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This paper explores how heterogeneity in life expectancy, objective (statistical) as
well as subjective, affects savings behavior between healthy and unhealthy people.
Using data from the Health and Retirement Study, we show that people in poor
health not only have shorter actual lifespan, but are also more pessimistic about
their remaining time of life. Using a standard overlapping-generations model, we
show that differences in life expectancy can explain one third of the differences in
accumulated wealth with an important part driven by pessimism among unhealthy
people.
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1 Introduction

The determinants of the wealth distribution are of fundamental interest to economists.
Standard consumption/savings theory predicts that people who place a larger weight
on future states will be wealthier than people who are more impatient, all else equal.
This paper explores one reason to put a higher weight on the future, namely higher
survival probability, or, put differently, higher perceived probability to still be alive and
thus experience the future states of the world.
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The difference in life expectancy in the population is large. Using data from the Health
and Retirement Study, we show that an average 70-year-old American nonblack man in
excellent health has a 75% chance of reaching his 80th birthday, while the corresponding
probability for a nonblack man in poor health is below 40%. According to standard
economic theory, the healthy man should save more for the future, given the higher
probability of living a longer life. A strong positive correlation between life expectancy
and wealth is well established empirically, but the causality and strength of different
potential channels are less clear (see, e.g., Deaton 2002 and the references therein). Recent
empirical work using plausibly exogenous variation in the timing of diagnosis of serious
illness suggests a causal link from lower life expectancy to a decrease in savings and
increase in consumption, potentially in the form of giving gifts (intervivo transfers) to
children (Fernström 2019; Kvaerner 2020).

However, an individual’s consumption/savings decision is not necessarily guided by the
objective statistical life expectancy, but rather the individual’s beliefs about survival. The
first contribution of this paper is to document new facts about a within-cohort steepness
bias in survival beliefs: people overestimate the health gradient of survival. It has
previously been shown (e.g., Elder 2013, Ludwig and Zimper 2013, Heimer, Myrseth,
and Schoenle 2019) that there is a systematic flatness bias over age: younger people tend
to underestimate their survival probabilities, while older people are overly optimistic
about their chances of a long life. We show that within a cohort, individuals in bad
health not only have a shorter expected life span but are also relatively more pessimistic
about their survival chances, while individuals in good health and thus with higher
survival probability are more optimistic. This systematic bias exacerbates the survival
expectancy heterogeneity in the population.

The differences in beliefs about survival translate into time preference heterogeneity
in the population. Our second contribution is to quantify this heterogeneity and its
implications for savings and wealth accumulation in an overlapping-generations model.
With a stochastic health and survival process the effective discount rate (determined by
the common discount factor β and the individual survival probability) varies depending
on age and health and depends on the horizon. Over a one-year horizon, the effective
discount rate for 50-year-olds varies between 2.0% (for an individual in best health) to
more than 20% (for an individual in worst health). At longer horizons, the geometric
averages of the expected discount rate becomes more similar for the two agents, but the
difference is still 7.4 percentage points on a 10-year horizon. For 70-year-olds in worst
vs. best health state, the difference at the 10-year horizon is more than 10 percentage
points. This resulting time preference heterogeneity is in line with the magnitude of
dispersion (Calvet et al. 2021) and the age gradient (Kureishi et al. 2021) of the time
preference distribution found in other empirical studies.

To gauge the quantitative effect of survival heterogeneity and the implied time preference
heterogeneity on savings behavior and wealth accumulation, we use an overlapping-
generations general-equilibrium model with uninsurable idiosyncratic shocks. Agents
face heterogeneous survival risk that depends on their age and current health state,
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and are subject to health shocks that follow a process estimated from data. Besides
this uncertainty, we also include standard persistent and transitory shocks to labor
productivity, and after agents reach a fixed retirement age, they are entitled to retirement
benefits mimicking the U.S. social security system. We purposely use an otherwise
standard off-the-shelf model of consumption/savings to establish a benchmark and
focus on the survival heterogeneity savings channel in isolation.

We compare three scenarios, varying the model environment according to how agents
form expectations about survival. The first scenario serves as our baseline: this is
the standard model where all agents face the same survival risk and thus have the
same effective discount factor, conditional on age. In the second scenario, people
are perfectly informed about their true survival probability conditional on health and
age. In the third scenario, agents believe and act according to their subjective survival
beliefs.

The model simulations show that the survival expectation channel is important for
understanding wealth accumulation. Not surprisingly, agents in bad health and thus
with a shorter expected life span save less than their healthy counterparts, and the
differences in savings rates are large. For example, for 60-year-olds in the poorest wealth
decile, the total savings rates of an agent in the best and an agent in the worst health
state differ by 14 percentage points when they are equipped with correct objective beliefs
about survival. When we let them act according to the estimated subjective beliefs
instead, the difference grows to almost 30 percentage points.

The differences in savings behavior give rise to large differences in accumulated wealth.
In our model simulation with subjective beliefs about survival, the average 65- to 69-
year-old in the best health state has 51% more wealth than the average agent in the worst
health state in the same age group. This is approximately one third of the difference we
see in the data comparing the net asset holdings between individuals in the best and
worst health states at this age.

Despite large differences in savings rates and large within-cohort effects on wealth
accumulation, the wealth Gini is virtually unaffected by the inclusion of survival hetero-
geneity in the model. The reason is that the savings behavior of the richest individuals in
the model economy, healthy agents in their early 60s, is hardly affected. The main effect
in this age group is that unhealthy individuals save less. Therefore, the effect of hetero-
geneity in survival on the main driver of the Gini coefficient, namely the savings behavior
of the top wealthiest individuals in the economy, is negligible.

Finally, we evaluate the welfare loss of biased beliefs. We examine the magnitude of the
consumption equivalent loss for a rational expectation individual who is forced to use
the consumption policy functions of an individual who optimized under the subjective
(erroneous) beliefs. The resulting consumption equivalent varies from approximately
zero to up to −11% for some subgroups, with the largest cost found among the very
old rich and healthy who are overly optimistic about their survival and therefore save
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“too much.” However, there are not many very rich old people in our simulated econ-
omy. Generally, the average cost of the belief bias is very small for young agents, but
approaching the age of 50 the cost increases, especially for agents in bad health who are
pessimistic about their survival chances and therefore save less than an individual with
objective beliefs. The average consumption equivalent loss among agents in their early
50s in the worst health state is 1.5%.

It is not evident if overly optimistic individuals would be better off learning about the
true probabilities. With a broader concept of welfare, taking into account the anticipation
utility from the belief about a long life (as suggested by Brunnermeier and Parker 2005),
the overly optimistic individuals might very well be better off with their erroneous
beliefs. From this perspective, the 50-year-olds in bad health are particularly trouble-
some: their bias is unambiguously welfare reducing since it leads to both non-optimal
consumption/savings decisions and lower anticipation utility (the latter not being part
of our quantification).

This paper speaks to three broad strands of literature. The first is macroeconomic
studies pointing out the importance of heterogeneity in time preferences to explain
wealth inequality (e.g., Krusell and Smith Jr. 1998, Hendricks 2007, Quadrini and Rı́os-
Rull 2015, Krueger, Mitman, and Perri 2016) and studies documenting time preference
heterogeneity in the population (Epper et al. 2020; Calvet et al. 2021). Compared to these
studies, we are concerned about time preference heterogeneity that is micro-founded by
differences in life expectancy.

The second is the literature about the general impact of health (including life expectancy)
on wealth (Smith 1999; Lee and Kim 2008; Coile and Milligan 2009; De Nardi, French, and
Jones 2009; Kopecky and Koreshkova 2014; Capatina 2015; De Nardi, Pashchenko, and
Porapakkarm 2017; Poterba, Venti, and Wise 2017; Margaris and Wallenius 2020 to name
a few). These studies incorporate multiple links between health and economic outcomes,
while we restrict ourselves to a very specific channel, namely survival heterogeneity.
We argue that this channel is interesting in itself, and that it is necessary to understand
it fully in order to include it in the broader assessment of the health-wealth gradient
(we briefly discuss the challenge of combining a standard formulation of warm-glow
bequest motive and survival shocks in section 5.5). In contrast to this strand, we include
heterogeneity in subjective life expectancy and its impact on savings/consumption
behavior.

The third is the literature concerned with subjective survival expectations (Hamermesh
1985; Smith, Taylor, and Sloan 2001; Hurd and McGarry 2002; Ludwig and Zimper
2013; Elder 2013; Gan et al. 2015; Groneck, Ludwig, and Zimper 2016; Heimer, Myrseth,
and Schoenle 2019). Many studies have documented the existence of an age bias in
subjective life expectancies, and a few of the papers within this group are concerned
with the implications for the consumption/savings behavior. Some (Gan, Hurd, and
McFadden 2007; Bissonnette, Hurd, and Michaud 2017; Grevenbrock et al. 2021) predict
individual survival probabilities and compare with elicited beliefs, but none of these
look at the implications for within-cohort savings behavior in a structural model with
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beliefs change in the event of health shocks, or analyze the implications for wealth
inequality.

In the next section, we describe how we estimate the health and death process and give
details about the systematic bias in survival expectations. Section three describes the
model we use to quantify the importance of the heterogeneity in survival expectations.
After that, we discuss the parametrization and then we present our results. The last
section concludes.

2 Empirical evidence

2.1 Data

We use the Health and Retirement Study (HRS), a representative panel of elderly U.S.
households, to investigate the evolution of health and longevity in the later stages of
life. The survey includes questions about self-reported health and expectations about
survival, and records the date of death, if applicable.

Our analysis is based on the survey years 1992–2014 taken from the HRS data compiled
by RAND, version 2018 (V1) (Health and Retirement Study (2018)).1,2 The first cohort
included in the survey was between 51 and 61 years old in 1992, and thereafter new
(older and younger) cohorts have been included. Many of the respondents died over the
sample period, making it an ideal data set for studying survival.

2.2 The health-wealth gradient

The HRS asks participants to assess their health using one of the five categories excellent,
very good, good, fair, or poor. Figure 1 shows net total wealth over the life cycle by
self-reported health state.3 The health–wealth gradient is well documented, but the
underlying causal relationship is debated (Attanasio and Hoynes 2000; Deaton 2002;
Duncan et al. 2002; Attanasio and Emmerson 2003; Hajat et al. 2010). One line of

1Up until RAND version O (covering waves until 2012), the survey was complemented with death dates
taken directly from the National Death Index (NDI), but this data was later removed from the public files.
Our analysis of death dates in the releases following version O shows that without the NDI data, death
dates are sometimes recorded with considerable lag. Using the RAND 2018 (V1) files, but restricting
the sample only up to the year 2012, produces almost identical results to the ones obtained with the
original version O data that included the NDI death dates. However, for later years we suspect that
not all death dates have been recorded yet, which we believe gives rise to the non-response patterns
documented in section A.1. Based on these non-response patterns, we decided to only include waves up
to and including the year 2014.

