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Multinomial, Conditional, and Mixed Models Overview 

 

 Multinomial outcome dependent variable (in wide and long form of data sets) 
 Independent variables (alternative-invariant or alternative-variant) 
 Multinomial logit model (coefficients, marginal effects, IIA) and multinomial probit model 
 Conditional logit model (coefficients, marginal effects) 
 Mixed logit model 
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Multinomial, Conditional and Mixed Models 

 

Multinomial outcome examples 

 The type of insurance contract that an individual selects. 
 The product that an individual selects (say type of cereal). 
 Occupational choice by an individual (business, academic, non-profit organization). 
 The choice of fishing mode (beach, pier, private boat, charter boat).  

 

Multinomial outcome dependent variable 

 The dependent variable y is a categorical, unordered variable.  
 An individual may select only one alternative. 
 The choices/categories are called alternatives and are coded as j =1, 2, …, m. 
 The numbers are only codes and their magnitude cannot be interpreted (use frequency for each 

category instead of means to summarize the dependent variable). 
 The data are usually recorded in two formats: a wide format and a long format. 
 When using the wide format, the data for each individual i is recorded on one row.  The 

dependent variable is: 
ݕ ൌ ݆ 
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 When using the long format, the data for each individual i is recorded on j rows, where j is the 
number of alternatives.  The dependent variable is: 

௝ݕ ൌ ൜1	if	ݕ ൌ ݆
0	if	ݕ ് ݆ 

 Therefore, ݕ௝ ൌ 1 if the alternative j is the observed outcome and the remaining ݕ௞ ൌ 0.  For 
each observation only one of ݕଵ, ݕଶ, …, ݕ௠ will be non-zero. 

 

Example for multinomial data in wide form 

Person 
ID (i) 

Dependent variable (y) Codes for y wi (income) xi1 (price of 
alternative 1) 

xi2 (price of 
alternative 2) 

1 apple juice (alternative 1) y=1 40,000 2.5 1.5 
2 orange juice (alternative 2) y=2 38,000 2.7 1.7 
3 orange juice (alternative 2) y=2 50,000 2.9 1.6 
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Example for multinomial data in long form 

Person 
ID (i) 

Dependent variable (yj) Codes for yj wi (income) xij (price) 

1 apple juice (alternative 1) y1 = 1 40,000 2.5 
1 orange juice (alternative 2) y2 = 0 40,000 1.5 
2 apple juice (alternative 1) y1 = 0 38,000 2.7 
2 orange juice (alternative 2) y2 = 1 38,000 1.7 
3 apple juice (alternative 1) y1 = 0 50,000 2.9 
3 orange juice (alternative 2) y2 = 1 50,000 1.6 
 

 The multinomial density for one observation is defined as: 

݂ሺݕሻ ൌ ଵ݌
௬భ ൈ …	ൈ ௠݌

௬೘ ൌෑ ௝݌
௬ೕ

௠

௝ୀଵ
 

 The probability that individual i chooses the jth alternative is: 
௜௝݌ ൌ prሾݕ௜ ൌ ݆ሿ ൌ F௝ሺܠ௜,  ሻߚ

 The functional form of Fj should be selected so that the probabilities lie between 0 and 1 and 
sum over j to one.  Different functional forms of Fj lead to multinomial, conditional, mixed, 
and ordered logit and probit models. 
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Independent variables 

 Two types of independent variables. 
 Alternative-invariant or case-specific regressors –the regressors ݓ௜ vary over the individual i 

but do not vary over the alternative j. 
o Income, age, and education are different for each individual but they do not vary based 

on the type of a product that the individual selects. 
o Used in the multinomial logit model. 

