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Abstract

This paper studies large sample properties of a Bayesian approach to inference about slope
parameters γ in linear regression models with a structural break. In contrast to the conven-
tional approach to inference about γ that does not take into account the uncertainty of the
unknown break location τ , the Bayesian approach that we consider incorporates such uncer-
tainty. Our main theoretical contribution is a Bernstein-von Mises type theorem (Bayesian
asymptotic normality) for γ under a wide class of priors, which essentially indicates an asymp-
totic equivalence between the conventional frequentist and Bayesian inference. Consequently,
a frequentist researcher could look at credible intervals of γ to check robustness with respect
to the uncertainty of τ . Simulation studies show that the conventional confidence intervals of
γ tend to undercover in finite samples whereas the credible intervals offer more reasonable cov-
erages in general. As the sample size increases, the two methods coincide, as predicted from
our theoretical conclusion. Using data from Paye and Timmermann (2006) on stock return
prediction, we illustrate that the traditional confidence intervals on γ might underrepresent
the true sampling uncertainty.
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1 Introduction

We consider the linear regression with a structural break, following the notations of Bai (1997):

yt =

w′
tα + z′tδ1 + ϵt, for t = 1, . . . , ⌊τT ⌋

w′
tα + z′tδ2 + ϵt, for t = ⌊τT ⌋+ 1, . . . , T,

(1)

where wt and zt are dw×1 and dz×1 vectors of covariates, and the random variable ϵt is a regression

error. ⌊a⌋ is the largest integer that is strictly smaller than a. The relationship between the

outcome yt and the covariate zt, measured by δ’s, changes across regimes, which are defined by the

break location parameter τ ∈ (0, 1). There can be another set of covariates wt whose relationship

with yt, measured by α, stays unchanged across the regimes. The unknown parameters include

the break location τ as well as the slope parameters γ = (α, δ1, δ2). The focus of the current study

is on inference about the slope parameters γ1.

1.1 The classic literature

In the literature, the conventional least-squares estimators (τ̂LS, γ̂LS) for (τ, γ) are computed as

follows: for each candidate τ , compute the sum of squared residuals of the regression and denote

the minimizing choice by τ̂LS. Plug in the value τ = τ̂LS in the model and define γ̂LS = γ̂(τ̂LS),

where γ̂(τ) is the usual OLS estimator of γ assuming the break location τ . Bai (1997) assumes

that the true jump size δ0 is either fixed or shrinks to zero as T → ∞, but at a rate slower than√
T → ∞. Bai shows that τ̂LS converges at the rate T−1 in the former case and, in the latter case,

finds an asymptotic distribution of τ̂LS that can be used for constructing confidence intervals for

τ . In both cases, Bai proves that the asymptotic distribution of γ̂LS is the same as that of γ̂(τ0),

where τ0 is the true value of τ . This means that one can ignore the very problem of unknown τ

when making inference on γ.

Figure 1 displays finite-sample distributions of τ̂LS (blue solid curves) which are produced

based on 1,000 repeated experiments on the following model yt = δ01 (t > ⌊τ0T ⌋) + ϵt
2. Note that

despite the T -consistency, τ̂LS displays significant variation, especially when the true break size

δ0 is small3. In practice, the conventional approach to inference on the slope parameters γ would

ignore this uncertainty, neglecting all possible values of τ other than τ̂LS. As a consequence, the

1For an extensive review of important aspects in structural break models such as estimation and inference of the
number of breaks as well as break locations, see Perron (2006).

2Figure 1 also shows distributions (red solid curves with small circles) of a Bayesian point estimator of τ , the
posterior mode. We later show that the posterior mode converges to the same limiting distribution as τ̂LS .

3In addition, the distributions exhibit three modes as reported in the literature (e.g., Baek, 2021; Casini &
Perron, 2021).
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corresponding confidence intervals on γ tend to undercover since it might not be the case that

τ̂LS = τ0 in a given sample (See our simulation in Section 5).
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(a) δ0 = 0.25
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(b) δ0 = 0.5

Figure 1: Finite-sample distribution of τ̂LS (blue solid curve) based on the model yt = δ01 (t > ⌊τ0T ⌋) + ϵt,
ϵt ∼ i.i.d.N(0, 1), τ0 = 0.5, T = 100, with 1,000 repeated experiments. The horizontal axis is τ − τ0. We also show
finite-sample distribution of the posterior mode of τ (red solid curve with small circles). In addition, we randomly
chose 3 data realizations out of the 1,000 repetitions to plot posterior densities of τ in gray dashed curves (hence
each of them represents a realization of one data set).

1.2 Bayesian perspective

For a Bayesian, this non-standard estimation problem4 can be dealt with by placing prior on both

τ and γ and by computing corresponding posterior probabilities. The uncertainty of τ will be

automatically reflected on the marginal posterior probability of γ. This is because the posterior

distribution of γ given the data DT can be written as a mixture where the weights correspond to

the marginal posterior density πT (τ) of τ :

p (γ|DT ) =

∫
p (γ|τ,DT )πT (τ)dτ, (2)

where p (γ|τ,DT ) is the conditional posterior distribution of γ given τ . The posterior density πT (τ)

reflects the uncertainty of τ given the data set. Figure 1 shows three realizations of πT (τ) (gray

dashed curves) which are randomly chosen out of the 1,000 repetitions. Compared to the conven-

tional approach, the key difference is that the Bayesian approach (2) incorporates all possibilities

of τ (not just τ̂LS) and weights them according to the posterior density. As we see in simulation

4Estimation of structural break models is considered non-standard in a sense that there is a non-regular parameter
(e.g., break location) whose point estimator converges faster than T−1/2, the rate at which the regular parameters
(e.g., slope coefficients) converge.
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studies, this results in longer lengths of Bayesian credible intervals of γ compared to the conven-

tional counterparts. Consequently, the credible intervals tend to have more reasonable coverages.

See Section 5 for further discussion. Note that, unlike conventional frequentist methods, Bayesian

inference has a valid interpretation even in finite samples as it does not rely on asymptotic theory.

In this study, we examine the asymptotic behavior of Bayesian estimation of the considered

model under the fixed jump size framework. Specifically, we prove a Bernstein-von Mises type

theorem for the slope parameters γ which validates a frequentist interpretation of Bayesian credible

regions. A Bayesian researcher can invoke our theorem to convey statistical results to frequentist

researchers. A frequentist researcher could look at the credible interval of γ to check robustness

with respect to the uncertainty of the break location. Such sensitivity analysis is reasonable as

our result guarantees the credible interval to converge to the conventional confidence interval. We

first establish theoretical results under normal likelihood and natural conjugate prior. We further

extend the results to non-conjugate priors using Laplace approximation.

The literature on theoretical properties of Bayesian approaches in non-regular models such as

(1) is very scarce despite their popularity in applications. To our knowledge, frequentist properties

of Bayesian approaches for linear regression models with structural breaks have not been studied

in the literature. Ghosal and Samanta (1995) consider a general non-regular estimation problem

from a Bayesian perspective and establish conditions under which the Bernstein-von Mises theorem

holds for the regular part of the parameter. However, their assumptions are difficult to verify in

regard to our model in consideration.

Recently, Casini and Perron (2020) propose a Quasi-Bayes estimator of the break location τ ,

which is defined by an integration rather than an optimization. Their approach provides a better

approximation about the uncertainty in τ than the conventional method. Although our focus of

the current paper is on inference about the slope coefficients γ and not τ , our Bayesian approach

toward inference shares the same spirit; any statement about γ is expressed as a weighted average

(2) over the marginal posterior density of τ .

The paper is organized as follows. Section 2 introduces the model and lists a set of assumptions.

Section 3 introduces a Bayesian approach based on normal likelihood and conjugate prior. The

section then establishes frequentist properties of the approach. Section 4 extends the results to non-

conjugate priors. Section 5 presents simulation evidence to assess the adequacy of the asymptotic

theory and to illustrate that conventional confidence intervals on the slope parameters tend to

undercover. Section 6 reports an empirical application to the stock return prediction model of

Paye and Timmermann (2006). Section 7 concludes the paper. The mathematical proofs and

derivations are listed in the Appendix. Additional tables are provided in the online appendix.
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2 The model and data generating process

2.1 The model

Using the reparametrization xt = (w′
t, z

′
t)

′, β = (α′, δ′1)
′, and δ = δ2 − δ1, the equations (1) can be

rewritten as

yt =

x′
tβ + ϵt, for i = 1, . . . , ⌊τT ⌋

x′
tβ + z′tδ + ϵt, for i = ⌊τT ⌋+ 1, . . . , T.

(3)

Note that zt is a subvector of xt. More generally, let zt = R′xt, where R is a dx× dz known matrix

with full column rank and hence zt is defined as a linear transformation of xt. For R = (0dz×dw , Idz)
′,

we obtain model (3). For R = Idx , a pure change model is obtained. To rewrite the model in matrix

form, we introduce further notations. Define Y = (y1, . . . , yT )
′, ϵ = (ϵ1, . . . , ϵT )

′, X = (x1, . . . , xT )
′,

X1τ = (x1, . . . , x⌊τT ⌋, 0, . . . , 0)
′, and X2τ = (0, . . . , 0, x⌊τT ⌋+1, . . . , xT )

′. Define Z,Z1τ , and Z2τ

similarly. Then, Z = XR, Z1τ = X1τR, and Z2τ = X2τR. Now, the equations (3) can be written

as

Y = Xβ + Z2τδ + ϵ = χτγ + ϵ, (4)

where χτ = (X,Z2τ ) and γ = (β′, δ′)′. ST (τ) denotes the sum of squared residuals of the regression

(4) given τ . Let H ⊂ (0, 1) be the space of the break locations. The least-squares estimator of τ

is defined as

τ̂LS = argmin
τ∈H

ST (τ), (5)

and the least-squares estimator for the slope coefficients γ = (β′, δ′)′ is

γ̂LS = γ̂(τ̂LS), (6)

where γ̂(τ) denotes the usual OLS estimator given the value of τ .

2.2 Data generating process

The data are assumed to include T observations on a response and a vector of covariates: DT =

(YT ,XT ) = (y1, . . . , yT , x1, . . . , xT ) where yt ∈ R and xt ∈ Rdx , t = 1, ..., T . Conditional on XT ,

the response is generated according to model (4) with the true parameters (γ′
0, σ

2
0, τ0)

′. We use

θ = (γ′, σ2)′ to denote the regression parameters. We make the following assumptions about the

true data-generating-process (DGP):
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Assumption 1.

(i) δ0 ̸= 0.

(ii) ϵt is i.i.d. with E(ϵt|xt) = 0, E(ϵ2t |xt) = σ2
0, where σ2

0 is unknown to the econometrician.

(iii) ΣX = E[xtx
′
t] = plim 1

T

∑T
t=1 xtx

′
t exists and is positive definite.

(iv) For all τ1, τ2 ∈ (0, 1) with τ1 < τ2,
1
T

∑⌊τ2T ⌋
⌊τ1T ⌋+1 xtϵt = Op(T

−1/2) and 1
T

∑⌊τ2T ⌋
⌊τ1T ⌋+1 xtx

′
t =

(τ2 − τ1)ΣX +Op(T
−1/2)

Under the above assumptions, the classical theoretical results apply. Bai (1997) shows that the

convergence rate of τ̂LS is T−1 if δ0 is fixed with respect to the sample size:

τ̂LS = τ0 +Op(T
−1),

and that the least-squares estimator for γ is asymptotically normal with the asymptotic covariance

matrix being the same as if τ0 is known:

√
T (γ̂LS − γ0)

d→ N(dx+dz)(0, σ
2
0V

−1), (7)

where

V = plimT−1

( ∑T
t=1 xtx

′
t

∑T
t=⌊τ0T ⌋+1 xtz

′
t∑T

t=⌊τ0T ⌋+1 ztx
′
t

∑T
t=⌊τ0T ⌋+1 ztz

′
t

)
= plimT−1χ′

τ0
χτ0 .

