the RoSLA.

In the counterfactual scenario we assume that the pre-reform qualification attainment

process in Figure 8 continued to apply across all the sample cohorts c ∈ C, providing

us with counterfactual qualification distributions and marriage market equilibrium. We

focus on differences in outcomes by ability type as ability was unaffected by the RoSLA.

9.1. Never-Married Rates and the RoSLA

Figure 12 plots the difference in never-married rates with and without the RoSLA induced

population-shifts. A positive number for a particular ability level, gender and cohort in

Figure 12 means that the RoSLA increased never-married rate for that type.

Medium ability individuals were the only ones directly affected by the reform in terms

of their qualifications, and this is also the only type for which the impact of the reform was

discontinuous at the threshold: the reform increased the never-married rates for medium

ability individuals of both genders. This reflects that the reform created a positive supply

shock of basic qualified individuals, and, for men, that a basic qualification given medium

ability is associated with a reduced marriage rate for men (see Figure 11).

The other two ability types were only indirectly affected by the RoSLA in terms

of their marital outcomes. Pre-RoSLA, unqualified low ability men and women, would

typically marry unqualified spouses. When the RoSLA reduced the supply of unqualified

partners their never-married rate increased. The typically positive husband-wife age gap

meant that the reform increased the never-married rate for low ability males born before

the threshold. For women the effect was concentrated among the post-reform cohorts.

For high ability individuals, the unqualified medium-ability type was never an attrac-

tive spouse. However, when more individuals gained basic qualifications as a result of
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Figure 12: The RoSLA Effects on the Never-Married Rates by Ability, Cohort, Gender
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Notes: The horizontal axes show academic cohorts. The vertical axes show the difference in
never-married rates with and without the RoSLA.

the reform, high ability individuals benefited from the increased supply of academically

qualified potential partners, leading them to marry more frequently. While the effect of

the reform, due to the marital age gaps, affected earlier cohorts of men than women,

within a couple of years, both low and high ability types of both genders where affected

in terms of their probability of ever-marrying at a rate of close to half a percentage point,

negatively for the low ability type and positively for the high ability type.

9.2. Marital Sorting and the RoSLA

Figure 13 displays the impact of the reform on the distribution of spouse ability by own

ability, cohort and gender, conditional on marriage. The top left panel shows that low

ability males, as a consequence of the RoSLA, married low ability women more frequently

and medium ability women less frequently. A similar effect is seen for low ability women in

the bottom left panel. Hence, the reform unambiguously worsened the marital prospects

for the low ability types, reducing their chances of ever marrying and making them more

prone to marry among themselves rather than marrying up in terms of ability.

For the high ability types—who always attain an advanced qualification—the prob-

ability of ever marrying increased as a consequence of the reform, and moreover, they
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married less frequently among themselves and married more frequently medium ability

types, reflecting that the reform increased the qualification rate of the latter ability type.

Figure 13: The Effect of the RoSLA on the Distribution of Spouse Ability
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Notes: The horizontal axes show academic cohorts. The vertical axes show the difference in
spousal ability rates with and without the RoSLA.

This is also reflected in the two middle panels which shows the effect of the RoSLA

on the ability distribution of spouses of medium ability individuals. Here discontinuities

naturally occur as the reform directly affected the qualifications held by the medium

ability type. For instance, for medium ability males from the pre-reform cohorts—whose

qualification rate was still low—the reform increased the probability of marrying low

ability women, but decreased the probability of marrying medium ability women. This

reflects that age gap preferences dictates that their wives would often have been from the

post-reform cohorts where the medium ability women now had a basic qualification. For

medium ability males from the post-reform cohorts—whose own qualification rate was

increased—the reform generated a switch away from low ability spouses towards high

ability spouses. For the medium ability women, the reform induced more mixing with

high ability men and relatively less marriages to medium ability men.

As a broad characterization, the RoSLA (i) increased the never-married rates of low

and medium ability individuals, while decreasing it for high ability individuals, (ii) in-

creased assortative mating among low ability individuals, and (iii) increased marital

36



mixing between high and medium ability types. In effect, the RoSLA left low ability

individuals isolated in the marriage market. The effects are similar across genders, but

different cohorts of men and women are impacted differently due age gap preferences.

10. Conclusion

We utilize a well known UK compulsory schooling expansion—the Raising of the School

Leaving Age (RoSLA)—to identify and estimate a Choo and Siow (2006) model of the

marriage market where men and women match on qualifications, ability and age (gap).

Ability is correlated with qualification attainment and is a latent trait that is unobserved

by the econometrician. Ability is a key model ingredient: Removing it yields predictions

that are sharply at odds with observed marriage patterns around the RoSLA reform.

Own and spousal ability, and own and spousal qualification, are complementary in

marital surplus. The causal effect of ability on the ever-married rate of the unqualified is

large and positive for both genders, while the causal effect of qualification attainment of

medium ability individuals is negligible. Marriage market adjustments made the RoSLA

felt by men and women whose qualification outcomes were not impacted by the reform.

The RoSLA left low ability men and women isolated in the marriage market.

Identification comes from a RoSLA-induced reduction in the opportunity cost of ac-

quiring a qualification. The literature on the returns to schooling has utilized other

factors that change the opportunity cost of education (Card, 2001), including distance

to nearest college. By using richer data sets and some ingenuity, one may be able to

similarly allow for latent ability and estimate marriage market models in these contexts.

Finally, we have emphasized latent ability as a simple way to reconcile the Choo and

Siow (2006) framework with observed marriage market responses to the RoSLA, while

retaining analytical and empirical tractability. Still, alternative model formulations based

on e.g. imperfect information or search in the marriage market may also fit the data well.
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Appendices For Online Publication

A. The NCDS Data

As described in the main text, the National Child Development Study (NCDS) follows the lives

of a set of cohort members, initially 17,415 individuals, born in England, Scotland and Wales

in a single week of 1958. To be consistent with the our main data and analysis, we restrict our

sample to individuals born in England and Wales.

