

Enhancing crossdisciplinary mathematical skills through a collaborative e-assessment initiative

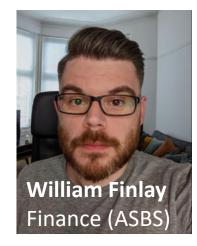
NUMBAS

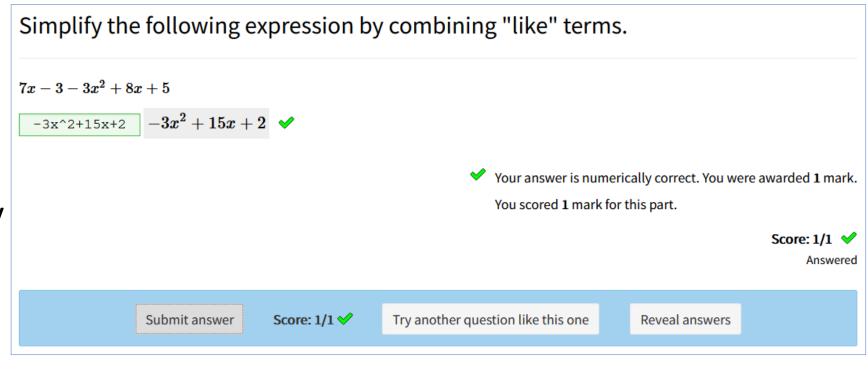
LTC Presentation 2022

Numbas at Glasgow

- Previous projects (Chemistry, Life Sciences)
- Other existing use (Geospatial, Access)
- Further potential (Maths Support, more questions, other subject areas)
- Project team and Chancellor's Fund
- Recruitment of undergraduate student project assistants
 - Named appointments
 - 3 x 80 hours (~5 hours a week for 4 months)
 - Support from Newcastle

Project Team




Project team development interests

- Frances Docherty & Beth Paschke, Chemistry: Maths support for chemists, online lab reporting, practice exercises on lecture material, maths support for science fundamentals course
- Clare Brown, Lifelong Learning: self-diagnostic assessment for prospective students, practice questions for mastering key skills
- Ruth Douglas, Maths Support resources for students requiring extra practice on particular topics; Access Maths formative tests and practice exercises
- William Finlay, Adam Smith Business School: Building maths confidence without the need for as much staff involvement, creating an accessible learning environment
- Elizabeth Petrie, GES: Geospatial PGT improve by increased variety in Q pool

- Online assessment system designed for mathematical subjects
- Free to use and open source
- Designed for accessibility
- Adaptive marking
 & diagnostic and explore modes
- Graphics and programming
- Lots of info at:

https://www.numbas.org.uk

Numbas

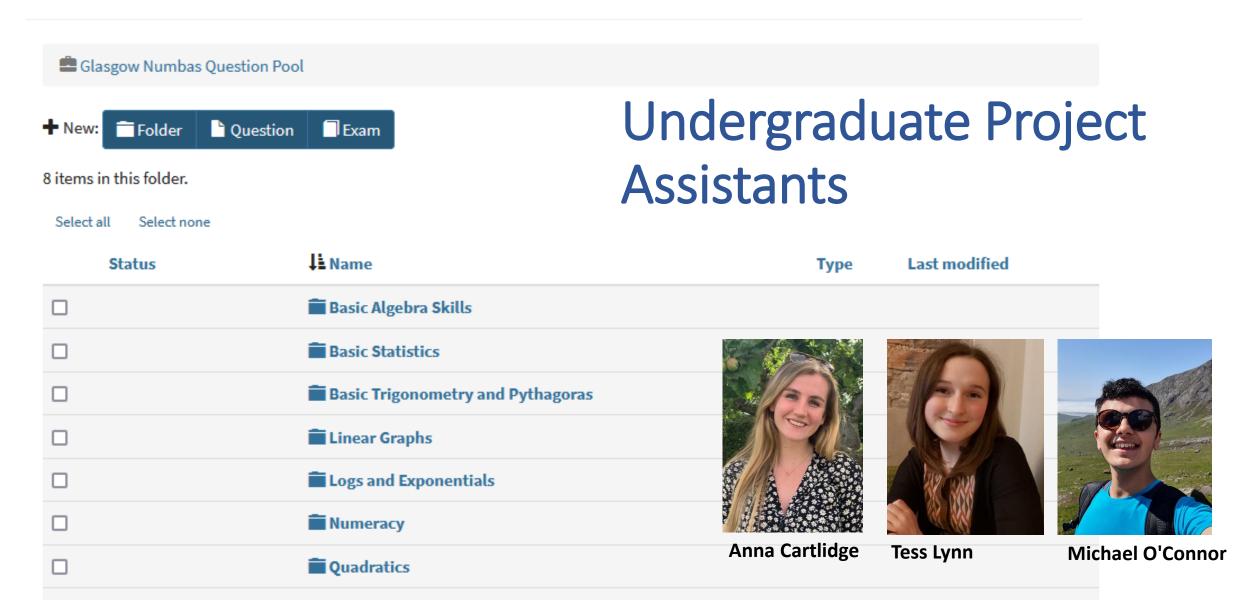
If questions are ready, creating an exam is simple:

