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Abstract

We must divide a finite number of indivisible goods and cash transfers
between agents with quasi-linear but otherwise arbitrary utilities over the
subsets of goods. We compare two division rules with cognitively feasible
and privacy preserving individual messages.

In Sell&Buy agents bid for the role of Seller or Buyer: with two agents
the smallest bid defines the Seller who then charges any a price constrained
only by her winning bid.

In Divide&Choose agents bid for the role of Divider, then everyone
bids on the shares of the Divider’s partition.

S&B dominates D&C on two counts: its guaranteed utility in the worst
case rewards (resp. penalises) more subadditive (resp. superadditive)
utilities; playing safe is never ambiguous and is also better placed to collect
a larger share of the effi cient surplus.

Key words: ex ante fairness, guarantees, safe play, Sell & Buy, Divide
& Choose
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1 Introduction

The fair allocation of indivisible objects is greatly facilitated if the agents who
get few good objects or many bad ones accept compensations in cash or any
other transferable and divisible commodity (workload, stocks, caviar, bitcoin).
Examples of this common practice include the classic rent division problem ([14],
Spliddit.org), the dissolution of a partnership ([9], the Texas Shoot Out clause
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to terminate a joint venture1), and the NIMBY problem (the allocation of a
noxious facility between several communities [17]).
The familiar assumption that utilities are quasi-linear —each agent can attach

to each bundle of objects a personal “price” and switching from one bundle
to another is exactly compensated by the difference in their prices —yields a
versatile fair division model that the economic literature discussed with any
depth only in the special case of the assignment problem where each of the n
agents must receive at most one object (see the literature review in section 2).
We initiate the discussion of fair division rules with a finite number of indivis-

ible goods (freely disposable objects) and money. Utilities are weakly increasing
over subsets of goods but externalities across goods are arbitrarily complex, ex-
actly like in the combinatorial auction problem ([10]): if we distribute the m
goods in a set A, a full description of an agent’s utility measured in money is a
vector of dimension 2|A| − 1.

The key design constraint of such rules is the simplicity of individual mes-
sages: even with a handful of objects it is not cognitively feasible to report
a vector of such large dimension. A dual argument against against eliciting a
full report, even when A is small, is privacy protection: a message of dimen-
sion (much) smaller than 2|A| is an advantage in future bargaining interactions.
That a single cut of the cake reveals so little about the Divider’s preferences,
and even less of the Chooser’s, is what makes Divide&Choose so appealing.
In the new Sell and Buy rule (S&B) we propose, the messages are prices.

The fair division rule implemented on the Spliddit platform routinely elicits
price reports which we take as evidence of the practical applicability of the
price-based S&B rule.
If only two agents divide m goods they bid first to determine the roles of

Seller and Buyer in the next stage. A bid is interpreted as the price the Seller
can charge for all the goods; the agent with the smallest bid x takes that role.
The Seller then chooses a price for every good so that their sum is x and the
Buyer buys at those prices any subset of goods,including all goods or none.
The remaining goods go the the Seller, along with the cash from the Buyer’s
purchase.
It is also possible to adapt the Divide&Choose rule (D&C) to our model with

cash transfers. The first round of bids picks the Divider, this time because her
bid y is the highest. After paying 1

ny to each of the other n − 1 participants,
the Divider selects an allocation in which each of the n shares is a set of goods
(possibly empty) plus a cash transfer, such that all goods are distributed and
the sum of the cash transfers is zero.2

Both rules elicit cognitively realistic, if very different, messages. Our results
focus on their performances with respect to ex ante fairness and the effi ciency of
the “safe play”by the participants. A message is safe if it maximises the worst

1Both parties submit sealed bids and the party who makes the higher bid buys the company
at that price.

2We also discuss a version of D&C with the same guarantee but eliciting more information
from the agents: first each agent proposes a partition of the objects in n shares after which
they all bid to select the “best”partition: see section 6.
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case utility the agent clueless about the preferences and behaviour of the other
—possibly adversarial —participants. More sophisticated strategies exploiting
some information about other participants’behaviour or preferences are unsafe
inasmuch as this information may be wrong.
That worst case utility is called the guarantee offered by the rule and the

first step toward its ex ante fairness is that the guarantee should be the same
for two participants with identical utility functions. The next step is to make
the guarantee as “effi cient”as possible in the sense that the sum of individual
guarantees, and/or the outcome of independent safe play captures a large share
of the effi cient surplus.
To appreciate the diffi culty of taking into account arbitrary complex ex-

ternalities, consider on the contrary the case of utilities additive over perfectly
substitutable objects and in money too: they are described by anm-dimensional
vector (ua)a∈A and utility for the subset S of A is u(S) =

∑
a∈S ua. The com-

pelling division rule is the familiar Multi Auction (MA): each agent i places a
bid βiafor each good a, the highest bidder i

∗ on a gets this object and pays
1
nβi∗a to each of the n−1 other agents. Clearly the truthful bid uia on each a is
the unique safe play. MA is fair ex ante: it guarantees to each agent i her Fair
Share 1

nui(A) which is the best guarantee we can offer in the additive context.
It is fair ex post: by playing safe I will not envy anyone else’s allocation. And
if all agents play safe the effi cient allocation is selected.
MA can be used as well with our much more complex utilities. Now the

marginal utility of adding good a to a subset of goods varies so there is no
“truthful”bid on a. The safe bid solves a program similar to the one we shall
use for the S&B rule, but delivers in all problems a very low guarantee, much
below those of the S&B and D&C rules. It also fares badly in terms of effi ciency
and ex post fairness. See subsection 11.1 in the Appendix.
In our model it is still feasible to guarantee the utility 1

nui(A) to each agent i
but it is a untenably coarse interpretation of ex ante fairness that fails to reward
agents with subadditive utilities and to penalise those with superadditive utili-
ties. This is the normative motivation of our analysis, captured by contrasting
two extreme utilities that play a major role throughout.

Example 0. We divide m ≥ 2 identical goods between two agents Frugal and
Greedy with the following utilities

uF (S) = 1 for all S,∅ 6= S ⊆ A ; uF (∅) = 0

uG(S) = 0 for all S,∅ ⊆ S  A ; uG(A) = 1

Frugal is content with any single good — her utility is maximally sub-additive
— while Greedy needs all goods to derive any utility — his utility is maximally
super-additive.

We submit that it is not fair to offer ex ante the same guarantee 1
2 to both

agents —achieved by auctioning the bundled goods as in MA. Under the veil of
ignorance where we (as impartial observer) don’t know person X who will share
the goods with Frugal, we should take into account that together Frugal and X
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can produce at least as much utility surplus —and often much more —than if
X is paired with Greedy. For this reason we dismiss 1

nui(A) as a “repugnant”
interpretation of ex ante fairness. This benchmark utility still plays a significant
role in our analysis: we will call it agent i’s Familiar Share (FS) and regard it
as a compelling guarantee only for additive utilities.
The Responsiveness property says that we should guarantee strictly more

than her FS to Frugal, which implies that Greedy is guaranteed strictly less
than his FS. The Positivity property, by contrast, protects Greedy: it requires
to give him some positive guarantee because his equal rights to the goods should
amount to something regardless of his uncompromising utility.

Divide&Choose guarantees to Greedy a utility of 1
4 , half of his FS. As the

Divider he secures 1
2 by offering to pay

1
2 for the bundled objects, or be paid

1
2

and get no object; as the Chooser being offered two non empty piles of objects
with zero transfers, he will get no surplus at all; so his safe bid of 1

4 to be the
Divider guarantees a benefit of 1

4 whatever his role in the second stage.
By contrast Frugal can secure a utility of 3

4 : as the Divider she gets the full
benefit 1 by proposing two non empty piles and zero transfers; as a Chooser the
sum of her utility for the two shares is at least 1 so one of them at least gives
her utility 1

2 ; then a bid of
1
4 guarantees 1 − 1

4 if she Divides, and
1
2 + 1

4 if she
Chooses.
The guarantees offered by Sell&Buy to Frugal and Greedy are more nuanced:

they take into account that the contrast between their preferences increases with
the numberm of goods to divide. Specifically Greedy’s guaranteed utility is 1

m+1
and Frugal’s is m

m+1 . S&B sensibly penalises Greedy and rewards Frugal more
and more than D&C as m grows.
Frugal’s safe bid m

m+1 in stage 1 goes as follows. As Seller she will charge
1

m+1 per good and end up with utility
m
m+1 if Buyer buys everything, and at

least 1 if Buyer buys at least one good. As Buyer she will faces a total price
of at most m

m+1 so at least one good will cost
1

m+1 or less and buying just that
good guarantees the benefit m

m+1 .
Greedy’s safe bid is m

m+1 as well. As Seller charging
1

m+1 per good he will
get 1

m+1by selling one or more goods, and 1 by selling nothing; as Buyer the
whole bundle will cost him at most m

m+1 .