This means that τ can be treated as known for the purpose of inference about γ. In other words,

the uncertainty of the break location is essentially ignored, and thus the confidence interval for γ

tends to undercover in finite samples (see Section 5 for simulation).

There are several comments on Assumption 1. In threshold regression models (see Hansen,

2000), the threshold variable is often one of the regressors. In this case, sorting the threshold

variable leads to a trend in the regressors, which requires an alternative approach for the asymptotic

analysis. We do not consider the case with one of the regressors being the threshold variable in

this paper. In addition, we require the regression errors to be i.i.d. with variance σ2. Adding more

flexibility such as heteroscedasticity and serial correlation would be an important future direction.

5



3 A Bayesian approach under normal likelihood and con-

jugate prior

The distribution of covariates is assumed to be ancillary and it is not modeled. Throughout this

paper, we assume the normal likelihood function5

p(YT |XT , θ, τ) =
T∏
t=1

1√
2πσ2

exp

(
−
(
yt − χ′

τ,tγ
)2

2σ2

)
, (8)

where χ′
τ,t is the tth row of the matrix χτ . Note that the normality is not assumed for the true

DGP, so the model can be mis-specified.

The break location τ and the regression parameters θ are independent a-priori and the prior on

θ is the natural conjugate prior. That is, π (γ, σ2, τ) = π(γ|σ2)π(σ2)π(τ) where the prior on γ con-

ditional on σ2 is normal N(dx+dz)(µ, σ
2H−1) and the prior on σ2 is inverse-gamma InvGamma(a, b).

Note that by taking H → 0, a → −(dx + dz)/2, and b → 0, we have the uninformative improper

prior π (γ, σ2) ∝ σ−2 as a special case. The prior on τ can be of any form as long as it is positive

at τ0, and π(τ) is finite for all τ ∈ H.

The conjugate prior is a popular choice in the Bayesian estimation of linear regression models.

Our restriction on the prior for the break location τ is very mild. For example, the uniform

distribution on H satisfies the requirement. Recently, Baek (2021) investigates the same model

(1). As the distribution of τ̂LS might exhibit tri-modality for small jumps, Baek proposes a new

point estimator for τ based on a modified objective function. The proposed modification can be

regarded as equivalent to specifying a certain type of prior for τ and indeed such prior satisfies our

restriction.

Under the normal likelihood function and the prior defined above, the posterior distributions

are

π(τ |DT ) ∝
[
det
(
H̄τ

)]−0.5
b̄−ā
τ × π(τ), (9)

γ
∣∣τ,DT ∼ t(dx+dz)

(
2ā, µ̄τ , (b̄τ/ā)H̄

−1
τ

)
, (10)

σ2|τ,DT ∼ InvGamma
(
ā, b̄τ

)
, (11)

where H̄τ = H + χ′
τχτ , µ̄τ = H̄−1

τ

[
Hµ+ χ′

τY
]
, b̄τ = b + 0.5

[
µ′Hµ+ Y ′Y − µ̄′

τH̄τ µ̄τ

]
, and ā =

a + T/2, and tk(v, µ,Σ) is the k-dimensional t-distribution with v degrees of freedom, a location

vector µ ∈ Rk, and a k × k shape matrix Σ. See Appendix C for the derivation.

Due to the availability of the closed-forms for the conditional posteriors given τ , the posterior

5Similarly, Qu and Perron (2007) propose a quasi-maximum likelihood estimator assuming normal errors.
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sampling is simple and fast. One can first draw τ(1), . . . , τ(S) from the marginal posterior of τ as in

(9) via, for example, the Metropolis-Hastings algorithm, where S is the number of posterior draws.

For each τ(s), one can sample posterior draws of σ2
(s) from the posterior conditional on τ = τ(s),

namely (11). Conditional on τ and σ2, one can draw γ from p(γ|σ2, τ,DT )
6. For example, a laptop

with a 2.2GHz processor and 8GB RAM takes about 4.1 seconds to draw 10,000 posterior draws

in an empirical example in Section 6 that has ten slope coefficients in total.

3.1 Asymptotic theory

We investigate the asymptotic behavior of the Bayesian method under the normal likelihood and

the conjugate prior defined above. We do so in two steps. Section 3.1.1 shows that the marginal

posterior of the break location τ contracts to the true value τ0 at the rate of T
−1, the same rate at

which the least-squares estimator τ̂LS converges. The proof is based on studying the behavior of the

log ratio of the marginal posterior densities of τ . In addition, we establish the limiting distribution

of the posterior mode of τ . Section 3.1.2 establishes a Bernstein-von Mises type theorem for the

regression slope coefficients γ. The proof is based on the T -consistency of the marginal posterior

of τ and the fact that the conditional posterior for
√
T (γ − γ̂LS) given τ is asymptotically normal.

Proofs of the theorems can be found in Appendix A.

3.1.1 Marginal posterior of τ

An intermediate step for proving the Bernstein-von Mises theorem is the marginal posterior con-

sistency of τ at rate T−1. Marginal posteriors have not been studied extensively or systematically

in the literature. Here, we directly analyze the form of the marginal posterior of τ . Let LT (τ) be

the marginal likelihood conditional on τ , that is

LT (τ) =

∫
p(YT |XT , θ, τ)π(θ, τ)dθ,

which is available up to a multiplicative constant under the normal likelihood and the conjugate

prior as can be seen in (9). The marginal posterior density πT (τ) of τ is defined as

πT (τ) =
LT (τ)∫
LT (τ)dτ

.

The following theorem establishes the first step for proving the Bernstein-von Mises theorem,

the T -consistency of the marginal posterior of τ . It states that the posterior mass outside of a ball

6It can be shown that γ
∣∣σ2, τ,DT ∼ N(dx+dz)

(
µ̄τ , σ

2H̄−1
τ

)
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around τ0 with radius proportional to T−1 will be asymptotically negligible.

Theorem 1 (Marginal posterior consistency of τ at rate T−1). Suppose Assumption 1 holds. Then,

under the normal likelihood and the conjugate prior described above, ∀η > 0, ϵ > 0, ∃M > 0 and

k > 0 such that T ≥ k =⇒

Pθ0,τ0

(∫
Bc

M/T
(τ0)

πT (τ)dτ < η

)
> 1− ϵ,

where for any constant d > 0, Bc
d(τ0) denotes the set difference H \ (τ0 − d, τ0 + d).

The proof of Theorem 1 is built on some intermediate steps, Propositions 1-4. It can be

shown that
∫
Bc

M/T
(τ0)

πT (τ)dτ is bounded by the product of
∫
Bc

M/T
(τ0)

LT (τ)
LT (τ0)

dτ and the inverse of∫
Bc

M0/T
(τ0)

LT (τ ′)
LT (τ0)

dτ ′ for each T and for any M0 > 0. Proposition 1 shows that under the normal

likelihood and the conjugate prior, due to the availability of the marginal likelihood conditional on

τ up to a normalization constant as in (9), studying the log marginal likelihood ratio boils down

to comparing the sum of squared residuals ST (τ). Proposition 2 establishes the probability limit

of T−1ST (τ), for which we show examples in Figure 2. We then show that the limit of T−1ST (τ)

achieves a unique minimum at τ0 (Proposition 3), and study the modulus of continuity of an

appropriate empirical process (Proposition 4) in order to derive bounds. The detail of the proof

of Theorem 1 can be found in Appendix A.1.

0 0.2 0.4 0.6 0.8 1
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Figure 2: Example of T−1ST (τ) with T = 100 (solid, blue), T = 1, 000 (dash-dotted, green), and
T = 10, 000 (dotted, red) and plimT−1ST (τ) (dashed, black)
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The Bayesian counterpart of the least-squares estimator τ̂LS would be the posterior mode:

τ̂Bayes = argmax
τ∈H

πT (τ).

Bai (1997) shows that argmaxm W ∗(m) is the asymptotic distribution of τ̂LS
7. A consequence of

the proof of Theorem 1 is that τ̂Bayes converges to the same limiting distribution. See Appendix

A.2 for a proof.

Corollary 1 (Limiting distribution of the posterior mode of τ). Suppose Assumption 1 holds.

Then, under the normal likelihood and the conjugate prior described above,

⌊T (τ̂Bayes − τ0)⌋
d→ argmax

m
W ∗(m).

3.1.2 Bernstein-von Mises Theorem for γ

The marginal posterior of γ is a mixture with weights corresponding to the marginal posterior

density πT (τ). Furthermore, due to Theorem 1, we can focus our attention on the values of τ in a

T−1 neighborhood of τ0:∫
p(γ|τ,DT )πT (τ)dτ =

∫
BM/T (τ0)

p(γ|τ,DT )πT (τ)dτ + op(1).

We are now ready to establish the Bernstein-von Mises type result.

Theorem 2 (Bernstein-von Mises theorem for the slope coefficients). Suppose Assumption 1 holds.

Then, under the normal likelihood and the conjugate prior described above,

dTV

(
π

[√
T (γ − γ̂LS)

∣∣∣∣DT

]
, N(dx+dz)

(
0, σ2

0V
−1
))

→ 0,

in Pθ0,τ0 − probability where dTV is the total variation distance.

The proof of Theorem 2 exploits the fact that the conditional posterior for
√
T (γ − γ̂LS) given

τ is asymptotically normal, which is close to the asymptotic distribution of γ̂LS when τ is close to

7W ∗(m) is a stochastic process defined on the set of integers as follows: W ∗(0) = 0, W ∗(m) = W1(m) for m < 0,
and W ∗(m) = W2(m) for m > 0, with

W1(m) = −δ0

0∑
i=m+1

ziz
′
iδ0 + 2δ0

0∑
i=m+1

ziϵi, for m = −1,−2, ...

W2(m) = −δ0

m∑
i=1

ziz
′
iδ0 − 2δ0

m∑
i=1

ziϵi, for m = 1, 2, ...
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τ0. A bound on the Kullback–Leibler (KL) divergence between two normal densities together with

the T -consistency is used to make the argument precise. The proof is presented in Appendix A.3.

4 An extension to non-conjugate priors

The previous section establishes the asymptotic properties of the posterior distributions under the

conjugate prior. A natural question is whether these results can be extended to other priors. For

example, an independent prior between the slope coefficients γ and the error variance σ2, e.g.,

π(γ, σ2) = π(γ)π(σ2) with γ ∼ N(dx+dz)(µ,Σ) and σ2 ∼ InvGamma(a, b), is a popular choice for

the Bayesian estimation of regression models in practice. Under the normal likelihood and the

conjugate prior, the analytical expressions of the marginal posterior of τ up to a normalization

constant (9) and the conditional posterior of γ given τ (10) facilitate the theoretical analysis. They

are not available, for instance, under the independent prior mentioned above. In this section, we

extend the theoretical results by keeping the normal likelihood (8) but without requiring the con-

jugate prior on θ. In order to study the asymptotic behavior of the posterior distributions without

having their closed-form expressions, we employ a Laplace approximation type result of Hong and

Preston (2012). To do so, we make an additional assumption as shown below. Let θ̂(τ) be the

maximum likelihood estimator of θ conditional on τ ∈ H, i.e., θ̂(τ) = arg supθ∈Θ log p(YT |XT , θ, τ).

Denote by θ∗(τ) the corresponding pseudo true parameter value that minimizes the KL divergence

between the model p(YT |XT , θ, τ) and the DGP.

Assumption 2.

(i) There is a compact convex subset Θ of Rdx+dz+1 such that θ∗(τ) ∈ int (Θ) for all τ ∈ H.

(ii) The prior π(θ, τ) is supported on Θ×H. It is continuous in θ and bounded away from 0 and

∞ around (θ∗(τ), τ) for all τ ∈ H.

Under the normal likelihood and Assumption 1, together with Assumption 2, we can invoke the

Laplace approximation result, Theorem 3 of Hong and Preston (2012). Note that, under the

normal likelihood and Assumption 1, θ∗(τ) exists and is a function of parameters in the DGP. In

this section, we no longer assume the natural conjugate prior on θ. For instance, the independent

prior π(γ, σ2, τ) = π(γ)π(σ2)π(τ) mentioned above satisfies the conditions in (ii) of Assumption 2

as long as they are truncated on Θ and π(τ) is positive and finite at all τ .