 Alternative-variant or alternative-specific regressors – the regressors ݔ௜௝ vary over the 
individual i and the alternative j. 

o Prices for products vary for each product and individuals may also pay different prices.  
o Salaries for occupation may be different between occupations and also for each 

individual.   
o Used in the conditional and mixed logit models. 
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Multinomial logit model 

 

 The multinomial logit model is used with alternative-invariant regressors. 
 The probability that individual i will select alternative j is: 

 

௜௝݌ ൌ ௜ݕሺ݌ ൌ ݆ሻ ൌ
exp	ሺܟ௜

௝ሻߛ′
∑ exp	ሺܟ௜

௞ሻ୫ߛ′
୩ୀଵ

 

 This model is a generalization of the binary logit model. 
 The probabilities for choosing each alternative sum up to 1, ∑ ௜௝୫݌

୨ୀଵ ൌ 1 
 One set of coefficients needs to be normalized to zero to estimate the models (usually ߛଵ ൌ 0ሻ, 

so there are (j-1) sets of coefficients estimated.  The coefficients of other alternatives are 
interpreted in reference to the base outcome. 

 Coefficient interpretation for alternative j: in comparison to the base alternative, an increase in 
the independent variable makes the selection of alternative j more or less likely. 
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Marginal effects 

 The marginal effect of an increase of a regressor on the probability of selecting alternative j is: 
௜௝݌߲ ⁄௜ܟ߲ ൌ ௝ߛ௜௝ሺ݌ െ  పഥሻߛ

 The marginal effects do not necessarily correspond in sign to the coefficients (unlike the binary 
logit or probit model). 

 There are (j-1) sets of coefficients because one set is normalized to zero, but there are j sets of 
marginal effects. 

 Depending on which alternative we select as a base category, the coefficients will be different 
(in reference to the base category) but the marginal effects will be the same regardless of the 
base category. 

 The marginal effects of each variable on the different alternatives sum up to zero.   
 Marginal effects interpretation: each unit increase in the independent variable 

increases/decreases the probability of selecting alternative j by the marginal effect expressed as 
a percent. 
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Independence from Irrelevant Alternatives (IIA) property 

 The odds ratios in the multinomial logit models are independent of other alternatives.  For 
choices j and k, the odds ratio only depends on the coefficients for choices j and k. 

 Odds ratio: ݌௜௝ ⁄௜௞݌ ൌ exp ቀܟ௜
′൫ߛ௝ െ  ௞൯ቁߛ

 This weakness of the multinomial model is known as the red bus-blue bus problem.  If the 
choice is between a car and a blue bus, according to the model the introduction of a red bus 
will not change the probabilities. 

 

Multinomial probit model 

 The multinomial probit model is similar to multinomial logit model, just like the binary probit 
model is similar to the binary logit model. 

 The difference is that it uses the standard normal cdf. 
 The probability that observation i will select alternative j is: 

 
௜௝݌ ൌ ௜ݕሺ݌ ൌ ݆ሻ ൌ Φ	ሺܠ௜௝′  ሻߚ

 It takes longer for a probit model to obtain results. 
 The coefficients are different by a scale factor from the logit model. 
 The marginal effects will be similar. 
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Conditional logit model 

 

 The conditional logit model is used with alternative-invariant and alternative-variant 
regressors.   

 The probability that observation i will choose alternative j is: 
 

௜௝݌ ൌ ௜ݕሺ݌ ൌ ݆ሻ ൌ
exp	ሺܠ௜௝′ ߚ ൅ܟ௜

௝ሻߛ′
∑ exp	ሺܠ௜௞′ ߚ ൅ ௜ܟ

௞ሻ୫ߛ′
୩ୀଵ

 

 
where ܠ௜௝ are alternative-specific regressors and ܟ௜ are case-specific regressors.   

 The conditional logit model has (j-1) sets of coefficients (ߛ௝) (with one set being normalized to 
zero) for the case-specific regressors and only one set of coefficients (ߚ) for the alternative-
specific regressors. 

 The probabilities for choosing each alternative sum up to 1. 
 Coefficients for the alternative-invariant regressors ߛ௝ (similar treatment as the multinomial 

logit model). 
o One set of coefficients for the alternative-invariant regressors is normalized to zero (say 
ଵߛ ൌ 0ሻ, this is the base outcome.  The rest of coefficients are interpreted in relation to 
this base category.   
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o There are (j-1) sets of coefficients (corresponding to the number of alternatives minus 1 
for the base). 

o Coefficient interpretation for alternative j: in comparison to the base alternative, an 
increase in the independent variable makes the selection of alternative j more or less 
likely. 