Responsiveness and Positivity of guarantees together reveal a surprising ten-
sion between ex ante and ex post fairness, when the latter is taken to mean —
as in essentially all the fair division literature —that the final allocation is Envy
Free. This simple fact is already apparent when we divide the m goods between
Frugal and Greedy: it is easy to check that the envy free allocations are of two
types: someone eats A and pays 1

2 to the other; or they each get at least one
good and no transfer takes place. The former violates Responsiveness because
it gives their FS utility to both agents, and the latter violates Positivity for
Greedy.

our punchlines Both the Sell&Buy and Divide&Choose division rules offer
new interpretations of ex ante fairness rewarding sub-additive utilities and pe-
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nalising super-additive ones. The price message in S&B allows its guarantee
more flexibility than the partition in D&C does in response to the shape of
utilities.
Playing safe in either rule cannot extract the effi cient surplus because the

messages reveal much less than full utilities. But D&C is particularly bad when
utilities are nearly additive or when one agent values each good much more than
any of the others, two problems that the S&B avoids.
Preliminary numerical experiments suggest S&B captures more of the effi -

cient surplus than D&C, on average if not necessarily in the worst case. This is
plausible because the S&B rule processes more information than D&C.

overview of the paper After the literature review in section 2 and the ba-
sics of the model in section 3, we define guarantees and the Positivity and
Responsiveness properties in section 4. There we also describe simple auctions
implementing the fixed partition guarantees, a key ingredient of the D&C rules.
Section 5 introduces two critical utility levels: the Maxmin utility that an agent
can secure as the Divider is an upper bound on all guarantees; the minMax
utility that she can secure as a Chooser against an adversarial Divider is a lower
bound on all reasonable guarantees: Proposition 1.
Section 6 defines the D&C rule and computes its safe play and guarantees:

Proposition 2. Section 7 does the same for the S&B rule —Proposition 3 —and
gives full computations in the simple case of two agents dividing identical goods
—Proposition 4.
The systematic comparison of the S&B and D&C guarantees (and the FS) in

section 8 starts by some common properties: they all increase in the number of
goods and decrease in the number of agents: Proposition 5. Then Propositions
6 and 7 formalises their differences revealed in a handful of examples. Compared
to the benchmark FS, the range of the S&B guarantee is much larger than that
of the D&C one: Proposition 7. Unlike D&C, the S&B guarantee coincides with
FS on a large subset of utilities with non empty interior: Proposition 6.
Section 9 offers two results toward the general statement, to be checked

by systematic numerical experiments, that if all participants play safely the
outcome in S&B collects on average a bigger share of the effi cient surplus than
in D&C.
With two agents and for both rules the profile of guarantees reduces the

bargaining gap, i. e., it distributes at least the total utility at the worst partition
of the goods: Lemma 10. But with three or more agents this is no longer true
for D&C, while we conjecture that it is still true for S&B.
The final Proposition 8 considers the situation where agent 1’s marginal

utility for each good dominates that of every other agent: then the S&B safe
play achieves full effi ciency, i.e., gives all the goods to agent 1, while under D&C
all but a 1

n -th share of the effi cient surplus can be lost.
All diffi cult proofs are gathered in the Appendix, section 11.
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2 Relevant literature

Allowing cash compensations to smooth out indivisibilities of objects has been
essentially ignored by the first four decades of the theoretical literature on fair
division, if we except the cogent discussion by Steinhaus of what we call above
the Multi Auction rule for additive utilities ([24] p. 317).
This changed with the microeconomic discussion of the assignment problem.

Each agent wants at most one object and utilities are only assumed increasing
in money but not necessarily quasi-linear; monetary compensations can restore
fairness interpreted as Envy Freeness and even a version of the competitive
equilibrium with equal incomes: [25] [1]]. The quasi-linear case of the model is
discussed in [2] selecting a canonical envy free allocation, in [9] for the disso-
lution of partnership, in [17] for adressing the NIMBY problem, and currently
implemented on the user-friendly Spliddit platform [15].
In the assignment problem ex ante fairness is captured by the unanimous

utility : the best equal utility in the hypothetical problem where everyone else
shares my preferences ([20], [26]). This is unambiguously the best possible
guarantee and it is compatible with Envy Freeness.
In our model the set of allocations and utilities are vastly more complex than

in an assignment problem and the unanimity utility —that we call the Maxmin
utility — is an upper bound on guarantees but not itself a feasible guarantee.
Our newfound critique of Envy Freeness (stated as Lemma 3 in section 4.2)
complements the normative objections developed in [20].
The search for a practical and appealing guarantee started the mathematical

cake cutting literature ([23], [18]) and is a prominent theme in the vibrant 21st
century algorithmic literature on fair division surveyed in [21], [4] and [27].
The standard model has utilities additive over objects and no cash transfers
or lotteries, so the definition of a convincing guarantee is complicated by the
presence of “un-smoothable”indivisibilities.Our Maxmin and minMax utilities
(section 5) are the counterpart of, respectively, the influential MaxMinShare
due to Buddish [8] and its dual MinMaxShare [7]. The MaxMinShare is almost
a feasible guarantee (it is not feasible in extremely rare configurations [22]);
its dual minMax version is strongly unfeasible: the exact opposite holds in our
model (Lemma 4 section 5), as well as when we divide a non atomic cake and
utilities are continuous but otherwise arbitrary: see [6], [3].
Other definitions of guarantees are also discussed in the algorithmic litera-

ture, e. g. [5], as are guarantees adjusted to the granularity of the utilities in
[13].
In the first of our two n-person versions of the Divide&Choose rule (section 6)

the participants bid first for the role of Divider, which is similar to and inspired
by a similar auction in [11] and [12] for implementing the egalitarian-equivalent
division rule when we distribute Arrow-Debreu commodities.
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3 Basic definitions and notation

objects and money The finite set A with cardinalitym and generic elements
a, b, · · · , contains the indivisible objects that must all be distributed between
the n agents in the set N with generic elements i, j, · · · .
A n-partition π of A is a list π = {Sk}nk=1 of possibly empty and pairwise

disjoint subsets of A such that A = ∪nk=1Sk: up to n− 1 shares can be empty.
The set of n-partitions is P(n;A) if the shares Sk are not assigned to specific
agents, and P(N ;A) if they are.
Money is available in unbounded quantities to perform transfers t = (ti)i∈N

that are balanced,
∑
N ti = 0; the set of such transfers is T (N). An allocation

is a pair (π, t) ∈ P(N ;A)× T (N).

utilities Each agent i is endowed with a quasi-linear utility ui ∈ R2A over
shares, with the important normalisation ui(∅) = 0: her utility from the alloca-
tion (π, t) is ui(Si)+ ti. The marginal utility of object a at S ⊆ A for utility u is
∂au(S) = u(S ∪ a)−u(S�a). We assume throughout the paper that all objects
are goods: ∂aui(S) ≥ 0 for all S ⊆ A; utility functions can be any (weakly)
inclusion increasing non negative function on 2A, and M+ is our notation for
this domain.
The utility u is additive if for all a ∈ A the marginal ∂au(S) = ua is inde-

pendent of S; in this case we write uS =
∑
S ua instead of u(S).

We often use the following cover operation to generate examples in the
domainM+ . Fix a subset {Sk; 1 ≤ k ≤ K} of 2A�∅ and K positive utilities
vk; the cover of the subset {(Sk, vk)} of 2A�∅×R+ is the smallest utility u in
M+ such that u(Sk) = vk for all k:

u(S) = max
k:Sk⊆S

vk ; u(S) = 0 if Sk * S for all k

For instance the Greedy utility uG in section 1 is the cover of {(A, 1)} while the
Frugal utility uF is the cover of {(a, 1); a ∈ A}.

effi ciency A N -profile of utilities is −→u = (ui)i∈N ∈M+N and if π ∈ P(N ;A)
we write −→u (π) =

∑
i∈N ui(Si). The unanimity profile where all agents have the

same utility u is written [u].
The effi cient surplus at profile −→u is W(−→u ) = maxπ∈P(N ;A)

−→u (π). Recall
an easy but critical consequence of the quasi-linearity assumption: the alloca-
tion (π∗, t) ∈ P(N ;A) × T (N) is effi cient (Pareto optimal: PO) if and only
if π∗ maximises −→u (π) over P(N ;A): Pareto optimality is independent of the
balanced cash transfers.

implementation In an arbitrary n-agent mechanism agent i’s strategy is safe
if it delivers to i the largest “worst case” utility against all other agents who
play adversarially against i after seeing i’s strategy. That utility is the guarantee
implemented by this mechanism: it only depends upon the mechanism including
n and agent i’s utility function.
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In our model as always many rules can implement the same guarantee: an
example is the two versions of Divide&Choose in section 6. We systematically
omit many tie-breaking details from the description of rules, and the reader
will find it easy to check that they (the details) never affect the guarantee they
implement.
We will also discuss the effi ciency performance of a rule at the outcome

resulting from the simultaneous safe play by all agents; if multiple choices of safe
play or tie-breaking details affect the outcome, we focus on the least effi cient
possible outcome. This performance is meaningful in the fully decentralised
context where no agent’s choice of strategy uses any information about other
agents. Naturally this restriction does not apply to a guarantee: its ex ante
protection applies against all possible moves of the other agents including highly
strategic moves based on knowledge of my own utility.

4 Guarantees, Positive and Responsive

Definition 1: An n-person guarantee is a mapping M+ 3 u → Γn(u) ∈ R+

such that ∑
i∈N

Γn(ui) ≤ W(−→u ) for each −→u ∈M+N (1)

The set of n-guarantees on A is written G(A;n).

Guarantees are anonymous by construction: they do not discriminate be-
tween agents on the basis of their name. The three guarantees getting most of
our attention, Familiar Share, Sell&Buy, Divide&Choose are also neutral, i. e.,
oblivious to the name of the objects in A: the definition of a neutral guarantee
only depends upon the numbers of objects and agents.
The simplest guarantee is the Familiar Share ΓFSn (u) = 1

nu(A): indeed
ui(A) = −→u (π) for the partition π giving all goods to i.
More generally to any π ∈ P(n;A) we associate the π-guarantee

Γπn(u) =
1

n
[u](π) =

1

n

n∑
k=1

u(Sk) for all u ∈M+

and we call Γπn a fixed partition guarantee.
To check inequality (1) at profile −→u = (ui)i∈N assign the shares of π to

agents in N arbitrarily, pick a circular permutation σ of N and sum up the
inequalities

∑
i∈N ui(Sσk(i)) ≤ W(−→u ) for all k = 0, · · · , n− 1.

The Familiar Share terminology comes from the special case of additive util-
ities where we have long known that it is the compelling guarantee (as explained
in section 5 after Proposition 1).