2The HRS (Health and Retirement Study) is sponsored by the National Institute on Aging (grant number
NIA U01AG009740) and is conducted by the University of Michigan.

3Net total wealth is defined as sum of housing, other real estate, vehicles, businesses, IRA and Keogh
accounts, stocks, checkings, and all other savings, net of mortgages and other debts.
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Figure 1: Average net total household wealth by self-reported health state (men). Pooled sample
from HRS 1992–2014. Assets are adjusted for inflation, outliers, business cycles and
growth and cohort effects. Error bars indicate 95% confidence intervals based on
clustered standard errors (clusters are HRS PSUs).

argument is that low economic status leads to poor health. There could be many reasons:
poor people have access to less or lower quality medical care, do not invest enough in
preventive health measures, and/or have more health-deteriorating habits. However,
there are also many arguments for the reversed causality: poor health has economic
consequences in itself. First, poor health may restrict the individual’s earnings potential
by making it more costly to work and/or by lowering the wage. Second, poor health
may lead to large medical expenditures. Third, poor health may lower the savings
incentives due to a lower survival expectancy. This last channel is the focus of this
paper.

There are a number of empirical studies that corroborate the existence of the life ex-
pectancy/savings channel and suggest a causal link. For instance, Heimer, Myrseth,
and Schoenle (2019) demonstrate that greater survival optimism correlates with higher
savings rates, not only controlling for standard demographic characteristics such ed-
ucation, marital status, and income, but also characteristics such as financial literacy
and risk tolerance. Hurd, Smith, and Zissimopoulos (2004) show that individuals
with very low subjective survival probabilities retire and claim social security benefits
earlier.

Two recent empirical studies suggest a causal life expectancy link using the plausibly
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exogenous timing of the bad news. Kvaerner (2020) shows that news about a bad health
shock increases the probability of an immediate intervivo transfer while Fernström
(2019) finds that annual savings fall by 5 percent in response to a one standard deviation
fall in survival probability.

2.3 Objective health and survival probabilities

In this paper, we examine the effect of heterogeneity in survival expectancy on savings
behavior and its implications for wealth inequality through the lens of a structural model.
Therefore, we need to formulate heterogeneity in survival expectations, both objective
and subjective, in a way that can be used in a such a model.

For our quantitative model, we need a yearly Markov process for health transitions and
survival as a function of the model’s state variables. We estimate this Markov process as
described in Foltyn and Olsson (2019). Conceptually, the method is a straightforward
maximum likelihood estimator, where the probability of observing the transitions in the
data is maximized.

To put structure on the Markov process, we follow Pijoan-Mas and Rı́os-Rull (2014) and
use a nested logit model, where survival and health transitions conditional on survival
are modeled as functions of the current health state and age. The probability of survival
follows the usual binary-outcome logit model while, conditional on survival, health
transitions are modeled using multinomial logit. For example, the one-period-ahead
probability of survival is given by

ps
t+1 =

1
1 + e−g(ht,xt|γ)

(1)

where g(•) is a function of the current health state ht and a vector xt which contains any
other variable of interest, in particular age, gender and race. Survival probabilities are
governed by the parameter vector γ to be estimated. Transition probabilities for health
conditional on survival are defined in an analogous manner.4

Estimation sample. We exclude all observations with missing age, race, gender or self-
reported health, and those where we only have a single observation for the individual
(since then we do not have any transition probability to estimate). We only consider
individuals aged 50 or older.5 Further, we restrict the sample to maximum age 99 at
transition start (even though individuals can be older when we observe them in the
end of a transition). We estimate the health and objective (statistical) survival process

4In Foltyn and Olsson (2019), we provide details about the estimation and also perform an extensive
evaluation of the results. The estimated Markov process is shown to predict actual mortality very well,
both short- and long-term.

5Each incoming HRS cohort is aged 51–56, but the survey contains younger individuals who are spouses
of age-eligible respondents.
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All Non-black Black

Male Female Male Female

N. of indiv. 34,194 12,744 15,459 2,423 3,568
N. obs. 219,647 81,314 103,904 13,269 21,160
Avg. obs./indiv. 6.4 6.4 6.7 5.5 5.9

Age Min. 50.0 50.0 50.0 50.0 50.0
Mean 66.7 65.9 67.6 64.6 66.0
Max. 101.0 101.0 101.0 101.0 101.0

Table 1: Descriptive statistics for sample used to estimate objective health and survival transi-
tions. Mean age is weighted using HRS sample weights.

separately for the subsamples of men/women and the nonblack/black population, since
it is well known that the life expectancies for these subgroups follow very different
trajectories. Table 1 shows the number of individuals and number of observations by
subgroup.

Results. From these estimates, we construct a first-order Markov process defined on
five health states and the absorbing state of death which governs the objective health and
survival probabilities. This process can be used to calculate objective life expectancies
conditional on age, health, race, and gender.

Figure 2 illustrates the dynamics of this health and survival process: the figure shows
the evolution of probabilities of each health state and of being dead over a 30-year
forecast horizon for a given initial health and age for nonblack men. As can be seen,
the survival probabilities differ substantially depending on the initial health state: for a
70-year old in excellent health, the predicted probability of surviving an additional 10
years is approximately 75%, while the probability is just around 35% if instead starting
out in poor health.

2.4 Expectation errors in survival probabilities

In the expectations survey module of the HRS, respondents are asked about the proba-
bility they assign to certain events. One of these questions is about the probability of
surviving to a certain age, for example: “Using a number from 0 to 100, what do you
think are the chances that you will live to be at least 100 years?”6

The exact target age depends on the respondent’s age. For instance, in 1995, respon-
dents below the age of 70 were asked about the probability of living until the age
of 80, while respondents above the age of 85 were asked about the target age of 100.

6Before the respondent answers the questions about expectations, the interviewer discusses probabilities
and verifies that the respondent understands the concept.
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Figure 2: Predicted health and survival probabilities conditional on the initial health for nonblack
men. The x-axis indicates years after initial age (upper row 50, lower row 70 years).
The colors indicate probability per health state (dark green being the best health state,
red the worst). The white area represents the probability of being dead.

In later surveys, individuals were asked about survival beliefs for up to two target
ages.

Table 2 shows the number of individuals and observations (with an observation being
one elicited survival belief) by subgroup. The tabulated distribution of target ages shows
that the questions about survival to age 75 or 85 are the by far most common, hence we
focus on these two in the main text.

Using these elicited beliefs, we compare the average probability that individuals of a
certain age assign to survival until a given target age to the probability according to
official lifetables. The results are shown in Figure 3. As can be seen, there is a systematic
error along the age gradient: younger individuals on average tend to underestimate,
while older individuals tend to overestimate their survival probability as compared to
objective lifetable estimates.

This age-dependent error is a stylized fact in the literature on survival expectations (see,
e.g., Ludwig and Zimper (2013), Groneck, Ludwig, and Zimper (2016), and Heimer,
Myrseth, and Schoenle (2019) and the references therein). The pattern has been used
to, e.g., improve the fit of the asset profile of the canonical life-cycle model with the
data: due to underestimation early in life, young agents do not accumulate as much
assets, while overestimation in later years dampens the rate at which assets are decumu-
lated.
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All Non-black Black

Male Female Male Female

N. of indiv. 31,784 11,761 14,537 2,195 3,291
N. obs. 251,073 91,505 119,954 14,796 24,818
Avg. obs./indiv. 7.9 7.8 8.3 6.7 7.5

Forecast horizon (years) Min. 10.0 10.0 10.0 10.0 10.0
Mean 19.3 19.4 19.1 20.1 19.8
Max. 35.0 35.0 35.0 35.0 35.0

Target age distribution (in %) Age 75 37.1 37.6 36.2 40.9 39.5
Age 80 16.3 16.3 16.4 15.4 16.2
Age 85 35.1 35.6 34.4 37.1 36.1
Age 90 5.6 5.3 6.1 3.7 4.3
Age 95 3.9 3.5 4.5 2.0 2.6
Age 100 2.0 1.7 2.4 0.9 1.3

Table 2: Descriptive statistics for elicited subjective survival beliefs. Mean forecast horizon and
distribution over target ages are weighted using HRS sample weights.

Since our estimator conditions on health, gender and race, we can go one step further
and document survival belief differences along these dimensions. Figure 4 shows these
expectation errors among respondents who have answered the question about their
perceived probability of survival until target ages 75 and 85. The first observation is
the striking positive correlation between subjective self-reported survival probability
and the predicted (objective) survival probability, which means that subjective beliefs
are informative and not just random noise. This is in line with the consensus in the
literature, which finds that subjective beliefs are highly correlated with objective survival
probabilities and serve as predictors of mortality, and moreover that expectations are
updated in the event of health shocks (Smith, Taylor, and Sloan 2001; Hurd and McGarry
2002; Gan, Hurd, and McFadden 2007).

The second observation is the systematic steepness bias in beliefs over the health gradient.
As was shown in Figure 3, on average individuals underestimate their probability of
survival until the age of 75. Looking at Figure 4(a), and focusing on nonblack males, it is
clear that it is mainly individuals in bad health who are underestimating their survival
probability, while individuals in excellent health are on average reasonably close to their
objective survival probability.

Figure 4(b) shows expectation errors for target age 85. Again, individuals in bad health
are more pessimistic than those in good health, even though on average the expec-
tations are more positive for this target age. Figure 17 in the appendix section A.2
shows the corresponding graphs for target age 95, for which the average is a severe
over-optimism. The figure shows that for those higher ages individuals in bad health
have beliefs closer to their objective probability, while individuals in good or excel-
lent health are severely overestimating their survival probability and driving up the
average.
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and cohort fixed effects). The number next to the black line indicates target age. The
blue line shows (weighted) average expectation in the nonblack population. Shaded
areas indicate 95% confidence intervals based on clustered standard errors (clusters are
HRS PSUs).

Next, we impose some structure on the biased survival beliefs illustrated in these scatter
plots. To this end, we define survival bias as the elicited subjective survival belief minus
objective survival probability (thus pessimism is negative bias). For example, for some
target age T we define the bias as

∆T
igt ≡ pT

subj,igt − Pr ( alive at T | g, hit, t )

for individual i in demographic group g (male/nonblack, female/nonblack, male/black,
or female/black) when the individual is in health state hit.