- Put questions in 'shopping basket' and decide on exam settings
- Import the exam package to Moodle and set up

Possibilities

Consider strategy/needs carefully, test, evaluate including student feedback

Use	Randomisation
Additional optional student resource	Students can keep practicing areas they find difficult
Formative testing	Allows repeated tests
Low credit summative testing	Allows repeated tests and keep max score.
Summative testing – can be review tests	Numerical answers can be different for each student
Diagnostic testing	Numerical answers can be different for each student


Example - GES PGT mixed experience maths

- Numbas approach evolved and tested over three years
- Assessment 10% of 20 credit module
- 10 weekly tests (minimal credit, repeat as wish before deadline)
- 2 review tests (single timed sitting, most of credit)
- Further experience with Lab reporting in Chemistry

Roots and Indices

Ready to use

Ready to use

Ready to use

Ready to use

65 results for "logs".

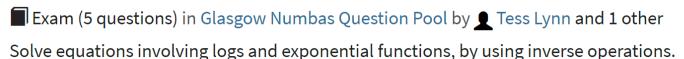
Show results for

Questions

□ Exams

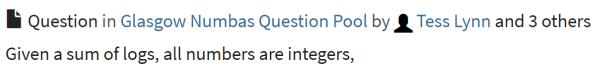
Refine by

- Any status
- O Draft
- Ready to use
- O Should not be used
- O Has some problems
- O Doesn't work
- O Needs to be tested



Equations involving logs

Solve equations involving logs and exponential functions, by using inverse operations.


Equations involving logs

Solving exponential equations using logs

Combining use of multiple laws of logarithms into one equation

 $\log_b(a_1) + \alpha \log_b(a_2) + \beta \log_b(a_3)$ write as $\log_b(a)$ for some fraction a.

Also calculate to 3 decimal places $\log_b(a)$.

Advice

Edit - Insert - View - Format - Table - Tools

Formats - = B I I_x =

In order to solve this question, you need to ident

Therefore to solve for the future value:

We know that the PV is £{num_PV}million, we k periods of compounding. Therefore:

Advice

In order to solve this question, you need to identify that we are solving for this equation: $FV = PV(1+r)^n$

Therefore to solve for the future value:

$$FV = PV(1+r)^n$$

We know that the PV is $\mathfrak{L}\{\text{num}_PV\}$ million, we know that $r = \{\text{num}_r\text{eturn*}100\}\%$ and we have $\{\text{num}_p\text{eriod}\}\ \text{periods}\ \text{of}\ \text{compounding}$. Therefore:

$$FV = PV(1+r)^n$$

$$FV = \left\{ \mathsf{num}_{PV} \right\} (1 + \left\{ \mathsf{num_return} \right\})^{\left\{ \mathsf{num_period} \right\}}$$