We use the responses to two questions from a data sweep completed in the Spring of 1974,

as the NCDS cohort members were turning 16, to measure preferred school-leaving age. The

first asked for their expected age of leaving school in {16, 17, 18+}. The second question asks

whether they wish they could have left at age 15 with binary responses {0, 1}. We combine the

answers to these two questions into a preferred school leaving age in {15, 16, 17+}.
Using information on which year the cohort members left school, collected in a data sweep

completed in 1991 when the NCDS cohort members were aged 33, we characterize their realized

school leaving age in the binary indicator {16, 17+} where leaving at age 16 meant leaving at

the minimum school-leaving age and 17+ meant staying on beyond this age. Also using the

information collected in the 1991 sweep, we characterize the cohort members in terms of quali-

fication attainment, z, using the same classification as used for the LFS, that is z ∈ {z0, z1, z2},
where z0 represents no academic qualifications, z1 represents a basic (i.e. O-level/CSE) qualifi-

cation, and z2 refers to an advanced academic qualification, which here is an A-level or further

qualification.34

A.1. Comparison to the LFS Panel A of Table A.1 shows the distribution of preferred school-

leaving age. This shows that the proportion stating that they would have preferred to leave

at 15 (i.e. before first examination, implying that they would leave without qualification)

is close to the proportion leaving without qualifications in the final pre-RoSLA cohorts as

observed in the LFS (see Figure 1). Moreover, the proportion stating that they expect to stay

in school beyond age 16 is only slightly above the proportion observed in the LFS to have a high

academic qualification rate. Panel B compares the stated preferred school-leaving age with the

individual’s actual school-leaving age. As information on the latter comes from the later 1991

data sweep we have fewer observations. However, when both pieces of information are available,

the individual’s actual leaving age is consistent with their stated preferred leaving age for over

90 percent of the cohort members. Panel C shows the qualification distribution in the NCDS

cohort. This aligns well with that observed in the LFS for the first post-RoSLA cohort (see

Figure 1). Not shown here, the NCDS distribution also exhibits the gender-pattern that males

more frequently had no qualification than did the women while women more frequently held a

basic qualification, with the gender-gaps being similar to that observed in the LFS.

A.2. Measuring Academic Ability We use five indicators from the NCDS to construct a measure

of an individual’s latent academic ability: a mathematics test, a reading comprehension test,

34A small number of individuals record a qualification level below what would be achievable at their
stated preferred school-leaving age. Specifically, about five percent of the cohort members stated a
preferred school-leaving age of 16 and yet gained no academic qualification. Similarly, about seven
percent stated a preference for staying past the minimum school-leaving age but gained no advanced
qualification. Inspection of these two groups suggest that their “under-performance” was due to having
low ability. The mean ability in the first group was −0.75, while the mean ability in the second group
was 0.28, respectively.
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Table A.1: School-Leaving Age and Qualifications in the NCDS

Panel A: Preferred School-Leaving Age

Age 15 Age 16 Age 17+

Proportion of respondents 0.381
(0.005)

0.322
(0.005)

0.297
(0.004)

Number of observations 10,637

Panel B: Preferred and Actual School-Leaving Age

Preferred
Age 15 Age 16 Age 17+

Actual Age = 16 0.350
(0.005)

0.285
(0.005)

0.044
(0.002)

Actual Age = 17+ 0.014
(0.001)

0.029
(0.003)

0.278
(0.005)

Number of observations 8,627

Panel C: Qualification Distribution

Qualification
None Basic Adv.

Proportion of respondents 0.364
(0.005)

0.401
(0.005)

0.235
(0.004)

Number of observations 10,309

Notes: The sample contains all NCDS cohort members born
in England or Wales. Basic qualification refers to CSE/O-Level
qualifications, and advanced qualifications refer to A-Level or
higher qualifications.

both completed as part of the 1974 (age 16) NCDS data sweep, and teacher-reported ability

ratings in mathematics, English, and science.35 The mathematics and reading test scores are

raw scores on a scale of 0-31 and 0-35 respectively. Teacher ratings were given on a five-point

scale (ranging from “little ability” to “sufficient ability to complete an A-level or higher”). We

treat each of the five indicators as a noisy measurement of a single latent factor, which we

interpret as academic ability, and use a standard measurement model to filter the noise and

obtain an estimate of individual ability (see e.g. Bollen, 1989). The estimated factor loadings

from the latent variables model and the associated signals are presented in Table A.2; here,

the signal is the share of the variance of each measure that is explained by the latent ability

measure. We use the predicted value of the latent factor as our estimate of individual academic

ability. For ease of interpretation, we further standardize the estimated ability. Table A.3 shows

the mean estimated ability by gender and individual classification as defined in Section 3.1.

B. Proof of Proposition 1

Recall that an individual’s type is a triplet: cohort, c; ability a ∈ {a0, a1}; qualification, z ∈
{z0, z1}. We will establish identification when there is a single cohort prior to the reform, and a

single cohort after, so c ∈ {c0, c1}. Furthermore, given Assumption 2 with γm1 = γf1 = 1, every
medium-ability individual acquires a qualification post-reform, and only five types exist. That

35Ability tests were also conducted at the ages of 7 and 11, see Shepherd (2012) for further details.
Our results are robust to the inclusion of these test (results are available from the authors on request).
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Table A.2: Factor Loadings and Signal Ratios for Ability Measurement Model

Factor Loading Signal

Mathematics Test 1 0.679

Reading Comprehension Test 0.869∗∗∗
(0.012)

0.589

Teacher Assessment Math 0.183∗∗∗
(0.002)

0.816

Teacher Assessment English 0.167∗∗∗
(0.002)

0.745

Teacher Assessment Science 0.182∗∗∗
(0.002)

0.755

Number of observations 6,365

Notes: The table presents estimated factor loadings and signal values
for five measurements, at age 16 in the NCDS, reflecting a single latent
ability factor. The first factor loading of unity reflects a normalization.

Table A.3: Mean Estimated Ability by Gender and Classification

“Never-takers” “Compliers” “Always-takers” “Stayers”

Men −0.897
[−0.939,−0.855]

0.042
[−0.020,0.104]

0.123
[0.071,0.174]

1.075
[1.034,1.115]

n = 1, 167 n = 628 n = 601 n = 875

Women −0.941
[−0.987,−0.896]

0.013
[−0.038,0.065]

0.073
[0.025,0.120]

0.947
[0.907,0.986]

n = 887 n = 701 n = 679 n = 827

All −0.916
[−0.947,−0.885]

0.027
[−0.013,0.067]

0.096
[0.061,0.130]

1.012
[0.984,1.041]

n = 2, 054 n = 1, 329 n = 1, 280 n = 1, 702

Notes: The table presents the mean estimated ability by gender and NCDS
classification. 95 percent confidence intervals in square brackets, observation
numbers below.

is, for each gender g ∈ {m, f}:

X ≡
{
1 :=

(
c0, a0, z0

)
, 2 :=

(
c0, a1, z0

)
, 3 :=

(
c0, a1, z1

)
, 1̃ :=

(
c1, a0, z0

)
, 3̃ :=

(
c1, a1, z1

)}
.

(B.1)

where we have denoted the types by 1, 2, 3, 1̃ and 3̃. Types 1 and 1̃ correspond to (a0, z0),

i.e. low-ability and unqualified, in cohorts 0 and 1 respectively. Types 3 and 3̃ correspond to

(a1, z1), i.e. medium-ability and qualified, in cohorts 0 and 1 respectively. Type 2 corresponds

to (a1, z0, c0)—i.e. medium-ability and unqualified in cohort 0, for whom there is no counterpart

in cohort 1.

Gender is observable and we shall refer to male types as x ∈ X and female types as y ∈ X .

As analysts we further observe an individual’s cohort and qualifications, but not their ability.

