

ACADEMIC PACK

PART 3: THINKING LIKE A PHYSICIST: TEACHERS PACK Dr Peter H. Sneddon, School of Physics & Astronomy, University of Glasgow

2.1 How many beads?

The two best ways to estimate the number of beads is by volume or by mass.

You'll need measuring scales, rulers and XXX

By volume:

- Jar is a cylinder, diameter 42.0 mm and height 113 mm. This gives a jar volume of 1.57 x10⁵ mm³.
- Beads are cylinders of diameter 4.5 mm and height 4.5 mm, giving a volume of 7.16 x 10¹ mm³.
- So the number of marbles estimated this way is ...

$$Number_{By \ volume} = \frac{1.57 \times 10^5}{7.16 \times 10^1} = 2.19 \times 10^3$$

So, thousands of beads.

By mass:

- Mass of full jar = 161 g
- Mass of empty jar = 127 g
- So, mass of all beads = 34 g

- Mass of 1 bead (using electronic scales) = too small to measure
- We've given you a small quantity of loose beads depending on the scales you have they may be enough to give you a mass for each bead. Alternatively, you can take some out of the jar, though be warned – I have learned from bitter experience that THEY GO EVERYWHERE!
- As an example, though, Mass of 100 beads = 4 g, so take mass of 1 bead to be 4 x 10⁻² g
- So, the number of beads estimated this way is ...

$$Number_{By\,mass} = \frac{34}{0.04} = 850$$

• So, here we get hundreds of beads, though we are getting close to thousands again.

By counting:

- A manual count of one of the jars found it to contain 789.
- Mass-based estimation gives a closer result, though in terms of the nearest order of magnitude (1000s) they are in agreement, and that's what is key for these estimations.
- The mass probably works better than volume, as the beads are not in the optimum packing configuration, so there is a lot of wasted volume. Whilst the beads are not solid cylinders, the fraction of their "body" that is empty is relatively low.

2.2 Glasgow University Estimation Skills Survey – GUESS

For each question I have provided what I believe to be the correct answer, along with an explanation of the logic of how I arrived at that answer. Understanding the logic is possibly more important that the answer, as learning to approach this sort of question logically can take a lot of the anxiety of tackling any question, whether it's a research question, or an exam question.

1. What is the temperature of a freshly made cup of tea?

A. 40 °C

B. 55 °C

C. 85 °C

D. 100 °C

E. 110 °C

ANSWER: C

The key here is ruling out the impossible:

- A and B unlikely "Freshly" made means its just made, and it is unlikely a cuppa would cool down so much so fast your own experience helps here.
- Real kettles cut out at boiling point of water, so E unlikely.
- The moment the kettle cuts out, the temperature of the water will start dropping. So D is unlikely.

3. Estimate the area inside the shape formed by points 1, 2, 3 and 4 given the following coordinates:

5. What is the volume of a standard city bus?

- A. 30 m³
- $B. 70 m^{3}$
- C. 100 m³
- D. 150 m³
- E. 200 m³
- ANSWER: B
 - Roughly cuboid, with a square cross section.
 - Height/width around 2.5 m compare to size of person or width of road lane.
 - Estimate length around 10 m
 - Gives volume of ~2.5 x 2.5 x 10 ~ 62.5 m³

9. Estimate the surface area of the UK.

A. 2 × 10^{3} km B. 2 × 10^{4} km C. 2 × 10^{5} km D. 2 × 10^{6} km E. 2 × 10^{7} km

ANSWER: C

- Make use of the scale
- Decide on an approximate shape rectangle or triangle – and then estimate sides. (Really shape is somewhere in between, so the area will fall between the values for each.)
- Whichever shape you take, the "x" and "y" will be the same
- Only difference in the area will be a factor of 2, which doesn't matter given the available answers
- Dimensions: ~ 400 kms by ~ 800 kms gives 1.6 x 10⁵ km² or 3.2 x 10⁵ km²

11. The picture shows a battleship in water firing two test shots. Gun A fires, then Gun B. The snapshot was taken 0.01 s after Gun B was fired. Estimate the time interval between the firing of Gun A and Gun B on the battleship.

A. 0.1 s B. 0.01 s C. 0.02 s D. 0.001 s E. 0.005 s ANSWER: B

- The radius of the shockwave from Gun A is roughly twice that of Gun B, suggesting the time since it was fired is twice that since Gun B was.
- 20 meters

Gun B

Gun A

Interval is then the same as the time after Gun B fired.

13. What is the approximate height of the Hotel Vancouver? A. 50 m B. 100 m C. 130 m D. 160 m E. 200 m ANSWER: B Estimate the *average* height of a floor in the hotel. EE 壨 Lower floors look bigger than a EE "normal" floor Tall roof space Estimate the number of floors ~24 floors with average height of ~4 metres gives ~ 100 m

15. What is the thickness of a single sheet of standard photocopy paper?

A. 0.1 mm

- B. 0.01 mm
- C. 0.001 mm
- D. 0.005 mm
- E. 0.00025 mm

ANSWER: A

- Measure something bigger and divide down A ream (500 sheets) is 4.5 cm •
 - Gives $\sim 1 \times 10^{-4} \text{ m} = 0.1 \text{ mm}$

17. How much time does it take to drive from Glasgow to London on the motorway network? (Assume NO stopping, and no roadworks!)

- A. 3 hours
- B. 7 hours
- C. 10 hours
- D. 15 hours
- E. 20 hours

ANSWER: B

- Start with scale to approximate distance
 ~600 km = 375 miles
- Max legal limit on motorway = 70 mph
- Gives time of ~5 hours; since can't always drive at 70 mph, 7 hours a better estimate

19. What is the pressure, approximately, inside a typical party balloon?

- A. 0.7 atm B. 3.0 atm C. 1.0 atm D. 1.1 atm E. 10 atm ANSWER: D
 - The key here is ruling out the impossible:
 - Balloon would likely pop if B or E were the answer.
 - If A was the answer, balloon would appear wrinkled.
 - C and D the only reasonable answer; since it takes effort to inflate, likely pressure will be a bit greater than atmospheric.

The "how many teachers" one we'll tackle at the "Thinking Like a Physicist" presentation.