
Mobile-Kube: Mobility-aware and Energy-

efficient Service Orchestration on

Kubernetes Edge Servers

Saeid Ghafouri, Alireza Karami, Danial Bidekani Bakhtiarvand,
Aliakbar Saleh Bigdeli, Sukhpal Singh Gill and Joseph Doyle

Introduction

Energy Proportional Computing

Barroso, L.A. and

Hölzle, U., 2007. The

case for energy-

proportional

computing. Computer,

40(12), pp.33-37.

Recommendations for improving consolidation

● Recommended utilisation levels of 75% for Hyperscale server users and 45%

for smaller users in the US
○ A. Shehabi et al., "United state data center energy usage report", 2016.

● In the UK, HMG Sustainable Technology Advice and Reporting (STAR) have

identified a “consolidation programmes to maximise use of capacity” as best

practice for achieving this goal.
○ Depart for Environment Food & Rural Affairs, "Sustainable Technology Annual report 2018 to

2019," October 2019.

Commitments by Cloud Providers

● Microsoft committed to carbon neutrality by 2030

● Amazon committed to carbon neutrality by 2040

● What about Edge devices?

● In some ways better as they do not need supporting infrastructure for cooling
○ Ahvar, E., Orgerie, A.C. and Lebre, A., 2019. Estimating energy consumption of cloud, fog and

edge computing infrastructures. IEEE Transactions on Sustainable Computing.

● However, mostly focused on latency reduction only.

● This can lead to low utilisation of resources

● Mobile-Kube attempts to balance the latency reduction and consolidation

objectives for containerised services on the edge

● Also consider user mobility and how this affects the objectives

6

Container Orchestration Frameworks

● Containerized softwares

● Google Borg

● Docker Swarm

● Kubernetes!

6

Edge Computing

Problem statement

Reinforcement Learning

Contribution of this work

● A new design for reducing the latency and energy consumption on

Kubernetes-driven edge nodes.

● Use of RL for achieving a trade-off between maintaining reasonable energy

consumption and latency. Proposed the use of a distributed RL method

named IMPALA.

● To test the efficiency of our method we have implemented of a simulation

framework for training and a real-world emulator on top of real-world

Kubernetes.

● The RL based method is able to achieve similar energy efficiency of the

heuristic methods while reducing the latency by 43%.

Proposed RL Solution

Latency Reduction objective

Proposed RL solution (Overview)

Based on the

latency and bin

packing objective
The Kubernetes

cluster

The users

and

services

placement

New service

placement

Proposed RL solution (cont)

● States: concatenation of two arrays
○ An array containing the service placements

○ An array containing the users closest station

● Actions: next placement of the services in the nodes

● Rewards

○ The latency objective is computed from the inverse of the total distances of the the users from

their service

○ The binpacking objective is simply the number of empty servers

● Policy network: A 64*64 fully connected neural network

Used RL Methods

● We used three algorithms for our experiments:

● Vanilla Policy Gradient: The basis of all policy gradient methods used

before in system research for bitrate adaptation

● PPO: A more advanced version of the policy gradient which tries to minimize

the variance by clipping the objective function

● IMPALA: One of the newest widely used distributed RL algorithm with fast

convergence and low variance

● Also use heurstic methods (greedy and binpacking) for comparison

System Design

Kubernetes Internal Structure

image from: https://www.aquasec.com/cloud-native-academy/kubernetes-101/kubernetes-complete-guide/

Kubernetes Resource Model

● Request: reserved amount

of resource for a container

● Limit: Maximum amount of

Of resource for a container

● Exceeding limit: OOM error for memory

and throttling for CPU

● We used resource request for scheduling

Kubernetes Default Scheduler

● Pods the smallest scheduling unit in kubernetes

● Currently the scoring is done based-on the rules defined by

Kubernetes user and also heuristic algorithms

● Nodes available resources

● Requested resources

● A two step process

○ Filtering: Filtering out suitable nodes

○ Scoring: Ranks the nodes based-on a sets of criteria to find the

most suitable node

● Assign the pod to the node with the highest rank

Limitations of the default scheduler

● Using the Kubernetes builtin custom scheduler feature was not feasible

● No migration of the pods based on external metrics

● We implemented this feature as deleting on pods in one place and restarting

it in the destination node outside the cluster using the Python client API

Our design for changing the Scheduler

● Using the Python client API of Kubernetes

● For the emulation setting we discard the built in scheduler decision and used

our own scheduler which resides outside the K8S cluster

● A better design for this should be fully integrated into the K8S

● The user mobility side is simulation

System design

Experimental Setup and

Results

System setting and datasets

● Cabspotting dataset: The Cabspotting dataset contains GPS traces of taxi
cabs in San Francisco (USA), collected in May 2008.

● http://www.antennasearch.com/ for the location of cell towers

● Python simulator for user mobility
● 8 kubernetes GKE nodes and 16 stateless services

● Reward scaling

http://www.antennasearch.com/

Picture of the network

16 users 32 users 48 users

● Co-located stations and servers

● 5 minute interval mobility

Results - Training

empty servers

Average network

latency

● For training we generated a dataset based on the user locations around the servers

● A simulator that used the real-world K8S for training

Results - Test

empty servers Average latency

● Average over 20 sample episode run

● On the cluster instead of the simulator

Results - Example episode

empty servers

Average

network latency

● Single episode run per timestep

Directions for future works

● Checkpointing of stateful services

● Kubernetes full implementation

● Hierarchical and multi-agent RL

Thank you for your attention!

● Source code available at: https://github.com/saeid93/mobile-kube.git

● Currently under review in Transactions of Service Computing

● Early version of work https://ieeexplore.ieee.org/abstract/document/9284153

● Email: j.doyle@qmul.ac.uk

https://github.com/saeid93/mobile-kube.git