This means that we cannot directly distinguish between individuals of the first two types: 1 and

2 make up the set of indistinguishable types, X I . In contrast, the last three types, i.e. 3, 1̃ and

3̃, make up the set of distinguishable types, XD. Consequently, we can directly observe the total

number of matches between any two distinguishable types, e.g. the number of matches between

type 3 males and type 1̃ females, denoted N31̃. We can also observe the number of singles of
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any distinguishable type, which we denote by Nm
x0 for males, and Nf

0y for females. However, we

cannot observe the number of matches involving at least one indistinguishable type, nor can we

observe the number of singles of any indistinguishable type.36

These observations are summarized in Table B.1, where the rows indicate male types and

the columns indicate female types. Each row/column is augmented with a 0-type to indicate the

unmatched singles. The cell entries denote the number of matches between the corresponding

types. Question marks indicate those matches whose numbers cannot be observed.

Table B.1: Observed and unobserved marriage and singlehood frequencies

Women

1 2 3 1̃ 3̃ 0

(a0, z0, c0) (a1, z0, c0) (a1, z1, c0) (a0, z0, c1) (a1, z1, c1) ·

M
e
n

1 ? ? ? ? ? ?

2 ? ? ? ? ? ?

3 ? ? N33 N31̃ N33̃ N30

1̃ ? ? N1̃3 N1̃1̃ N1̃,3̃ N1̃0

3̃ ? ? N3̃3 N3̃1̃ N3̃3̃ N3̃0

0 ? ? N03 N01̃ N03̃

In addition, we observe the total number of matches between any distinguishable type and

the set of indistinguishable types, X I = {1, 2}, which we index by I. That is we observe NIy

and NxI for any x, y ∈ XD. We also observe the number of matches where both types are

indistinguishable, NII , and we also observe the number of singles who are indistinguishable,

Nm
I0 and Nf

0I .

We will now show that we can use the separability assumption (Assumption 3 in the main

text) to fill in the question marks in Table B.1. For the reader’s convenience, we restate

Assumption 3 as it pertains to the 2× 2× 2 model specification as Assumption B.3:

Assumption B.3. Let x = (c, a, z) denote the type of the man and let y = (c′, a′, z′) denote
the type of a woman. The systematic surplus function Σxy is additively separable:

Σxy = ζ
(
a, z, a′, z′

)
+ λcc′ .

Since there are two cohorts, we have four parameters capturing the cohort-profile aspect

of preferences: λ00, λ01, λ10, λ11. Further, observe that the matrix
(
Σxy

)
x,y∈X is invariant to

transformations that add a constant k to each ζ term and subtract the same k from each λ

value. We may therefore, without loss of generality, normalize λ00 to zero.

Lemma B.1. The cohort preferences, Λ := (λ01, λ10, λ11) is overidentified under Assumption

B.3.

36Since our focus is on identification, we assume that the laws of large numbers apply, and thus the
observed values have no sampling variation.
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Proof. Observe first that if x, y ∈ XD, then Σxy, is identified. This follows from Choo and Siow
(2006), who show that

exp(Σxy) =
(Nxy)

2

Nm
x0N

f
0y

. (B.2)

Let i and j denote generic elements of the set of types {1, 2, 3} ⊂ X , all belonging to cohort
0 (index i will refer to males, index j to females). We will use ĩ (resp. j̃) to denote the type
from cohort 1 who has the same ability and qualifications as i (resp. j). Under Assumption
B.3,

Σĩj − Σij = λ10 − λ00 = λ10,

independent of the values of i and j. Similarly, Σij̃−Σij = λ01 and Σĩj̃−Σij = λ11, independent
of the ability-qualification profiles of i or j.

Consider the set of types {3, 3̃} ⊂ XD, for both men and for women—i.e. qualified with
medium-ability. Since both types are distinguishable, we observe the number of matches, Nxy,
for any x, y belonging to {3, 3̃}. Furthermore, we observe the number of single men Nm

x0 and

single women Nf
0x, for each type x in this set. Consequently, using B.2 we can infer Σ33, Σ3̃3,

Σ3̃3̃, and Σ33̃. Thus, the vector of parameters Λ is identified.
Furthermore, since 1̃ is also in XD we can infer Σ1̃3 and Σ1̃3̃, and their difference is an

independent measure of λ10−λ11. Similarly, as we can infer Σ31̃ and Σ3̃1̃, we have an independent
measure of λ01 − λ11. This yields two over-identification restrictions.

We now proceed to the main part of the argument: the demonstration that we can use

the parameters in Λ in order to infer the entire matching pattern for all types, observable and

unobservable, for both genders. In essence, the vector Λ and the observable matches imply a

system of non-linear equations in the unobservable matches that has a unique solution. Indeed,

we obtain an explicit formula for each of the unobservable matches, in terms of the observable

matches and Λ.

Inferring the Number of Single Low-Ability Males in Cohort 0 The key step lies in showing

that we can infer the number of single males of the indistinguishable types, i.e. types 1 and 2.37

Recall that these types are the unqualified in cohort 0, with type 1 having low-ability and type

2 having medium-ability. Since we observe the total number of unqualified single males in this

cohort, it suffices to identify Nm
10, the number of single unqualified low-ability males in cohort

0, which we now proceed to.
Re-state (B.2) for the pairs (i, j) and (̃i, j):

exp(Σij) =
(Nij)

2

Nm
i0N

f
0j

, (B.3)

and

exp(Σĩj) =

(
Nĩj

)2
Nm

ĩ0
Nf

0j

. (B.4)

If we divide (B.3) by (B.4), the left-hand side equals exp(−λ10), and on re-arranging, we get

Nij = Nĩj

√
Nm

i0

exp(−λ10/2)√
Nm

ĩ0

. (B.5)

37The same argument applies for females.
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We may now replace i with 1 and ĩ with 1̃ in the above to get:

N1j = N1̃j

√
Nm

10

exp(−λ10/2)√
Nm

1̃0

. (B.6)

This is an expression for the unobserved N1j but contains the unobservable Nm
10. Critically,

the expression is linear in N1̃j , with a coefficient that is independent of j, a property that is
important for the aggregation that is to follow. We rewrite this equation for each possible value
of j: first for j = 1, 2,

N11 = N1̃1

√
Nm

10

exp(−λ10/2)√
Nm

1̃0

. (B.7)

N12 = N1̃2

√
Nm

10

exp(−λ10/2)√
Nm

1̃0

. (B.8)

Consequently,

N11 +N12 = (N1̃1 +N1̃2)
√
Nm

10

exp(−λ10/2)√
Nm

1̃0

. (B.9)

Although we observe neither N1̃1 nor N1̃2, we do observe their sum, which we denote by N1̃I ,
since this is the total number of matches between unqualified males of cohort 1 and unqualified
females of cohort 0. Similarly, for j = 3,

N13 = N1̃3

√
Nm

10

exp(−λ10/2)√
Nm

1̃0

. (B.10)

Similarly, one can write down the expressions for exp(Σ1j̃) and exp(Σ1̃j̃). Since the ratio of the
first to the second equals exp(λ01 − λ11), we get

N1j̃ = N1̃j̃

√
Nm

10

exp((λ01 − λ11)/2)√
Nm

1̃0

. (B.11)