4.1 three simple auction rules

The simple Bundled Auction (BA) implements ΓFSn : each agent i submits a
non negative bid βi that the rule interprets as this agent’s utility for the entire
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set A; (one of) the highest bidder(s) i∗gets A and pays 1
nβi to each of the n− 1

other agents.
The only safe bid in BA is the truthful one βi = ui(A): it guarantees to

agent i her Familiar Share 1
nui(A) while any other bid risks delivering a smaller

benefit: this is clear for a winning overbid, and for an underbid losing to a bid
between βiand ui(A).3

The π-auction and averaging-auction we introduce now are the key ingredi-
ents of the Divide&Choose rules in section 6.
The π-auction implements the π-guarantee. Given π = {Sk}nk=1 and the

set N , each agent i reports a vector ti = (tik)k∈[n] ∈ T (n) of balanced transfers
over those shares (with the notation [n] = {1, · · · , n}).
Write C for the set of bijections σ of N into [n]. An optimal assignment

of π at t = (ti)i∈N is (one of) the bijection(s) σ∗ ∈ C minimising
∑
i∈N t

i
σ(i)

over C (the interpretation of optimality comes below). Because each vector ti
is balanced, the slack δ =

∑
j∈N t

j
σ∗(j)is negative or zero. After each agent j is

“paid” tjσ∗(j) (a cash handout if t
j
σ∗(j) > 0, a tax if tjσ∗(j) < 0) the remaining

cash surplus δ is divided equally between all agents. Agent i’s final allocation
is (Sσ∗(i), t

i
σ∗(i) −

1
nδ).

What is the agent i’s worst utility by reporting ti ∈ T (n)? Check first that
any σ in C can be selected as uniquely optimal for some reports of the other
agents. This happens if we pick some ε > 0 and the reports tj , j 6= i are

tjσ(j) = tiσ(j) − ε ; t
j
k = tik +

1

n− 1
ε for all k 6= σ(j)

In this case the slack is δ = −(n− 1)ε and our agent’s final utility is ui(Sσ(i)) +

tiσ(i) + n−1
n ε. As σ and ε were arbitrary we conclude that i’s utility could be

as low as mink∈[n] ui(Sk) + tik. The unique choice of t
i maximising the latter

equalises i’s utility across these shares

ui(Sk) + tik = ui(S`) + ti` for all k, ` ∈ [n] (2)

and secures the utility 1
n

∑
k∈[n] ui(Sk) = 1

n [ui](π), while any other report is
unsafe. We just proved

Lemma 1 The π-auction implements the π-guarantee, and the unique safe
play is to report the transfers equalising one’s utility across the shares of π (as
in (2)).

If all agents report safely, an assignment of the shares in π is effi cient if
and only if the corresponding transfers in (2) have the smallest sum. Thus the
π-auction interprets the report ti as revealing the utilities ui(Sk), k ∈ [n], up to
an additive constant (except of course if agent i reports —unsafely —different
transfers for two empty shares).

The set G(A;n) of n-guarantees is clearly convex (it is defined by inequalities
(1)) and the canonical way to implement the average 1

ρ

∑ρ
r=1 Γrn of an arbitray

3The tie break rule is irrelevant and the safe strategy does not change if the winner only
pays 1

n
-th of the second highest price to each loser.
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set of guarantees is the averaging-auction. Each agent i ∈ N must report a
vector ti = (tir)r∈[ρ] ∈ T (ρ) of balanced transfers over those guarantees. The
rule interpretes ti as equalising the utilities Γrn(ũi)

for all r, r′: Γrn(ũi) + tir = Γr
′

n (ũi) + tir′ =
1

ρ

ρ∑
r=1

Γrn(ũi) (3)

and it selects a guarantee Γr
∗

n such that
r∗ ∈ arg minr∈ρ

∑
i∈N t

i
r = arg maxr∈ρ

∑
i∈N Γrn(ũi). The slack θ =

∑
j∈N t

j
r∗

is negative or zero, each agent i receives the transfer tir∗ − 1
nθ and the guarantee

Γr
∗

n is implemented.

Lemma 2 The averaging-auction implements the average guarantee 1
ρ

∑ρ
r=1 Γrn,

and the unique safe play is to report the transfers equalising one’s utility across
guarantees (as in (3)).

The omitted proof is similar to that of Lemma 1.

Remark: It is just as easy to implement any convex combination of guar-
antees

∑ρ
r=1 λrΓ

r
n where each λr is positive and

∑ρ
r=1 λr = 1. Each agent i

reports a vector of λ-balanced transfers ti,
∑ρ
r=1 λrt

i
r = 0, and the rule pro-

ceeds as before: it implements Γr
∗

n where r∗ minimises
∑
i∈N t

i
r so that the slack

θ =
∑
i∈N t

i
r∗ is still non positive and i receives t

i
r∗ − 1

nθ. The safe strategy is
to choose λ-balanced transfers ti equalising utilities as in (3).

4.2 Positivity and Responsiveness

Definition 2 The n-guarantee Γn ∈ G(n,A) is
Positive if for all u ∈M+ : Γn(u) > 0 =⇒ u(A) > 0
Responsive if Γn(uF ) > 1

nuF (A)

Positivity applies to all utilities except the null one, so if Γn is weakly in-
creasing in u (as are all the guarantees we discuss: Proposition 4 section 8), it
simply requires Γn(λuG) > 0 for all λ > 0.

Responsiveness implies the strictly weaker inequality Γn(uG) < 1
nuG(A):

simply apply (1) to a n-profile with one uF and the rest uG utilities, where
theeffi cient surplus is 1.
Among the fixed partition guarantees, only ΓFSn is Positive; all fixed partition

guarantees are Responsive, with the single exception of ΓFSn .4

The next result formalises the important trade-off of our two normative
requirements with Envy Freeness, the standard interpretation of ex post fairness.
Recall that the allocation (π, t) is Envy Free if ui(Si) + ti ≥ ui(Sj) + tj for all
i, j ∈ N .
Lemma 3 If |A| ≥ 2 and the n-guarantee Γn in M+ is Positive and Re-

sponsive, it is incompatible with Envy Freeness: at some profile −→u ∈ M+N at
least one agent is envious in every envy free allocation.

4So a convex mixture of ΓFSn with some other π-guarantees meets both properties, for
instance 1

2n
u(A) + 1

2n

∑
A u(a) if n = m.
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Proof: in the two agent problem (Greedy, Frugal) we saw that envy free
allocations either give the utility 1

2 to both agents, or give zero to Greedy. For
a general n the argument is the same in the problem with n−1 Greedy and one
Frugal agents.

Note that the safe play in the BA ensures Envy Freeness for that agent,
whether other agents are playing safe or not.

5 Maxmin and minMax utilities

The recent literature on fair division pays close attention to these two canonical
utility levels inspired by Divide&Choose for cake-cutting, but playing a role in
many other models. We adapt them as follows. Recall the notation [u] for the
unanimity profile where all agents have utility u.

Definition 3 Fix A,n and u ∈M+.
i) the Maxmin utility at u is Maxminn(u) = 1

n maxπ∈P(n;A)[u](π); it is the
largest utility agent u can secure by choosing an (anonymous) allocation (π, t) ∈
P(n;A)× T (n) and eating his worst share (Sk, tk) of that allocation.
ii) the minMax utility at u is minMaxn(u) = 1

n minπ∈P(n;A)[u](π); it is the
largest utility agent u can secure by picking her best share in the worst possible
(anonymous) allocation (π, t) ∈ P(n;A)× T (n).

Given an n-partition π = {Sk}k∈[n] of A, the π-auction guarantees the utility
1
n [ui](π) to each agent i: therefore i reaches herMaxmin utility if she can choose
π, and at least her minMax one if the choice of π is adversarial.

Lemma 4 Fix A, n and the domainM+

i) M+ 3 u→Maxminn(u) is not a n-guarantee (inequality (1) fails)
ii) but it is an upper bound for every guarantee Γn ∈ G(A;n):

Γn(u) ≤Maxminn(u) for all u ∈M+

iii) M+ 3 u→ minMaxn(u) is a n-guarantee: minMaxn(·) ∈ G(A;n)

The proof is easy.5 For ii) we fix Γn, u,and n. Inequality (1) at the unanimity
profile [u] for all i is nΓn(u) ≤ maxπ∈P(n;A) u(π) as desired. For i) one checks
easily

Maxminn(uF ) = min{1, m
n
} and Maxminn(uG) =

1

n

so (1) fails at the n-profile with one uF agent and all others are uG because
W (−→u ) = 1. Note that this is not a knife edge situation: the set of profiles
where the corresponding profile of Maxmin utilities is not feasible is open in
R2A

+ .
For iii) note that for any fixed partition guarantee Γπn(u) = 1

n [u](π) ≥
minMaxn(u) for all u, so that (1) holds for the latter as well. This also shows

5All three statements hold in the cake-cutting model (Bogomolnaia and Moulin (201X)),
but there the proof of iii) is hard!
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that the minMax guarantee can easily be improved for instanceminMax2(uG) =
0 ; minMax2(uF ) = 1

2 . �
Our next result, technically very simple, shows an important benefit of choos-

ing a guarantee in the “duality interval” [minMaxn(u),Maxminn(u)]. Write
Sup and Sub for the sub-domains of superadditive and subadditive utilities: in
Sup we have u(S) + u(T ) ≤ u(S ∪ T ) for all disjoint S, T ; and the opposite
inequality in Sub.
Proposition 1 Suppose the guarantee Γn is such that

Γn(u) ∈ [minMaxn(u),Maxminn(u)] for all u ∈M+ (4)

Then Γn(u) = 1
nu(A) if u is additive; Γn(u) ≥ 1

nu(A) if u is subadditive; and
Γn(u) ≤ 1

nu(A) if u is superadditive.