Theorem 3 below establishes the T -consistency of the marginal posterior of τ for non-conjugate

priors under the additional conditions.
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Theorem 3 (Marginal posterior consistency of τ at rate T−1, non-conjugate priors). Suppose

Assumptions 1 and 2 hold. Then, under the normal likelihood, ∀η > 0, ϵ > 0, ∃M > 0 and k > 0

such that T ≥ k =⇒

Pθ0,τ0

(∫
Bc

M/T
(τ0)

πT (τ)dτ < η

)
> 1− ϵ,

where for any constant d > 0, Bc
d(τ0) denotes the set difference H \ (τ0 − d, τ0 + d).

Recall that while proving the T -consistency under the conjugate prior (i.e., Theorem 1), we utilize

the closed-form expression of the marginal posterior of τ up to a multiplicative constant (9) in

order to study the behavior of the marginal likelihood ratio conditional on τ . Under non-conjugate

priors, such expression is not available in general. For this reason, we invoke Theorem 3 of Hong

and Preston (2012) to approximate the quantity
∫
p(YT |XT , θ, τ)π(θ, τ)dθ to prove our Theorem

3. See Appendix A.4 for the detail.

As in the previous section, an implication of the T -consistency of the marginal posterior of τ is

that the posterior mode converges to the limiting distribution of τ̂LS. Proof is in Appendix A.5.

Corollary 2 (Limiting distribution of the posterior mode of τ , non-conjugate priors). Suppose

Assumptions 1 and 2 hold. Then, under the normal likelihood,

⌊T (τ̂Bayes − τ0)⌋
d→ argmax

m
W ∗(m),

where the stochastic process W ∗(m) is defined in Section 3.1.1.

Theorem 4 establishes our main theoretical result, the Bernstein-von Mises theorem for γ,

under the prior defined in Assumption 2 (ii).

Theorem 4 (Bernstein-von Mises theorem for the slope coefficients, non-conjugate priors). Sup-

pose Assumptions 1 and 2 hold. Then, under the normal likelihood,

dTV

(
π

[√
T (γ − γ̂LS)

∣∣∣∣DT

]
, N(dx+dz)

(
0, σ2

0V
−1
))

→ 0,

in Pθ0,τ0 − probability where dTV is the total variation distance.

When proving the corresponding result under the conjugate prior (i.e., Theorem 2), we utilize

the closed-form expression of the marginal posterior of γ given τ (10). As this is not available

under the prior in this section, we again use an approximation to study the asymptotic behavior

of the marginal posterior. See Appendix A.6 for a proof.
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5 Simulation

The main purpose of the simulation studies below is to compare inference on the slope parameters γ

between the two methods: the conventional least-squares method in Bai (1997) and the Bayesian

approach described in our paper. For the Bayesian approach, we use the uniform prior for τ

and the conjugate prior for the regression parameters with H = 0.1I(dx+dz), µ = 0(dx+dz), and

a = b = 1. The findings are similar even when we use the uninformative improper prior. Following

the literature (e.g., Casini & Perron, 2021), we set the range of the candidate values of τ to be

(ϵ, 1− ϵ) with ϵ = 0.05 for all methods8.

We consider the following model: yt = δ01(t > ⌊τ0T ⌋) + ϵt. In order to compare the methods

in repeated experiments, for each combination of τ0, δ0, and T , we generate 1,000 data sets. We

consider different values of the break location τ0 ∈ {0.3, 0.5}, the jump size δ0 ∈ {0.25, 0.5, 1.0, 2.0},
and the sample size T ∈ {20, 50, 100, 250, 500, 1000}. The error ϵt is independently and identically

generated from N(0, 1). In the online appendix, we present a robustness check with the errors

generated from a mixture of two normals 0.5N
(
−1/

√
2, 1/2

)
+ 0.5N

(
1/
√
2, 1/2

)
and illustrate

that the overall findings are similar to these under the normal DGP.

Table 1 shows the simulation results concerning δ. The top panel “Coverage” shows empirical

coverages of the true jump size δ0 by the 95% confidence and credible intervals. The frequentist

confidence intervals are computed based on the conventional asymptotic theory (7). For the

Bayesian approach, we report the equal-tailed credible intervals. The middle panel “Length”

presents the average lengths of the aforementioned intervals. The bottom panel “MSE for δ”

shows the mean-squared-errors for the point estimator, which is the least-squares estimator δ̂LS

defined in (6) for the conventional method and the posterior mean for the Bayesian approach.

There are several significant findings. First, for small T and/or small δ0, the conventional

confidence intervals significantly undercover. Meanwhile, the Bayesian credible intervals have rela-

tively reasonable coverages. Second, the Bayesian intervals tend to be longer than the conventional

confidence intervals for small T and/or δ0. Third, as T increases, the discrepancy between the two

methods decreases, as expected from the Bernstein-von Mises theorem that we establish.

8It prevents the break location estimator from being in the first and last 100ϵ% of the sample. The trimming
parameter ϵ should not be chosen too high otherwise it might introduce bias in the break location estimate. Casini
and Perron (2021) find the choice ϵ = 0.05 performs well in general, which we also confirm in our simulation
exercises.
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Table 1: Simulation results for δ

Least-squares Bayesian

δ0 = 0.25 0.50 1.00 2.00 0.25 0.50 1.00 2.00

Coverage
T = 20 0.68 0.77 0.88 0.95 0.96 0.97 0.96 0.95
T = 50 0.67 0.84 0.94 0.96 0.96 0.97 0.96 0.95
T = 100 0.69 0.90 0.96 0.95 0.96 0.97 0.96 0.95
T = 250 0.83 0.94 0.94 0.96 0.96 0.96 0.94 0.96
T = 500 0.91 0.95 0.95 0.96 0.97 0.96 0.96 0.96
T = 1000 0.93 0.94 0.95 0.96 0.96 0.95 0.95 0.96
Length
T = 20 3.87 3.60 3.20 2.82 4.85 4.59 4.20 3.16
T = 50 2.31 2.07 1.82 1.76 2.91 2.67 2.13 1.79
T = 100 1.61 1.38 1.26 1.24 2.10 1.78 1.34 1.25
T = 250 0.93 0.81 0.78 0.78 1.21 0.92 0.80 0.79
T = 500 0.61 0.56 0.55 0.55 0.76 0.58 0.56 0.56
T = 1000 0.41 0.39 0.39 0.39 0.46 0.40 0.39 0.40
MSE for δ
T = 20 3.85 2.79 1.75 0.60 1.13 0.91 0.86 0.58
T = 50 1.35 0.78 0.26 0.20 0.42 0.33 0.25 0.20
T = 100 0.67 0.28 0.11 0.10 0.21 0.15 0.11 0.10
T = 250 0.18 0.05 0.04 0.04 0.08 0.05 0.04 0.04
T = 500 0.05 0.02 0.02 0.02 0.03 0.02 0.02 0.02
T = 1000 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01

(a) τ0 = 0.5

Least-squares Bayesian

δ0 = 0.25 0.50 1.00 2.00 0.25 0.50 1.00 2.00

Coverage
T = 20 0.66 0.70 0.87 0.93 0.96 0.97 0.96 0.95
T = 50 0.64 0.81 0.93 0.94 0.97 0.95 0.95 0.95
T = 100 0.72 0.86 0.94 0.97 0.97 0.96 0.96 0.97
T = 250 0.80 0.92 0.94 0.96 0.95 0.96 0.95 0.96
T = 500 0.90 0.94 0.96 0.95 0.96 0.96 0.96 0.94
T = 1000 0.92 0.95 0.95 0.95 0.96 0.95 0.95 0.95
Length
T = 20 3.95 3.91 3.70 3.40 4.89 4.84 4.72 4.01
T = 50 2.32 2.30 2.18 2.14 2.96 2.90 2.63 2.24
T = 100 1.69 1.64 1.52 1.51 2.18 2.08 1.72 1.54
T = 250 1.05 0.98 0.95 0.95 1.34 1.16 0.99 0.96
T = 500 0.71 0.68 0.67 0.67 0.90 0.74 0.68 0.68
T = 1000 0.49 0.48 0.48 0.48 0.59 0.49 0.48 0.48
MSE for δ
T = 20 3.95 3.63 2.20 0.87 1.16 1.18 1.10 0.92
T = 50 1.35 1.07 0.47 0.32 0.44 0.49 0.41 0.32
T = 100 0.70 0.48 0.17 0.14 0.23 0.24 0.18 0.14
T = 250 0.24 0.09 0.06 0.06 0.11 0.08 0.07 0.06
T = 500 0.07 0.04 0.03 0.03 0.04 0.03 0.03 0.03
T = 1000 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02

(b) τ0 = 0.3

Table 2 shows the results of estimation and inference of the break location τ . Although the

main focus of the current paper is on inference about the slope parameters γ and not on inference

about τ , we report the empirical coverage and the length of the 95% confidence interval of Bai

(1997) and the highest posterior density (HPD) set9. We also report the inverted likelihood ratio

(ILR) confidence set suggested by Eo and Morley (2015).

Overall, the HPD set and the ILR confidence set of the break location τ behave similarly

although the HPD set slightly undercovers relative to the ILR confidence set for small T and/or

δ0. We confirm several findings of Eo and Morley (2015). First, when T is large, the confidence

interval of Bai has longer lengths than the ILR confidence set and the HPD set10. Second, when T

and δ0 are small, the confidence interval of Bai tends to severely undercover compared to the ILR

confidence set and the HPD set. The interval of Bai indeed has a shorter length than the other

two sets for small T , but its undercoverage raises concerns for small samples in practice11.

The bottom panels of Table 2 shows the mean-absolute-error (MAE) of the point estimator of

9Note that although we prove that the posterior mode of the break location τ converges to the limiting distri-
bution of the least-squares estimator, whether the posterior distribution of τ converges to the same limit or not is
still an open question. The Bayesian literature on the Bernstein-von Mises-like result for non-regular parameters is
very scarce. To our best knowledge, the only available work is that by Kleijn and Knapik (2012) whose results do
not seem to be applicable to the model in consideration in this paper. Hence, it is not guaranteed that a credible
set of τ has frequentist coverage even asymptotically. However, we emphasize that credible sets on τ still have a
statistically valid interpretation even in finite samples.

10Eo and Morley (2015) explain that the likelihood ratio test is more powerful than the Wald-type test used to
construct the confidence interval of Bai, which results in a shorter length of the ILR confidence set.

11In addition, as also reported by Eo and Morley (2015), the ILR confidence set tends to slightly overcover even
in large sample.
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τ which is τ̂LS defined in (5) for the conventional method and the posterior mode τ̂Bayes for the

Bayesian approach. It is known that the finite-sample distribution of the least-squares estimator

τ̂LS tends to be trimodal (see Baek, 2021) when the jump size is relatively small. The same seems

to be true for the Bayesian point estimator (see Figure 1).