Setting j̃ = 1̃ and 3̃ in turn, we get the expressions for N11̃ and N13̃.
Let Tm

1 denote the total population of type 1 males, i.e. the number of males in cohort 0
who are of low ability. Note that we observe the total number of low ability males in cohort 1,
since they correspond to the number who do not get a qualification. At this point, we invoke
that the proportion of low ability males in cohorts 0 and 1 are equal (a condition in Proposition
1). This implies that we observe Tm

1 , since this equals the size of cohort 0 multiplied by the
observed proportion of low-ability males in cohort 1. Now,

Tm
1 =

(
N11 +N12 +N11̃ +N13 +N13̃

)
+Nm

10. (B.12)

While none of the terms on the right-hand side above are directly observed, our derivations
imply that they can be written in terms of observables and a single unobservable, as follows:

Tm
1 =

[(
N1̃I +N1̃3

)
exp

(
− λ10

2

)
+
(
N1̃1̃ +N1̃3̃

)
exp

(
λ01 − λ11

2

)]√
Nm

10√
Nm

1̃0

+Nm
10. (B.13)

Thus we have a quadratic equation in a single unknown,
√
Nm

10, since all the coefficients

are observed, N1̃I is observed, as are the other values, N1̃1̃, N1̃3̃ and N1̃3. N
m
1̃0

is the number of
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singles of type 1̃ and is also observed.

Since the right-hand side is increasing in
√
Nm

10 when
√
Nm

10 > 0, and is strictly less than

the left-hand side when
√
Nm

10 = 0, and strictly greater when
√
Nm

10 =
√

Tm
1 , there is a unique

solution in the interval (0,
√
Tm
1 ), that is given by the familiar quadratic formula. Furthermore,

since we observe the sum Nm
10 +Nm

20, i.e. the total number of unqualified men in cohort 0, we

also infer Nm
20. We therefore are able to observe directly or infer, the number of singles for every

type of man. Since the argument for women is symmetric, we also observe or infer the number

of singles for every type of women.

Inferring the Matching Matrix We now show that we can infer all the elements of the matching

matrix. We directly observe Nij and infer Σij when both i and j belong to the distinguishable

set XD = {3, 1̃, 3̃}.
Consider then i = 1 and j ∈ XD. Since we infer Σ1̃j (as 1̃, j ∈ XD), and we infer the

elements of Λ we can infer Σ1j . For example, Σ11̃ = Σ1̃1̃ + λ01 − λ11. We can therefore use

equation (B.3) to infer N1j , for j ∈ XD. But since we observe the sum N1j +N2j , we can also

infer N2j , for j ∈ XD.

The final step is to show that we can infer Nij when both i ∈ X I and j ∈ X I . Since we

infer Σ11̃ and also λ01, we can infer Σ11. Equation (B.3) then allows us to infer N11 since we

also know the number of singles. But, invoking the assumption that the ability distribution is

stable (Assumption 1), gives us the total number of type 1 men, Tm
1 , allows us to infer N12, as

a residual. Hence we have inferred the number of matches N1j for all j. Similarly, we can infer

N21, and finally, N22.

Having inferred all elements of the matching matrix, and the number of singles of each

type, all entries Σij in the surplus matrix can be inferred from (B.3). Furthermore, for each

possible type profile we also identify Uxy and Vxy, the systematic component of match payoffs

for men and women respectively, since these are the dual variables corresponding to the surplus

maximization program, as shown by Shapley and Shubik (1971) and Choo and Siow (2006).

This completes the proof of the Proposition.

Remark 1. Although cohort preferences Λ are overidentified, we have exact identification

(rather than overidentification) of the surplus matrix conditional on Λ.

Remark 2. It is critical for identification that we have inter-marriage between pre-reform and

post-reform cohorts. If cohorts were separate markets—an assumption that is sometimes made

in the literature—identification, and disentangling the roles of ability and qualifications, would

be impossible. To see this, let us suppose that there are no matches between cohorts 0 and 1.

This would correspond to λ01 = λ10 = −∞. Thus, a critical step in the proof, the derivation of

equation (B.5), would not be possible. Indeed, even if we had access to independent information

on Λ, we would be unable to use this. The proof uses matches between type 1̃—the unqualified

individuals in cohort 1, who are necessarily low ability—to infer the matches involving type 1,

the low ability individuals in cohort 0.38

C. The Maximum Likelihood Estimator

An individual is either male (superscript m) or female (superscript f). The model focuses on

as set of cohorts c ∈ C = {1953, ..., 1960}, that are split halfway into a pre-RoSLA regime

38In the industrial organization context, identification is often possible when there are separate markets.
This may be due to the fact that supply is uniform across markets, while demand varies. In our marriage
market context, both sides of the market are affected by the reform, and vary across cohorts.

7



C0 and a post-RoSLA regime C1. The marriage market participants are endowed with ability

a ∈ A =
{
a0, a1, a2

}
, where a0 indicates low ability, a1 indicates medium ability, and a2 indicates

high ability. Each marriage market participant is further characterized by a qualification-level

z ∈ Z =
{
z0, z1, z2

}
, with z0 denoting no qualification, z1 denoting a basic qualification level,

and z2 denoting an advanced qualification level.

The marital surplus function is indexed by a parameter θ, i.e. Σx,y = Σx,y(θ) for x, y ∈ X .

The θ-parameter is the parameter of interest. The qualification attainment process is indexed

by a parameter γ = (γm0 , γm1 , γf0 , γ
f
1 ). Given γ, it is straightforward to recover the population

measures over the full type-space, which we denote hm(x;γ) and hf (y;γ) for males and females,

respectively (x, y ∈ X ).

Assumption 2 lays out the regime-specific qualification attainment process. With γg1 < 1 for

g = m, f , X ⊂ C×A×Z features N = 4×|C0|+4×|C1| = 32 types. In the case where γg1 = 1 for

g = m, f , which turns out to be the empirically supported case, Assumption 2 implies that four

(a, z)-types exist in C0 but only three of these exist in C1. Hence, when γg1 = 1 for g = m, f ,

X ⊂ C × A × Z features N = 4 × |C0| + 3 × |C1| = 28 types. Accounting for out-of-sample

marriages adds 2 types of marriage partners (pre- and post-sample).

C.1. Computing Equilibrium Choice Probabilities

Out-of-Sample Marriages. Out-of-sample marriages occur relatively frequently for males

towards the end of C and for females in the beginning of C, but will—as large age gaps are quite

rare—be quite infrequent for individuals born close to the reform threshold. In order to account

for marriages to non-sample-cohort spouses we make use of the age gap preferences.