We first quantify the bias observed over the lifecycle by estimating the regression

∆T
igt = β0g + β1g · ageit + β2g · age2

it + uit

for each horizon T separately, where we allow the coefficients of the age polynomial to
vary by race and gender. In Figure 5, we plot the predicted survival bias for each age
and gender/race group for the target ages 75 and 85,

∆̂T
gt = β̂0g + β̂1g · aget + β̂2g · age2

t T ∈ {75, 85}

As the figure shows, men and black individuals are on average more optimistic than
women and nonblack individuals. This confirms the findings by Bissonnette, Hurd, and
Michaud (2017).

In a second step, we disaggregate the bias by initial health. To this end, we estimate the
following regression separately for each demographic group,

∆T
ight = β0gh + β1gh · ageit + β2gh · age2

it + ε it
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Figure 4: Elicited beliefs about survival vs. estimated objective (statistical) survival probabilities.
Each bubble represents the average for a gender/race/age/health group. The x-axis
shows the model-predicted (objective) survival probability, the y-axis the average self-
reported survival probability for that group. The color of the bubble indicates health
state, with red being poor health and green being excellent health. The size indicates
the number of observations in each age/health cell. We exclude cells with less than 20
observations.
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where we interact the initial health state h with a quadratic polynomial in age. The
predicted values for this exercise for target ages 75 and 85 are shown in Figure 6:
individuals in bad health are generally more pessimistic than individuals in better
health. The pattern is more pronounced for the nonblack population, for which we have
more observations. Thus, Figure 6 confirms the steepness bias observed in the previous
analysis: people in bad health, and thus with lower life expectancy, are more pessimistic
about their survival probabilities than people in good health.

In a related paper, Grevenbrock et al. (2021) estimate survival based on several addi-
tional characteristics besides self-reported health, age, and gender, such as smoking and
drinking behavior and chronic diseases. Grouping individuals based on their estimated
objective survival probability, they find that individuals with low objective survival
probability are optimists, while individuals with high objective probability underesti-
mate their survival probabilities, in other words, the reverse pattern compared to what
we find. There are two reasons for why our results are not directly comparable. First,
they use a different estimation strategy for objective survival probabilities. Second, and
more important, the grouping of individuals is different. We group based on age, gender,
race, and self-reported health, which is the level of heterogeneity in our economic model
(and thus, for our particular purposes, the most appropriate one) and show that there is
an steepness bias along the health gradient within each subgroup.

More generally, the finding that individuals with high life expectancy are overly opti-
mistic are also in line with evidence about forecast errors in other domains. For example,
Rozsypal and Schlafmann (2017) document that people in the upper part of the income
distribution overestimate their future income growth while the opposite is true for lower
income households: they are too pessimistic and underestimate their future income
growth.

To summarize, we stress two observations: first, subjective beliefs are informative and
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Figure 6: Survival bias. Color indicates the health state: green is excellent while red is poor
health. Error bars indicate 95% confidence intervals based on clustered standard errors
(clusters are HRS PSUs).
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correlated with objective probabilities. Second, subjective beliefs are biased. Subjective
probabilities overestimate the health/survival gradient, with individuals in bad health
underestimating their survival probability relative to individuals in good health. Hence,
there is a systematic bias both along the age and health dimensions.

2.5 Estimation of the subjective life expectancy process

In this section, we use the health transitions estimated in Foltyn and Olsson (2019)
as a basis for estimating a different set of survival parameters that govern subjective
survival beliefs. We take as given the parameters controlling health-to-health transitions
conditional on survival since the HRS does not elicit any beliefs about future health
states.

We take an agnostic approach as in why the erroneous beliefs arise. In the litera-
ture, various mechanisms have been proposed, such as likelihood insensitivity com-
bined with Choquet expected utility maximization (Groneck, Ludwig, and Zimper
2016), overweighting the likelihood of rare events (Heimer, Myrseth, and Schoenle
2019), or age-dependent cognitive weakness and relative optimism (Grevenbrock et
al. 2021).

As explained above, the underlying data for this exercise takes the following form: HRS
respondents are asked at date t to state their beliefs about surviving to a certain target age
ā (for example 75 or 85), which we reinterpret as the probability of being alive in period T,
with T = t + (ā− at). Thus, an observation i is given by the tuple

(pi, hi, xi, Ti)

where hi denotes current health state, xi is a vector of covariates including age and pi
is the subjective survival belief. We treat multiple observations from one individual
independently: say a respondent ` is surveyed on survival beliefs to horizons T1 and T2

in calendar years t1 and t2. This gives rise to the data(
p`t1 , h`t1 , x`t1 , T1

`t1

)
(

p`t1 , h`t1 , x`t1 , T2
`t1

)
(

p`t2 , h`t2 , x`t2 , T1
`t2

)
(

p`t2 , h`t2 , x`t2 , T2
`t2

)
which we treat as four independent observations (except when bootstrapping confidence
intervals, which we cluster at the individual level).

Assume that the i-th individual forms T-year-ahead survival beliefs based on the
model

ps
it = φT

(
hit, xit, zit

)
(2)
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where φT is an unknown nonlinear function that maps (h, x, z) into [0, 1]. The respon-
dent’s belief is allowed to depend on a vector of additional covariates z that are either
unobserved or not included in our postulated model of survival.

In what follows, we partition the sample into groups indexed by g, such that each
unique combination of (h, x, T) forms a separate group. Denote by Γg all individual/year
observations that satisfy

Γg =
{
(i, t)

∣∣∣ hit = hg, xit = xg, Tit = Tg

}
i.e., all observations where the individuals are of the same age and have the same
covariates, are in the same health state, and state their beliefs about survival to the same
target age. Denote by ps

g the (weighted) sample average of reported survival beliefs
conditional on (hg, xg, Tg), i.e.,

ps
g =

∑(i,t)∈Γg
wit × φT

(
hg, xg, zit

)
∑(i,t)∈Γg

wit
(3)

with wit denoting sampling weights. Now consider the logit counterpart of (3), which
we denote by

p̂s
g = Pr

(
alive at Tg

∣∣∣ h = hg, xg, ν
)

i.e., the predicted probability of being alive for group g which is parametrized by the vec-
tor ν. The observed sample moment for each group can then be written as

ps
g = p̂s

g + ug

where ug is the deviation from the group mean not explained by our model. Our
aim is to minimize these group-specific residuals using the least-squares objective
function

J(ν) =
1

W

NG

∑
g=1

Wg

(
ps

g − p̂s (hg, xg, Tg
∣∣ ν
))2

(4)

where Wg = ∑(i,t)∈Γg
wit is the sum of weights in group g. The estimated vector ν̂ is

hence the arg min of J(ν).

Estimation sample. We use all target ages from Table 2 for the estimation of the sub-
jective life expectancy process. In the main paper, we present the results for nonblack
men, as these are later incorporated into our quantitative model.
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Figure 7: One-year survival probabilities by health state (model estimates). Shaded areas indicate
bootstrapped 95% confidence intervals. For each bootstrapped sample we re-estimate
the objective health process.

17



0.0 0.2 0.4 0.6 0.8 1.0
Model-predicted surv. prob.

0.0

0.2

0.4

0.6

0.8

1.0
Av

g.
 s

el
f-r

ep
or

te
d 

su
rv

. p
ro

b.

male/nonblack

(a) Target age 75

0.0 0.2 0.4 0.6 0.8 1.0
Model-predicted surv. prob.

0.0

0.2

0.4

0.6

0.8

1.0

Av
g.

 s
el

f-r
ep

or
te

d 
su

rv
. p

ro
b.

male/nonblack

(b) Target age 85

0.0 0.2 0.4 0.6 0.8 1.0
Model-predicted surv. prob.

0.0

0.2

0.4

0.6

0.8

1.0

Av
g.

 s
el

f-r
ep

or
te

d 
su

rv
. p

ro
b.

male/nonblack

(c) Target age 95

Figure 8: Elicited beliefs about survival vs. estimated subjective survival probabilities. Each
bubble represents the average for an age/health group. The x-axis shows predicted
survival probability according to the subjective model and the y-axis the average self-
reported survival probability for that group. The color of each bubble indicates health
state, with red being poor health and green being excellent health.
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Figure 9: Life expectancy by age and health for nonblack men. Color indicates the health state:
green is excellent while red is poor health. On the left, the black line indicates the
weighted population average.
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Results. The estimated subjective survival beliefs for nonblack men are shown in Fig-
ure 7 on the right, juxtaposing the objective survival probabilities estimated in Foltyn
and Olsson (2019) on the left. As can be seen, the subjective belief about survival while in
health state excellent or very good is almost 100% for all ages. This does not mean that in-
dividuals in those health states believe that they will live forever, rather that they believe
that death is necessarily preceded by a deterioration in health.

In Figure 8, we plot the model-predicted subjective survival against elicited beliefs. As
can be seen, the estimated model for subjective beliefs captures the main picture, since
the dots, each representing an age/health/target-age group, line up closely along the
45-degree line.

Figure 9 summarizes the results, showing the life expectancy by age and health state
using the objective and the subjective survival process. At all ages, the difference in life
expectancy between the best and the worst health state is larger when using subjective
life expectancies. The divergence between objective and subjective life expectancies is
particularly large for individuals in bad health states, who substantially underestimate
survival at younger ages. Conversely, individuals in all health states overestimate their
chances of survival late in life.

3 Model

In this section, we describe the overlapping-generations model we use to quantify
the implications of survival heterogeneity. Time is discrete and every time period is
assumed to be one year. Agents derive utility from consumption and face three types of
idiosyncratic risks: shocks to persistent productivity, transitory productivity shocks and
shocks to health and survival. Agents can only save in a riskless bond, and they face an
exogenous borrowing constraint.

3.1 The agent’s problem

There is a unit mass of individuals distributed across Nt cohorts according to the er-
godic distribution implied by the transition matrix of survival probabilities. An in-
dividual of age t ∈ {1, . . . , Nt} and health h ∈ {1, . . . , Nh} has a one-period survival
probability to age t + 1 given by πs

th, with πs
th = 0 for t = Nt regardless of health

state.

Individuals are assumed to be working for the first TR − 1 years of their life and ex-
ogenously retire in the period when they attain age TR. While working, they are hit
by persistent and transitory labor productivity shocks. During retirement, individuals
receive social security retirement benefits which depend on their last persistent labor
productivity in working age.