Clearly if u ∈ Sub (resp. u ∈ Sup) we have u(A) = minπ∈P(n;A)[u](π) (resp.
maxπ∈P(n;A)[u](π)) therefore (4) implies the desired inequalities.
If u is additive Maxminn(u) = 1

nu(A), so by statement ii) in Lemma 4 the
Familiar Share is the best possible guarantee and the compelling interpretation
of ex ante fairness. The other two inequalities are a weak form of the normative
principle conveyed by the Responsiveness property.
Note that property (4) is not very restrictive: it is clearly satisfied by the Fa-

miliar Share, the fixed partitions guarantees Γπn, the D&C and S&B guarantees
defined shortly, and their convex combinations.
In subsection 11.1 of the Appendix we describe the plausible Multi Auction

rule and show that its guarantee falls outside the duality interval, often strictly
smaller than the minMax guarantee. We dismiss that rule for this very reason.

Remark: there is a precise connection between the duality interval in (4) and
Envy Freeness, confirming the trade-off between ex ante and ex post fairness
in Lemma 3 above. At an envy free allocation, it is clear that every agent
i gets at least her minMaxn(ui) utility. Conversely if the single-valued rule
(M+)N 3 (ui)i∈N → (π, t) ∈ P(N ;A) × T (N) is effi cient and envy-free, then
it implements precisely the minMax guarantee. For each utility function ui we
can complete a profile (ui, u−i) at which the rule gives to agent i precisely his
minMaxn(u) utility.6

6 Two Divide&Choose rules

The two rules have the same guarantee, their building blocks are the π-auction
and averaging-auction in subsection 4.1.

Definition 4 Divide&Choose1n
6Proof: Fix u1 ∈ M+ and π = (Sk)nk=1 achieving minπ∈P(n;A)[u1](π), and a positive

number δ. Construct a profile where the common utility v of the n − 1 other agents is the
cover of the sequence {(Sk, u1(Sk) + δ); k ∈ [n]}. If δ is very large any assignment of the
shares Sk to the agents is effi cient (and any other effi cient partition distributes the same
utilities pre-transfers). By the construction of utility v, at an envy free and effi cient allocation
the transfers make agent 1 indifferent between all the shares so her utility is minMaxn(u).

12



stage 1: run a simple auction for the role of Divider; the winner i’s bid βi ≥ 0
is (one of) the highest bid(s)
stage 2: agent i pays 1

nβi to every other agent and picks a partition π = {Sk}nk=1

in P(n,A)
stage 3: run the π-auction.

In the second rule the initial bidding to become the Divider is replaced by
a stage in which each agent i proposes her own partition (as if she was the
Divider).

Definition 5 Divide&Choose2n
stage 1: each agent i picks a partition πi in P(n,A); those partitions are publicly
revealed
stage 2: run the averaging auction between the guarantees Γπin , i ∈ [n].

The D&C2
n rule takes longer to run than D&C

1
n: once the agents submit

balanced transfers between the proposed partitions πi and the rule selects the
effi cient πi∗ —maximising

∑
i Γπi∗n (ui) according to the reported transfers —, we

still need to run the πi∗ -auction.

Proposition 2
In the D&C 1

n rule, agent i’s play is safe iff he bids βi = Maxminn(ui) −
minMaxn(ui) in stage 1, chooses a partition πi maximising [ui](π) in stage 2,
and reports truthfully equalising transfers across the shares of π in stage 3
In the D&C 2

n rule, agent i’s play is safe iff she proposes a partition πi max-
imising [ui](π) in stage 1, then reports truthfully equalising transfers across the
guarantees Γ

πj
n (ui), j ∈ N , and finally reports truthful transfers in the final

πi∗-auction;
Both rules implement the guarantee

ΓDCn (u) =
1

n
Maxminn(u) +

n− 1

n
minMaxn(u)

=
1

n2
max

π∈P(n,A)
u(π) +

n− 1

n2
min

π∈P(n,A)
u(π) (5)

Proof
For D&C 1

n. By Lemma 1 the worst drop in guaranteed utility to agent i be-
tween the roles of Divider and Chooser (non-Divider) is δi = Maxminn(ui) −
minMaxn(ui). Therefore the safe bid in stage 1 is precisely δi. If i becomes the
Divider she pays n−1

n δi then secures Maxminn(ui) in the π-auction; otherwise
she is paid at least 1

nδi and secures minMaxn(ui) in the π-auction.

For D&C 2
n. By Lemma 2 agent i’s guaranteed utility in stage 2 is

1
n

∑
j

1
n [ui](πj)

where the worst case will be if 1
n [ui](πj) = minMaxn(ui) for each j 6= i; there-

fore by proposing in stage 1 a partition πi maximising [ui](πi) she secures the
utility (5).
It is easy to check that no other play is safe. �
Lemma 5

i) the guarantee ΓDCn is Positive, Responsive, and in the duality interval (4)
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ii) if u is additive the safe bid in D&C 1 is zero and any partition is a safe
proposal in both rules.
The easy proof is omitted.
Statement i) says that the D&C rules are “reasonable” in terms of Propo-

sition 1. Statement ii) on the contrary is an unappealing feature of D&C1,2:
if my utility is additive all partitions are equally safe choices they convey no
information relevant to the selection of an effi cient allocation.
In the reporting stages common to both rules I only reveal the relative

utilities between the shares of certain partitions but the level of my absolute
utility remains private: this increases privacy but is detrimental to effi ciency.
If a certain agent i’s utility is everywhere higher than other utilities, effi ciency
means that all the goods should go to i: the reports in D&C1,2 fail to recognise
this feature. On the contrary in the Sell&Buy rule individual messages are
related to the absolute utilities and avoid this type of ineffi ciencies: Proposition
8 in section 9.

7 the Sell&Buy rule

7.1 defining the rule and its guarantee

A non negative price p ∈ RA+ is formally an additive utility; we use the same
notation pS =

∑
a∈S pa. Next ∆(x) is the simplex of prices such that pA = x,

the whole bundle costs x. Because the recursive definitions of the S&B rule and
its guarantee works over shrinking subsets of objects, we make explicit their
dependence on the set A.

Definition 6 Sell&Buy, S&B2(A) for two agents
stage 1: the agents bid to become the Seller: this is (one of) the lowest

bidder(s) with bid x
stage 2: the Seller chooses a price p in ∆(x)
stage 3: the Buyer can buy any share S of objects (possibly ∅) at this price

and the Seller eats the unsold objects

final allocation: Buyer (S,−pS) ; Seller (A�S, pS)

To understand how to bid safely we compute first the worst utilityW2(u;x|A)
an agent with utility u can get by bidding x and becoming the Seller

W2(u;x|A) = max
p∈∆(x)

min
∅⊆T⊆A

(u(T ) + pA�T ) = max
p∈∆(x)

{ min
∅⊆T⊆A

(u(T )− pT ) + x}

(6)
because he must expect the worst purchase from the Buyer.
We compare it with the worst utility L2(u;x|A) of this agent if her bid x

loses by a hair (to a bid just below x) and she is offered the worst possible price
but a total price no larger than x:

L2(u;x|A) = min
p∈∆(x)

max
∅⊆S⊆A

(u(S)− pS) (7)
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Clearly W2(u;x|A) increases in x while L2(u;x|A) decreases hence the safe
bid is where they intersect which we show below is an unambiguous bid x∗; the
common value is the guarantee ΓSB2 (u|A).

With n agents there are at most n−1 rounds of bidding in S&Bn(A): in each
round one agent becomes the Buyer and all others become Sellers; the Buyer
leaves after being offered to buy some goods from all the Sellers.

Definition 7 Sell&Buy, S&Bn(A) recursive definition
stage 1: each agent i bids xi to become Seller or Buyer; (one of) the highest
bidders becomes the Buyer
stage 2: each of the n− 1 Sellers j chooses a price pj in ∆(xj)
stage 3: the Buyer buys a share S of goods (possibly ∅) by paying pj(S) to

each Seller and leaves; the rule stops if S = A, otherwise we go to
stage 4: the remaining agents play S&Bn−1(A�S)

The worst utility Wn(u;x|A) from becoming a Seller after bidding x is now

Wn(u;x|A) = max
p∈∆(x)

min
∅⊆T⊆A

(ΓSBn−1(u|T )+pA�T ) = max
p∈∆(x)

min
∅⊆T⊆A

(ΓSBn−1(u|T )−pT )+x

(8)
and the worst utility as a Buyer after bidding x is

Ln(u;x|A) = min
p∈∆((n−1)x)

max
∅⊆S⊆A

(u(S)− pS) = min
p∈∆(x)

max
∅⊆S⊆A

(u(S)− (n− 1)pS)

(9)
because the worst case is when the n− 1 other bids are just below x.

Lemma 6 For any non null utility u ∈M+ the recursive programs (8),(9),
together with the initial pair (6), (7), define unambiguously
the function Wn(u;x|A) concave and strictly increasing in x from 0 to u(A)
the function Ln(u;x|A) convex and strictly decreasing in x from u(A) to 0
and the guarantee ΓSBn (u) at their intersection: Wn(u;x∗|A) = Ln(u;x∗|A) =
ΓSBn (u|A)

These properties imply: 0 < ΓSBn (u|A) < u(A).
Proposition 3 the guarantee ΓSBn is Positive, Responsive, and in the duality

interval ( 4).

The proof of the key Lemma 6 and its corollary Proposition 3 is an applica-
tion of the minimax theorem, in subsection 11.2 of the Appendix.

7.2 computing the guarantee ΓSBn

The recursive computation of ΓSBn is not easy in the general case, but greatly
facilitated when some goods are identical.

Lemma 7 If the goods a, b enter symmetrically in u —u(S−b+a) = u(S) if
a /∈ S 3 b —the optimal price in Wn(x;u|A) and the worst price in Ln(x;u|A)
can be taken equal.