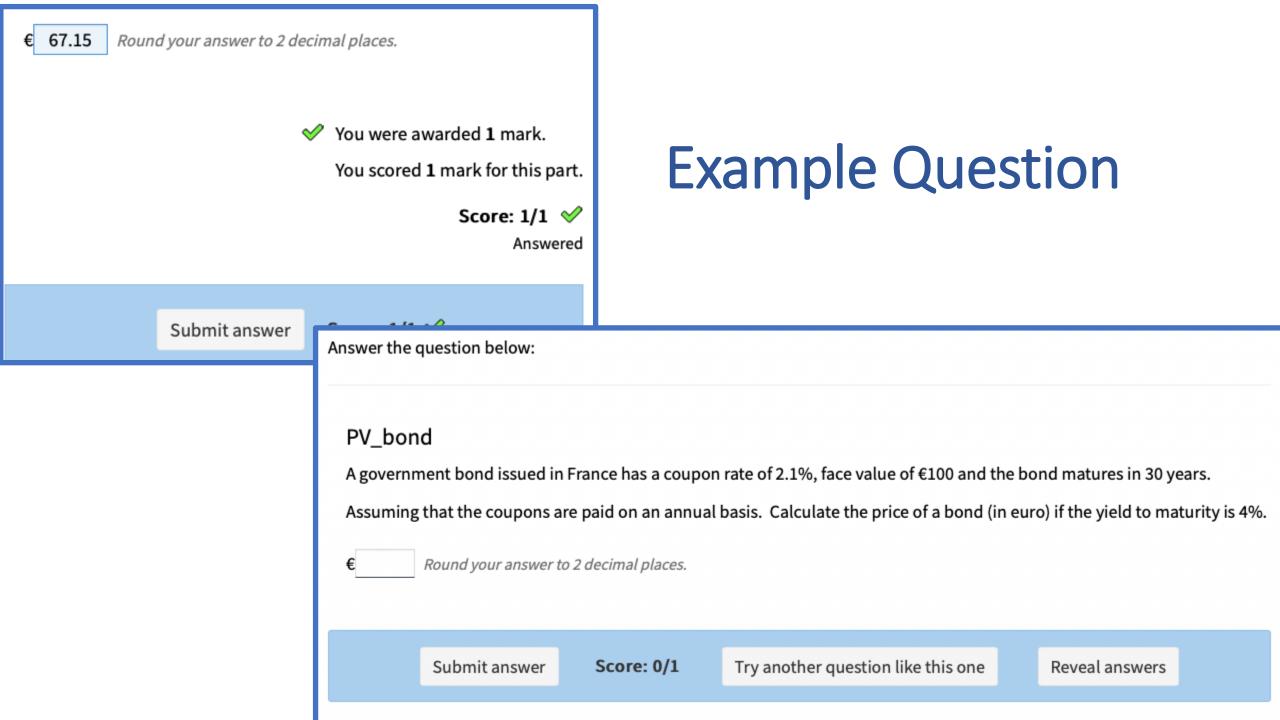
$$FV = \{answer\}$$
 million

A government bond issued in {place} has a coupon rate of {coupon}%, face value of €{face} and the bond matures in {period_years} years.

Assuming that the coupons are paid on an annual basis. Calculate the price of a bond (in euro) if the yield to maturity is {ytm}%.

€ Unnamed gap

Click to edit


The future value to 4 decimal pla

Alternative ap

You may also so

Click to edit

tor} or

Questions?

If interested:

- info and demo of question types at: https://www.numbas.org.uk/
- contact one of the project team:

Ruth Douglas Ruth Douglas@glasgow.ac.uk

Elizabeth Petrie Elizabeth.Petrie@glasgow.ac.uk

William Finlay William.Finlay@glasgow.ac.uk

Shazia Ahmed Shazia.Ahmed@glasgow.ac.uk

Beth Paschke Beth.Paschke@glasgow.ac.uk

Frances Docherty Frances.Docherty@glasgow.ac.uk

Clare Brown Clare.Brown.2@glasgow.ac.uk

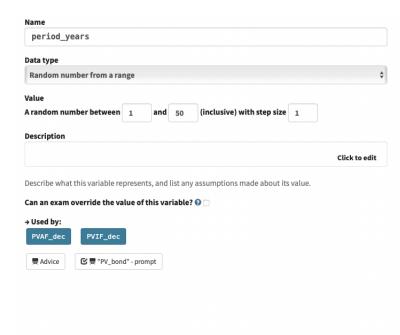
Thanks for listening!