Table 2: Simulation results for τ

Least-squares Bayesian ILR

δ0 = 0.25 0.50 1.00 2.00 0.25 0.50 1.00 2.00 0.25 0.50 1.00 2.00

Coverage
T = 20 0.50 0.58 0.75 0.93 0.83 0.87 0.94 0.97 0.91 0.92 0.92 0.95
T = 50 0.51 0.68 0.87 0.97 0.83 0.92 0.96 0.97 0.93 0.93 0.96 0.98
T = 100 0.53 0.78 0.91 0.96 0.85 0.96 0.95 0.97 0.93 0.96 0.96 0.98
T = 250 0.67 0.87 0.94 0.97 0.91 0.94 0.94 0.97 0.94 0.95 0.96 0.98
T = 500 0.75 0.93 0.96 0.98 0.93 0.95 0.94 0.96 0.95 0.96 0.97 0.98
T = 1000 0.85 0.92 0.96 0.97 0.92 0.90 0.91 0.95 0.95 0.96 0.97 0.98
Length (×100)

T = 20 47.9 50.05 50.1 32.12 83.15 80.56 68.19 29.88 83.59 80.91 62.89 22.96
T = 50 48.3 50.66 40.26 14.0 76.18 69.37 40.09 9.01 80.92 71.41 37.08 9.18
T = 100 46.82 47.52 24.88 6.67 73.84 58.69 19.24 3.92 78.91 58.91 18.06 4.23
T = 250 47.63 34.35 9.78 2.66 64.2 30.63 5.83 1.50 67.73 28.93 6.37 1.68
T = 500 44.08 18.96 4.76 1.31 50.15 12.47 2.60 0.73 51.23 12.77 3.03 0.81
T = 1000 33.84 9.49 2.35 0.64 28.47 5.02 1.21 0.38 28.9 5.99 1.51 0.42
MAE for τ (×10)

T = 20 2.63 2.27 1.43 0.37 3.13 2.72 1.64 0.38
T = 50 2.45 1.84 0.69 0.14 2.88 2.12 0.78 0.14
T = 100 2.32 1.24 0.38 0.06 2.76 1.50 0.39 0.06
T = 250 1.70 0.60 0.13 0.03 2.02 0.69 0.13 0.03
T = 500 1.20 0.27 0.06 0.01 1.31 0.28 0.06 0.01
T = 1000 0.63 0.13 0.03 0.01 0.70 0.14 0.03 0.01

(a) τ0 = 0.5

Least-squares Bayesian ILR

δ0 = 0.25 0.50 1.00 2.00 0.25 0.50 1.00 2.00 0.25 0.50 1.00 2.00

Coverage
T = 20 0.49 0.56 0.76 0.94 0.88 0.90 0.95 0.97 0.90 0.91 0.92 0.95
T = 50 0.54 0.68 0.87 0.96 0.89 0.94 0.96 0.98 0.94 0.93 0.95 0.98
T = 100 0.56 0.72 0.91 0.98 0.89 0.94 0.96 0.96 0.95 0.93 0.97 0.98
T = 250 0.65 0.88 0.94 0.97 0.92 0.96 0.95 0.97 0.93 0.95 0.97 0.99
T = 500 0.78 0.90 0.96 0.98 0.92 0.93 0.93 0.96 0.94 0.95 0.96 0.98
T = 1000 0.85 0.94 0.96 0.97 0.90 0.91 0.91 0.95 0.93 0.96 0.97 0.98
Length (×100)

T = 20 47.17 47.58 51.13 35.2 83.16 81.22 71.03 34.04 83.83 81.16 66.59 26.55
T = 50 49.07 48.74 40.61 15.03 76.84 70.0 43.7 9.62 81.42 72.56 40.55 9.62
T = 100 46.47 43.1 27.07 6.99 74.33 59.13 21.83 3.94 79.98 59.24 20.37 4.31
T = 250 45.62 34.95 10.59 2.67 65.97 33.65 5.87 1.52 70.08 31.54 6.24 1.71
T = 500 42.61 21.02 4.87 1.32 52.67 13.73 2.65 0.75 54.46 13.61 3.07 0.84
T = 1000 32.86 10.01 2.35 0.65 29.99 5.21 1.23 0.37 30.17 6.10 1.50 0.41
MAE for τ (×10)

T = 20 3.00 2.64 1.64 0.39 3.43 3.03 1.86 0.41
T = 50 2.80 1.98 0.84 0.15 3.11 2.21 0.88 0.15
T = 100 2.46 1.49 0.37 0.06 2.86 1.73 0.41 0.06
T = 250 1.93 0.65 0.13 0.03 2.17 0.71 0.13 0.03
T = 500 1.26 0.32 0.06 0.01 1.39 0.32 0.06 0.01
T = 1000 0.67 0.13 0.03 0.01 0.68 0.14 0.03 0.01

(b) τ0 = 0.3
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To better understand the importance of the uncertainty of the break location τ for inference on

the slope parameters, we conduct a hypothetical experiment. We repeat the simulation exercise

but now fixing τ at the least-squares estimate τ̂LS. Table 3 displays the results. Note that the

results for the least-squares estimator are of course the same as in Table 1. We however now see

that, not only the conventional confidence intervals of δ but also the credible intervals undercover

for small T and/or small δ0. They also have similar lengths in general. Importantly, the credible

intervals when τ is fixed at τ̂LS (Table 3) have shorter lengths compared to the full Bayesian

intervals (Table 1). On average, the full Bayesian credible intervals are 17.1% longer12 than the

credible intervals produced by fixing the value of τ at τ̂LS. Note that a Bayesian equivalent of the

conventional approach to inference on the slope parameters would be to fix the value of τ at the

posterior mode (whose value is very similar to τ̂LS as we can see from Figure 1 and deduce from

Corollary 1). We can see in Figure 1 that both τ̂LS and the posterior mode of τ display significant

amount of variations. Fixing τ at a point estimate forces the Bayesian approach to ignore this

uncertainty of τ ; as a result, the credible interval on δ becomes shorter and hence undercovers.

The full Bayesian approach takes into account such uncertainty via marginal posterior of τ (see

examples of the density in Figure 1). This results in longer lengths of the full Bayesian intervals

on the slope parameters and helps them avoid undercoverage. In contrast, by construction (i.e.,

Equation 7), the conventional confidence intervals do not have this feature.

Table 3: Simulation results for δ, τ fixed at τ̂LS

Least-squares Bayesian

δ0 = 0.25 0.50 1.00 2.00 0.25 0.50 1.00 2.00

Coverage
T = 20 0.68 0.77 0.88 0.95 0.65 0.70 0.88 0.95
T = 50 0.67 0.84 0.94 0.96 0.64 0.82 0.93 0.94
T = 100 0.69 0.90 0.96 0.95 0.69 0.89 0.95 0.95
T = 250 0.83 0.94 0.94 0.96 0.83 0.94 0.95 0.94
T = 500 0.91 0.95 0.95 0.96 0.88 0.96 0.95 0.95
T = 1000 0.93 0.94 0.95 0.96 0.94 0.95 0.95 0.96
Length
T = 20 3.87 3.60 3.20 2.82 3.46 3.30 2.99 2.76
T = 50 2.31 2.07 1.82 1.76 2.21 2.04 1.79 1.74
T = 100 1.61 1.38 1.26 1.24 1.56 1.36 1.23 1.24
T = 250 0.93 0.81 0.78 0.78 0.93 0.80 0.78 0.78
T = 500 0.61 0.56 0.55 0.55 0.61 0.56 0.55 0.55
T = 1000 0.41 0.39 0.39 0.39 0.41 0.39 0.39 0.39
MSE for δ
T = 20 3.85 2.79 1.75 0.60 3.00 2.59 1.39 0.47
T = 50 1.35 0.78 0.26 0.20 1.28 0.79 0.28 0.20
T = 100 0.67 0.28 0.11 0.10 0.65 0.27 0.10 0.10
T = 250 0.18 0.05 0.04 0.04 0.18 0.05 0.04 0.04
T = 500 0.05 0.02 0.02 0.02 0.06 0.02 0.02 0.02
T = 1000 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01

(a) τ0 = 0.5

Least-squares Bayesian

δ0 = 0.25 0.50 1.00 2.00 0.25 0.50 1.00 2.00

Coverage
T = 20 0.66 0.70 0.87 0.93 0.65 0.71 0.87 0.92
T = 50 0.64 0.81 0.93 0.94 0.61 0.78 0.92 0.95
T = 100 0.72 0.86 0.94 0.97 0.67 0.87 0.93 0.95
T = 250 0.80 0.92 0.94 0.96 0.81 0.93 0.95 0.96
T = 500 0.90 0.94 0.96 0.95 0.88 0.94 0.96 0.94
T = 1000 0.92 0.95 0.95 0.95 0.92 0.95 0.94 0.94
Length
T = 20 3.95 3.91 3.70 3.40 3.49 3.53 3.48 3.27
T = 50 2.32 2.30 2.18 2.14 2.28 2.24 2.14 2.10
T = 100 1.69 1.64 1.52 1.51 1.66 1.57 1.49 1.49
T = 250 1.05 0.98 0.95 0.95 1.02 0.97 0.95 0.95
T = 500 0.71 0.68 0.67 0.67 0.71 0.68 0.67 0.67
T = 1000 0.49 0.48 0.48 0.48 0.49 0.48 0.48 0.48
MSE for δ
T = 20 3.95 3.63 2.20 0.87 3.03 2.83 1.76 0.76
T = 50 1.35 1.07 0.47 0.32 1.34 1.01 0.47 0.29
T = 100 0.70 0.48 0.17 0.14 0.72 0.40 0.17 0.14
T = 250 0.24 0.09 0.06 0.06 0.20 0.09 0.06 0.06
T = 500 0.07 0.04 0.03 0.03 0.08 0.03 0.03 0.03
T = 1000 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02

(b) τ0 = 0.3

12The difference is larger when T and/or δ0 are/is smaller.
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In summary, the simulation exercises demonstrate that (1) the credible intervals on the slope co-

efficient tend to have more reasonable coverages than the conventional confidence intervals because

of longer lengths, (2) the longer length of the credible intervals is a reflection of the uncertainty of

the unknown13 break location τ , and (3) the two intervals converge to each other asymptotically

as expected from our Bernstein-von Mises theorem.

Table 4: Simulation results for δ, τ fixed at τ0

Least-squares Bayesian

δ0 = 0.25 0.50 1.00 2.00 0.25 0.50 1.00 2.00

Coverage
T = 20 0.93 0.95 0.96 0.95 0.94 0.95 0.95 0.94
T = 50 0.95 0.95 0.94 0.94 0.94 0.94 0.94 0.94
T = 100 0.96 0.96 0.96 0.96 0.96 0.96 0.95 0.96
T = 250 0.95 0.95 0.95 0.94 0.94 0.96 0.94 0.94
T = 500 0.96 0.95 0.95 0.96 0.96 0.95 0.95 0.96
T = 1000 0.95 0.96 0.96 0.95 0.95 0.96 0.96 0.95
Length
T = 20 2.77 2.77 2.77 2.77 2.72 2.74 2.73 2.74
T = 50 1.75 1.75 1.75 1.75 1.75 1.74 1.74 1.75
T = 100 1.24 1.24 1.24 1.24 1.23 1.24 1.24 1.23
T = 250 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78
T = 500 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55
T = 1000 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39
MSE for δ
T = 20 0.53 0.50 0.47 0.52 0.51 0.47 0.45 0.50
T = 50 0.21 0.20 0.21 0.21 0.21 0.20 0.20 0.20
T = 100 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09
T = 250 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
T = 500 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
T = 1000 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

(a) τ0 = 0.5

Least-squares Bayesian

δ0 = 0.25 0.50 1.00 2.00 0.25 0.50 1.00 2.00

Coverage
T = 20 0.96 0.95 0.94 0.96 0.95 0.94 0.94 0.94
T = 50 0.95 0.94 0.95 0.94 0.95 0.94 0.94 0.94
T = 100 0.94 0.95 0.96 0.95 0.94 0.94 0.96 0.95
T = 250 0.95 0.96 0.94 0.95 0.95 0.95 0.94 0.96
T = 500 0.96 0.96 0.94 0.96 0.96 0.96 0.94 0.96
T = 1000 0.96 0.95 0.96 0.95 0.96 0.95 0.96 0.95
Length
T = 20 3.37 3.37 3.37 3.37 3.30 3.31 3.31 3.34
T = 50 2.13 2.13 2.13 2.13 2.12 2.12 2.12 2.12
T = 100 1.51 1.51 1.51 1.51 1.50 1.50 1.50 1.51
T = 250 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
T = 500 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
T = 1000 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48
MSE for δ
T = 20 0.73 0.75 0.74 0.73 0.68 0.70 0.69 0.69
T = 50 0.30 0.31 0.31 0.31 0.29 0.30 0.30 0.30
T = 100 0.16 0.16 0.14 0.16 0.15 0.15 0.14 0.15
T = 250 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
T = 500 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
T = 1000 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