19



Bequests are distributed to new-born individuals in a dynastic way: one young individ-
ual receives the bequests from one dying individual.

Retired agents. A retired individual in state (a, p, h, t), where a is cash-at-hand, p is
the (fixed) persistent component of labor earnings, h is the current health state, and t is
the age, maximizes utility according to

VR (a, p, h, t) = max
c, b′

{
u(c) + βπs

thE
[

VR
(
x′
) ∣∣∣ h, t

]}
(5)

subject to the constraints

a ≥ c + b′ , c ≥ 0 , b′ ≥ 0
a′ = Rb′ + ι′R
ι′R = y′Rw− Ty

(
y′Rw

)
y′R = ωTR−1 pR(p)ε

(6)

where x′ = (a′, p, h′, t + 1) is the continuation state conditional on survival. Next-
period after-tax retirement income is denoted by ι′R and depends on the non-linear tax
schedule Ty (•). pR(•) is a function mimicking the regressive replacement rate of the
U.S. social security system, w is the economy-wide wage rate, ε is the average of the
transitory earnings shocks hitting the working-age population and ωTR−1 is the value
of the deterministic age profile of earnings just prior to retirement. The gross return on
savings is given by R = 1 + r− δk.

Working-age agents. We denote the value and policy functions of working-age agents
using the subscript W.

A working-age individual draws a persistent and a transitory labor shock component
that together with a deterministic age profile of earnings, ωt, pin down his labor pro-
ductivity. The persistent component p takes on the values from the set P , while the
transitory shock realizations ε are drawn from E .

Working-age individuals with t < TR− 1 who continue working next period solve

VW (x) = max
c, b′

{
u(c) + βπs

thE
[

VW
(
x′
) ∣∣∣ p, h, t

]}

s.t. a ≥ c + b′ , c ≥ 0 , b′ ≥ 0
a′ = Rb′ + ι′

ι′ =
[
y′ − Tss

(
y′
)]

w− Ty

([
y′ − Tss

(
y′
)]

w
)

y′ = ωt+1 p′ε′

(7)
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where x′ = (a′, p′, h′, t + 1). We denote the earnings of working individuals, net of
income taxes Ty (•) and payroll taxes Tss (•), as ι′.

In the final period of their working life, i.e., when t = TR− 1, individuals solve

VW (a, p, h, t) = max
c, b′

{
u(c) + βπs

thE
[

VR
(
a′, p, h′, t + 1

) ∣∣∣ h, t
]}

subject to

a ≥ c + b′ , c ≥ 0 , b′ ≥ 0
a′ = Rb′ + ι′R
ι′R = y′Rw− Ty

(
y′Rw

)
y′R = ωTR−1 pR(p)ε

which is identical to the retired individual’s problem.

3.2 Technology

The production side of the model is standard. Competitive firms employ labor and
capital hired from households to produce a homogeneous final good, which is used for
both consumption and investment. The aggregate production function is assumed to be
Cobb-Douglas:

F(K, L) = Kαk L1−αk .

Capital depreciates at the rate δk.

3.3 Government

We assume that the government runs a PAYGO social security system that has to balance
in each period, and that remaining (wasteful) government expenditures have to be fully
financed by income taxes. We first describe the social security system and thereafter the
general government budget.

3.3.1 Social security system

We use a stylized version of the actual retirement income formula used in the U.S. social
security system. It captures the main features, such as a regressive replacement rate
based on pre-retirement income and a cap for maximum benefits. In the model, we define
retirement benefits to be a product of the economy-wide wage rate, the life-cycle profile
wage component from the last year before retiring, the average transitory component,
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and a function that mimics the regressive replacement rate of the U.S. social security
system:

ιR(p) = w× yR(p) = w×ωTR−1εpR(p)

where the replacement function pR(·) is given by

pR(p) =


ρ1 p if p ≤ p̃1

ρ1 p̃1 + ρ2 (p− p̃1) if p̃1 < p ≤ p̃2

ρ1 p̃1 + ρ2 ( p̃2 − p̃1) + ρ3

(
min

{
p̃max, p

}
− p̃2

)
else

where p̃1 and p̃2 are bend points and p̃max the contribution and benefit base (CBB) in the
social security income formula, expressed in terms of the individual’s permanent labor
state. In the appendix, section B.1.1, the transformation between actual bend points
and CBB expressed in USD (b$

1 , b$
2 , and e$

max) and the model counterparts are described
in detail, as well as the derivation of total government expenditures on retirement,
Gss.

The government expenditures on retirement are financed by a payroll tax. The payroll
tax function is defined as

Tss (y) = τss ×min{ymax, y}

where ymax expresses maximum taxable earnings in terms of labor productivity, i.e.,

ymax =
(

e$
max/e$

med

)
ymed

where e$
max is the contribution and benefit base expressed in USD as above, and e$

med are
the median earnings in the reference year.

The derivation for total payroll taxes raised in each period, Tss, can be found in the
appendix, section B.1.2. To balance the social security system, we need to find τss such
that Gss = Tss.

3.3.2 Government budget

We assume that the government raises labor income taxes to finance non-discretionary
expenditures that amount to a constant fraction g of output.
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Income taxes. For income taxes, we adopt the same tax function as in Heathcote,
Storesletten, and Violante (2017), which is defined as

Ty(ι) = ι− λι1−τ (8)

where ι is either earnings (net of payroll taxes) or retirement income. We assume that
the progressivity parameter τ is fixed, and we pin down λ such that the government
budget is balanced in each period.

Total income taxes raised by the government amount to the sum of income taxes raised
from the working and from the retired individuals:

Tinc = TW + TR

The derivation of the total income tax raised by the government in each period can be
found in the appendix, section B.2.

Government budget balance. The non-discretionary expenditures amount to a con-
stant fraction g of output: G = gY. The government budget is balanced by solving for a
λ in (8) such that G = Tinc holds.

The equilibrium definition of the model is standard and can be found in the appendix,
section B.3.

4 Calibration

4.1 Preferences

We assume log preferences, u(c) = log c.7 The value of β, the discount factor, is set to
target a capital-to-output ratio of 3.0, which gives us a β of 0.981.8

4.2 Externally calibrated parameters

Demographics. Agents are assumed to enter the economy at age 20, and retire at the
age of 65, which corresponds to setting TR = 46. The maximum age an agent can reach
is 99, and hence we let Nt = 80.

7In the Appendix section C.4 we show results from an alternative calibration with Epstein-Zin-Weil
preferences.

8For this calibration, we use the model where everyone faces the same average survival probability
conditional on age.
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Age-dependent wage profile and idiosyncratic earnings risk. We assume that the
log-labor earnings of an individual in the labor force follow a process with transitory
and persistent shocks:

log yt = log ωt + log pt + log εt

where ωt is the age profile part, pt is the persistent component and εt is the transitory
component of earnings. The persistent component is assumed to follow an AR(1)
process,

log pt = ρ log pt−1 + ηt

with persistence ρ and innovation ηt ∼ N (0, σ2
η). The transitory shock is given by

log εt ∼ N (0, σ2
ε ).

Hence, the stochastic part of the wage process is characterized by the parameters
(ρ, σ2

η , σ2
ε ) which we set to (0.9695, 0.0384, 0.0522), following Krueger, Mitman, and

Perri (2016).9

We use the Rouwenhorst procedure to discretize the persistent part of the process
into an nine-state Markov chain, and we discretize the transitory shock into three
states.

We choose the deterministic age profile of earnings estimated for high-school graduates
by Cocco, Gomes, and Maenhout (2005), and renormalize it such that the average labor
productivity is unity.

Remaining externally calibrated parameters. The remaining parameters that are set
externally are listed in Table 3. The bend points and the contribution and benefit base are
reported in U.S. dollars to facilitate the interpretation. Details for transforming them into
values used in the model are found in the appendix, section B.1.1.

4.3 Health and survival process

We use the processes for health transitions and survival probabilities described in
section 2.3 and section 2.5 for nonblack men. Agents enter the model at the age of 20,
but the health and survival processes we estimated starts at the age of 50. Therefore,
we make the assumption that everyone is born in the excellent health state. Thereafter,
we use the health transition matrix for the age of 50 to roll forward the population,
assuming certain survival. At the age of 50, agents start facing a positive probability of
death according to our estimated process. The resulting cohort sizes and distribution of
health states are shown in Figure 18 in the appendix section B.4.

While the model is solved with five health states, in what follows we report results only
for the worst, middle and best health states to reduce visual clutter.

9Krueger, Mitman, and Perri (2016) remove the age effect before estimating this process and hence, we
can use this stochastic process on top of the age-dependent profile.
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Parameter Description Value Source

Production technology parameters
αk Capital share 36% Krueger, Mitman, and Perri (2016)
δk Depreciation rate 9.6% Krueger, Mitman, and Perri (2016)

Social security
ρ1 Replacement rate bracket 1 90% 2013 SS rules
ρ2 Replacement rate bracket 2 32% 2013 SS rules
ρ3 Replacement rate bracket 3 15% 2013 SS rules
b$

1 Bendpoint 1 (in USD) 9,492 2013 SS rules
b$

2 Bendpoint 2 (in USD) 57,216 2013 SS rules
e$

max CBB (in USD) 113,700 2013 SS rules
Government budget

g Gov. spending (share of GDP) 6% Brinca et al. 2016
τ Tax progressivity 0.137 Brinca et al. 2016

Table 3: Calibrated parameters

5 Results

We solve the model under three distinct assumptions about survival expectations:

1. No survival heterogeneity (NSH): Each cohort faces the same survival expectations.
2. Objective survival heterogeneity (OSH): Each cohort has heterogeneous objective

survival expectations that depend on health.
3. Subjective survival heterogeneity (SSH): Each cohort has heterogeneous subjective

survival expectations that depend on health.

The first scenario serves as our baseline: this is the standard model where all agents
face the same survival risk and hence, all agents have the same effective discount factor
conditional on age. For this scenario, we eliminate health heterogeneity and use the
average survival rates.

In the second scenario, we use the objective process for health transitions and survival
probabilities described in section 2.3. Hence, in this model, people are perfectly informed
about their true survival probability conditional on health and age.

In the third scenario, agents believe and act according to the subjective survival process
estimated in section 2.5. However, this subjective process does not correspond to the
true survival process, which we use when simulating the model.