Proof in the Appendix subsection 11.3 where we state a stronger group
version of this property.
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Our first example illustrates the recursive computation of ΓSBn in a sim-
ple family of fully symmetric step functions connecting the Frugal and Greedy
utilities.

Example 1 The m objects are identical and for each integer θ ∈ [m] the
dichotomous utility uθ requires no less and no more than θ goods:

uθ(S) = 1 if |S| ≥ θ ; uθ(S) = 0 if |S| < θ

So u1 is Frugal and um is Greedy.
For t ∈ [m] write Γn(θ|t) = ΓSBn (uθ|T ) the n person S&B-guarantee when

there are only t goods to divide and note that Γn(θ|t) = 0 if t < θ. We compute
first Γ2(θ|t) for t ≥ θ:

W2(θ;x|t) = min{1, t− θ + 1

t
x} ; L2(θ;x|t) = max{0, 1− t

m
x}

=⇒ Γ2(θ|t) =
t− θ + 1

t+ 1
for θ ≤ t ≤ m

For n = 3 equation (9) is simply: L3(θ;x|m) = max{0, 1 − 2θ
mx}. By the

concavity of t→ Γ2(θ|t) (8) becomes

W3(θ;x|m) = min
θ−1≤t≤m

{Γ2(θ|t)+
m− t
m

x} = min{m− θ + 1

m
x,

1

θ + 1
+
m− θ
m

x}

after which one checks that the graph of L3 intersects that of W3 on the line
x→ m−θ+1

m x, and finally Γ3(θ|m) = m+1−θ
m+1+θ with the optimal bid x

∗ = m
m+1+θ .

The general inductive step works in exactly the same way: the optimal bid is
x∗ = m

m+1+(n−2)θ and the guarantees are

ΓSBn (uF ) =
m

m+ n− 1
≥ ΓSBn (uθ) =

m+ 1− θ
m+ 1 + (n− 2)θ

≥ ΓSBn (uG) =
1

m(n− 1) + 1

For instance the ratio ΓSBn (uF )
ΓSBn (uG)

is already 10 with four agents and five goods.

We conclude with two important special cases where ΓSBn is easy to describe.

Lemma 8 if u is additive then x∗(u) = 1
nuA = ΓSBn (u) and, if chosen as

Seller the price p = 1
nu is safe.

The omitted proof checks by induction that if u is additive Wn(u;x) =
min{x, uA} and Ln(u;x) = max{uA − (n− 1)x, 0}.
Contrast this result with the fact that any play is safe in the D&C rules

when my utility is additive (statement ii) in Lemma 5).
The final result in this section covers all problems with fully symmetric

goods and two agents. The utility function takes the form u(S) = us if |S| = s,
1 ≤ s ≤ m and u0 = 0. We write the non negative marginals ∂ku` = u`+k − u`.
Proposition 4 n = 2, identical goods

Agent u’s optimal bid in the S&B rule is

x∗ = max{ m

m+ k
∂ku`|0 ≤ k, ` ≤ m and 0 ≤ `+ k ≤ m} (10)
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If x∗ = m
m+k∂ku` then

ΓSB2 (u) =
`+ k

m+ k
u` +

m− `
m+ k

u`+k (11)

Proof in subsection 11.4. The recursive formula for larger n is more compli-
cated but still solvable numerically.
Corollary:

If in addition u is convex then x∗ = max0≤k≤m{ m
m+k (um − um−k)}

and ΓSB2 (u) = m
m+kum−k + k

m+kum
If in addition u is concave then x∗ = max0≤k≤m

m
m+kuk and ΓSB2 (u) = m

m+kuk

8 Comparing the S&B, D&C, and FS guaran-
tees

Proposition 5
i) The three guarantees ΓSBn (u),ΓDCn (u) and ΓFSn = 1

nu(A) are continuous and
weakly increasing in u.
ii) They are also scale invariant (Γn(λu) = λΓn(u) for λ > 0) increasing in A
and decreasing in n: for all A, a /∈ A,n, u we have

Γn(u|A) ≤ Γn(u|A ∪ a) and Γn+1(u|A) ≤ Γn(u|A)

Proof in subsection 11.5.
We start our numerical examples with the simplest choices of n and m.

Example 2: two agents, two goods: n = 2, A = {a, b}
Here the S&B and D&C guarantees only depend upon u(A) and u(a) + u(b);
by scale invariance we can normalise u(A) = 1 then set z = u(a) + u(b) ∈ [0, 2];
note that z = 1 means the utility is additive.

Clearly ΓDC2 (z) = 1+z
4 with a bid of |z−1|

2 in D&C1. The omitted computa-
tions are almost as easy for ΓSB2 and the optimal bid:

z 0 · · · 1
2 · · · 3

2 · · · 2
ΓSB2

1
3

z+1
3

1
2

1
2

1
2

1
3z

2
3

x∗ 2
3

2−z
3

1
2

1
2

1
2

1
3z

2
3

So ΓSB2 is more generous than ΓDC2 for superadditive utilities, and less generous
for subadditive ones.

Example 3: n = 3, A = {a, a} three agents, two identical goods
We set u(A) = u2 = 1 and z = 2u1 ∈ [0, 2] as above. Compute

ΓDC3 (z) =
1

9
min{2z + 1, z + 2} with the bid |z − 1|

3
in D&C1

z 0 · · · 2
3 · · · 4

3 · · · 2
ΓSB3

1
5

z+1
5

1
3

1
3

1
3

z
4

1
2

x∗ 2
5

4−z
10

1
3

1
3

1
3

z
4

1
2
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This time ΓDC3 > ΓSB3 holds only in the interval ]1, 8
5 [.

The striking feature in these two examples is that ΓSB is exactly the Familiar
Share on a large interval of the parameter z, while for ΓDC this only happens
for a single value of z.

Example 11.6.1 in the Appendix computes our guarantees with two agents
and three identical goods and finds that the equality ΓSB = ΓFS holds over
39% of the two parameter space. Here is the general fact explaining these
observations.

Proposition 6
i) The guarantee ΓSBn (resp. ΓDCn ) is identical to the Familiar Share on a subset
E of M+ with non empty interior (resp. with empty interior)
ii) If the duality interval is not trivial (minMaxn(u) < Maxminn(u)) then
ΓDCn is an interior point, but ΓSBn needs not be: it is one of the end points on
a subset of M+ with non empty interior

Proof in subsection 11.7.
The first example in subsection 11.6 shows that the set of additive utilities is

not entirely contained in the interior of E : in words, arbitrarily small perturba-
tions away from additivity can destroy this equality. The proof of Proposition 6
only shows that a neighborhood of the uniform additive utility (∂au = ∂bu for
all a, b) is contained in E .
The same proof delivers a suffi cient condition for the equality ΓSBn (u) =

1
nu(A) in two agent problems, and a complete characterisation if in addition
the goods are identical.

Lemma 9 for two agents n = 2
i) Fix a utility u ∈M+. If there exists a price vector p s.t.

pA =
1

2
u(A) and pS ≤ u(S) ≤ pS +

1

2
u(A) for all S ⊆ A (12)

then ΓSB2 (u) = 1
2u(A) and p is a safe price for u if she is the Seller.

ii) If the goods are identical, the equality ΓSB2 (u) = 1
2um holds true if u is

bounded as follows:

1

2

k

m
um ≤ uk ≤

1

2
um +

1

2

k

m
um for all k, 0 ≤ k ≤ m (13)

If u is convex uk
k increases weakly in k, so the inequalities (13) boil down to

∂1u = u1 ≥ 1
2
um
m ; similarly if u is concave (13) reduces to ∂mu = um − um−1 ≥

1
2
um
m .

We turn to the opposite effect already illustrated in the Introduction for the
very simple step functions: when it does not coincide with the Familiar Share,
the ΓSB guarantee is more sensitive than ΓDC to the convexity/concavity of the
utility. One formal way to say this is that the S&B guarantee diverges more
from the FS benchmark than the D&C guarantee does.

Proposition 7
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For all n and all u ∈M+ we have

n

(n− 1)m+ 1
≤ ΓSBn (u)

1
nu(A)

≤ n×m
n+m− 1

1

n
≤ ΓDCn (u)

1
nu(A)

≤ min{m,n}+ n− 1

n

In both cases the bounds are achieved at uG and uF respectively.

Proof It is enough to show that uG and uF achieve those bounds: indeed
every utility u in M+ s. t. u(A) = 1 is between these two: uG ≤ u ≤ uF
and the two guarantees ΓSBn ,ΓDCn increase weakly in u and are scale invariant
(Proposition 5).
Example 1 in section 7 gives ΓSBn (uF ) for which the upper bound is an

equality, and ΓSBn (uG) for which the lower bound is. The same situation applies
to ΓDCn (uF ) and ΓDCn (uG) after checking Maxminn(uF ) = min{1, mn }. �

We see that the ratio ΓDC
n

ΓFSn
is always below 2, while ΓSBn

ΓFSn
can be arbitrarily

large.7

In the last example of this section the D&C guarantee is unpalatable be-
cause it does not take into account important aspects of the externalities across
objects. This critique is more subtle than —but similar to —that of the Familiar
Share by the way it treats Greedy and Frugal.

Example 4 : The goods are partitioned as A = R ∪R∗ ∪ L ∪ L∗, where each
subset contains ` objects so m = 4`. Think of 2` right gloves and 2` left gloves.
Abstemious is happy with any pair of one right and one left glove: her utility

is the cover of {((r, `), 1)} over the whole set (R∪R∗)× (L∪L∗). Choosy wants
no less than all gloves in R ∪ L or all in R∗ ∪ L∗: his utility is the cover of
{(R ∪ L, 1), (R∗ ∪ L∗, 1)}.
For both agents minMax2(u) = 0, Maxmin2(u) = 1, so ΓDC2 (uA) =

ΓDC2 (uC) = 1
4 : the D&C guarantee is shockingly coarse, the more so as ` grows.