 Coefficients for the alternative-specific regressors (ߚ). 
o No normalization is needed. 
o One set of coefficients across all alternatives. 
o Coefficient interpretation: an increase in the price of one alternative decreases the 

probability of choosing that alternative and increases the probability of choosing other 
alternatives.  
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Marginal effects 

 The marginal effect of an increase of a regressor on the probability of selecting alternative j is: 
௜௝݌߲ ⁄௜௞ܠ߲ ൌ ௜௝௞ߜ௜௝ሺ݌ െ  ߚ௜௞ሻ݌

 where ߜ௜௝௞ ൌ 1 if j=k and 0 otherwise. 

 There are j sets of marginal effects for both the alternative-specific and case-specific 
regressors. 

 For each alternative-specific variable ܠ௜௝, there are jxj sets of marginal effects. 
 The marginal effects of each variable on the different alternatives sum up to zero.   
 Marginal effects interpretation: each unit increase in the independent variable increases the 

probability of selecting the kth alternative and decreases the probability of the other 
alternatives, by the marginal effect expressed as a percent. 
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Mixed logit model 

 

The mixed logit model (also called random parameters logit model) specifies the utility to the ith 
individual for the jth alternative to be: 

 

௜ܷ௝ ൌ ′௜௝ܠ ௜ߚ ൅ ௜ܟ
௝௜ߛ′ ൅ ݁௜௝ ൌ ′௜௝ܠ ߚ ൅ܟ௜

௝ߛ′ ൅ ′௜௝ܠ ߭௜ ൅ ௜ܟ
௝௜ߜ′ ൅ ݁௜௝ 

 

 where ݁௜௝ are iid extreme value (similar to the errors in the conditional logit model). 

 The mixed logit model allows for the parameters ߚ௜ to be random.  A common assumption is 
that	ߚ௜ ൌ ߚ ൅ ߭௜ where ߭௜~Νሾ0,Σఉሿ and ߛ௝௜ ൌ ௝ߛ ൅  .~Νሾ0,Σఊ௜ሿ	௝௜ߜ ௝௜ whereߜ

 The introduction of the random parameters has the attractive property of inducing correlation 
across alternatives. The combined error ܠ௜௝′ ߭௜ ൅ ௜ܟ

௝௜ߜ′ ൅ ݁௜௝ is now correlated across 
alternatives, say Covൣ߭௜௝, ߭௜௝൧ ൌ ′௜௝ܠ Σఉܠ௜௞. 

 The probability that individual i selects alternative j represents a mixed logit model: 
 

௜௝݌ ൌ ௜ݕሺ݌ ൌ ݆ሻ ൌ
exp	ሺܠ௜௝′ ߚ ൅ܟ௜

௝ߛ′ ൅ ′௜௝ܠ ߭௜ ൅ ௜ܟ
ሻ	௝௜ߜ′

∑ exp	ሺܠ௜௞′ ߚ ൅ܟ௜
௞ߛ′ ൅ ′௜௞ܠ ߭௜ ൅ ௜ܟ

ሻ୫	௞௜ߜ′
୩ୀଵ
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 The mixed logit model relaxes the IIA assumption by allowing parameters in the conditional 
logit model to be normally (or log-normally) distributed. 

 When estimating the mixed logit model, the researcher needs to specify which parameters will 
be estimated as random.  If a parameter is random, this implies that effect of a particular 
regressor on the chosen alternative varies across the individuals. 

 The mixed logit model produce random parameters coefficients for both the regressor (xi) and 
the standard deviation of the regressor (sd(xi)). 

 Coefficient interpretation for the regressors (xi): when the independent variable increases, the 
consumers are more or less likely to choose this alternative. 

 Coefficient interpretation on the standard deviation of a regressor (sd(xi)): there is a 
heterogeneity across individuals with respect to the effect of the independent variable on the 
alternative chosen. 