5.1 Effective discount rates

The effective discount rate (determined by the common discount factor β and the
individual survival probability) for the agents in the model is time-varying and depends
on the horizon. With a bad health shock, the discount rate immediately rises, since it
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Figure 10: Effective discount rate (geometric average) as a function of current age (50 or 70) and
forecast horizon (x-axis). The worst, middle, and best health state are shown, with
color indicating the state: green is excellent while red is poor health. The thin black
line indicates the discount rate net of any survival effect (1/β− 1).

implies a shorter expected life span while the opposite happens in the event of a good
health shock. Figure 10 plots the geometric average of the expected effective discount
rates, given the stochastic health and survival process, for different time horizons. For
example, for an individual of age t with health h, the figure plots the mean discount rate
$ to target age T implicitly defined as

βT−t · Pr ( alive at T | t, h ) =
(

1
1 + $

)T−t

As can be seen, the effective discount rate varies substantially in the population. Using
the subjective probabilities, the one-year horizon discount rate for a 50-year-old agent in
good health is observationally equivalent to 1/β− 1 = 2.01% (since the one-year ahead
survival for this agent is perceived to be almost certain), while the one-year horizon
discount rate for an equally old agent in bad health is above 20%, more than ten times as
large. At longer horizons, the geometric averages of the expected discount rate becomes
more similar for the two agents, but the difference is still 7.4 percentage points on a
10-year horizon. For 70-year-old agents in worst vs. best health state, the difference at
the 10-year horizon is more than 10 percentage points.

The magnitude of these differences is consistent with the findings by Calvet et al. (2021)
who estimate the cross-sectional distribution of time preference rate differences based
on Swedish micro data, assuming a common survival probability conditional on age for
all agents. Their estimation of the standard deviation of the time preference rate is 6.0
percentage points around a mean of 6.2 percent.
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These findings are also consistent with a downward sloping discount rate along the age
gradient, as found by Kureishi et al. (2021). Netting out the average objective (statistical)
survival probability at all ages, the belief bias in survival probability give rise to a down-
ward sloping residual discount rate, since older people are on average more optimistic
about their survival compared to the young (see Figure 3).

5.2 Effect on savings behavior

The main effect from introducing health and survival heterogeneity is, not surprising,
that agents in bad health save less than their healthy counterparts as they expect to
live a shorter life. The same but opposite effect is present for individuals in good
health. This is true regardless of whether agents assess their life expectancy using
objective survival probabilities or subjective beliefs. However, the difference in savings
between agents in bad and good health increases if we let the agents act according
to their subjective beliefs due to the within-cohort steepness bias we documented in
section 2.5: individuals in bad health underestimate their survival probability more (or,
for some ages, do not overestimate to the same extent) as compared to agents in good
health.

These patterns are illustrated in Figure 11. For selected health states, the bars in darker
color show the differences in total savings rates for the model with objective hetero-
geneity compared to the baseline model with no heterogeneity in survival. The lighter
color shows the additional effect of adding subjective beliefs. Here, we define total
savings rate as the fraction of current cash-at-hand, i.e., beginning-of-period assets plus
current income, which the individual saves for the next period. The horizontal axis
represents the cash-at-hand percentiles by age from the baseline model with no hetero-
geneity.10

As can be seen, for 50-year-olds the difference is most pronounced for individuals in bad
health, as indicated by the red bars. With objective survival heterogeneity, individuals in
the 10th cash-at-hand percentile in poor health have a savings rate that is 9 percentage
points lower than individuals of the same wealth in the model with no heterogeneity.
Adding subjective beliefs, the difference is magnified: the total savings rate of an
individual in the 10th percentile is now 22 percentage points lower than for an individual
with the same wealth with average survival expectations.

The reason for the bigger impact of the subjective belief on the individuals in worst
health can be understood by looking at Figure 4(a) for nonblack men. At lower ages, the
subjective and the objective survival expectations are similar for individuals in the better

10We plot results by cash-at-hand percentiles (as opposed to the cash-at-hand level) since the graphs then
show the difference at the wealth levels that matter, i.e., where there is a positive mass of agents in
equilibrium. A large difference in policy functions for very high wealth levels for the 80-year-olds is
not that informative, since extremely few 80-year-old will be that rich in equilibrium anyhow. We plot
standard policy functions for savings in the appendix section section C.1.

27



10 20 30 40 50 60 70 80 90
Cash-at-hand percentiles (for age 50)

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3
C

ha
ng

e 
in

 s
av

in
gs

 r
at

e

Age 50

10 20 30 40 50 60 70 80 90
Cash-at-hand percentiles (for age 60)

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

C
ha

ng
e 

in
 s

av
in

gs
 r

at
e

Age 60

10 20 30 40 50 60 70 80 90
Cash-at-hand percentiles (for age 70)

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

C
ha

ng
e 

in
 s

av
in

gs
 r

at
e

Age 70

10 20 30 40 50 60 70 80 90
Cash-at-hand percentiles (for age 80)

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

C
ha

ng
e 

in
 s

av
in

gs
 r

at
e

Age 80

Figure 11: Absolute difference in savings rate (defined as the fraction of current cash-at-hand
the agent saves for the next period). The darker color shows the model with objective
survival heterogeneity compared to the baseline model with no survival heterogeneity.
The lighter color shows the additional effect of adding subjective survival beliefs. The
x-axis depicts cash-at-hand percentiles by age (equilibrium values for the baseline
model). The color indicates health state: green is excellent while red is poor health.

health states and therefore the additional effect of adding subjective beliefs is small.
However, individuals in worse health are severely underestimating their longevity and
thus the additional effect on the total savings rate is larger.

The same pattern can be seen in the graphs for 60-year-olds and 70-year-olds, even
though for the latter, the additional effect from adding the subjective beliefs is slightly
weaker if we continue to focus on the individuals in poor health. The reason for this can
be found in Figure 4(b): at the age of 70, the subjective survival beliefs of the individuals
in bad health are now closer to the objective probabilities.

Moreover, at the age of 70, the effect of adding subjective beliefs starts showing up for
individuals in good health: there is an additional effect of the subjective beliefs on the
total savings rate for healthy individuals, as indicated by the lighter green parts of the
green bars. As can be seen from the graph of 80-year-olds, at higher ages the general
optimism dominates. The addition of subjective beliefs at this age increases the savings
rates for individuals both in bad and good health.
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(b) Objective survival heterogeneity (OSH)
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(c) Subjective survival heterogeneity (SSH)

Figure 12: Life-cycle profiles for wealth. The worst, middle, and best health state are shown,
with color indicating the state: green is excellent while red is poor health.
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NSH: no heterogeneity OSH: objective exp. SSH: subjective exp.

Interest rate (%) 2.37 2.39 2.57
Wealth Gini 0.67 0.67 0.67

Table 4: Resulting aggregate variables from the three scenarios.

5.3 Effect on wealth accumulation

Figure 12 shows the resulting life-cycle profiles for the three different scenarios: no
survival heterogeneity (NSH), objective survival heterogeneity (OSH), and subjective
survival heterogeneity (SSH). In all graphs, we average out the productivity dimen-
sion.

As expected, and as all three graphs show, the life cycle profile for wealth peaks at the
age of 64, which is the last year before retirement. When the agents enter retirement,
they start drawing down their wealth and the average individual who survives until
the age of 90 has drawn down all of his savings (remember that all individuals receive
retirement benefits, so they are not risking zero consumption).

The profile for the OSH model illustrates that individuals in bad health have less wealth
than individuals in good or excellent health. It should be noted that the mass of indi-
viduals in bad health is not static, but consists of individuals who have been in bad
health for many periods, as well as individuals who just recently draw a bad health
shock. Moreover, the profile for the SSH model shows that the difference in wealth
between individuals in good and bad health at the age of 64 increases when the agents
act according to their subjective beliefs. Note also that the asset holdings at very high
ages increase slightly, since old individuals are, on average, over-optimistic about their
lifespan.

In the SSH model, the average 65- to 69-year-old in the best health state has 51% more
wealth than the average agent in the worst health state in the same age group. This is
approximately one third of the difference we see in the data comparing the best and
worst health states at this age.

5.3.1 General equilibrium effects and economy-wide inequality

The general equilibrium effects of introducing survival heterogeneity are small. Table 4
shows two key statistics from the model. The reason why the interest rate increases
slightly in the OSH model (with objective survival heterogeneity) compared to the NSH
model (with no survival heterogeneity) is the on average lower incentive to save among
those in the ages 50 to 70. As Figure 11 shows, the demand for savings is substantially
reduced at those ages among the individuals in bad health as compared to the baseline
without heterogeneity. This effect is not fully counteracted by the slight increase in
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demand for savings by those in excellent health. Therefore, the interest rate needs to rise
slightly to induce enough savings in the aggregate.

When agents act according to their subjective survival beliefs (SSH model), the interest
rate increases slightly more to 2.57%. The reason is that in the age group around 55–
65, which is when people save the most, agents on average have a downward bias in
expected longevity. Hence, their incentives to save are reduced further and consequently,
the interest rate increases.

The last thing to note is that the wealth Gini is virtually unchanged between the three
models. However, if we look at the within-cohort inequality, there are some differences
in wealth holdings. Within the oldest age groups, the Gini falls in the model with
subjective survival beliefs. For instance, within the group of 80- to 85-year-olds, the
top 1% richest in the SSH model are 70% wealthier than the top 1% in the OSH model.
However, there is also a smaller fraction within this age group having virtually zero
assets (due to the general overoptimism about survival among the oldest agents), thus
the net results is that the Gini is 5pp lower in the model with subjective survival beliefs
than in the baseline OSH model.

To conclude, the within-cohort inequality in the very oldest cohorts is affected by survival
heterogeneity, as could be expected after seeing the large differences in the policy
functions. However, the richest individuals in the economy are found in the age group 60–
64, as we saw in the life-cycle profiles. For this age group, the “extra savings” by healthy
individuals due to a longer expected life are very small, as we saw in Figure 11 – the main
effect in this age group is that unhealthy individuals save less. Therefore, the effect of
heterogeneity in survival on the top wealthiest individuals in the economy is very small,
and consequently the effect on overall inequality is negligible.

Appendix section C.2 gives a full breakdown of Gini by 5-year age groups.

5.4 Welfare cost of the belief bias

Imagine your friend is more optimistic about her survival probabilities than you are,
since you happen to know her true survival probabilities. Otherwise you share the same
preferences and information. In your opinion, what is your friend’s welfare loss due to
her erroneous beliefs and therefore, in your opinion, non-optimal consumption/savings
choices? This is the type of welfare cost we calculate in this section. Note that your
friend is optimizing her behavior given her beliefs, so without changes to perceived
probabilities, in her view there is no scope for improvement (and she would certainly
not perceive it as welfare improving if you tried to force her to follow your well-meant
advice).