Appendix - Examples

Foundations of FINANCE

Writing the question in NUMBAS:

Write the question


A government bond issued in {place} has a coupon rate of {coupon}%, face value of €{face} and the bond matures in {period_years} years.

Assuming that the coupons are paid on an annual basis. Calculate the price of a bond (in euro) if the yield to maturity is {ytm}%.

€ Unnamed gap

Click to edit

Define the variables

1 ^a Ungrouped variables				
	Name	Туре	Generated Value	
<u></u>	>\$ coupon	number	8.6	×
	≭ period_years	integer	45	×
	≭ ytm	number	1.6	×
<u></u>	coupon_dec	number	0.086	×
	ytm_dec	number	0.016	×
	PVAF_dec	number	31.9041051506	×
<u></u>	face	integer	100	×
•	coupon_payme nt	number	8.6	×
•	PVIF_dec	number	0.4895343176	×
	PV_bond	number	323.33	×
	>\$ place	string	the Netherlands	×

Writing the question in NUMBAS:

Write advice

Advice

In order to solve this question, we need to recognize that we are trying to solve the present value of a government bond.

To calculate the price of a bond:

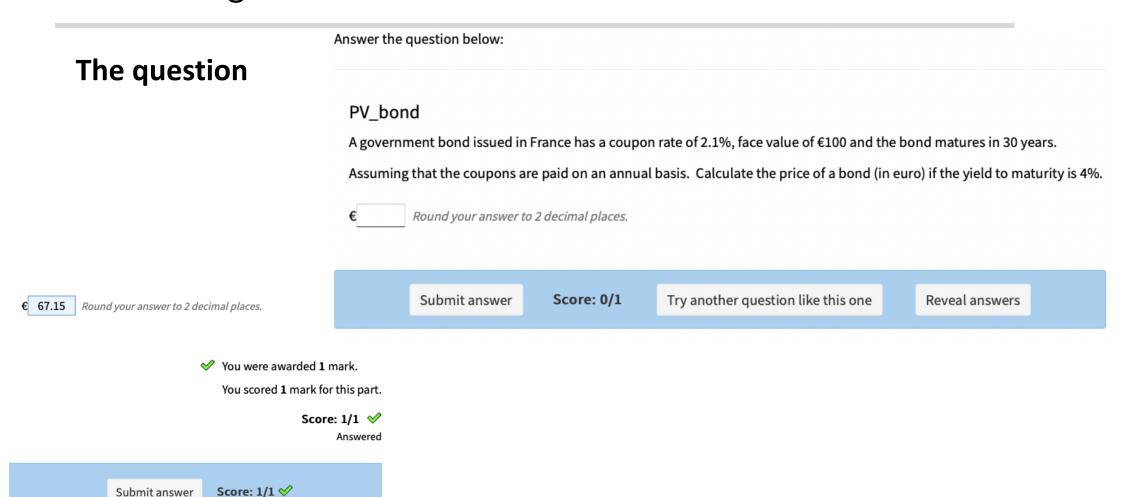
$$PVbond = coupon * \left(\frac{1}{r} - \frac{1}{r(1+r)^n}\right) + \frac{Par}{(1+r)^n}$$

Using the information provided in the question:

The coupon is {currency({coupon_payment},"€","p")}, this is calculated as {coupon}% of the face value of €{face}. The number of periods in this problem is {period_years} and the yield to maturity is {ytm}%.

Therefore to solve the value of this bond from {place}:

$$PVbond = \left\{ \text{coupon_payment} \right\} * \left(\frac{1}{\{\text{ytm_dec}\}} - \frac{1}{\{\text{ytm_dec}\}(1 + \{\text{ytm_dec}\})^{\{\text{period_years}\}}} \right) + \frac{\{\text{face}\}}{1 + \{\text{ytm_dec}\}^{\{\text{period_years}\}}}$$


The present value of the bond = {currency(PV_bond,"€","cents")}

Click to edit

Submit answer

Student facing NUMBAS:

Student facing NUMBAS:

Advice

Advice

In order to solve this question, we need to recognize that we are trying to solve the present value of a government bond.

