

School of Computing Science

Low carbon computing Context, vision and challenges March 2022 Wim Vanderbauwhede

Global

context

IPCC Sixth Assessment Reports:

- Greenhouse gas emissions must be cut drastically to keep global warming below 1.5°C (IPCC WGI AR6 report).
- They must be cut *now*, we can't afford to wait anymore (IPCC WGI, "Physical Science Basis", AR6 report).
- This is incompatible with unlimited economic growth (IPCC WG III, "Mitigation", AR6 report).

The scale of the challenge

Meeting the climate targets

Limits and current emissions

To limit global warming to below 1.5°C by 2040, a global reduction from 55 to 13 Gtonnes per year is needed.

• Emissions from electricity are currently about 10 GtCO₂e.

• But electricity consumption is rising steeply (electric vehicles, electric heating)

Renewables and nuclear

- Deployment is too slow
- It takes 20 years to build a new nuclear power plant
- Old ones are being shut down

• Renewables+nuclear will provide only 30% of electricity by 2040.

Carbon Capture and Sequestration

• The energy required in the capture process will be greater than the energy made available during the release of the CO₂.

• Many scenarios assume that large areas of land will be available -not clear if this is realistic, scalable or compatible with sustainability goals.

• There are poorly quantified risks of re-release and no credible standards or compliance procedures.

• From an ethical and intergenerational justice perspective ... it looks like green wash.

(taken from the UKRI DRI Net Zero presentation, M. Juckes, 2022)

Carbon offsetting

• The earth's land ecosystems can hold enough additional vegetation to absorb 40 - 100 GtCO₂e from the atmosphere.

• Once this additional growth is achieved (takes decades), there is no capacity for additional carbon storage on land.

• The world emits 50 GtCO₂e into the atmosphere per year. So all we can offset is 2 year's emissions at most.

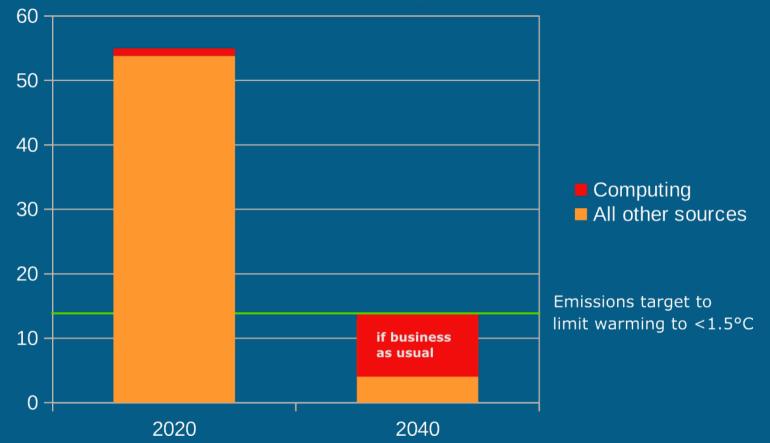
Reducing emissions is imperative

• In other words, to reduce atmospheric CO₂ to 1.5C levels by 2040, the only way is

- to reduce energy consumption
- to reduce the amount of goods produced

• This is largely an economic problem, but there is an important role to play for technology

The carbon cost of computing


Emissions from using computing

- In 2020, emissions from using computing were between 3.0% and 3.5% of the total.
- This is already more than the airline industry
- By 2040 this will grow to 14% (4x).
- By 2040, energy consumption of compute devices would be responsible for 5 Gtonnes of CO₂

Emissions from production

- Emissions from the production of computing devices exceed those incurred during operation.
- Taking into account this carbon cost of production, computing would be responsible for 10 Gtonnes of CO₂ by 2040,
- This is almost 80% of the acceptable CO₂ emissions budget of 13 Gtonnes of CO₂.

Emissions from computing and other sources

Towards zero carbon computing

Transforming computing

• In less than two decades, we need a radically transformation of the global use of computational resources to meet the climate targets.

• We must dramatically reduce the carbon cost of both production and operation of computing.

Extending the useful life

• We can't rely on next-generation hardware technologies to save energy: the production of this next generation of devices will create more emissions than any operational gains can offset.

• This does not mean research into more efficient technologies should stop.

• But their deployment cycles should be much slower.

• Extending the useful life of compute technologies to several decades must become our priority.

Extending the useful life

• We need a change in business models as well as consumer attitudes. This requires:

- raising awareness and education;
- providing incentives for behavioural change;
- provide economic incentives and policies;
- infrastructure and training for repair and maintenance.

Avision for

computing science

• Develop the computing science to extend the useful life of our devices and increase their capabilities.

- With every advance, effectiveness will increase without any increase in energy consumption.
- Computing technologies for the next generation of devices will increase energy efficiency and lifetime.

• Every subsequent cycle will last longer, until finally the world will have computing resources that last forever and hardly use any energy.

Specific challenges

Cloud computing

- Saving energy during operation:
 - Optimising for energy consumption: e.g. DVFS, accelerators, scheduling and placement
 - More energy-efficient software on all layers
- Increasing the useful life
 - Reliability monitoring and early-warning systems
 - Degradation-aware operation

Ultra-HD video & VR/AR

- Roll-out will lead to order of magnitude increase in video/3D traffic. To mitigate:
 - Better compression (e.g. tailored)
 - Local rendering (e.g. using FPGAs)
 - Better caching
 - Edge computing

IoT

- Project growth in devices is huge, resulting in huge increase in network traffic.
- Also huge emissions from production
- To mitigate:
 - Increase lifespan; reducing energy consumption helps primarily with this.
 - Edge computing to reduce network traffic.

Mobile devices

- Projected growth in mobile devices is still very large, and current lifespan much too short.
- Mainly needs longer-term software support, so better SE practices, in particular relating to security
- Apps should be designed to minimise full-system energy consumption
- User interfaces should nudge users towards energy efficient behaviour

Research

directions

Systems

- Operating systems: energy-aware resource allocation and scheduling
- Networking: Energy consumption as QoS criterion
- Software engineering: better processes and sustainable practices will play a key role in extending lifetimes of systems.
- Data centre/cloud: energy efficient heterogeneous systems, resource allocation, scheduling, ...

Information, Data and Analysis

- Sustainable systems need to be data-driven.
 - Large systems produce huge amounts of system data
 - Making sense of this data is crucial for whole-system energy optimisation
- Information retrieval is now pervasive.
 - Energy efficiency of IR systems ("greener search"), in terms of algorithms, software and hardware architecures.

Human-computer interaction

- HCI has a key role to play in achieving low carbon computing
 - Make users aware of energy/carbon costs of their actions
 - Nudge user behaviour towards more sustainable practice
 - Human-computer interfaces influence both energy consumption and useful life of devices

Formal Analysis, Theory and Algorithms

• Programming languages: resource-aware type systems with guarantees for resource bounds. Not a new idea, but worth revisiting within the current context

• Algorithms focussing on minimising overall minimal energy consumption

• Compilers: compilation for overall minimal energy consumption: not just CPU, also RAM, DMA, I/O wait, ...

Computing Science Education

- We teach our students how to program, we teach them about all aspects of Computing Sciene
- But currently, we don't teach them about the impact of computing on climate change, nor how to make computing sustainable
- There is a lot of scope in our curriculum for incorporating ILOs on decarbonisation and sustainability
- All our programs should have such ILOs

Thank you!

For more details and references

https://wimvanderbauwhede.github.io/articles/ frugal-computing/