(b) τ0 = 0.3

13When τ0 is known, the two intervals behave very similarly. To illustrate this point, we conduct another
hypothetical experiment by repeating the simulation exercise as before but now fixing the value of τ at the true
value τ0 in both conventional and Bayesian approaches. Table 4 summarizes the results. In this case, we see that
both confidence and credible intervals have coverages quite close to 95% in all cases. They also have similar lengths.
Note that when the true value τ0 is given, the usual asymptotic normality and the regular Bernstein-von Mises
theorem apply. As a consequence, both frequentist and Bayesian intervals seem to converge faster to the limit
compared to the case with unknown τ .
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6 Application

In this section, we illustrate difference in estimation and inference of the regression parameters

in linear regression models with a structural break between the conventional approach and the

Bayesian approach that we consider in this paper. Paye and Timmermann (2006) consider the

problem of ex-post prediction in stock returns under a structural break in the coefficients of state

variables. Their multivariate model with a structural break is

Rett =

δ
(1)
1 + δ

(2)
1 Divt−1 + δ

(3)
1 Tbillt−1 + δ

(4)
1 Spreadt−1 + δ

(5)
1 Deft−1 + ϵt, if t ≤ ⌊τT ⌋

δ
(1)
2 + δ

(2)
2 Divt−1 + δ

(3)
2 Tbillt−1 + δ

(4)
2 Spreadt−1 + δ

(5)
2 Deft−1 + ϵt, if t > ⌊τT ⌋,

where Rett is the excess return for the stock index during month t, Divt−1 is the lagged dividend

yield, Tbillt−1 is the lagged local country short interest rate, Spreadt−1 is the lagged local country

term spread, andDeft−1 is the lagged U.S. default premium. The authors estimate the model using

the conventional frequentist approach: they first compute τ̂LS and then obtain point estimates as

well as confidence intervals for the slope coefficients by fixing τ at τ̂LS. We examine whether the

Bayesian method performs differently from the conventional approach.

Monthly series are collected from Global Financial Data and Federal Reserve Economic Data

(FRED). In this paper, we consider estimating the model for the United Kingdom and Japan14.

The indices to which the total return and the dividend yield correspond are the FTSE All-share

for the U.K. and Nikko Securities Composite for Japan. For each country, a 3-month Treasury bill

rate is used as a measure of the short interest rate while the yield on a long-term government bond

is used as a measure of the long interest rate. Excess returns are computed as the total return

on stocks in the local currency minus the local short rate. The dividend yield is expressed as an

annual rate and is constructed as the sum of dividends over the preceding 12 months, divided by

the current price. A term spread is the difference between the long and short local country interest

rates. The U.S. default premium is defined as the difference in yields between Moody’s Baa and

Aaa rated bonds. For each country, the sample spans between January 1970 and December 2003.

For both approaches, we set the range of the candidate values of τ to be (ϵ, 1− ϵ) with ϵ = 0.05

as we do in the simulation studies in the previous section. For the Bayesian approach, we use

the uniform prior on (ϵ, 1 − ϵ) for τ and the conjugate prior for the regression parameters with

H = 0.1I(dx+dz), µ = 0(dx+dz), and a = b = 1. The findings are similar even when we use the

14Paye and Timmermann (2006) conduct the sequential method suggested by Bai and Perron (1998), Bai and
Perron (2003), Perron (2006) for determining the number of breaks and find multiple breaks for some countries.
They find single breaks for the U.K. and Japan, but, for example, two breaks for the U.S. A fully Bayesian approach
would be to place a prior on the number of breaks and use a trans-dimensional estimation method such as a reversible
jump MCMC, which is beyond the scope of this paper.
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Table 5: Estimation results for the U.K. stock return

slopes
Least-squares Bayesian

Estimate LB UB Estimate LB UB

δ
(1)
1 -21.2 -28.1 -14.2 -18.6 -25.2 -11.9

δ
(2)
1 -0.35 -3.01 2.30 0.07 -2.51 2.64

δ
(3)
1 -0.77 -1.52 -0.03 -0.96 -1.70 -0.23

δ
(4)
1 0.80 -0.57 2.19 0.80 -0.56 2.14

δ
(5)
1 19.4 11.8 27.0 16.5 9.18 23.8

δ
(1)
2 19.1 11.9 26.4 16.5 9.62 23.3

δ
(2)
2 1.42 -1.43 4.29 0.99 -1.77 3.77

δ
(3)
2 -0.36 -1.20 0.47 -0.16 -0.99 0.64

δ
(4)
2 -0.98 -2.42 0.45 -0.98 -2.39 0.41

δ
(5)
2 -19.4 -27.2 -11.6 -16.5 -23.9 -8.95

τ
Least-squares Bayesian

Estimate LB UB Estimate LB UB

0.150 0.145 0.155 0.150 0.149 0.152
(75:01) (74:11) (75:03) (75:01) (74:12) (75:02)

ILR

Estimate LB UB

0.149 0.151
(74:12) (75:02)

The upper panel shows point estimates as well as 90% confidence (left)
and equal-tailed credible (right) intervals for the regression slope param-
eters. The lower panel shows point estimates of τ with the corresponding
months in parentheses as well as the bounds of 95% confidence intervals of
Bai (1997) and highest posterior density (HPD) sets. It also displays the
inverted likelihood ratio (ILR) confidence sets of Eo and Morley (2015).
LB=lower bound and UB=upper bound.

uninformative improper prior. For the break date, we compute the least-squares estimator τ̂LS

and the posterior mode τ̂Bayes of τ as well as the 95% confidence interval of Bai (1997), the highest

posterior density (HPD) set, and the inverted likelihood ratio (ILR) confidence set of Eo and

Morley (2015). For the slope parameters, we compute γ̂LS and the posterior mean of γ as well as

the 90% confidence intervals of Bai (1997) based on the asymptotic result (7) and the equal-tailed

credible intervals.

When the uncertainty about τ is small, estimation and inference of the slope parameters roughly

match between the conventional least-squares approach and the Bayesian approach, as illustrated

by our simulation studies and indicated by our proven Bernstein-von mises theorem. See Table 5 for

the results for the U.K. Both methods estimate a break at 1975:01. The confidence interval of Bai

(1997), the Bayesian highest posterior density (HPD) set, and the inverted likelihood ratio (ILR)

confidence set by Eo and Morley (2015) are all similar and narrow, indicating that the uncertainty

about τ is small. This can be seen also from the posterior density on the break date in Panel (a)

of Figure 3, which has a sharp peak around 1975:0115. Paye and Timmermann (2006) explain that

the break in the mid-1970’s might be related to the large macroeconomic shocks reflecting oil price

15The mean and the standard deviation of the excess return of the FTSE All-share index during the sample period
are -1.53 and 6.94 respectively. At t =1974:12, we have Rett = −9.9 while at t =1975:01, Rett = 43.75, where the
change is approximately 7.7 standard deviations. Therefore, the change in the dependent variable is large enough
for the break point to be detected with small uncertainty.
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increases. As a result of the small uncertainty about τ , the point estimates of the slope parameters

as well as the corresponding confidence/credible intervals are similar between the conventional

and the Bayesian approach. Importantly, when the confidence interval of a given slope parameter

includes (or does not include) zero, the corresponding credible interval also includes (or does not

include) zero. Hence, the conventional approach to inference about the slope parameters for the

U.K. sample seems to be robust with respect to the uncertainty on the break date.
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(a) United Kingdom
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(b) Japan

Figure 3: Posterior density of the break date

In contrast, when the uncertainty on τ is large, the conventional and the Bayesian results on

inference about the slope parameters might disagree. Table 6 shows the results for Japan. Although

both τ̂LS and the posterior mode of τ are at 1996:05, the HPD set and the ILR confidence set are

much wider than the confidence interval of Bai (1997), indicating a large uncertainty of the break

date. The posterior density on τ in Figure 3 also illustrates that the uncertainty of the break date

is much larger for Japan than for the U.K. during the sample period16. The large uncertainty of τ

is reflected on Bayesian inference on the slope parameters. In the upper panel of Table 6, we see

that in general the Bayesian credible intervals are wider than the confidence intervals. Importantly,

this can have a qualitative consequence on statistical importance of some parameters. For seven

of the ten slope coefficients, the confidence intervals do not include zero while the the Bayesian

credible intervals do. Hence, the conventional approach to inference on the slope parameters might

not be robust with respect to the uncertainty of the break date, for the Japanese sample.

16In addition, the posterior on τ for Japan exhibits tri-modality, which would be similar to the tendency of a
finite-sample distribution of τ̂LS to have three modes as reported in the literature (e.g., Baek, 2021; Casini & Perron,
2021).
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Table 6: Estimation results for the Japanese stock return

slopes
Least-squares Bayesian

Estimate LB UB Estimate LB UB

δ
(1)
1 2.41 0.24 4.57 1.49 -1.89 5.27

δ
(2)
1 1.17 0.44 1.89 1.31 0.29 3.26

δ
(3)
1 -1.98 -2.45 -1.50 -2.00 -3.53 -1.23

δ
(4)
1 -0.85 -1.55 -0.16 -0.29 -1.43 3.59

δ
(5)
1 2.76 1.39 4.12 2.29 0.15 4.11

δ
(1)
2 -16.8 -29.6 -4.07 -9.39 -23.4 8.77

δ
(2)
2 12.4 2.35 22.4 6.22 -5.91 16.8

δ
(3)
2 -7.11 -14.1 -0.04 -3.86 -13.1 5.32

δ
(4)
2 4.76 1.25 8.27 1.70 -5.86 6.59

δ
(5)
2 -8.35 -14.9 -1.78 -4.65 -12.1 4.98

τ
Least-squares Bayesian

Estimate LB UB Estimate LB UB

0.780 0.777 0.782 0.779 0.068 0.934
(96:05) (96:04) (96:06) (96:05) (72:03) (01:10)

ILR

Estimate LB UB

0.080 0.890
(72:08) (00:02)

The upper panel shows point estimates as well as 90% confidence (left)
and equal-tailed credible (right) intervals for the regression slope param-
eters. The lower panel shows point estimates of τ with the corresponding
months in parentheses as well as the bounds of 95% confidence intervals of
Bai (1997) and highest posterior density (HPD) sets. It also displays the
inverted likelihood ratio (ILR) confidence sets of Eo and Morley (2015).
LB=lower bound and UB=upper bound.

7 Conclusion and future direction

In this paper, we establish a Bernstein-von Mises type theorem for the slope coefficients in linear

regression with a structural break. By doing so, we bridge the gap between the frequentist and the

Bayesian approaches for inference on this model. On the one hand, a frequentist researcher can

look at Bayesian credible intervals for the slope coefficients as a robustness check to see whether

the uncertainty of the break location affects inference on the slope parameters. Such sensitivity

analysis is reasonable as our theoretical result guarantees the credible interval to converge to the

conventional confidence interval that the frequentist researcher would use otherwise. On the other

hand, Bayesian inference can be conveyed to frequentists via our proven result.

Potential extensions include several directions. First, the homoscedasticity assumption could

be too strong in some applications, and hence extending the results to the case of heteroscedasticity

and autocorrelation would be of interest. Second, a popular Bayesian method of Chib (1998) is

different from the approach we took in this paper in that we place an explicit prior on τ and that

Chib’s framework can be naturally extended to the case of multiple breaks. It would be interesting

to study frequentist properties of Chib’s approach.
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A Proof of Theorems and Corollaries

In Appendix A, we provide proofs of Theorems 1-4 and Corollaries 1-2. See Appendix B for proofs

of the Propositions used for proving the main theorems.

