Anxiety, Expectations Stabilization and Intertemporal Markets: Theory, Evidence and Policy*

Francesco Carbonero (University of Turin), Jeremy Davies (East Village Consultants), Ekkehard Ernst (International Labour Organisation), Sayantan Ghosal (University of Glasgow), Leaza McSorley (University of Sunderland)

June 26, 2021

Abstract

Anxiety is a negative emotion experienced today in response to future risk. We model how anxiety impacts on risky investment when expected future returns interact with multiple narratives and strategic uncertainty today. A novel anxiety index is constructed via a sentiment analysis of daily online articles in the Daily Mail, Reuters and Press Association; its plausibility is established by comparing it to the corresponding ONS measure over the Covid-19 pandemic. A SVAR analysis shows that anxiety impacts negatively on stock market volatility, a model prediction. We discuss the welfare implications of lighthouse policies focusing on Brexit and the pandemic.

Keyword: anxiety, investment, uncertainty, strategy, narratives, sentiment, lighthouse, policy, coronacrisis, Brexit.

JEL: C72, D91,E21, E22, I30.

* The support of the Economic and Social Research Council (ESRC) is gratefully acknowledged, via the Rebuilding Macroeconomics Network (Grant Ref: ES/R00787X/1). We thank seminar audiences in London, Warwick, Edinburgh, Glasgow, ILO Geneva and Warsaw for their comments. Contact emails: francesco.carbonero@unito.it, jeremy@eastvillagescl.com, ernste@ilo.org, Sayantan.Ghosal@glasgow.ac.uk, leaza.mcsorley@sunderland.ac.uk
1 Introduction

It is certain that a very large part of what we experience in life depends ... on the anticipation of future events.

William Stanley Jevons, The Theory of Political Economy

Since the 2008 global financial crisis, Brexit and the current COVID-19 pandemic, the role of anxiety, the perception that the future is increasingly uncertain and expectations are de-anchored, has attracted increasing interest in policy discussions (Haldane, 2020). Anxiety is a negative emotional payoff experienced today in response to future risk Caplin and Leahy (2001). Anxiety aversion implies that a higher level of expected future risk will result in a higher negative emotional payoff today.

In this paper, we develop a model of investment in a risky asset where expected future returns are impacted by strategic uncertainty driven by multiple narratives today. We construct a new empirical measure of anxiety via a machine learning algorithm that applies sentiment analysis on online news articles in the Daily Mail, Reuters and Press Association. We establish the plausibility of our anxiety index by comparing it with the corresponding ONS measure over the course of the Covid-19 pandemic. Using our anxiety index, we carry out empirical tests of how anxiety shocks impact on stock market outcomes. In the process, we verify a key prediction of the model, namely that rising anxiety impacts negatively stock market volatility. We discuss the policy implications our analysis focusing on the role of ”lighthouse” policies in stabilising expectations about future returns from risky investment by reducing strategic uncertainty today with Brexit and the pandemic as case studies.

A large number of identical individuals are endowed with a unit of a good, not consumed but invested, in the initial time period of a two-period model when investment decisions are made. The good can be invested in either a riskless storage technology or supplied to a competitive firm which invests in a risky asset that generates either high or low returns in the future with a probability that depends on the average level of investment in risky asset and economic fundamentals. Each unit of the consumption good supplied to the firm generates an entitlement to a contingent claim over future consumption. Individual payoffs have two additively separable components. The first component is a psychological payoff realised in the initial time period which is a decreasing linear function of the variance of the lottery over future consumption: this captures anxiety. In second period, the individual obtains utility from consumption in that period. Note that a variation in the discount factor should have no effect on risk aversion over second period consumption but will increase the degree of anxiety aversion.

In our model, individuals and the firm owning the risky asset take both the average
level of investment and prices as given when making their own individual choices. Hence, we use the concept of a Nash-Walras equilibrium Ghosal and Polemarchakis (1997) as solution concept. Our first result demonstrates that there is a threshold value of economic fundamentals above which there are two Nash-Walras equilibria one where all individuals invest in the risky asset and the other in which all individuals invest in the storage technology and the former equilibrium Pareto dominates the latter; below the threshold value of fundamentals, the only equilibrium is one where all individuals invest in the storage technology.

Given that there is a range of economic fundamentals for which multiple Nash-Walras equilibria exist, we develop a equilibrium selection argument where multiple narratives generates strategic uncertainty in period one leading to different expected returns from investment in the risky asset in period two and hence, different levels of anxiety in period one. A narrative associates a particular value of economic fundamentals to an average level of investment in the risky asset. Multiple narratives are formalised using a narrative map which specifies for each value of economic fundamentals the proportion of individuals who associate a high level of average level of investment in the risky asset. Given multiple narratives, strategic uncertainty arises because every agent believes that when another agent chooses to play a specific action, she ends up making a mistake and choosing the other action with a small probability. What is formulation allows us to do use to adapt the notion of stochastically stable equilibrium Young (1998) as an equilibrium selection device that picks the risk dominant equilibrium Harsanyi et al. (1988).

To gain intuition, consider Rousseau’s parable of the stag-hare hunting game (Rousseau, 1964). Rousseau uses the game to contrast the gains of hunting hare, where the risk of non-cooperation is small or non-existent (in our case, investing in a riskless low return storage technology like a savings deposit) and the individual reward and social benefit equally small, against the gains of hunting the stag (in our case, investing in the risky asset whose returns depend on average level of investment), where both the individual reward and social payoff is greater if the hunt is successful but dependent critically on successfully coordinating individual actions. If the risk of non-coordination is high, hunting the hare (investing in the storage technology) becomes risk dominant as success in this activity does not depend on what other agents do even though coordinating successfully to hunt the stag (investing in the risky asset) is Pareto dominant.