By contrast one checks that the optimal bid in the S&B rule is x∗ = 2`
`+1 for

both agents (almost twice larger than u(A)): to Abstemious this guarantees
ΓSB2 (uA) = `

`+1 ,
8 but to Choosy only 1

`+1 .
9

Subsection 11.6 gives three more examples contrasting the guarantees of our
two rules.

7The upper bound of ΓSBn
ΓFSn

is strictly larger than that of ΓDC
n

ΓFSn
, with a single exception at

n = m = 2. The lower bound of ΓSBn
ΓFSn

is strictly lower than that of ΓDC
n

ΓFSn
if m ≥ n+ 2, strictly

larger if m ≤ n, and equal if m = n+ 1.
8because her worst case as Seller is to sell exactly R∪R∗ or exactly S∪S∗ for a net utility

x
2
; and as Buyer there will be at least one pair costing at most 2x

m
.

9because his worst case as Seller is to sell exactly one glove in R ∪ R∗ and one in S ∪ S∗
for a net utility 2x

m
; and as Buyer he will have to pay x

2
to get any benefit.
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9 The effi ciency of guarantees and safe play

Before running extensive numerical experiments, we provide only two systematic
results, one about the effi ciency loss measured from the profile of guarantees,
the other about the outcome of safe play when one player’s utility dominates
that of all the others.

9.1 guarantees and the bargaining gap

Given a profile of utilities −→u ∈ (M+)N we call the interval
G(−→u ) = [minP(N ;A)

−→u (π),maxP(N ;A)
−→u (π)] the bargaining gap. It is the worst

case effi ciency loss resulting from a misallocation of the objects.
We say that the guarantee Γn reduces the bargaining gap if

max
π∈P(N ;A)

−→u (π) ≥
∑
N

Γn(ui) ≥ min
π∈P(N ;A)

−→u (π) for all −→u ∈ (M+)N (14)

where the first inequality is just the definition (1) of a guarantee, so only the
second inequality has bite.
For instance the FS 1

nu(A) meets (14) because ui(A) ≥ minP(N ;A)
−→u (π) for

each i.
Recall that ΓSB , ΓDC and ΓFS meet the lower bound

∑
N Γn(ui) ≥

∑
N minMaxn(ui)

implied in the duality interval: this lower bound and (14) are not logically re-
lated. On the one hand if A = {a, b, c, d}, u1 is the cover of {ab, bc, cd, ad} and
u2 is the cover of {ac, ad, bc, bd} (all with value 1), then minMax2(ui) = 0 for
i = 1, 2, but minπ

−→u (π) for all π; on the other hand if A = {a, a′, b, b′}, u1 is the
cover of {a, a′} and u2 is the cover of {b, b′}, (all with value 1) then −→u (π) = 0
if each agent gets useless goods, but minMax2(ui) = 1

2 for i = 1, 2.

Whether a guarantee systematically reduces the bargaining gap, and if so
by how much, is one way to measure its effi ciency performance.

Lemma 10
i) With two agents, n = 2, the S&B and D&C guarantees reduce the bargaining
gap:
ii)With three or more agents, the D&C guarantee may not reduce the bargaining
gap.

Proof Statement i)
Step 1: for S&B. Fix a profile u, v where u’s optimal bid x∗ wins against v’s
larger optimal bid y∗. Let p ∈ ∆(x∗) be such that ΓSB2 (u) = L(u;x∗) = (u−p)+.
We increase p to some q ∈ ∆(y∗) so that ΓSB2 (u) ≥ (u− q)+.
Then ΓSB2 (v) = W (v; y∗) ≥ (v − q)− + y∗ = v(S)− qS + y∗ for some S,∅ ⊆

S ⊆ A. Also ΓSB2 (u) ≥ u(Sc)− qSc so ΓSB2 (u) + ΓSB2 (v) ≥ u(Sc) + v(S).

Step 2: for D&C. Fix a profile u, v and let S, T be such that minπ[u](π) =
u(S) + u(Sc) and minπ[v](π) = v(T ) + v(T c). The definition of ΓDC2 implies

ΓDC2 (u) ≥ 1

4
(u(T ) + u(T c) + u(S) + u(Sc))
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and a similar lower bound for ΓDC2 (v). Summing up these inequalities and
rearranging gives the desired inequality (14).

Statement ii) Recall the step functions uθ in Example 1 (section 7.2): the m
goods are identical and uθ(S) = 1 if |S| ≥ θ, = 0 if |S| < θ (so u1 is the frugal
utility). The simplest10 profile violating (14) for ΓDC2 has three goods and the
profile −→u = (u2, u2, u1):

ΓDC2 (u2) =
1

9
, ΓDC2 (u1) =

5

9
but G(−→u ) = [1, 2]

�
We conjecture that the S&B guarantee reduces the bargaining gap for any

n. Our intuition comes from the profiles −→u = (uθi)ni=1 of step functions in
Example 1 over m identical goods, just used in the proof above. From the
earlier computation ΓSB(uθ) = m+1−θ

m+1+(n−2)θ and the fact that minπ
−→u (π) = 1 if

and only if
∑n
i=1 θi ≤ m+ n− 1 it is easy to deduce that the inequality in (14)

follows from the convexity of θ → ΓSB(uθ) and is tight.

9.2 safe play when an agent dominates

For any two u, v ∈M+ we say that u dominates v (resp. dominates strictly) if
we have

max
∅⊆S⊆A

∂av(S) ≤ min
∅⊆S⊆A

∂au(S) (resp. a strict inequality) for all a ∈ A

If in the profile −→u = (ui)
n
i=1 utility u1 dominates all ui-s, i ≥ 2, it is effi cient

to give all the goods to agent 1, strictly so if each domination is strict. This
follows by repeated application of the inequality u1(S) + ui(T ) ≤ u1(S ∪ a) +
ui(T�a) when S, T are disjoint and a ∈ T .
Our last result reveals another serious advantage of the Sell&Buy rule over

the Divide&Choose rules.

Proposition 8 Fix a profile −→u = (ui)
n
i=1 where utility u1 dominates strictly

all ui-s, i ≥ 2.
i) the S&B division rule where all agents play safely implements the effi cient
outcome where agent 1 eats all the goods.
ii) the outcome of safe play in the D&C rules may only collect 1

n -th of the
effi cient surplus

Proof of statement i) in subsection 11.8.
For statement ii) suppose that all agents have strictly subadditive utilities:

nobody proposes the trivial partition with all goods in a single share, so effi -
ciency is lost. In the worst case in each partition the shares are of equal value
to the proposer, so we can lose all but 1

n -th of the effi cient surplus. With the
D&C1 rule, there is the additional possibility that the utility-dominant agent
does not have the largest duality gap.

10A similar example applies for any m = 2m′ + 1 at the profile (um
′+1, um

′+1, u1).
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10 Future research

We have assumed throughout that objects are goods —freely disposable objects
—. Other types of division problems include the division of bads (aka chores),
of a mixture of goods and bads, even of objects of which the marginal utilities
∂a(S) can change sign for different S-s, as in the familiar example of utilities
single-peaked or single-dipped over identical objects.
The definition of the two Divide&Choose rules is unchanged in these more

complex domains. That of the Sell&Buy rule requires some adjustments. The
fairness and effi ciency performance of these rules will be the object of future
research.

11 Appendix: missing proofs and more

11.1 the Multi Auction rule

Recall the definition of MA: each agent i bids on each good and his profile of
bids is βi ∈ RA+; (one of) the highest bidders on a, agent i∗, gets it and pays
1
nβi∗a to every other agent. Given the utility u ∈ M

+ the safe vector of bids
solves the program:

ΓMA
n (u) = max

β∈RA+
{ min
∅⊆S⊆A

(u(S)−n− 1

n
βS+

1

n
βSc} = max

β∈RA+
min

∅⊆S⊆A
(u(S)−βS)+

1

n
βA

(15)
If our agent wins the auctions for the goods in S and those only, she pays n−1

n βa
for each a in S, and gets in the worst case 1

nβa for each a outside S.
The guarantee ΓMA

n is Responsive but Not Positive: ΓMA
n (uG) = 0 < 1

n =
ΓMA
n (uF ). Indeed if Greedy’s bid β is not zero, pick a such that βa = minb∈A βb,
suppose Greedy wins all auctions except a and check that his worst utility is
negative or zero. And Frugal’s safe bid is 1

n on every good, securing
1
n in the

worst cases where she wins all auctions or none of them.
Moreover ΓMA

n is dominated by the minMax guarantee, often strictly so.
To check the first claim pick any u ∈M+ any partition π = {Sk}k∈[n] of A and
any bid β: (15) implies ΓMA

n (u) ≤ (u(Sk) − βSk) + 1
nβA for all k and the sum

of these inequalities is ΓMA
n (u) ≤ [u](π).

An example where domination is strict is the utility u = uF + uG. We let
the reader check that Maxmin2(u) = minMax2(u) = 1 but ΓMA

n (u) = m
2(m−1) .

11.2 proof of Lemma 6 and Proposition 3

Fixing A and a single utility u ∈ M+, the first step is to rewrite the programs
(6) (7) in a more compact though less transparent format using a well known
combinatorial concept.
A vector δ = (δS) ∈ R2A

+ is a balanced (set of) weights if for all a ∈ A we
have

∑
S:S3a δS = 1. We call δ minimal if it is an extreme point of the convex

compact set of balanced weights, and write Bm the set of minimal balanced
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weights for m goods.11 The simplest elements of Bm come from the true parti-
tions {Sk} of A, i.e. each Sk is non empty: set δSk = 1 for each k, and all other
weights to 0. Let B∗m be Bm minus the balanced weights δA = 1 coming from
the trivial partition {A}.
The total weight of δ is δ =

∑
S∈2A�∅ δS . Then δ > 1 for each δ in B∗m.