A.1 Proof of Theorem 1

Proof of Theorem 1. Note that

πT (τ) =
LT (τ)∫
LT (τ ′)dτ ′

=
LT (τ0)∫
LT (τ ′)dτ ′

LT (τ)

LT (τ0)
= πT (τ0)

LT (τ)

LT (τ0)
,

πT (τ0) =
LT (τ0)∫
LT (τ ′)dτ ′

≤ LT (τ0)∫
Bc

M0/T
(τ0)

LT (τ ′)dτ ′
=

[ ∫
Bc

M0/T
(τ0)

LT (τ
′)

LT (τ0)
dτ ′
]−1

,

for any M0 > 0. Hence for each T and for any M0 > 0,∫
Bc

M/T
(τ0)

πT (τ)dτ = πT (τ0)

∫
Bc

M/T
(τ0)

LT (τ)

LT (τ0)
dτ ≤

[ ∫
Bc

M0/T
(τ0)

LT (τ
′)

LT (τ0)
dτ ′
]−1 ∫

Bc
M/T

(τ0)

LT (τ)

LT (τ0)
dτ.

(A.1)

Therefore, we want to find

1. an upper bound for
∫
Bc

M/T
(τ0)

LT (τ)
LT (τ0)

dτ and

2. a lower bound for
∫
Bc

M0/T
(τ0)

LT (τ ′)
LT (τ0)

dτ ′ for some M0 > 0

We can write the marginal likelihood ratio as

LT (τ)

LT (τ0)
= exp

[
T

{
1

T
log

(
LT (τ)

LT (τ0)

)}]
.

The proof of Theorem 1 is built on some intermediate steps, Propositions 1-4. Proposition 1

shows that, under the normal likelihood and the conjugate prior, studying this ratio boils down to

comparing the sum of squared residuals ST (τ).

Proposition 1. Suppose Assumption 1 holds. Then, with the normal likelihood and the conjugate

prior described above, under Pθ0,τ0, for all τ ,

1

T
log

(
LT (τ)

LT (τ0)

)
=

1

2
log

(
ST (τ0)

ST (τ)

)
+Op(T

−1).
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Let us first examine the limit of the quantity QT (τ) = T−1ST (τ). Proposition 2 states that

QT (τ) converges in probability to some deterministic function Q(τ). See Figure 2 for examples of

QT (τ) and Q(τ).

Proposition 2. Suppose Assumption 1 holds. Then, under Pθ0,τ0, for all τ ,

QT (τ) = Q(τ) +Op(T
−1/2),

where

Q(τ) = σ2
0 +

(τ0 − τ) (1−τ0)
(1−τ)

δ′0R
′ΣXRδ0, if τ ≤ τ0

(τ − τ0)
τ0
τ
δ′0R

′ΣXRδ0, if τ > τ0
≡ σ2

0 +∆(τ).

Define AT (τ) = g (QT (τ)) and A(τ) = g(Q(τ)) where g(x) = −1
2
log(x). Due to Proposition 1,

we can write

T−1 log

(
LT (τ)

LT (τ0)

)
= AT (τ)− AT (τ0) +Op(T

−1). (A.2)

Proposition 3 below says that the limit A(τ) of AT (τ) attains its maximum at τ0.

Proposition 3. A(τ) attains its unique maximum at τ0

Proposition 4 establishes the modulus of continuity of the empirical process {AT (τ)− AT (τ0)}−
{A(τ)− A(τ0)} outside of a ball around τ0 with radius proportional to T−1.

Proposition 4. Suppose Assumption 1 holds. Then, under ∀η > 0, ∀ϵ > 0, ∃M > 0 and k > 0

such that T ≥ k =⇒

Pθ0,τ0

(
inf

τ∈Bc
M/T

(τ0)

| {AT (τ)− AT (τ0)} − {A(τ)− A(τ0)} |
|τ − τ0|

< η

)
> 1− ϵ.

By Proposition 3, A(·) attains its unique max at τ0. Note that the convex function A(τ) is not

differentiable at τ0. Hence we have,

A(τ)− A(τ0) < |τ − τ0|B1,

A(τ)− A(τ0) > |τ − τ0|B2,

for some B1, B2 < 0. By Proposition 4, given η1 > 0, ∃M > 0 : with Pθ0,τ0 → 1,

AT (τ)− AT (τ0) < η1|τ − τ0|+ A(τ)− A(τ0) < |τ − τ0|{η1 +B1}, (A.3)
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for all τ ∈ Bc
M/T (τ0). Similarly, given η2 > 0, ∃M0 > 0 : with Pθ0,τ0 → 1,

AT (τ)− AT (τ0) > −η2|τ − τ0|+ A(τ)− A(τ0) > |τ − τ0|{−η2 +B2}, (A.4)

for all τ ∈ Bc
M0/T

(τ0). Recall, by Eq.(A.2), we have

LT (τ)

LT (τ0)
= exp

[
T

(
AT (τ0)− AT (τ)

)
+Op(1)

]
.

Hence, from Eq. (A.3), given η1 > 0, small compared to −B1, there is B
′
1 < 0, which is independent

of M : we have with Pθ0,τ0 → 1,

LT (τ)

LT (τ0)
≤ exp

[
T |τ − τ0|B′

1 +Op(1)

]
= exp

[
T |τ − τ0|B′

1

]
Op(1), (A.5)

for all τ ∈ Bc
M/T (τ0). Note that the statement above still holds with a larger value of M > 0 as the

area outside of the ball will be contained by that for the original M . Similarly, from Eq. (A.4),

there is B′
2 < 0 and M0 > 0 : with Pθ0,τ0 → 1,

LT (τ)

LT (τ0)
≥ exp

[
T |τ − τ0|B′

2 +Op(1)

]
= exp

[
T |τ − τ0|B′

2

]
Op(1), (A.6)

for all τ ∈ Bc
M0/T

(τ0). Now, by Inequality (A.5) and the fundamental theorem of calculus,

∫
Bc

M/T
(τ0)

LT (τ)

LT (τ0)
dτ ≤

∫
Bc

M/T
(τ0)

exp

[
T |τ − τ0|B′

1

]
dτOp(1) =

1

TB′
1

(
eTB′

1 − eB
′
1M
)
Op(1).

Similarly, by Inequality (A.6),∫
BMc

0/T (τ0)

LT (τ)

LT (τ0)
dτ ≥

∫
BMc

0/T (τ0)

exp

[
T |τ − τ0|B′

2

]
dτOp(1) =

1

TB′
2

(
eTB′

2 − eB
′
2M0

)
Op(1).

This means, together with the bound (A.1),∫
Bc

M/T
(τ0)

πT (τ)dτ ≤
[ ∫

BMc
0/T (τ0)

LT (τ
′)

LT (τ0)
dτ ′
]−1 ∫

Bc
M/T

(τ0)

LT (τ)

LT (τ0)
dτ ≤ B′

2

B′
1

eB
′
1T − eB

′
1M

eB
′
2T − eB

′
2M0

Op(1),

which can be made arbitrarily small by choosing M > 0 and T sufficiently large.
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A.2 Proof of Corollary 1

Proof of Corollary 1 . The main structure of the proof follows Proposition 2 of Bai (1997) and

relies on an implication of our Theorem 1. First, note that we have

τ̂Bayes = argmax
τ∈H

πT (τ)

= argmax
τ∈H

LT (τ)

= argmax
τ∈H

1

T
log

(
LT (τ)

LT (τ0)

)
,

which converges in distribution to argmaxτ∈H log
(

ST (τ0)
ST (τ)

)
by Proposition 1. We have

argmax
τ∈H

log

(
ST (τ0)

ST (τ)

)
= argmin

τ∈H
ST (τ)

= argmax
τ∈H

VT (τ)− VT (τ0),

where VT (τ) = δ̂(τ)′ (Z ′
2MZ2) δ̂(τ). Bai (1997) shows that VT (τ)−VT (τ0) converges in distribution

to W ∗ (⌊T (τ − τ0)⌋) uniformly on any bounded interval around τ0. Let m∗ = argmaxm W ∗(m),

which is Op(1). Hence, ∀ϵ > 0, ∃R1 > 0 : P (|m∗| > R1) < ϵ. Our Theorem 1 implies that

τ̂Bayes = τ0 + Op(T
−1). In other words, ∀ϵ > 0, ∃R2 > 0 : P (T |τ̂Bayes − τ0| > R2) < ϵ. Take

R = max{R1, R2}.
Define τ̂R = argmaxT |τ−τ0|≤R VT (τ) − VT (τ0) and m∗

R = argmax|m|≤R W ∗(m). Then we have

T |τ̂R − τ0|
d→ m∗

R. In other words,
∣∣P (⌊T (τ̂R − τ0)⌋ = j)− P (m∗

R = j)
∣∣ < ϵ as T → ∞ ∀|j| ≤ R.

Note that if T |τ̂Bayes−τ0| < R, then τ̂R = τ̂Bayes. Similarly, if |m∗| < R, then m∗
R = m∗. Hence,∣∣P (⌊T (τ̂Bayes − τ0)⌋ = j) − P (m∗ = j)

∣∣ is bounded by
∣∣P (⌊T (τ̂R − τ0)⌋ = j) − P (m∗

R = j)
∣∣ +

P (T |τ̂Bayes − τ0| ≥ R)+P (|m∗| ≥ R) < 3ϵ. As ϵ can be made arbitrarily small, the desired result

holds.

24



A.3 Proof of Theorem 2

Proof of Theorem 2 . Define z =
√
T (γ − γ̂LS) and let ϕ(x;µ,Σ) be the multivariate normal den-

sity with mean µ and covariance matrix Σ evaluated at x.

dTV

(
π [z|DT ] , N(dx+dz)

(
0, σ2

0V
−1
))

=

∫
|π(z|DT )− ϕ(z; 0, σ2

0V
−1)|dz

≤
∫ ∫

|π(z|τ,DT )− ϕ(z; 0, σ2
0V

−1)|dzdπ(τ |DT )

=

∫
dTV

(
π(z|τ,DT ), ϕ(z; 0, σ

2
0V

−1)

)
dπ(τ |DT )

=

∫
BM/T (τ0)

dTV

(
π(z|τ,DT ), ϕ(z; 0, σ

2
0V

−1)

)
dπ(τ |DT ) + op(1),

where the last equality is due to Theorem 1.

From (10), asymptotically, the posterior of γ conditional on τ is normal:

γ
∣∣τ,DT

a∼ N(dx+dz)

(
µ̄τ , (b̄τ/ā)H̄

−1
τ

)
=⇒ z|τ,DT

a∼ N(dx+dz)

(√
T (µ̄τ − γ̂LS) , (T b̄τ/ā)H̄

−1
τ

)
.

The total variation distance is bounded above by 2 times square root of the KL divergence.

In general, the KL divergence between two p-dimensional normal distributions Np(µ1,Σ1) and

Np(µ2,Σ2) is bounded above by∣∣det (Σ−1
2

)
− det

(
Σ−1

1

)∣∣
min(det

(
Σ−1

1

)
, det

(
Σ−1

2

)
)︸ ︷︷ ︸

I

+ p||Σ−1
2 − Σ−1

1 ||∞||Σ1||∞︸ ︷︷ ︸
II

+ ||µ1 − µ2||22||Σ−1
2 ||2︸ ︷︷ ︸

III

, (A.7)

where ||Σ||∞ = maxij|Σij| is the largest element of Σ in the absolute value, and ||Σ||2 = supµ||Σµ||2/||µ||2
is a matrix norm induced by the standard norm on Rp, ||µ||2 =

∑p
i=1 µ

2
i . We can bound the total

variation distance between the posterior density of z conditional on τ and that ofN(dx+dz)(0, σ
2
0V

−1)

using the bound (A.7), with µ1 =
√
T (µ̄τ − γ̂LS), Σ1 = (T b̄τ/ā)H̄

−1
τ , µ2 = 0, and Σ2 = σ2

0V
−1.