Let premc (θ) be the share of cohort-c males’ marriages that involve pre-sample females

(c′ < 1953), and let postmc (θ) be the share of cohort-c males’ marriages that involve post-

sample females (c′ > 1960). Recall that d = c′ − c is the husband-wife age gap. Then, premc (θ)

is the share of cohort-c males’ marriages that involves age gaps d ≤ min {C}−1−c, and postmc (θ)

is the share of cohort-c males’ marriages that involve age gaps d ≥ max {C}+ 1− c.
We approximate premc (θ) by the relative weight put on age gaps d ≤ min {C} − 1 − c by

the age gap component of the marital surplus, conditional on d ∈ {1− |C| , ..., |C| − 1}, and
postmc (θ) by the relative weight put on age gaps d ≥ max{C}+1− c by the age gap component
of the marital surplus. Formally,

premc (θ) =

∑min{C}−1−c
d=1−|C| exp (λ (d;θ) /2)∑|C|−1

d=1−|C| exp (λ (d;θ) /2)
and postmc (θ) =

∑|C|−1
d=max{C}+1−c exp (λ (d;θ) /2)∑|C|−1

d=1−|C| exp (λ (d;θ) /2)
.

(C.1)

The female out-of-sample marriage shares are denoted by prefc′ (θ) and postfc′ (θ). A woman
from cohort c′ is married to a pre-sample male if d ≥ c′ −min {C}+ 1, and she is married to a
post-sample male if d ≤ c′ −max {C} − 1. Hence, we define

prefc′ (θ) =

∑|C|−1
d=c′−min{C}+1 exp (λ (d;θ) /2)∑|C|−1

d=1−|C| exp (λ (d;θ) /2)
and postfc′ (θ) =

∑c′−max{C}−1
d=1−|C| exp (λ (d;θ) /2)∑|C|−1

d=1−|C| exp (λ (d;θ) /2)
.

(C.2)

Equilibrium Algorithm. The equilibrium outcome of interest is a set of never-married rates

and marriage rates by gender and type. For given values of θ and γ, we compute these using

the following algorithm.
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0. Initiate the algorithm with guesses on the N -vector of type-specific single rates for each

gender, denoted µ̂m
0 = (µ̂m

0|x)x∈X and µ̂f
0 = (µ̂f

0|y)y∈X for males and females, respectively.

Go to step 1.

1. Using premc (θ), postmc (θ), prefc′(θ), and postfc′(θ) from (C.1) and (C.2), predict the

gender- and type-specific out-of-sample marriage rates as µ̂m
pre|x(θ) = (1 − µ̂m

0|x)pre
m
c (θ),

µ̂m
post |x(θ) = (1 − µ̂m

0|x)post
m
c (θ), µ̂f

pre|y(θ) = (1 − µ̂f
0|y)pre

f
c′(θ), and µ̂f

post |y(θ) = (1 −
µ̂f
0|y)post

f
c′(θ). There are 2N out-of-sample marriage rates for each gender. Go to step

2.

2. Given θ and γ, the candidate vectors of single rates, and hm(x;γ) and hf (y;γ), the
population measures of men and women of types x and y, respectively, compute the
gender-specific candidate marriage rates

µ̂m
y|x(θ,γ) =

(
µ̂m
0|xµ̂

f
0|y

hf (y;γ)

hm(x;γ)

)1/2

exp

(
Σxy(θ)

2

)
, (C.3)

and

µ̂f
x|y(θ,γ) =

(
µ̂m
0|xµ̂

f
0|y

hm(x;γ)

hf (y;γ)

)1/2

exp

(
Σxy(θ)

2

)
, (C.4)

as implied by the marriage market equilibrium. There are N2 marriage rates for each

gender. Stack the type-specific never-married and (in- and out-of-sample) marriage rates

in vectors µ̂m(θ,γ) for males and µ̂f (θ,γ) for females. The vectors µ̂m and µ̂m each

contain N + 2N +N2 rates. Go to step 3.

3. Given µ̂m(θ,γ) and µ̂f (θ,γ), compute the implied gender and type-specific excess sup-

plies, denoted ∆̂m
x (θ,γ) and ∆̂f

y(θ,γ), and defined as

∆̂m
x (θ,γ) ≡ µ̂m

0|x + µ̂m
pre|x(θ) + µ̂m

post |x(θ) +
∑
y∈X

µ̂m
y|x(θ,γ)− 1, (C.5)

and
∆̂f

y(θ,γ) ≡ µ̂f
0|y + µ̂f

pre|y(θ) + µ̂f
post |y(θ) +

∑
x∈X

µ̂f
x|y(θ,γ)− 1. (C.6)

Stack the gender- and type-specific excess supplies in the 2N -vector ∆̂(θ,γ). In equi-

librium, excess supply is zero for each gender and all types. Let || · ||∞ be the uni-

form norm. If the candidate equilibrium marriage rates leaves no excess supply, i.e. if

||∆̂(θ,γ)||∞ ≤ ϵ, where we take ϵ = 10−5, terminate the algorithm and take µm(θ,γ) =

µ̂m(θ,γ) and µf (θ,γ) = µ̂f (θ,γ) as the equilibrium marriage (and never-married) rates.

If ||∆̂(θ,γ)||∞ > ϵ, go to step 4.

4. Update the candidate equilibrium never-married rates with a simplified (and dampened)
Newton-step. Let Ĵ be the 2N × 2N -matrix with partial derivatives of the excess supply
vector ∆̂(θ,γ) with respect to the log single rate of own (gender and) type on the diagonal,
and zeros on the off-diagonals. Hence, Ĵ is the Jacobian of ∆̂(θ,γ), taken with respect
to the log single rates, but with the off-diagonal elements set to zero. For example, the
diagonal entry in Ĵ corresponding to a male type-xi individual therefore contains

∂∆̂m
x (θ,γ)

∂ log µ̂m
0|x

=

{
1− premx (θ)− postmx (θ) +

1

2

( µ̂f
0|y

µ̂m
0|x

· h
f (y;γ)

hm(x;γ)

)1/2

exp

(
Σxy(θ)

2

)}
µ̂m
0|x.

(C.7)
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Stack the gender-specific vector of candidate never-married rates µ̂m
0 and µ̂f

0 in µ̂0, and
Newton-update log µ̂0 according to

logµ′
0 = log µ̂0 +K · Ĵ−1∆̂(θ,γ), (C.8)

where K < 1 is a scalar dampening factor. We take K = 2/3. Update µ̂0 = µ′
0. Go to

step 1 with the updated never-married rate candidates µ̂0 = (µ̂m
0 , µ̂f

0).
39

C.2. The Likelihood Function There are three observable types (qualification-levels) for each

cohort. Let X̃ = C × Z be the observable type-space, with generic element x̃. Let X̃+ =

X̃ ∪ {0, pre, post} be the observable spouse type-space which is the same as the own type-space

but extended to non-marriage, and marriage to an out-of-sample spouse. We have |X̃ | = 24

and |X̃+| = 27.