The smallest of these sums is δ = m
m−1 when δA�a = 1

m−1 for all a, and the
largest one is δ = m when δa = 1 for all a. Both claims follow from the identity∑
S A |S| · δS = m.

Lemma 11
The programs (6) (7) can be rewritten as follows:

W2(u;x) = min{x, u(A),min
B∗m

1

δ
(δ · u− x) + x} (16)

L2(u;x) = max{0, u(A)− x,max
B∗m

1

δ
(δ · u− x)} (17)

Proof.
We write ∇(Z) for the set of convex weights on Z. We apply the minmax
theorem to the maxmin expression in (6):

W2(u;x)− x = max
p∈∆(x)

min
∅⊆T⊆A

(u(T )− pT ) = max
p∈∆(x)

min
ξ∈∇(2A)

∑
T∈2A

ξT (u(T )− pT )

where ξ has two coordinates ξA and ξ∅.
Note that the mapping ∇(2A) 3 ξ → ζ ∈ RA : ζa =

∑
T :a∈T ξT is onto

[0, 1]A, and apply the minimax theorem to rewrite the last maxmin term above
as

min
ξ∈∇(2A)

max
a∈A

∑
T∈2A

ξTu(T )−xζa =⇒W2(u;x) = min
ξ∈∇(2A)

∑
T∈2A

ξTu(T )+x(1−min
a
ςa)

We check now that for some optimal ξ in the minimisation program above
ζa is independent of a. Assume ζa > minb ζb where the minimum is achieved by
some good b∗. We can choose S containing a but not b∗ and such that ξS > 0:
if this was impossible ζa ≤ ζb∗ would follow. For ε small enough we construct
ξ′ ∈ ∇(2A) identical to ξ except for ξ′S = ξS − ε, ξ′S�{a,b∗} = ξ′S�{a,b∗} + ε.
By construction ζ ′b∗ = ζb∗ and the same holds true for any b minimising ζ:
thus min ζ ′ = min ζ for ε small enough and the net change on the objective is
−εu(S) + εu(S�{a, b∗}) ≤ 0.
If ξ is deterministic on ∅ or on A, we get the first two terms in (16). For

another ξ we can assume ξ puts no weight on ∅ or on A, and write ζ ∈ [0, 1]
for the common value ζa. Setting δ = 1

ζ ξ defines a balanced set of weights and∑
T ξTu(T ) + x(1− ζ) = ζ(δ · u) + (1− ζ)x. Without loss we can minimise over

minimal balanced weights. Finally δ = 1
ζ and the proof of (16) is complete.

11The size of B grows astronomically fast with m: |B| = 2 for m = 2, = 6 for m = 3, = 27
for m = 4 and more than 15, 000 for m = 5: see [16].
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The similar argument for (17) starts with

L2(u, x) = min
p∈∆(x)

max
ξ∈∇(2A)

∑
T∈2A

ξT (u(T )−pT ) = max
ξ∈∇(2A)

{
∑
T∈2A

ξTu(T )−x(max
a∈A

ζa)}

The critical argument that we can take ζa independent of a assumes ζa <
max ζ = ζ, picks S s. t. ξS > 0 and containing b∗ but not a and changes ξ by
ξ′S = ξS − ε, ξ′S∪a = ξS∪a + ε: for ε small enough the max ζ does not change
and the net change on the objective is at least−εuS + εuS∪a ≥ 0. �
Equation (16) defines a concave function. Each term in x increases strictly

because δ > 1 and reaches u(A) for x large enough, therefore W2(u;x) increases
strictly up to u(A). Similarly in (17) L2(u;x) is convex and strictly decreasing
as long as all terms in x are positive, which terminates for x large enough. So
the intersection of W2(u; ·) and L2(u; ·) as ΓSB2 (u|A) is well defined.
We proceed now by induction after checking that the function S → ΓSB2 (u|S)

is inM+(A). Going back to the definition (6) we see that W2(u;x|S) increases
weakly in S because agent u can choose in the problem augmented to S∪a a price
s. t. pa = 0; and so does L2(u;x|S) by (7) because in the augmented problem
the agent can choose only among subsets not containing a. Both W2(u;x|S)
and L2(u;x|S) increase weakly in S, so their intersection in x increases too.

The induction step applies Lemma 11 to ΓSBn−1(u|·) ∈ M+(A) and gives
Wn(u;x|A), Ln(u;x|A) by the two programs

Wn(u;x|A) = min{x, u(A),min
Bm

1

δ
(δ · ΓSBn−1(u|·)− x) + x} (18)

Ln(u;x|A) = max{0, u(A)− (n− 1)x,max
Bm

1

δ
(δ · u− (n− 1)x)} (19)

with the properties announced in Lemma 6, and their intersection ΓSBn (u|·) as
a function inM+(A).

Turning to Proposition 3. If u(A) > 0 both functions Wn(u;x), Ln(u;x) are
strictly positive for x small enough, proving Positivity. For Responsiveness we
compute formally ΓSB2 (uF ) (more rigorously than in the Introduction). First
(16) gives W2(uF ;x) = min{x, 1} because the smallest δ in B∗m is m

m−1 and
L2(uF ;x) = max{0, 1 − 1

mx} because the largest δ in B
∗
m is m. This shows

ΓSB2 (uF |S) = |S|
|S|+1

We omit the straightforward induction argument giving ΓSBn (uF |S) = |S|
|S|+n−1 .

It remains to check ΓSBn (u) ≥ minMaxn(u) for all u and n. This is true for
n = 1. Assume next it holds for ΓSBn−1 and pick any u ∈ M+(A) with optimal
bid x∗ where Wn and intersect. Choose p ∈ ∆(x∗) optimal in program (9) so
that Ln(u;x∗|A) = max∅⊆S⊆A(u(S)− (n− 1)pS). Then (8) and the inductive
argument imply

Wn(u;x∗) ≥ min
∅⊆S⊆A

(ΓSBn−1(u|S)− pS) + x∗ = ΓSBn−1(u|T )− pT + x∗ for some T
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=⇒Wn(u;x∗) ≥ 1

n− 1
[u](π)− pT + x∗ where π is some (n− 1)-partition of T

We can now combine this lower bound for (n − 1)Wn(u;x∗) with Ln(u;x∗) ≥
u(T c)− (n− 1)pT c to get nΓSBn (u) ≥ [u](π) + u(T c) which completes the proof.

11.3 proof of Lemma 7

For brevity we give the argument for n = 2 and omit the obvious induction
argument.
Fix u ∈ M+ and assume u is symmetric in the goods a, b. In the program

(7) defining L2(u;x) assume the worst price p has pa < pb. Let q obtains from
p by averaging pa and pb and changing nothing else. Then (u− p)+ differs from
(u − q)+ only in pairs of terms of the form u(S) − pS , u(S − b + a) − pS−b+a.
Replacing p by q lowers the largest of these two terms, so q is still optimal in
the program (7). The argument for W2(x;u) is identical.

The group version of the Lemma is very useful and almost as easy to prove.
Suppose two subsets T, T ∗ of equal size are treated symmetrically by u: for any
permutation σ of A exchanging T and T ∗ and leaving other goods unchanged
we have u(σ(S)) = u(S) for all S. Then to solve W2(x;u) and L2(x;u) we can
take identical prices for all goods in T ∪ T ∗.

11.4 proof of Proposition 4

By the symmetry Lemma the programs (6) and (7) simplify to

W2(u;x) = min
0≤k≤m

{uk +
m− k
m

x} ; L2(u;x) = max
0≤k≤m

{uk −
k

m
x}

The optimal bid x∗ solves W2(u;x∗) = L2(u;x∗). Because W2 increases and
L2 decreases, both strictly, the inequality x ≥ x∗ is equivalent to W2(u;x) ≥
L2(u;x). If k′ ≤ k the inequality uk + m−k

m x ≥ uk′ − k′

mx is automatic, therefore
x ≥ x∗ amounts to

u` +
m− `
m

x ≥ u`+k −
`+ k

m
x for all k, ` ≥ 0 s. t. `+ k ≤ m

⇐⇒ x ≥ max
0≤`+k≤m

m

m+ k
(u`+k − u`)

which proves (10) and in turn (11).
Remark: a similar computation using the recursive definition of S&B for

three agents gives the optimal bid x∗ = max0≤k+k′≤m
m

m+2k′−k (uk′−ΓSB2 (u|k)),
where ΓSB2 (u|k) refers to the restriction of the problem to just k goods.

11.5 proof of Proposition 5

Proof. Statement i) is clear for ΓDCn and ΓFSn ; for ΓSBn both functions Wn(u; ·)
and Ln(u; ·) increase weakly in u, so their intersection does too.
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Statement ii). For ΓDCn scale invariance is clear. For the first inequality one
checks easily that both Maxminn(u|A) and minMaxn(u|A) increase weakly in
A. For the second inequality observe that for any π∗ ∈ P(n+ 1;A) we can find
a share S in π∗ such that [u](π∗) − u(S) ≥ n

n+1 [u](π∗); as [u](π∗) − u(S) ≤
maxπ∈P(n;A)[u](π) we see that Maxminn(u) decreases weakly in n. This is
clearly true for minMaxn(u) as well, and in turn for ΓDC .
For ΓSB scale invariance is routinely checked. The monotonicity in A was

proven in subsection 11.2, shortly after the proof of Lemma 11.
For the monotonicity in n: taking T = A in the minimisation part of program

(8) gives Wn+1(u;x) ≤ ΓSBn (u) for all x, in particular at the x∗ optimal in the
problem with n+ 1 agents. �

11.6 three more examples

11.6.1 two agents, three identical goods: n = 2, A = {a, a, a}

The utilities (u1, u2, u3) cover the cone 0 ≤ u1 ≤ u2 ≤ u3. The D&C guarantee
is simply additive: ΓDC3 (u) = 1

4 (u1 + u2 + u3) because [u](π) takes only two
values; it coincides with ΓFS2 (u) = 1

2u3 if and only if u is additive.
Contrast this with ΓSB2 (u) which is piecewise linear —linear on 6 subcones

of utilities —and coincides with the familiar share first in a thick cone where the
ratios u1

u3
and u2

u3
are both not far from the additive benchmark, but also in a

slice of additive utilities where these ratios are “extreme”:

ΓSB2 (u) =
1

2
u3 ⇐⇒ {

1

6
u3 ≤ u1 ≤

2

3
u3 and

1

3
u3 ≤ u2 ≤

5

6
u3} or {u1+u2 = u3 and u1 ≤

1

6
u3}

The thick subcone occupies 39% of the entire cone of utilities (computed in any
slice where u3 is constant).