Another way to phrase the question is the following: if a person with objective beliefs
about survival were forced to use the consumption policy functions of an individual
optimizing under the subjective beliefs, what is the consumption equivalent loss of
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welfare? Formally, consider the value function of an individual with objective beliefs
about survival probabilities,

Vo(xt) =
T

∑
τ=t

βτ−t ∑
xτ |xt

Pr ( xτ | xt ) u
(
Co(xτ)

)
at state xt = (a, p, h, t), with Co(•) denoting the optimal consumption policy function
for the objective individual.

Next, consider the expected utility from letting this person adopt the subjective individ-
ual’s policy function, denoted Cs(•):

EUo (xt|Cs) =
T

∑
τ=t

βτ−t ∑
xτ |xt

Pr ( xτ | xt ) u
(
Cs(xτ)

)
By definition, Vo ≥ EUo. We compute the value ∆ such that

EUo (xt |Cs) = EUo (xt |Co, ∆) =
T

∑
τ=t

βτ−t ∑
xτ |xt

Pr ( xτ | xt ) u
(
Co(xτ)(1 + ∆)

)
for each (a, p, h, t). Thus, ∆ is the consumption equivalent variation that makes an agent
with objective beliefs indifferent to being “forced” to use the subjective belief policy
functions.

The resulting ∆(a, p, h, t) varies from approximately zero to −11% for some groups. The
largest costs are found among very rich and very old agents, who constitute a small sub-
set of the population (the vast majority of old agents are relatively poor). In the appendix,
section C.3, we show an overview of the full distribution.

In Figure 13, we average out the productivity and asset dimensions and show the
consumption equivalent variation conditional on age and health state. As can be seen,
the cost of the belief bias is very small for young agents. Approaching the age of 50, the
cost increases, especially for agents in bad health: these agents are pessimistic about their
survival chances and therefore save less for their future than an agent with objective
beliefs. The average cost of the belief bias for agents in bad health at the age of 50 is
equivalent to 1.5% of annual consumption. In older ages, the cost of the subjective beliefs
is driven by the opposite effect: here agents are too optimistic about their survival, which
leads to oversaving and too little current consumption, compared to what an agent with
objective beliefs would have chosen, given the same wealth, retirement income, health
state, and age.

Going back to the example of your friend with overly optimistic beliefs about her sur-
vival, it is moreover not clear if she would be better off from learning about the true
probabilities. With a broader view of welfare in line with what is suggested by Brun-
nermeier and Parker (2005), there are two effects of being too optimistic. Being overly
optimistic about survival has the advantage of higher anticipation utility (assuming an
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Figure 13: Weighted average consumption equivalent variation (CEV, ∆) of the welfare loss from
using subjective belief consumption functions, conditional on age/health. See text
for full description. The worst, middle, and best health state are shown, with color
indicating the state: green is excellent while red is poor health.

intrinsic value of life that is high enough so that living is preferred to being dead) and
the disadvantage of making decisions that turn out to be sub-optimal ex post. With
this view of welfare, the cost of the belief bias for the 50-year-olds in bad health is more
problematic than the cost for the 80- and 90-year-olds. In the latter case, the agents at
least get a higher anticipation utility from their overly optimistic expectations (assuming
a sufficiently high intrinsic value of life so that survival is preferred). The 50-year-olds
in bad health have a bias that is unambiguously welfare reducing: it leads to both
non-optimal consumption/savings allocation and lower anticipatory utility (the latter
not being included in our quantification above).

5.5 Determinants of savings not included in our benchmark model

There are many drivers of savings in old age that could vary across health but are not
included in our model: medical shocks, the existence of (employer-tied) health or life
insurance, human capital investment, endogenous retirement decisions, an income-
health gradient, private pensions, housing and other illiquid assets, to name a few
(see for instance De Nardi, French, and Jones (2010), Capatina (2015) or De Nardi,
Pashchenko, and Porapakkarm (2017) for studies taking a broader perspective including
several channels). We acknowledge that it is beyond the scope of this paper to fully
characterize the consumption/savings decision over the lifecycle. Rather, our aim is to
quantify the channel of heterogeneity in (subjective) life expectancy and its effect on
savings in isolation.
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To capture the asset profile over the lifecycle it is tempting to introduce a bequest motive
of the warm-glow De Nardi (2004) type, the most commonly used formulation in the
macroeconomic literature. The effect of combining survival heterogeneity with such a
bequest motive is however counter-intuitive and perhaps also unexpected: agents in
poor health save more than their otherwise identical healthy counterparts. The reason is
as follows: since agents in poor health are more likely to die soon, they put an increased
weight on bequest utility, thus raising their incentives to save. Hence, there are two
effects from lower life expectancy that work in opposite directions: a shorter expected
life span makes agents want to save less for their own consumption, but a stronger
bequest motive induces them to save more. The net effect varies depending on the
calibration of bequest parameters, but the second mechanism is always present with a
bequest formulation of this type: a shorter life span makes agents want to save more to
leave bequests, and if a rich individual receives a bad health shock, there is an incentive
to save more due to the bequest motive. This creates a health-wealth gradient and a
change in savings behavior in the event of bad health shocks that are challenging to
square with the data. One would ideally develop an extension of the warm-glow bequest
motive, but this is beyond the scope of this paper.

Appendix section D illustrates the issue further and shows results from a model where
we include a standard warm-glow bequest motive.

6 Conclusions

This paper explores how heterogeneity in life expectancy, objective (statistical) as well as
subjective, affects savings behavior between healthy and unhealthy people. Using HRS
data, we show that there exists a within-cohort steepness bias in survival beliefs: individuals
in bad health not only have a shorter expected life span, but are also relatively more
pessimistic about their survival chances, while individuals in good health and thus with
higher survival probability are more optimistic. This systematic bias exacerbates the
survival expectancy heterogeneity in the population.

The differences in beliefs about survival translate into time preference heterogeneity and
consequently savings behavior. We show that differences in life expectancy can explain
one third of the differences in accumulated wealth between healthy and unhealthy
people, mostly due to pessimism among unhealthy people.

This paper ties into a strand of current research investigating preference heterogeneity
and its importance for individual choices and aggregate outcomes. We provide an
intuitively plausible and micro-founded source of heterogeneity: the probability of
surviving to future states of the world. Our quantification of this channel shows that life
expectancy heterogeneity is important and should be included in the list of potential
sources of heterogeneity that we need to consider in our analyses. Investigating the
importance of the steepness bias for within-cohort differences in terms of portfolio
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allocations, demand for financial products, or retirement behavior is left for future
research.
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A Appendix: Data details

A.1 Data used for the analysis

The RAND HRS Longitudinal File 2018 (V1) includes 14 waves administered over the
years 1992–2018. The first cohort included in the survey was between 51 and 61 years old
in 1992, and thereafter new (older and younger) cohorts have been added, as illustrated
in Figure 14. Figure 15 shows the number of respondents with positive sampling weights
by wave and cohort. At the time of this writing, the sampling weights for wave 14 are
not yet publicly available.

Figure 16 shows the fraction of respondents in each wave who are marked as non-
respondents in all subsequent waves but do not have a death date on record. For
example, in wave 11 (administered in 2012), approximately four percent of participants
did not respond to any of the later waves 12–14. Since no death date is recorded for
these individuals, we cannot use these observations to estimate survival probabilities.
However, since death dates are sometimes recorded with considerable lag, we suspect
that some of these individuals are already deceased, but their death dates will be updated
only in future waves.

So as to not bias our survival probability estimates, we opt to drop the last two waves
from the estimation sample, since these exhibit unusually high non-response rates
compared to the historical averages.
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Figure 14: Longitudinal survey design of the HRS. The y-axis shows respondents’ age by cohort
and wave, ignoring spouses who are not age eligible. The legend lists all birth cohorts
included in the HRS (using their “official” names) as well as their birth years.
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Figure 15: Number of observations by wave and cohort. Only observations with positive weight
are included. No sampling weights are currently available for wave 14.
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Figure 16: HRS attrition by wave: fraction of participants who do not respond to any of the
subsequent survey waves. Color indicates the health state: green is excellent while
red is poor health. Error bars indicate 95% confidence intervals based on clustered
standard errors (clusters are HRS PSUs).
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A.2 Expectation errors in survival probabilities: additional graphs

Figure 17 shows the elicited beliefs about survival vs. estimated objective (statistical)
survival probabilities for target age 95. Target ages 75 and 85 are shown in Figure 4 in
the main text.
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Figure 17: Elicited beliefs about survival vs. estimated objective (statistical) survival probabilities
for target age 95. Each bubble represents the average for a gender/race/age/health
group. The x-axis shows the model-predicted (objective) survival probability, the
y-axis the average self-reported survival probability for that group. The color of the
bubble indicates health state, with red being poor health and green being excellent
health. The size indicates the number of observations in each age/health cell. We
exclude cells with less than 20 observations.
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B Appendix: Model details

B.1 Social Security system

B.1.1 Retirement benefits

First, consider the following stylized version of the actual retirement income formula
used in the U.S. social security system, where e is an (annualized) measure of historical
average monthly earnings, b$

1 and b$
2 are bend points in USD for some reference year,

and e$
max is the contribution and benefit base (CBB), i.e., the maximum earnings sub-

ject to payroll taxes. Retirement income ι$R measured in USD is approximately given
by

ι$R(e) =


ρ1e if e ≤ b$

1

ρ1b$
1 + ρ2

(
e− b$

1

)
if b$

1 < e ≤ b$
2

ρ1b$
1 + ρ2

(
b$

2 − b$
1

)
+ ρ3

(
min

{
e$

max, e
}
− b$

2

)
else

(9)

where ρ1, ρ2 and ρ3 are decreasing replacement rates applied to earnings ranges brack-
eted by the bend points b$

i .

In the model, we define retirement income ιR as the product of the following compo-
nents:

ιR(p) = w× yR(p) = w×ωTR−1εpR(p) (10)

where we construct the function pR(•) to mimic (9) but define it in terms of persistent
labor productivity p.

To this end, denote by e$
med the median earnings in dollars in the reference year. To

express the bend points in terms of the persistent labor productivity, we implicitly define
a model bend point p̃i corresponding to b$

i by the relationship

b$
i

e$
med

=
w×ωTR−1 p̃iε

w× ymed
i ∈ {1, 2}

We normalize the dollar bend point b$
i by dollar median earnings e$

med and its model coun-
terpart by the median earnings in the model. Solving for p̃i, we obtain

p̃i =

(
b$

i /e$
med

)
ymed

ωTR−1ε
.