Our data can be represented by a matrix of male marriage frequencies, Mm = (Mm
x̃ỹ) for

x̃ ∈ X̃ and ỹ ∈ X̃+, and a matrix of female marriage frequencies, Mf = (Mf
x̃ỹ) for x̃ ∈ X̃+ and

ỹ ∈ X̃ . Mm
x̃ỹ is the number of type-x̃ males in our data making marriage choice ỹ. Similarly,

Mf
x̃ỹ is the number of type-ỹ females in our data making marriage choice x̃.
Let µm

0|c,a,z(θ,γ) be the equilibrium probability that a male of full type-(c, a, z) remains

single, and likewise, let µf
0|c′,a′,z′(θ,γ) be the equilibrium probability that a female of full type-

(c′, a′, z′) remains single. The implied never-married rate for the observable male type (c, z) is

µ̃m
0|c,z(θ,γ) =

∑
a∈A

µm
0|c,a,z(θ,γ)Pr

m(a|c, z;γ), (C.9)

with an analogous expression for the observable female never-married rates µ̃f
0|c′,z′(θ). There

are |C| × |Z| = 24 unconditional (on ability) never-married rates for each gender.
The equilibrium marriage rates are aggregated across the unobserved ability-levels in a sim-

ilar fashion. Consider first the out-of-sample marriage rates. Let µm
pre|c,a,z(θ,γ), µ

m
post |c,a,z(θ,γ),

µf
pre|c′,a′,z′(θ,γ) and µf

post |c′,a′,z′(θ,γ) be the equilibrium male and female, full-type-specific pre-
and post-sample marriage rates. Aggregating across the unobserved ability levels yields out-of-
sample marriage rates with observable counter-parts. For males, we have

µ̃m
pre|c,z(θ,γ) =

∑
a∈A

µm
pre|c,a,z(θ,γ)Pr

m(a|c, z;γ), (C.10)

and
µ̃m
post |c,z(θ,γ) =

∑
a∈A

µm
post |c,a,z(θ,γ)Pr

m(a|c, z;γ), (C.11)

where female rates are analogously defined. There are |C| × |Z| = 24 observable pre-sample

rates and |C| × |Z| = 24 observable post-sample rates for each gender.
Finally, let µm

c′,a′,z′|c,a,z(θ,γ) be the equilibrium probability that male of full type-(c, a, z)

marries a woman of full type-(c′, a′, z′), and let µf
c,a,z|c′,a′,z′(θ,γ) be the equilibrium probability

that a woman of full type (c′, a′, z′) marries male of full type (c, a, z) male. In terms of observable
types, aggregating over both the own and the spouse ability we have that

µ̃m
c′,z′|c,z(θ,γ) =

∑
a∈A

∑
a′∈A

µm
c′,a′,z′|c,a,z(θ,γ)Pr

m(a|z, c;γ), (C.12)

39Our Newton-step update only uses the diagonal elements of the Jacobian, but nonetheless converges
almost instantaneously.
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with an analogous expression for the female rates. There are (|C| × |Z|)2 = 576 observable

marriage rates for each gender.
Having characterized the model implied choice probabilities that a male or female of a given

type marries a spouse of a given type, marries out-of-sample, or never marries, as the case might
be, the likelihood that the model delivers the observed marriage frequencies Mm and Mf is
easily obtained. Indeed, the log-likelihood of observing Mm and Mf is

logL (θ,γ) =
∑
x̃∈X̃

∑
ỹ∈X̃+

Mm
x̃ỹ log µ̃

m
ỹ|x̃ (θ,γ) +

∑
ỹ∈X̃

∑
x̃∈X̃+

Mf
x̃ỹ log µ̃

f
x̃|ỹ (θ,γ) , (C.13)

where µ̃g
ỹ|x̃(θ,γ) is given by (C.9), (C.10), (C.11), or (C.12), or their female analogs.

The Asymptotic Sampling Distribution. The parameter of interest, θ, as well as γ, can
be estimated by Maximum Likelihood in a three-step procedure. This procedure yields γ̂ =
(γ̂m0 , γ̂m1 , γ̂f0 , γ̂

f
1 ) = (0.755, 1, 0.738, 1). Let θ0 represent the true value of θ, and let θ̂ be the

maximum likelihood estimator of θ0. Regularity conditions and standard arguments implies

that plim θ̂ = θ0 and that
√
M(θ̂ − θ0)

d→ N (0,Ω), where Ω = E[−H(Mm,Mf ;θ0)]
−1,

H(Mm,Mf ;θ) = ∇2
θ logLp(θ) is the Hessian matrix of the log-likelihood function (C.13), the

expectation is taken with respect to the distribution of (Mm,Mf ), and M = Mm +Mf where

Mm =
∑

x̃∈X̃
∑

ỹ∈X̃+
Mm

x̃ỹ is the number of observations on males and Mf =
∑

ỹ∈X̃
∑

x̃∈X̃+
Mf

x̃ỹ
is the number of observations on females. In the empirical implementation, Ω is estimated by

Ω̂ =

−M−1

∑
x̃∈X̃

∑
ỹ∈X̃+

Mm
x̃ỹ∇

2
θ logµ

m
ỹ|x̃(θ̂, γ̂) +

∑
ỹ∈X̃

∑
x̃∈X̃+

Mf
x̃ỹ∇

2
θ logµ

f
x̃|ỹ(θ̂, γ̂)


−1

. (C.14)

We report standard errors and draw inference based on Âvar(θ̂) = M−1Ω̂. Âvar(θ̂) does

not account for the estimation errors embedded in γ̂.

D. Details on the Three-Step Estimation Procedure

Recall that, with four (a, z) combinations, ζ(a, z, a′, z′) is a 4 × 4 matrix of 16 parameters,
that the parameterized age-gap preferences and trends add 22 parameters, and that we stack
these 38 systematic surplus parameters in θ. θ is the parameter of interest. Additionally, we
must deal with γ ≡ (γm0 , γm1 , γf0 , γ

f
1 ), the four proportions of medium ability men and women

who gain a basic qualification pre- and post-RoSLA. We estimate the parameters by Maximum
Likelihood and approach the estimation problem in a three-step procedure briefly described in
the main text. Although there is overlap with the description in the main text, this appendix
provides additional details on the procedure, especially on step 2 and 3.

Step 1: Assumptions 1 and 2 imply that the observed discontinous increase in the basic
qualification rate at the RoSLA threshold is driven by a proportionately equal increase in the
basic qualification rate of medium-ability individuals. That is,

γg1
γg0

=
limw↓0E

g[yz
1 |w]

limw↑0Eg[yz1 |w]
, for g = m, f, (D.1)

where yz
1
is an indicator for attaining qualification z = z1 and w is date of birth relative to

the RoSLA threshold date. The RDD estimator of (1) for qualification z1 allows us to obtain
precise estimates of the right hand side of (D.1), and we therefore treat the (reciprocal) ratio
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γg0/γ
g
1 as known and equal to 0.755 (0.011) for men and 0.738 (0.008) for women where the

numbers in parenthesis are boostrapped standard errors.40

Trivially, each element of γ is in the unit interval. However, the observed qualification
distribution actually imposes a tighter lower bound on γg1 . To see this, note that the observed
rate of holding qualification z1 post-RoSLA is the product of γg1 and the proportion of individuals
who have ability level a1, where the latter cannot exceed the complement of the proportion
holding qualification z2 (as these individuals, per Assumption 2, have ability level a2). This
places a lower bound on γg1 , denoted γg

1
, which we find to be 0.69 for both genders.41 Altogether,

we thus obtain that the empirically feasible set G is:

G =

{
γ : γg1 ∈ [0.69, 1] for g = m, g, and

γm0
γm1

= 0.755 and
γf0

γf1
= 0.738

}
.