To calculate the price of a bond:

$$PVbond = coupon * \left(\frac{1}{r} - \frac{1}{r(1+r)^n}\right) + \frac{Par}{(1+r)^n}$$

Using the information provided in the question:

The coupon is €2.10, this is calculated as 2.1% of the face value of €100. The number of periods in this problem is 30 and the yield to maturity is 4%.

Therefore to solve the value of this bond from France:

$$PVbond = 2.1 * (\frac{1}{0.04} - \frac{1}{0.04(1 + 0.04)^{30}}) + \frac{100}{1 + 0.04^{30}}$$

The present value of the bond = €67.15

Student facing NUMBAS:

Infinite number of questions

PV_bond

A government bond issued in Germany has a coupon rate of 1.8%, face value of €100 and the bond matures in 27 years.

Assuming that the coupons are paid on an annual basis. Calculate the price of a bond (in euro) if the yield to maturity is 5.9%.

PV_bond

A government bond issued in France has a coupon rate of 3.4%, face value of €100 and the bond matures in 2 years.

Assuming that the coupons are paid on an annual basis. Calculate the price of a bond (in euro) if the yield to maturity is 13.6%.

PV_bond

A government bond issued in Italy has a coupon rate of 9%, face value of €100 and the bond matures in 30 years.

Assuming that the coupons are paid on an annual basis. Calculate the price of a bond (in euro) if the yield to maturity is 10.2%.

PV_bond

A government bond issued in the Netherlands has a coupon rate of 6.3%, face value of €100 and the bond matures in 36 years.

Assuming that the coupons are paid on an annual basis. Calculate the price of a bond (in euro) if the yield to maturity is 15.6%.

PV_bond

A government bond issued in Italy has a coupon rate of 3.6%, face value of €100 and the bond matures in 5 years.

Assuming that the coupons are paid on an annual basis. Calculate the price of a bond (in euro) if the yield to maturity is 16.8%.

PV_bond

A government bond issued in the Netherlands has a coupon rate of 4.6%, face value of €100 and the bond matures in 8 years.

Assuming that the coupons are paid on an annual basis. Calculate the price of a bond (in euro) if the yield to maturity is 3.4%.

PV_bond

A government bond issued in Italy has a coupon rate of 9.5%, face value of €100 and the bond matures in 26 years.

Assuming that the coupons are paid on an annual basis. Calculate the price of a bond (in euro) if the yield to maturity is 19.3%.

Foundations of FINANCE

Writing advice

In order to solve this question, you need to identify that we are solving for this equation: $FV=PV(1+r)^n$

Therefore to solve for the future value:

We know that the PV is £{num_PV}million, we know that $r = \{num_return*100\}\%$ and we have $\{num_period\}$ periods of compounding. Therefore:

$$(FV = PV(1+r)^n)$$

\(FV = \var{num_PV}(1+\var{num_return})^\var{num_period}\)

 $\(FV = \sqrt{answer} \times {million}\)$

Alternative approach to solving:

You may also solve this question using the financial tables.

The future value factor (FVF) of $\{num_return*100\}\%$ for $\{num_period\}$ periods is: $\{factor_rounded\}$ to 4 decimal places.

Advice

In order to solve this question, you need to identify that we are solving for this equation:

$$FV = PV(1+r)^n$$

Therefore to solve for the future value:

$$FV = PV(1+r)^n$$

We know that the PV is $\mathfrak{E}\{\text{num}_PV\}$ million, we know that $r = \{\text{num}_r\text{eturn*}100\}\%$ and we have $\{\text{num}_p\text{eriod}\}$ periods of compounding. Therefore:

$$FV = PV(1+r)^n$$

$$FV = \{\text{num}_{PV}\} (1 + \{\text{num_return}\})^{\{\text{num_period}}\}$$

$$FV = \{answer\}$$
 million

Alternative approach to solving:

You may also solve this question using the financial tables.

The future value factor (FVF) of {num_return*100}% for {num_period} periods is: {factor} or {factor_rounded} to 4 decimal places.

$$FV = PV * FVF(\{\mathsf{num_return} \times 100\} \%, \{\mathsf{num_period}\})$$

$$FV = \{\mathsf{num}_{PV}\} * \{\mathsf{factor_rounded}\}$$

$$FV = \{\mathsf{answer}\} \text{ million}$$

Click to edit