11.6.2 a one-dimensional path from uF to uG

We have two agents and identical goods suffi ciently numerous to justify a smooth
approximation. we construct a parametrised family of utilities connecting Frugal
to Greedy.
Part 1. Utilities with decreasing concavity from Additive at λ = 0 to Frugal

as λ goes to 1

uk =
k

(1− λ)m+ λk
for 0 ≤ k ≤ m so u(A) = um = 1

The Corollary of Proposition 4 shows that ΓSB2 is the FS 1
2um iff λ ≤ 1

2 :

ΓDC2 (λ) =
4− λ

4(2− λ)
; ΓSB2 (λ) = max{

√
λ√

λ+
√

1− λ
,

1

2
}

Part 2.: Utilities with increasing convexity from Additive at µ = 0 to Greedy
for µ going to 1

uk =
(1− µ)k

m− µk for 0 ≤ k ≤ m
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Here too ΓSB2 = ΓFS2 = 1
2 iff µ ≤

1
2

ΓDC2 (µ) =
4− 3µ

4(2− µ)
; ΓSB2 (µ) =

1

2
in [0,

1

2
] ; =

2
√
µ(1− µ)

(
√
µ+
√

1− µ)2
in [

1

2
, 1]

11.6.3 a versatile dichotomous example

We have m = h × ` goods and A = ∪hk=1Bk is partitioned into h ≥ 2 subsets
Bk each of size ` ≥ 2. The utility u is the cover of the sequence {(Bk, 1)}.

Computing ΓDCn is easy: minMaxn(u) = 0, Maxminn(u) = min{1, hn}
therefore

ΓDCn (u) =
min{h, n}

n2

in particular ΓDCn (u) = ΓFSn (u) if and only if n ≤ h.
For S&B we compute first W2(u;x) by the group version of the symmetry

Lemma 7 (subsection 11.3): each object is priced x
h×` thenW2(u;x) = x

` because
in the worst case the Seller sells one object in each Bk; and L2(u;x) = 1 − x

h
because each set Bk costs x

h .
So ΓSB2 (u) = h

h+` and a routine induction argument shows

ΓSBn (u) =
h

h+ (n− 1)`

in particular ΓSBn (u) = ΓFSn (u) if and only if h = `.
So for this family of utilities ΓDCn equals the Familiar Share much more

frequently than ΓSBn .

11.7 proof of Proposition 6 and Lemma 9

11.7.1 Lemma 9

For statement i) suppose u and the price p meet the inequalities (12). The left
one implies min∅⊆S⊆A(u(S)−pS) = 0 henceW2(u; 1

2u(A)) ≥ 1
2u(A) and in fact

W2(u; 1
2u(A)) = 1

2u(A) because W2(u;x) ≤ x is always true.
Next the right hand inequality gives L2(u; 1

2u(A)) ≤ max∅⊆S⊆A(u(S) −
pS) ≤ 1

2u(A), but L2(u;x) ≥ u(A)− x is always true therefore L2(u; 1
2u(A)) =

1
2u(A) and the desired conclusion ΓSB2 (u) = 1

2u(A) holds. Checking that p is
the optimal selling price is now easy.
Statement ii) then follows from Proposition 4 and the fact that if goods are

identical the inequalities (12), if they hold at all, must hold for the symmetric
price pa = 1

2mu(A) for all a.

11.7.2 Proposition 6

Step 1. Fixing n and A we show that ΓSBn (u|A) = 1
nu(A) if the utility u satisfies

the following system of (many) inequalities. For all n′, 2 ≤ n′ ≤ n, and all S,
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∅ 6= S ⊆ A there exists a price p ∈ RS+ s. t.

pS =
1

n′
u(S) and (n′ − 1)pT ≤ u(T ) ≤ (n′ − 1)pT +

1

n′
u(S) for all T  S (20)

We prove the claim by induction on n′. For n′ = 2 the system above is
exactly (12) when we replace A by S, so by Lemma 9 ΓSB2 (u|S) = 1

2u(S) for all
S, and for S = A this is our claim.

For n′ = 3 we fix again S, ∅ 6= S ⊆ A, and the previous step allows us to
simplify W3(u;x|S) in (??):

W3(u;x|S) = max
p∈∆(x)

min
∅⊆T⊆S

(
1

2
u(T )− pT ) + x

so that (20) applied to n′ = 3 and the corresponding price p impliesW3(u; 1
3u(S)|S) ≥

1
3u(S) hence an equality because W3(u;x|S) ≤ x for all x. We use next (??)
to majorise L3(u; 1

3u(S)|S) by max∅⊆T⊆S(u(T ) − 2pT ), where 2pS = 2
3u(S);

then (20) to deduce L3(u; 1
3u(S)|S) ≤ 1

3u(S), which is an equality because
L3(u;x|S) ≥ u(S)− 2x is always true. We have just proven ΓSB3 (u|S) = 1

3u(S)
for all S and the claim for n′ = 3 by taking S = A.
The induction argument is now clear.

Step 2. Fixing n and m we choose a small positive number ε and consider the
subset of utilities inM+ such that u(A) = 1 and

s

m
(1− ε) ≤ u(S) ≤ s

m
(1 + ε) for all S ⊆ A with |S| = s (21)

They approximate the additive utility ua ≡ 1. If such a utility satisfies (20) for
some price p, the desired equality ΓSBn (u;A) = 1

nu(A) follows by step 1. By
scale invariance of ΓSBn it extends to the cone they generate as well, a subset
with non empty interior inM+.
We choose p as pT = τ

n′su(S) where τ = |T | and (20) becomes

n′ − 1

n′
τ

s
u(S) ≤ u(T ) ≤ (

n′ − 1

n′
τ

s
+

1

n′
)u(S)

The left hand inequality holds if we replace u(S) by its upper bound and
u(T ) by its lower bound in (21). This boils down to 1+ε

1−ε ≤ 1 + 1
n′−1 . A similar

evaluation of the right hand inequality gives 1+ε
1−ε ≤ 1 + 1

n′ (
s
t − 1). The worst

case happens for n′ = n, s = m, τ = m− 1 and it is 1+ε
1−ε ≤ 1 + 1

(n−1)(m−1) . �

11.8 proof of Proposition 8 statement i)

We assume n = 2 and omit for brevity the straightforward induction argument
extending the result to any n.
Fix any u ∈ M+; from Lemma 6 and Lemma 11(in the proof of Lemma 6)

we know that W2(u;x) reaches u(A) at some finite point denoted x̃(u): W2(u; ·)
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increases strictly up to x̃(u) after which it is flat. Agent u’s optimal bid x∗(u)
in S&B is strictly below x̃(u) (because W2(u; x̃(u)) = u(A) > L2(u; x̃(u)).
Below we use the shorthands ∂+

a u = max∅⊆S⊆A ∂au(S) and ∂−a u = min∅⊆S⊆A ∂au(S).

Step 1 Fix u and x ≤ x̃(u) and suppose that in the program (6) an optimal price
is p ∈ ∆(x). Then pa ≤ ∂+

a u for all a.
Proof by contradiction: we assume pa > ∂+

a u for some a and define a new
price p′ s. t. p′a = pa − ε and p′b = pb otherwise; we choose ε > 0 small enough
that p′a > ∂+

a u still holds. For some T ∈ 2A we have min∅⊆S⊆A(u(S) − p′S) =
u(T ) − p′T . This implies a ∈ T otherwise adding a to T would contradict the
optimality of T . We compute now

W2(u;x− ε) ≥ u(T )− p′T + (x− ε) = u(T )− pT + x

≥ min
∅⊆S⊆A

(u(S)− pS) + x = W2(u;x)

We see that W2(u; ·) is flat before x therefore x > x̃(u) contradicting the choice
of x.

Step 2 Assume u1 dominates u2 strictly.
A first consequence is L2(u1;x) > L2(u2;x) for all x ≤ x∗(u2). Indeed

u1(S) − pS > u2(S) − pS for all non empty S and p ∈ ∆(x), and L2(u2;x) is
positive therefore for any p ∈ ∆(x) the maximum of u2(S) − pS is achieved at
some non empty S.
Next we pick p ∈ ∆(x∗(u2)) optimal in (6) for u2. By step 1 and inequality

x∗(u2) < x̃(u2) we have pa ≤ ∂+
a u2 < ∂−a u1 for all a, implying u1(S) > pS for

all non empty S. We have now

W2(u1;x∗(u2)) ≥ min
∅⊆S⊆A

(u(S)− pS) + x∗(u2) = x∗(u2)

Because W2(u1; y) ≤ y for all y we see that W2(u1; y) = y ≥ W2(u2; y) for
all y ≤ x∗(u2).
Gathering the first and last statements in this step we conclude that L2(u1; ·)

andW2(u1; ·) intersect beyond x∗(u2) so agent u1’s safe bid makes her the Seller
in stage 2. We showed a few lines ago u1(S) > pS for any S and any possible
price charged by agent u2 therefore agent u1 will buy all the goods and the proof
is complete. �
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