The ratio restrictions on γ ∈ G imply that there are only two free parameters in γ.
Interestingly, in the lower limit where γg1 = γg

1
= 0.69 for g = m, f , all unqualified

individuals—both pre- and post-RoSLA—have medium ability and no one has low ability. This
means that, in this limit, everyone is distinguished by their observable qualification level, imply-
ing that there is no latent ability. In other words, when γg1 approaches the lower limit γg

1
= 0.69

for g = m, f , our latent ability model collapses to the standard CS model.

Step 2: We compute maximum likelihood estimates conditional on γ ∈ G by estimating
the model on a fine grid of alternative γ ∈ G. Specifically, for each γ-value on the grid, we
obtain θ̂(γ) ∈ argmaxθ L(θ,γ) and the likelihood value L(θ̂(γ),γ). Note that θ̂(γ) may not
be unique.

The upper panel of Figure D.1 plots conditional maximum likelihood values for the special
case where we additionally restrict γm1 = γf1 = γ1, leaving γ1 as the only free element in γ. The
top panel of Figure D.1 yields a number of insights. First, the conditional maximum likelihood
value is naturally a continuous function of γ1, but exhibits a kink (at γ1 = 0.81). At this point
(and only at this point) argmaxθ L(θ,γ) is not a singleton, implying a failure of identification:
at this specific γ-value, there are two very different θ-vectors fit the data equally well. Note,
however, that non-identification come about only under knife edge conditions.42 Second, noting
that γ1 = γ

1
= 0.69 corresponds to the CS model without latent ability, we also estimate this

model separately (see Appendix F for details) and indicate the maximum likelihood value with
the label “CS”. This provides numerical confirmation that the CS model is in fact a limiting
case of our latent ability model and that the standard CS model is identified.

The lower panel of Figure D.1 plots maximum likelihood values conditional on γm1 and γf1 ,
in the general case where these are allowed to differ. Generalizing from the kink-point in the
upper panel, the lower panel highlights paths of kink-points at which argmaxθ L(θ,γ) is not a
singleton.

Step 3: Using the step-2 conditional likelihood values, L(θ̂(γ),γ), we find the γ-value where
the likelihood function attains its overall maximum. That is, if γ̂ ∈ argmaxγ∈G L(θ̂(γ),γ), then

40To see this, note that γg
0/γ

g
1 = 1 − φg

z1/ limw↓0 E
g
[
yz

1 |w
]
where the estimated values of φg

z1 from

(1) are 0.106 (0.005) for men and 0.131 (0.007) for women (see Table 2), and estimates of the values

of limw↓0 E
g
[
yz

1 |w
]
can simply be obtained as the empirical rate of holding qualification z1 among

individuals in the first RoSLA-affected cohort, 0.433 (0.004) for men and 0.499 (0.004) for women.
41Specifically, the lower bound γg

1
is defined as γg

1
≡ maxc∈C1

{
Prg

(
z = z1|c ∈ C1

)
/
[
1− Prg

(
z = z2|c ∈ C1

)]}
.

42The kink in the likelihood value at γ1 = 0.81 arises as the intersection between the paths of two local
maximizers, θ̂1(γ1) and θ̂2(γ1). For γ1 < 0.81, θ̂1(γ1) is the the global maximum, while γ1 > 0.81 yields

θ̂2(γ1) as the global maximum. Exactly at γ1 = 0.81, argmaxθ L(θ, 0.81) = {θ̂1(0.81), θ̂2(0.81)}.
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θ̂(γ̂) is a maximum likelihood estimate of the parameters of interest θ. With reference to (the
top panel of) Figure D.1, we first note that the CS model obtained at γ1 = γ

1
= 0.69 provides

a particularly poor fit to the data. Re-iterating arguments already laid out and previewing
specification tests to come, the poor fit of CS model without latent ability stems from patently
counterfactual predictions of the RoSLA response of the single rates of unqualified individuals
(see Figure F.1 in Appendix F). More importantly, the plots in the upper and lower panels of

Figure D.1 confirm that, across all feasible γ ∈ G, γm1 = γf1 = 1 provide the best fit to the data,

a point we label “Pref. Spec.” in the upper panel. Of course, γm1 = γf1 = 1 implies γm0 = 0.755

and γf0 = 0.738. That is, our estimate of γ is γ̂ ≡ (γ̂m0 , γ̂m1 , γ̂f0 , γ̂
f
1 ) = (0.755, 1, 0.738, 1). It is

reassuring that the γ-values that offer the best and far superior fit are well removed from the
kinkpoints in the empirical likelihood.

Figure D.1: Maximum Likelihood Values Conditional on γ ∈ G

Notes: The figure plots the maximum likelihood value associated with alternative values of
γg1 ∈ G. In the upper panel we restrict attention to the case where γm1 = γh1 . The “CS” marker
indicates the maximum likelihood value associated with the CS model without latent ability
and “Pref. Spec”-marker indicates the overall maximum likelihood value. The lower panel plots
the maximum likelihood value for all feasible values of γ ∈ G.

E. Additional Analysis of Model Fit

E.1. Qualification Homogamy Figure E.1 shows the model-predicted version of the empirical
distributions of spousal qualifications by own qualification level in Figure 4. Comparing Figures
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4 and E.1, the estimated model replicates the overall assortative mating on qualifications well.

Figure E.1: Predicted Assortative Matching on Qualifications
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Notes: Each panel shows the predicted spousal qualification distribution by own qualification
level.

E.2. Estimated Age Gap and Trend Functions Recall that d = c′ − c is the husband-wife age
gap. The age gap function λ(d) is parameterized as follows:

λ (d) =
3∑

δ=−3

βδ
1(d = δ) +

(
β−
0 + β−

1 d
)
1(d ≤ −4) +

(
β+
0 + β+

1 d
)
1(d ≥ 4), (E.1)

which is fully non-parametric at age-gaps around zero, but, for simplicity, imposes linear terms
at age gaps outside the range {−3,−2, ..., 3}. We normalize β0 = 0, implying that λ (0) = 0;
hence, (E.1) introduces 10 parameters.