Analogously, the CBB in terms of persistent labor productivity is

p̃max =

(
e$

max/e$
med

)
ymed

ωTR−1ε
.
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By factoring out the common term ωTR−1εw that is independent of a retired individual’s
idiosyncratic state vector, we can write the replacement formula purely in terms of the
permanent labor state as follows:

pR(p) =


ρ1 p if p ≤ p̃1

ρ1 p̃1 + ρ2 (p− p̃1) if p̃1 < p ≤ p̃2

ρ1 p̃1 + ρ2 ( p̃2 − p̃1) + ρ3

(
min

{
p̃max, p

}
− p̃2

)
else

Retirement income can then be computed as a function of p and the equilibrium wage w
according to (10).

B.1.2 Social security budget balance

Government expenditures on retirement benefits in each period are given by

Gss =
Nt

∑
t=TR

∑
p

µt(t)µp(p)ιR(p)

= wωTR−1ε · pRΠR

(11)

which is a weighted sum over the retirement incomes received by all retired cohorts,
with weights µt and µp denoting the PMFs of the ergodic distribution over age and
persistent labor productivity, respectively. We denote the mass of retired individuals
by

ΠR =
Nt

∑
t=TR

µt(t)

and the average permanent component of retirement income as

pR = ∑
p

µp(p)pR(p).

The payroll taxes raised each period are

Tss =
TR−1

∑
t=1

∑
p

∑
ε

µt(t)µp(p)µε(ε)Tss (ye)w (12)

where µε(ε) is the ergodic distribution over transitory labor shocks. The payroll tax
function is defined as

Tss (y) = τss ×min{ymax, y}

where ymax are maximum taxable earnings, which we obtain from the dollar values
using

ymax =
(

e$
max/e$

med

)
ymed.
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To balance the social security system, we need to find τss such that Gss = Tss. Equating
Gss = Tss implies that

τss =
ωTR−1 pRεΠR

∑TR−1
t=1 ∑p ∑ε µt(t)µp(p)µε(ε)min {ymax, ωt pε}

. (13)

B.2 Government budget

In this section, we derive an expression for the total amount of income taxes raised by
the government. Before proceeding, we state the following useful definitions: We denote
by p the average persistent labor shock,

p = ∑
p

µp(p)p (14)

and by ΠW the size of the labor force,

ΠW =
TR−1

∑
t=1

µt(t) = 1−ΠR

Additionally, average labor productivity can be defined as

y = Π−1
W

[
TR−1

∑
t

∑
p

∑
ε

µt(t)µp(p)µε(ε)ωt pε

]
= Π−1

W

[
p · ε

TR−1

∑
h

µt(t)ωt

]
.

Now, consider the aggregate tax revenues raised from working individuals, which are
given by

TW =
TR−1

∑
t=1

∑
p

∑
ε

µt(t)µp(p)µε(ε)
[(

ωt pε− Tss (ωh pε)
)
w

− λ
((

ωt pε− Tss (ωt pε)
)
w
)1−τ]

=
[
wΠWy− λw1−τy−ss,τ

]
− Tss

where we define

y−ss,τ =
TR−1

∑
t=1

∑
p

∑
ε

µt(t)µp(p)µε(ε)
(

ωt pε− Tss (ωt pε)
)1−τ

to simplify the notation.
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Income taxes raised from retired individuals amount to

TR =
Nt

∑
t=TR

∑
p

µt(t)µp(p)
[

yR(p)w− λ
(

yR(p)w
)1−τ

]

=
Nt

∑
t=TR

∑
p

µt(t)µp(p)
[

ωTR−1 pR(p)εw− λ
(

ωTR−1 pR(p)εw
)1−τ

]
= ΠR

[
wωTR−1 pRε− λw1−τω1−τ

TR−1 pR,τε1−τ
]

= Tss − λΠRw1−τω1−τ
TR−1 pR,τε1−τ

with

pR,τ = ∑
p

µp(p)pR(p)1−τ

Thus, the total revenue from income taxes is

Tinc = TW + TR

= wΠWy− λw1−τ
[
y−ss,τ + ΠRω1−τ

TR−1 pR,τε1−τ
]

B.3 Equilibrium definition

A recursive competitive equilibrium is given by a set of prices {R, w}, tax rates {τss, λ},
decision rules C (a, p, h, t) (for consumption) and B (a, p, h, t) (for savings), and a station-
ary distribution Γ such that:

1. The decision rules solve the agents’ problem for all (a, p, h, t).

2. Factor prices are given by:

r = F1(K, L) and w = F2(K, L)

3. τss and λ are set so that both the social security system and the general government
budget balance.

4. Capital and labor markets clear:

K′ =
∫

B (a, p, h, t)dΓ and L =
TR−1

∑
t=1

∑
p

∑
ε

µt(t)µp(p)µε(ε)ωt pε

where µt(t), µp(p) and µε(ε) are the ergodic distributions over age, the persistent
and the transitory labor shocks, respectively.

5. The distribution Γ is stationary, i.e., for all relevant Borel sets B

Γ(B, p, h, t) = ∑
p

∑
h

∑
t

π(p|p)π(h|h)π(t|t)
∫

a:B(a,p,h,t)∈B
Γ(da, p, h, t)
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B.4 Ergodic distribution over age and health

Figure 18 shows the relative cohort sizes and distribution of health states in the model,
where for the purposes of illustration we rescale the cohort size of newborns to unity.
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Figure 18: Cohort size and health state distribution. Colors denote health states, with dark green
being excellent and red being poor health.
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C Appendix: Additional model results

C.1 Policy functions

Figure 19 shows the savings policy functions for selected ages and productivity states for
the model with objective survival heterogeneity (OSH). Panel (a) depicts how much an
agent saves as a function of current cash-at-hand, while panel (b) shows how much the
agent saves as a fraction of current cash-at-hand. To interpret these figures, it is helpful
to know that the 10th percentile of the cash-at-hand distribution among 70-year-olds is
approximately 0.4, while the median is around 2.

Figure 20 shows the same information from the model with subjective survival hetero-
geneity (SSH).
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Figure 19: Policy functions for the model with objective survival heterogeneity (OSH)
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Figure 20: Policy functions for the model with subjective survival heterogeneity (SSH).
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C.2 Wealth inequality within age groups

As noted in the main text, the wealth Gini is virtually unchanged between the three
models. However, there are some (small) changes in inequality within cohorts. Figure 21
shows Gini by age group.
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Figure 21: Wealth inequality by 5-year age groups.

C.3 Welfare cost of belief bias

Figure 22 shows the consumption equivalent variation for low, median and high labor
productivity, and for poor (P10 of the unconditional CAH distribution), median, and
rich (P90) agents, by health state and age.

The largest welfare costs in terms of CEV can be found for agents aged 90 who are
very rich. The reason is that with subjective beliefs, these old agents are severely
overestimating their survival probabilities. This means that they save “too much” and
consequently consume too little today compared to what an agent with objective beliefs
would have done. However, relative to the overall population, the fraction of old agents
with high levels of wealth is negligible.

The other noteworthy group are individual who are about 50 years old and in bad health.
These agents are overly pessimistic and underestimate their chances of survival. Thus,
compared to an agent with objective beliefs, they are undersaving and consuming too
much today at the expense of too little consumption in the future.
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Figure 22: CEV for selected cash-at-hand levels and productivity states. The worst, middle, and
best health state are shown, with color indicating the state: green is excellent while
red is poor health..

C.4 Alternative calibration with Epstein-Zin-Weil preferences

In the model described in the main text, individuals hold few assets in old age, contrary
to what we observe in the data. This is to be expected in a model with Social Secu-
rity that guarantees non-zero consumption late in life and does not feature a bequest
motive.

To alleviate this problem, we explored an alternative setup featuring Epstein-Zin-Weil
preferences (Epstein 1988; Epstein and Zin 1989; Weil 1990) with a risk aversion of
4 and an elasticity of intertemporal substitution (EIS) of 1.5, following Kaplan and
Violante (2014). Moreover, we introduce additional uncertainty in retirement to induce
individuals to increase precautionary savings. Agents now face the same transitory
income risk as during working age (but no persistent income shocks), in line with
evidence in Blundell et al. (2020) who show that income is uncertain even after retirement.
Furthermore, agents (incorrectly) perceive that there is a 5% chance that the Social
Security system will partially default and their retirement benefits will permanently be
reduced by 50%.

This alternative setup increases savings in old age only slightly, as shown in Figure 23
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(a) Objective survival heterogeneity (OSH)
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Figure 23: Resulting life-cycle profiles for wealth, model with EZW preferences.

for both objective and subjective beliefs. In the model with subjective beliefs, the average
65- to 69-year-old in the best health state now holds 115% more wealth than the average
agent in the worst health state in the same age group.
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D Appendix: Model with a bequest motive

D.1 Building intuition in a two-period model

To build intuition, we start with a simple two-period model with a bequest motive where
the only uncertainty is survival risk. The survival probability between the first and
second periods is denoted by π. After the second period, the agent dies with certainty.
We assume that the agent has some initial assets a0, the discount factor is β < 1, and the
gross interest rate is R. The agent solves

max
c0,c1

{
u(c0) + β

(
π
[
u(c1) + βVb(a2)

]
+ (1− π)Vb(a1)

)}
(15)

subject to the constraints

ct > 0 ∀t
a1 = a0 − c0, a2 = Ra1 − c1.

The first-order conditions for this problem are given by

∂u
∂c0

= β2πR
∂Vb

∂a2

∣∣∣∣
a∗2

+ β(1− π)
∂Vb

∂a1

∣∣∣∣
a∗1

= 0

∂u
∂c1

= β
∂Vb

∂a2

∣∣∣∣
a∗2

= 0

where a∗1 and a∗2 denote the optimal choice of savings in each period. The impact of an
increase in survival probability on c∗0 , optimal first period consumption, is ambiguous
and depends on how the bequest motive is parametrized.

The utility function u has the usual CRRA functional form,

u(c) =
c1−σ − 1

1− σ

and we use the usual warm-glow bequest motive as in De Nardi (2004),

Vb(a) = θB
(a + κ)1−σ − 1

1− σ
(16)

where θB determines the strength of the bequest motive, and κ determines to what
extent bequests are a luxury good. For simplicity, we assume κ = 0 and solve for the
agent’s problem as given in (15). Some algebra shows that whether an increase in the
survival probability makes the agent consume more or less in the first period depends
on

θB Q

(
R

1−σ
σ

1− R
1−σ

σ β1/σ

)σ

≡ θ̂B (17)
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If θB < θ̂B, an increase in the survival probability makes the agent consume less in
the current period and save more, given that it is more likely to survive to the next
period.