To show III = op(1), we write

√
T (µ̄τ − γ̂LS) =

√
T (µ̄τ − γ̂(τ)) +

√
T (γ̂(τ)− γ̂LS) . (A.8)
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By definition,

µ̄τ =

[
1

T
H +

1

T
χ′
τχτ

]−1 [
1

T
Hµ+

1

T
χτY

]
= γ̂(τ) +Op(T

−1),

so the first term in (A.8) is op(1). To show that the second term in (A.8) is op(1) for τ ∈ BM/T (τ0),

write
√
T (γ̂(τ)− γ̂LS) =

√
T (γ̂(τ)− γ0) −

√
T (γ̂LS − γ0). Note that Y = Xβ0 + Z2τ0δ0 + ϵ =

Xβ0 + Z2τδ0 + ϵ∗τ , where ϵ∗τ = (Z2τ0 − Z2τ )δ0 + ϵ. This implies

√
T (γ̂(τ)− γ0) =

[
1

T

(
X ′X X ′Z2τ

Z ′
2τX Z ′

2τZ2τ

)]−1
1√
T

(
X ′ϵ∗τ

Z ′
2τϵ

∗
τ

)

=

[
1

T

(
X ′X X ′Z2τ

Z ′
2τX Z ′

2τZ2τ

)]−1
1√
T

(
X ′ϵ+X ′(Z2τ0 − Z2τ )δ0

Z ′
2τ ϵ+ Z ′

2τ0
(Z2τ0 − Z2τ )δ0

)
.

For |τ − τ0| < M
T
, we have

1

T
X ′Z2τ −

1

T
X ′Z2τ0 = op(1),

1

T
Z ′

2τZ2τ −
1

T
Z ′

2τ0
Z2τ0 = op(1),

1√
T
X ′(Z2τ0 − Z2τ ) = op(1),

1√
T
Z ′

2τ0
(Z2τ0 − Z2τ ) = op(1),

1√
T
Z ′

2τϵ−
1√
T
Z2τ0ϵ = op(1),

which implies

√
T (γ̂(τ)− γ0) =

[
1

T

(
X ′X X ′Z2τ0

Z ′
2τ0

X Z ′
2τ0

Z2τ0

)]−1
1√
T

(
X ′ϵ

Z ′
2τ0

ϵ

)
+ op(1).

Similarly, since the least-square estimator τ̂LS ∈ BM/T (τ0) for sufficiently large T , we can show

√
T (γ̂LS − γ0) =

√
T (γ̂(τ̂LS)− γ0)

=

[
1

T

(
X ′X X ′Z2τ̂LS

Z ′
2τ̂LS

X Z ′
2τ̂LS

Z2τ̂LS

)]−1
1√
T

(
X ′ϵ+X ′(Z2τ0 − Z2τ̂LS

)δ0

Z ′
2τ̂LS

ϵ+ Z ′
2τ0

(Z2τ0 − Z2τ̂LS
)δ0

)

=

[
1

T

(
X ′X X ′Z2τ0

Z ′
2τ0

X Z ′
2τ0

Z2τ0

)]−1
1√
T

(
X ′ϵ

Z ′
2τ0

ϵ

)
+ op(1).

Hence,
√
T (γ̂(τ)− γ̂LS) = op(1).
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To show I and II are op(1), note that Σ1 − Σ2 equals to

(T b̄τ/ā)H̄
−1
τ −σ2

0V
−1 =

[
(T b̄τ/ā)H̄

−1
τ − TST (τ)

T − (dx + dz)
(χτχτ )

−1

]
+

[
TST (τ)

T − (dx + dz)
(χτχτ )

−1 − σ2
0V

−1

]
.

(A.9)

For the first term in (A.9), we have

(T b̄τ/ā)H̄
−1
τ =

b̄τ
a+ T/2

[
1

T
H +

1

T
χ′
τχτ

]−1

=
1
T
b̄τ

a/T + 1/2

[
1

T
H +

1

T
χ′
τχτ

]−1

.

Note that (1/T )b̄τ = 1
2T
ST (τ) + Op(T

−1), so we have (T b̄τ/ā)H̄
−1
τ = ST (τ) [χ

′
τχτ ]

−1 + Op(T
−1).

Therefore, the term in the first square brackets in (A.9) is op(1). For the second term in (A.9), we

have that for |τ − τ0| < M
T
,

TST (τ)

T − (dx + dz)
(χτχτ )

−1 − σ2
0V

−1 = (QT (τ)−QT (τ0))︸ ︷︷ ︸
=op(1)

V̂ −1
T (τ) +QT (τ0)

(
V̂ −1
T (τ)− V̂ −1

T (τ0)
)

︸ ︷︷ ︸
=op(1)

+
(
QT (τ0)− σ2

0

)︸ ︷︷ ︸
=Op(T−1/2)

V̂ −1
T (τ0) + σ2

0

(
V̂ −1
T (τ0)− V −1

)
︸ ︷︷ ︸

=op(1)

+op(1) = op(1),

where V̂T (τ) =
1
T
χ′
τχτ .

This implies that Σ−1
2 − Σ−1

1 = op(1). Hence II = op(1). By continuity of determinants, we

also have that I = op(1) for τ ∈ BM/T (τ0).

Finally, for τ ∈ BM/T (τ0)

dTV

(
π(z|τ,DT ), N(dx+dz)(0, σ

2
0V )

)
≤ 2
√
op(1) = op(1).

Therefore dTV

(
π [z|DT ] , N(dx+dz)(0, σ

2
0V

−1)
)
is bounded above by∫

BM/T (τ0)

dTV

(
π(z|τ,DT ), ϕ(z; 0, σ

2
0V

−1)

)
dπ(τ |DT ) + op(1) = op(1).
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A.4 Proof of Theorem 3

Proof of Theorem 3 . Recall that the proof of Theorem 1 is an implication of Propositions 1-4.

Assumption 1 implies Propositions 2-4. Proposition 1 establishes that under the normal likelihood

and the conjugate prior, Assumption 1 implies

1

T
log

(
LT (τ)

LT (τ0)

)
=

1

2
log

(
ST (τ0)

ST (τ)

)
+Op(T

−1). (A.10)

Therefore, Theorem 3 can be proved if we establish the above equality under the normal likelihood

together with Assumptions 1-2.

As we do not have a closed-form expression (up to a normalization constant) for LT (τ) =∫
p(YT |XT , θ, τ)π(θ, τ)dθ under the non-conjugate priors defined in Assumption 2 (ii), we utilize a

Laplace approximation type result to investigate this integral. For a given τ , denote by FT (θ, τ) =

log p(YT |XT , θ, τ) the log likelihood function conditional on τ . Under the normal likelihood and

Assumption 1, Assumptions 2 and 3 of Hong and Preston (2012) are satisfied. Now with our

Assumption 2, we can invoke Theorem 3 of Hong and Preston (2012) (see their page 361) which

establishes that

log

∫
eFT (θ,τ)−FT (θ̂(τ),τ)π(θ, τ)dθ = log

[
π(θ∗(τ), τ)(2π)(dx+dz+1)/2 det (−TAθ(τ))

−1/2
]
+ op(1),

for each τ , where −Aθ(τ) is the probability limit of − 1
T

∂2

∂θ∂θ′
FT

(
θ̂(τ), τ

)
and is positive definite.

Note that

LT (τ)

LT (τ0)
=

eFT (θ̂(τ),τ)
∫
eFT (θ,τ)−FT (θ̂(τ),τ)π(θ, τ)dθ

eFT (θ̂(τ0),τ0)
∫
eFT (θ,τ0)−FT (θ̂(τ0),τ0))π(θ, τ0)dθ

,

which implies that

1

T
log

(
LT (τ)

LT (τ0)

)
=

1

T
FT (θ̂(τ), τ)−

1

T
FT (θ̂(τ0), τ0)

+
1

T
log
[
π(θ∗(τ), τ)(2π)(dx+dz+1)/2 det (−TAθ(τ))

−1/2
]

− 1

T
log
[
π(θ∗(τ0), τ0)(2π)

(dx+dz+1)/2 det (−TAθ(τ0))
−1/2

]
+Op(T

−1)

=
1

T
log

[
p(YT |XT , θ̂(τ), τ)

p(YT |XT , θ̂(τ0), τ0)

]
+

1

T
log

[
π (θ∗(τ), τ)

π (θ∗(τ0), τ0)

]
− 1

2T
log

[
det (−Aθ(τ))

det (−Aθ(τ0))

]
+Op(T

−1).
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Note that we assumed that π (θ∗(τ), τ) and π (θ∗(τ0), τ0) are finite and non-zero. Hence, the term

involving the ratio of the priors is Op(T
−1). Also, −Aθ(τ) is a positive definite matrix hence its

determinant is a finite positive number. We have

p(YT |XT , θ̂(τ), τ) ∝
(

1

σ̂2(τ)

)T/2

exp

[
− 1

2σ̂2(τ)

T∑
t=1

(yt − χτ,tγ̂(τ))
2

︸ ︷︷ ︸
=ST (τ)

]
=

(
1

σ̂2(τ)

)T/2

exp (−T/2) ,

where the last equality is due to the fact that σ̂2(τ) = ST (τ)/T . This implies the desired result

i.e., (A.10). Note that Propositions 2-4 hold under Assumption 1. Therefore, given (A.10), the

rest of the proof of Theorem 3 follows the same argument in the proof of Theorem 1 in A.1.

A.5 Proof of Corollary 2

Proof of Corollary 2 . By definition, we have

τ̂Bayes = argmax
τ∈H

πT (τ) = argmax
τ∈H

1

T
log

(
LT (τ)

LT (τ0)

)
,

In the proof of Theorem 3, we have shown that the equation (A.10) holds under the normal likeli-

hood and Assumptions 1-2. Therefore, τ̂Bayes converges in distribution to argmaxτ∈H log
(

ST (τ0)
ST (τ)

)
=

argmaxτ∈H VT (τ)− VT (τ0).

Furthermore, Theorem 3 implies that τ̂Bayes = τ0+Op(T
−1). Based on these two facts, the rest

of the proof follows the same argument as in the proof of Corollary 1 in A.2.

A.6 Proof of Theorem 4

Proof of Theorem 4 . Under the normal likelihood and Assumptions 1-2, the proof of Theorem

3 of Hong and Preston (2012) (see their page 367) implies that the posterior of
√
T (γ − γ̂(τ))

conditional on τ converges in total variation in probability to the multivariate normal distribu-

tion N(0,−A−1
γ (τ)), where A−1

γ (τ) is the sub-matrix of A−1
θ (τ) obtained by deleting the last row

and the last column, −Aθ(τ) is the probability limit of − 1
T

∂2

∂θ∂θ′
FT

(
θ̂(τ), τ

)
, and FT (θ, τ) =

log p(YT |XT , θ, τ) is the log likelihood function conditional on τ . This means that the total vari-

ation between the posterior of z =
√
T (γ − γ̂LS) given τ and N

(√
T (γ̂(τ)− γ̂LS) ,−A−1

γ (τ)
)

converges to 0 in probability.

The bound (A.7) on the KL divergence between two normal densities can be used again now

with µ2 = 0, Σ2 = σ2
0V

−1, µ1 =
√
T (γ̂(τ)− γ̂LS), and Σ1 = −A−1

γ (τ) = plim σ̂2(τ)V̂ −1
T (τ) where
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V̂T (τ) = 1
T
χ′
τχτ . Note that from the proof of Theorem 2 in A.3, we know that µ1 = op(1) for

|τ − τ0| < M
T
.

For |τ − τ0| < M
T
,

Σ1 − Σ2 = −A−1
γ (τ)−QT (τ)V̂

−1
T (τ)︸ ︷︷ ︸

=op(1)

+ (QT (τ)−QT (τ0))︸ ︷︷ ︸
=op(1)

V̂ −1
T (τ)

+QT (τ0)
(
V̂ −1
T (τ)− V̂ −1

T (τ0)
)

︸ ︷︷ ︸
=op(1)

+
(
QT (τ0)− σ2

0

)︸ ︷︷ ︸
=Op(T−1/2)

V̂ −1
T (τ0)

+ σ2
0

(
V̂ −1
T (τ0)− V −1

)
︸ ︷︷ ︸

=op(1)

+op(1) = op(1),

which implies

Σ−1
2 − Σ−1

1 = op(1).

The rest of the proof can be done similarly as in the proof of Theorem 2 in A.3 by applying the

bound (A.7).
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B Proof of Propositions

B.1 Proof of Proposition 1

Proposition 1. Suppose Assumption 1 holds. Then, with the normal likelihood and the conjugate

prior described above, under Pθ0,τ0, for all τ ,

1

T
log

(
LT (τ)

LT (τ0)

)
=

1

2
log

(
ST (τ0)

ST (τ)

)
+Op(T

−1).