With only a small number of cohorts on either side of the threshold, we model marital
surplus trends τ g (c, a) for g = m, f as piecewise linear functions:

τ g (c, a) = βg
a (c− 1953) + βg

a,C1 (c− 1956)1(c ∈ C1), g = m, f, (E.2)

thus adding a total of 12 additional parameters.
The ten parameters of the age gap function λ(d) are stacked in

θλ =
(
β−3, β−2, β−1, β1, β2, β3, β−

0 , β
−
1 , β

+
0 , β

+
1

)
,

and the estimate of θλ is

θ̂λ =

(
−3.579
(0.042)

,−2.628
(0.032)

,−1.435
(0.024)

, 0.249
(0.019)

, 0.055
(0.002)

,−0.300
(0.022)

,−3.147
(0.163)

, 0.286
(0.030)

, 0.088
(0.074)

,−0.284
(0.013)

)
,
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where asymptotic standard errors are reported in parentheses. With the exception of β̂+
0 , all

the elements in θ̂λ are statistically significant at the 1 percent level.
Figure E.2, which plots the predicted age gap distribution alongside the empirical one for

the central values of −4 to +4, shows that the estimated λ (d) yields a close fit to the empirical
age gap distribution.

Figure E.2: Predicted and Empirical Age Gap Distributions
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Notes: The age gap d is defined as d ≡ c′− c, where c and c′ are cohort of the husband and the
wife, respectively. Solid lines renders the data (see left panel of Figure 6). Dashed lines renders
model predictions.

The trend functions τm(c, a) and τ f (c, a) each has 6 parameters, see (E.2), which we stack

in the two vectors θg
τ =

(
βg
a0
, βg

a0,C1 , β
g
a1
, βg

a1,C1 , β
g
a2
, βg

a2,C1

)
for g = m, f . We obtain

θ̂m
τ =

(
−0.076
(0.023)

,−0.109
(0.032)

, 0.066
(0.015)

,−0.136
(0.028)

,−0.039
(0.017)

,−0.065
(0.036)

)
,

θ̂f
τ =

(
−0.187
(0.036)

,−0.054
(0.044)

, 0.014
(0.017)

,−0.136
(0.031)

,−0.085
(0.019)

,−0.087
(0.039)

)
,

where, as above, asymptotic standard errors are reported in parentheses. Most estimated trend
parameters in θ̂m

τ and θ̂f
τ are statistically significant and negative, which is consistent with

never-married rates increasing across cohorts.

F. Specification Tests

F.1. The “Qualification-Only” CS Model An individual’s type is defined as x ∈ C ×Z with all
combinations possible. We impose the same separability assumption on marital surplus as in
(5). We also impose the same age-gap preference structure and the same trend structure except
that trends are qualification-specific, and not ability-specific. That is, the “qualification-only”
CS model has the following marital surplus function:

Σ(c,z),(c′,z′) = ζ
(
z, z′

)
+ λ

(
c′ − c

)
+ τm (c, z) + τ f

(
c′, z′

)
, (F.1)
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with λ (d) representing the age gap preferences as in the main text (d = c′−c is the husband-wife
age gap), and where τ g (c, z) are piecewise linear trends that allow for a break at the RoSLA
threshold. The estimated qualification surplus matrix is shown in Table F.1.43

Table F.1: The Marital Surplus Matrix in the Constrained Model

Wife type

z0 z1 z2

Husband type z0 0.244∗∗∗
(0.076)

−1.413∗∗∗
(0.079)

−4.350∗∗∗
(0.091)

Husband type z1 −1.701∗∗∗
(0.083)

−1.088∗∗∗
(0.083)

−3.029∗∗∗
(0.090)

Husband type z2 −3.762∗∗∗
(0.095)

−2.285∗∗∗
(0.089)

−0.482∗∗∗
(0.090)

Notes: Asymptotic standard errors in parentheses. ∗,
∗∗, and ∗∗∗ indicates statistical significance at the 10, 5,
and 1 percent levels, respectively

The loss in the maximized log likelihood value relative to our main model in this case is
163.7 (and larger than the corresponding loss of 107.8 for the restricted model where trends were
defined on ability). There is no visible difference in the fit to the observed aggregate assortative
mating on qualifications compared with our full model and the same applies to the aggregate
age gap distribution.44

The central difference between our model with latent ability and the one estimated here
without latent ability is in terms of predicted never-married rates. Figure F.1 presents the fit
to the empirical never-married rates of the model without latent ability. The restricted model
without latent ability severely misrepresents how the never-married rate of unqualified men and
women changed at the reform threshold, predicting a sharp reduction in response to the reduced
supply brought about by the RoSLA.

F.2. Testing Additive Separability with Linear Trends Consider a man from cohort c ∈ C1 with
qualification z and a woman from cohort c′ ∈ C1 woman with qualification z′. As both are from
the post-RoSLA cohorts, by Assumption 2 and using that γg1 = 1 for g = m, f , the qualifications
imply aligned ability levels, a and a′. If the gender- and ability-specific trend terms are linear as
in our main specification, then the marital surplus function (5) implies a zero double-difference
in cohorts,[

Σ(c,a,z),(c′,a′,z′) − Σ(c−1,a,z),(c′−1,a′,z′)

]
−
[
Σ(c−1,a,z),(c′−1,a′,z′) − Σ(c−2,a,z),(c′−2,a′,z′)

]
= 0. (F.2)

In post-reform cohorts, this double-difference is observable: using that the terms in (4) sum
up to the systematic surplus, we have that

log

(
µm
c′,a′,z′|c,a,z

µm
0|c,a,z

)
+ log

µf
c,a,z|c′,a′,z′

µf
0|c′,a′,z′

 = Σ(c,a,z),(c′,a′,z′), (F.3)

where the marriage and never-married rates on the left-hand side are observed for c, c′ ∈ C1.
Hence, the double-differenced marital surplus can be computed by double-differencing the cor-

43The estimated parameters in the age gap and trend functions, λ (d), τm(c, z) and τf (c, z), are not
reported by are available on request.

44Details of these model predictions are available from authors on request.
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Figure F.1: Predicted (Constrained Model) and Empirical Never-Married Rates by Cohort,
Gender, and Qualification
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Notes: The horizontal axes show academic cohorts. The vertical axes show never-married rates.
Solid lines renders the data. Dashed lines renders model predictions.

responding empirical sum of log-ratios, thus rendering the restriction (F.2), implied by (5),
testable.

As all cohorts included in the double-difference have to be in C1, the possible base years are
1960 and 1959. This leaves four possible male-female base year combinations, and as there are
nine possible husband-wife qualification profiles, a total of 36 post-reform double differences can
be computed. All 36 estimates are plotted in Figure F.2 along with 95 percent confidence inter-
vals. Despite fairly high precisions in some categories, the hypothesis of a zero double-difference
in marital surplus is rejected in only two cases and with no particular pattern emerging. We
conclude that the marriage data from the post-reform cohorts does not reject a specification
with additive age-gap-based preferences and linear trends.

17



Figure F.2: Specification Tests Based on Marital Surplus Double Differencing
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Notes: The horizontal axes show double-differenced marital surplus, see (F.2) and (F.3). Point
estimates are indicated by a red asterisks. The blue bars indicate 95% confidence intervals. The
double differences are computed only on the post-RoSLA cohorts where ability and qualifications
are aligned, such that there are 3 types for each gender. Within each subfigure, the husband-wife
base year combinations, reading from top to bottom, are (1960, 1960), (1960, 1959), (1959, 1960),
and (1959, 1959).
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