On the other hand, if θB > θ̂B, an increase in the survival probability leads to decreased
savings and more consumption in the first period. There are two mechanisms behind
this. First, when the probability of surviving increases, the effective discounting of the
next-period bequest utility increases, and hence the incentive to save decreases. We
call this the expected-date-of-handover channel. Second, an increase in the survival
probability leads to a higher expected interest rate income over the remaining life, and
therefore the agent can afford more consumption also in the first period. We call this
channel the income effect. If the weight on the bequest motive is high, these two effects
dominate the effect of wanting to save for a longer expected life.

In the above example, we assumed κ = 0. It can be shown that if we assume R = 1, the
sign of ∂c∗0

∂π is independent of κ (although it still affects the level of savings). However, if
we allow for a positive interest rate, the extent to which the bequest is a luxury good
in combination with the level of initial assets a0 matters. Moreover, we assumed no
second-period income in our above example. If we allow for income in the second
period, the level of income compared to the initial assets affects the incentives. For a
given a0, the higher the second-period income, the less bequest weight is needed to
get ∂c∗0

∂π > 0 – since then the bequest becomes relatively more important as a reason to
save.

D.2 Quantitative model with a bequest motive

D.2.1 Model setup

Compared to the model from the main text, we now include a warm-glow bequest
motive and estate taxes (which enter the government budget constraint). The remaining
building blocks remain unchanged.

Retired agents. A retired individual in state (a, p, h, t) now maximizes utility according
to

VR (a, p, h, t) = max
c, b′

{
u(c) + β

(
πs

thE
[

VR
(
x′
) ∣∣∣ h, t

]
+ (1− πs

th)Vb
(
a′b
))}

subject to the same constraints as in (6). Bequests are given by

a′b = Rb′ − Tb
(

Rb′
)

(18)

and are subject to estate taxes given by the function Tb (•) which we describe be-
low.
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In the terminal period with t = Nt, the individual solves

VR (a, p, h, t) = max
c, b′

{
u(c) + βVb

(
a′b
)}

s.t. a ≥ c + b′ , c ≥ 0 , b′ ≥ 0
a′b = Rb′ − Tb

(
Rb′
)

Working-age agents. Individuals of age t < TR − 1 who continue to work in the next
period now solve

VW (x) = max
c, b′

{
u(c) + β

(
πs

thE
[

VW
(
x′
) ∣∣∣ p, h, t

]
+ (1− πs

th)Vb
(
a′b
))}

subject to the same constraints as in (7) plus (18). In the final period of their working life,
i.e., when t = TR − 1, they solve

VW (a, p, h, t) = max
c, b′

{
u(c) + β

(
πs

thE
[

VR
(
a′, p, h′, t + 1

) ∣∣∣ h, t
]
+ (1− πs

th)Vb
(
a′b
))}

subject to (6) and (18), which is identical to a retired individual’s problem.

Estate taxes. The estate tax schedule is defined as

Tb(b) =


0 if b ≤ χb
τb
2

[
sin
(

π
[

b−χb
B − 1

])
B
π + b− χb

]
if χb < b ≤ χb + B

τb(b− χb − B) + τb
2 B else

This formulation is effectively a step function: estates valued at less than χb are exempt
from taxes. For values b in an interval χb < b ≤ χb + B, the marginal tax rate is increasing,
and for b > χb + B, the marginal tax rate is τb. The tax schedule is twice continuously
differentiable, which is required by our solution algorithm.

D.2.2 Calibration

We follow De Nardi (2004) and model the bequest motive as

Vb(a) = θB
(a + κ)1−σ − 1

1− σ
(19)

where θB determines the strength of the bequest motive, and κ determines to what extent
bequests are a luxury good.
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We use the same calibration as in the main text, where applicable, and set σ = 1. The
marginal tax rate on estates τb is set to 30%.11 We determine the discount factor β, the
newly introduced parameters governing the bequest motive and the estate tax exception
threshold χb using the method of simulated moments, i.e., we minimize the weighted
sum of squared distances between targeted and simulated moments. For this exercise,
we use the model where all agents have the same survival expectations conditional on
age (no survival heterogeneity)

Target moments. In the model with a bequest motive, we again target a capital-to-
output ratio of 3, but we additionally try to match the life-cycle profile of assets. To this
end, we use the median wealth levels at ages 55, 60, 65, 70, 75, 80 and 85 observed in
the HRS. The capital-to-output ratio and the life-cycle profile are jointly matched by
choosing the parameters for the discount factor (β), the bequest utility weight (θB), the
bequest utility shifter (κ), and the estate tax exemption (χb).

Estimation results. The estimated parameters are listed in Table 5 and the asset hold-
ings by age and their data counterparts are shown in Table 6. Our model is too simplistic
to match the data moments exactly. For example, because we impose an exogenous
retirement age of 65, the lifecycle profile of assets peaks exactly at this age, whereas this
is not the case in the data.

To assess the magnitude of bequests in the model, it is informative to look at non-targeted
moments. The bequest-to-wealth ratio in the model is 1.9%. It is difficult to precisely
measure this figure in the data, but according to Gale and Scholz (1994), using SCF
data, it should be closer to 0.9%. However, according to others, 2% is “a conservative
estimate”.12 Another measure is the fraction of estates left by deceased individuals that
are subject to estate taxes, which is 0.74% in the model. This figure has varied during
the last 15 years: in 2004 it was 0.8% whereas in 2013 is was 0.2%.13 Consequently, these
model quantities are mostly in line with the data.

A last measure is estate tax revenue as a fraction of GDP. In the model, this figure is
0.02%. In the U.S., this figure varied during the last few years, from a high of 0.17% in
2007 to a low of 0.07% in 2011.14 The model cannot replicate these magnitudes since it
is unable to generate the right tail of the wealth distribution and hence also lacks the
estates left behind by the richest.

11The top marginal tax rate today is 40% (see https://www.irs.gov/pub/irs-pdf/i706.pdf); however, not
all taxable estates fall into the top category. We choose 30% as an approximation.

12See Larry Summer’s opinion at https://www.reuters.com/article/column-summers/column-how-to-
target-untaxed-wealth-lawrence-summers-idUSL1E8NG2MC20121216?irpc=932.

13Calculated as the ratio of the number of estates subject to estate taxes, as reported by the IRS, and the
number of deaths taken from CDC records.

14Calculated as the ratio of net estate taxes paid, as reported by the IRS, and official GDP figures.
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Parameter Description Value

Model with bequest
β Discount factor 0.961
θB Bequest weight 10.33
κ Bequest shifter 1.98
χb Estate tax exemption 27.32

Table 5: Estimated parameters for model with a bequest motive.

Median asset holdings

Age 55 60 65 70 75 80 85

Data 1.30 1.65 1.69 1.73 1.62 1.47 1.41
Model 1.26 1.61 2.13 1.78 1.61 1.43 1.35

Table 6: Life-cycle asset profile in the model with a bequest motive, relative to the median asset
holdings at age 50.

D.2.3 Results

Figure 24 shows the changes in total savings rates across the three scenarios in the
presence of a bequest motive. These are strikingly different from those in the main
text: 50-year-old individuals in poor health save more, which is the complete opposite
of the behavior when no bequest motive is present. This is a direct consequence of
expected utility: since agents in poor health are more likely to die soon, the probability
attached to the bequest utility increases and they consequently have an incentive to save
more.

This mechanism is always operational in the presence of a warm-glow bequest motive as
in (19). With a low weight θB on the bequest utility, the life-expectancy channel could still
dominate and the net effect could still be that individuals with a shorter life expectancy
save less, but the underlying mechanism – that a decrease in expected longevity makes
the agent want to save more for bequest reasons – is still present.

Figure 25 shows the life-cycle profiles for the three scenarios. Due to the bequest motive,
individuals in older ages do not decumulate their wealth, and the resulting average asset
profile is more in line with the data. There is hardly any difference between individuals
in poor vs. excellent health, neither in the model with objective survival heterogeneity,
nor in the model with subjective heterogeneity. This is a direct result of what we saw in
Figure 24: the total savings rates at older ages are quite close to those from the model
with no survival heterogeneity.

As the life-cycle profiles for the SSH model show, the median wealth among individuals
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Figure 24: Difference in the absolute savings rate for the model with a bequest motive. The darker
color shows the model with objective survival heterogeneity compared to the baseline
model with no survival heterogeneity. The lighter color shows the additional effect of
adding subjective survival beliefs. The x-axis depicts cash-at-hand percentiles by age
(equilibrium values for the baseline model). The color indicates health state: green is
excellent while red is poor health.
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(b) Objective survival heterogeneity (OSH)
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Figure 25: Life-cycle profiles for wealth, model with a bequest motive.
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in their 50s in poor health is slightly higher than among individuals in excellent health.
This is the effect of the higher savings due to the bequest motive. However, wealth
in the top P95 is slightly higher for 65-year-olds in excellent health than for 65-year-
olds in poor health. The reason is that for very rich individuals, the savings motive to
smooth consumption in the event of a longer life becomes relatively more important
again, after having saved up so much that the marginal utility from the bequest is
small.

These results are difficult to square with cross-sectional data (recall Figure 1) and give
rise to the question of what an alternative formulation of a warm-glow bequest motive
might look like. However, an answer to this question is beyond the scope of this
paper. The inclusion of other economic effects related to the health could be important:
for instance, if unhealthy individuals were subject to lower wages (as they are in the
data), expensive medical shocks or had some inherent low-savings characteristics, they
would have lower asset holdings on average. Since leaving a bequest is a luxury good,
individuals who are poor because they lived through many periods of bad health would
not experience a strong bequest motive and would consequently save less. This would
be a remedy for some of the counter-factual cross-sectional implications: we would most
certainly get a model where the unhealthy individuals have lower asset holdings, as in
the data.

However, the behavioral mechanism described above would still be present: imagine
an asset rich person (for whom the bequest motive is operational) who receives a bad
health shock (e.g., a cancer diagnosis) which shortens his/her expected life span. The
implication for this person’s savings behavior would be that he/she saves more, despite
the shorter expected life span, due to the bequest motive. Hence, even though more
health-related shocks could be a remedy for the cross-sectional counterfactual health-
wealth gradient, the channel of decreasing survival expectancy leading to increased
savings due to the bequest channel would still exist.
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