Proof of Proposition 1. From (9), we have

1

T
log

(
LT (τ)

LT (τ0)

)
=

1

2T
log

[
det
(
H̄τ0

)
det
(
H̄τ

) ]+ ā

T
log

[
b̄τ0
b̄τ

]
+

1

T
log

(
π(τ)

π(τ0)

)
.

Assumption 1 implies that each component of (1/T )χ′
τχτ converges in probability to a constant

matrix. By continuity of determinant, the determinant converges to the determinant of the limiting

matrix. As a result, the quantity inside of log in the first term is Op(1) and hence the first term is

Op(T
−1). By the choice of the prior, the ratio π(τ)/π(τ0) is bounded, so the last term is O(T−1).

Note that

(1/T )b̄τ = (1/T )b+
1

2T

[
µ′Hµ+ Y ′Y − µ̄′

τH̄τ µ̄τ

]
=

1

2T

[
Y ′Y − (χ′

τY )′(χ′
τχτ )

−1(χ′
τY )

]
+Op(T

−1)

=
1

2T
ST (τ) +Op(T

−1).

Hence, we conclude that

1

T
log

(
LT (τ)

LT (τ0)

)
=

1

2
log

(
ST (τ0)

ST (τ)

)
+Op(T

−1).

B.2 Proof of Proposition 2

Proposition 2. Suppose Assumption 1 holds. Then, under Pθ0,τ0, for all τ ,

QT (τ) = Q(τ) +Op(T
−1/2),
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where

Q(τ) = σ2
0 +

(τ0 − τ) (1−τ0)
(1−τ)

δ′0R
′ΣXRδ0, if τ ≤ τ0

(τ − τ0)
τ0
τ
δ′0R

′ΣXRδ0, if τ > τ0
≡ σ2

0 +∆(τ).

Proof of Proposition 2. Let τ ∈ (0, 1) be given. Let M = I−X(X ′X)−1X ′. We have the following

identity: ST (τ) = S̄T−VT (τ) (Amemiya, 1985; Bai, 1997), where S̄T is the sum of squared residuals

from regressing Y on X alone and VT (τ) = δ̂′(τ)(Z ′
2τMZ2τ )δ̂(τ). By Frisch-Waugh Theorem, the

OLS estimate of δ in Eq. (4) is equivalent to that in the model MY = MZ2τδ + Mϵ. Note the

true model is MY = MZ2τ0δ0 +Mϵ. Hence,

δ̂(τ) = (Z ′
2τMZ2τ )

−1Z ′
2τMY

= (Z ′
2τMZ2τ )

−1Z ′
2τ {MZ2τ0δ0 +Mϵ}

= (Z ′
2τMZ2τ )

−1Z ′
2τMZ2τ0δ0 + (Z ′

2τMZ2τ )
−1Z ′

2τMϵ.

We have

VT (τ) = δ′0(Z
′
2τMZ2τ0)

′(Z ′
2τMZ2τ )

−1(Z ′
2τMZ2τ0)δ0

+ 2δ′0(Z
′
2τMZ2τ0)

′(Z ′
2τMZ2τ )

−1(Z ′
2τMϵ)

+ (Z ′
2τMϵ)′(Z ′

2τMZ2τ )
−1(Z ′

2τMϵ).

By Assumption 1 (i),(ii), and (iv),

1

T
VT (τ) =

1

T
δ′0(Z

′
2τMZ2τ0)

′(Z ′
2τMZ2τ )

−1(Z ′
2τMZ2τ0)δ0 +Op(T

−1/2).

Also we have

S̄T = Y ′MY = δ′0Z
′
2τ0

MZ2τ0δ0 + 2δ0Z2τ0M + ϵ′Mϵ,

which implies

1

T
S̄T =

1

T
δ′0Z

′
2τ0

MZ2τ0δ0 + σ2
0 +Op(T

−1/2).

By the above identity, QT (τ) =
1
T
S̄T − 1

T
VT (τ) equals to

σ2
0 +

1

T
δ′0

{
(Z ′

2τ0
MZ2τ0)− (Z ′

2τMZ2τ0)
′(Z ′

2τMZ2τ )
−1(Z ′

2τMZ2τ0)

}
δ0 +Op(T

−1/2).
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Note that

(Z ′
2τ0

MZ2τ0) = Z ′
2τ0

Z2τ0 − Z ′
2τ0

X(XX ′)−1X ′Z2τ0

= R′X ′
2τ0

X2τ0R−R′(X ′
2τ0

X)(XX ′)−1(X ′X2τ0)R

= R′X ′
2τ0

X2τ0R−R′(X ′
2τ0

X2τ0)(XX ′)−1(X ′
2τ0

X2τ0)R.

By Assumption 1 (iii) and (iv),

1

T
(Z ′

2τ0
MZ2τ0) = (1− τ0)R

′ΣXR− (1− τ0)
2R′ΣXR +Op(T

−1/2)

= τ0(1− τ0)R
′ΣXR +Op(T

−1/2).

Similarly,

1

T
(Z ′

2τMZ2τ ) = τ(1− τ)R′ΣXR +Op(T
−1/2).

WLOG, suppose τ < τ0. Then

(Z ′
2τMZ2τ0) = Z ′

2τZ2τ0 − Z ′
2τX(XX ′)−1X ′Z2τ0

= R′X ′
2τX2τ0R−R′(X ′

2τX)(XX ′)−1(X ′X2τ0)R

= R′X ′
2τ0

X2τ0R−R′(X ′
2τX2τ )(XX ′)−1(X ′

2τ0
X2τ0)R,

which implies that

1

T
(Z ′

2τMZ2τ0) = (1− τ0)R
′ΣXR− (1− τ)(1− τ0)R

′ΣXR +Op(T
−1/2)

= τ(1− τ0)R
′ΣXR +Op(T

−1/2).

Therefore,

1

T
(Z ′

2τMZ2τ0)
′(Z ′

2τMZ2τ )
−1(Z ′

2τMZ2τ0) =
τ(1− τ0)

2

1− τ
R′ΣXR +Op(T

−1/2).

Finally, T−1
{
(Z ′

2τ0
MZ2τ0)− (Z ′

2τMZ2τ0)
′(Z ′

2τMZ2τ )
−1(Z ′

2τMZ2τ0)
}
equals to[

τ0(1− τ0)−
τ(1− τ0)

2

1− τ

]
R′ΣXR +Op(T

−1/2) = (τ0 − τ)
1− τ0
1− τ

R′ΣXR +Op(T
−1/2).
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B.3 Proof of Proposition 3

Proposition 3. A(τ) attains its unique maximum at τ0

Proof of Proposition 3. By definition, Q(τ0) = σ2
0. Note that δ′0R

′ΣXRδ0 > 0. This is because (1)

R has full column rank, (2) δ0 ̸= 0, and (3) ΣX is assumed to be positive definite. Hence, Q(τ) > σ2
0

∀τ ̸= τ0. Recall that A(τ) = g(Q(τ)) where g(x) = −1
2
log(x). Hence A(τ) = −1

2
log(σ2

0) if τ = τ0

and A(τ) < −1
2
log(σ2

0) otherwise.

B.4 Proof of Proposition 4

Proposition 4. Suppose Assumption 1 holds. Then, under ∀η > 0, ∀ϵ > 0, ∃M > 0 and k > 0

such that T ≥ k =⇒

Pθ0,τ0

(
inf

τ∈Bc
M/T

(τ0)

| {AT (τ)− AT (τ0)} − {A(τ)− A(τ0)} |
|τ − τ0|

< η

)
> 1− ϵ.

Proof of Proposition 4. Recall thatAT (τ) = g(QT (τ)) andA(τ) = g(Q(τ)) where g(x) = −1
2
log(x).

By Taylor approximation, there is c between x and a:

g(x)− g(a) = g′(a)(x− a) +
1

2
g′′(c)(x− a)2.

Hence, for each τ ∈ Bc
M/T (τ0), there is cT between QT (τ) and Q(τ):

g (QT (τ))− g (Q(τ)) = g′ (Q(τ))
(
QT (τ)−Q(τ)

)
+

1

2
g′′ (cT )

(
QT (τ)−Q(τ)

)2
= g′ (Q(τ))Op(T

−1/2) +Op(T
−1),

where we used Proposition 2. Similarly, there is c0T between QT (τ0) and Q(τ0):

g (QT (τ0))− g (Q(τ0)) = g′ (Q(τ0))Op(T
−1/2) +Op(T

−1).

Note that g′′ (cT ) =
1

2c2T
and g′′ (c0T ) =

1
2c20T

are bounded with probability tending to one because

for each τ , QT (τ)
p→ Q(τ), and Q(τ) is bounded.
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Now,

{AT (τ)− AT (τ0)} − {A(τ)− A(τ0)} = {AT (τ)− A(τ)} − {AT (τ0)− A(τ0)}

=

{
g(QT (τ))− g(Q(τ))

}
−
{
g(QT (τ0))− g(Q(τ0))

}
=

(
g′ (Q(τ))− g′ (Q(τ0))

)
Op(T

−1/2) +Op(T
−1)

=

[
− 1

2(σ2
0 +∆(τ))

−
(
− 1

2(σ2
0 +∆(τ0))

)]
Op(T

−1/2) +Op(T
−1)

=
1

2

[
1

σ2
0

− 1

σ2
0 +∆(τ)

]
Op(T

−1/2) +Op(T
−1).

In general, there is B > 0 such that 1/b− 1/(b+ x) ≤ Bx for b, x > 0. Hence, 1/σ2
0 − 1/(σ2

0 +

∆(τ)) ≤ B∆(τ) ≤ B′|τ − τ0| where the last inequality holds for some B′ > 0 due to the shape of

Q(τ).

Finally,

| {AT (τ)− AT (τ0)} − {A(τ)− A(τ0)} |
|τ − τ0|

≤B′Op(T
−1/2) +

1

|τ − τ0|
Op(T

−1) ≤ Op(T
−1/2) +

1

M
Op(1),

for |τ − τ0| > M/T . The desired result is established by taking M large enough.

C Derivation of posterior distributions under the normal

likelihood and the conjugate prior

In this section, we derive posterior distributions under the normal likelihood and the conjugate

prior. We have

p(θ, τ |DT ) ∝ p(YT |XT , θ, τ)π(θ, τ)

∝
(

1

σ2

)T/2

exp

[
− 1

2σ2

{
T∑
t=1

(
yt − χ′

τ,tγ
)2}]

π(τ)

×
(

1

σ2

)a+p/2−1

exp

[
− 1

σ2

{
b+

1

2

(
γ − µ

)′
H
(
γ − µ

)}]
∝
(

1

σ2

)a+(p+T )/2−1

exp

[
− 1

σ2

{
b̄τ +

1

2
(γ − µ̄τ )

′ H̄τ (γ − µ̄τ )

}]
π(τ), (C.1)
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where p = dx + dz. From above, we can deduce that

γ|σ2τ,DT ∼ Np

(
µ̄τ , σ

2H̄−1
τ

)
, and

σ2|τ,DT ∼ InvGamma
(
ā, b̄τ

)
.

Integrating the right hand side of (C.1) with respect to γ, we obtain(
1

σ2

)a+T/2−1

exp

[
− 1

σ2
b̄τ

] [
det
(
H̄τ

)]−0.5
π(τ).

Integrating the above with respect to σ2 over the positive part of the real line and using the change

of variable ϕ = 1/σ2, we get the marginal posterior for τ

π(τ |DT ) ∝
[
det
(
H̄τ

)]−0.5
b̄−ā
τ π(τ),

Finally, we apply the well-known property that the integral of a normal-inverse-gamma distribution

with respect to σ2 is a t-distribution to (C.1) to conclude that

γ
∣∣τ,DT ∼ tp

(
2ā, µ̄τ , (b̄τ/ā)H̄

−1
τ

)
.
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