Our second main result characterises the threshold value of economic fundamentals below which equilibrium where all agents invest in the storage technology, and above which the equilibrium where all agents invest in the risky asset, is risk dominant. We show that this latter threshold value is higher than the the threshold value above which the the equilibrium where all agents invest in the risky asset is Pareto dominant.

We show that increased anxiety (modelled as exogenous increase in the anxiety aversion
parameter) implies that the range of economic fundamentals for which there is positive investment in the risky asset occurs shrinks because the range of economic fundamentals for which investment in the risky asset is risk-dominant decreases. Assuming a fixed probability distribution over economic fundamentals, we show that the equilibrium variance in the price of the risky asset must decrease as well.

Next, we develop an empirical index of anxiety through a machine learning algorithm that applies sentiment analysis on news articles published online by Daily Mail, Reuters and Press Association. First, we label a training set of articles with different values of anxiety from “no anxiety” to “high anxiety”. Then, we apply these labels to the whole archive of article the website dailymail.com. These labels are then re-scaled on a score between zero and one. The detailed methodology is described in the appendix.

To establish the plausibility of our anxiety index, we compare it with the evolution of a self-reported anxiety measure, based on weekly data, collected and reported by the Office of National Statistics (ONS) in its Well-being and Quality of Life Survey over the Covid-19 pandemic. Our anxiety index maintains a longer peak and reduces more slowly than the corresponding ONS measure.

Using our anxiety index, we estimate the impact of anxiety on stock market volatility, using daily differences between maximum and minimum prices of FTSE250 from 2019. We show that both series show counter-cyclical movements. The spikes of anxiety mimic the drop in stock market volatility: the counter-cyclical link between the two series is confirmed by their negative correlation.

We, then, apply a Structural Vector Autoregression (SVAR) model which exploits the joint dynamics of anxiety and stock market volatility as a direct test of the impact of anxiety on stock market outcomes. The causal impact is extracted by leveraging the key characteristics of anxiety, namely, its forward-looking generation. We demonstrate the short and cumulative impact of anxiety on stock market volatility. We find that a positive anxiety shock impacts negatively on stock market volatility. This effect is statistically significant with a 2-days lag, it remains significant for the subsequent two days and then become insignificant. The cumulative impact is negative and significant (the size is a cumulative drop of 3 log points in stock market volatility for an increase of one standard deviation in anxiety). This empirical finding is consistent with the our theoretical result that an increased level of anxiety reduces both investment in risky assets and the volatility of their prices.

We show how policy actions, establishing a focal point backed by Pigouvian taxes, can act as a lighthouse to stabilise expectations. In our understanding, such lighthouse policies guide the economy through times of high economic anxiety by stabilising expectations and creating a degree of common knowledge about the future thus mitigating strategic uncertainty today and enabling welfare enhancing productive investments. By stabilising
expectations and creating a shared narrative, lighthouse policies mitigate anxiety, increase investment in risky assets and lead to gains in social welfare. In the context of Brexit, we discuss how the evolution of negotiations, parliamentary debates and votes and key elections interacted with the evolution of our anxiety index. In the context of the current pandemic, we discuss how the policy can impact on recovery from it.

The rest of the paper is structured as follows. The next section discusses related literature. The following section focuses on the theoretical model and the its results. Section 4 is devoted to the empirical analysis. Section 5 contains a discussion of policy and the Brexit case study. The last section concludes. The appendix sets out the methodology used in the empirical section in detail.

2 Related literature

Our analysis builds on, and contributes to, different strands of the research and policy literature.

We follow Caplin and Leahy (2001) in modelling anxiety as an anticipatory emotion linked to perceptions of future uncertainty. In psychology, anxiety refers to an “an emotion characterized by an unpleasant state of inner turmoil”, according to the corresponding Wikipedia entry, with the aim to “preserve life” (Sylvers et al., 2011), often leading to medical conditions, known as “generalised anxiety disorder” (for a recent empirical analysis of this phenomenon in the United Kingdom, see Slee et al., 2020). Evidently, anxiety and risk aversion are related but, at least in our formulation, distinct. Anxiety arises in response to future risk; risk aversion is response to contemporaneous risk.

In our model, investment in the risky asset is characterised by strategic complementarity. In such a situation, expectations can be formed rationally and individually but the outcomes are being determined by actions undertaken by other economic agents. Evidently multiple equilibria can arise in such models although the way we model and resolve the resulting strategic uncertainty is distinct from the large literature analysing expectations-driven sunspots (Azariadis and Guesnerie, 1986; Cass and Shell, 1983; Farmer, 1993) as well as from the literature on global games (see Morris and Shin, 1998, 2002).

Several economists have noted the importance of narratives (Akerlof and Showner, 2016; Shiller, 2017, 2019), stories that influence people’s opinions and expectations. Sociologists and historians have long speculated about the importance of such narratives to shape the direction of research, investments, and consumption (Beckert, 2016; Radkau, 2017). In particular among scholars analysing the role of central banks, communication and the different narratives that central bankers try to convey has increasing been seen as an essential tool of monetary policy making (Haldane and McMahon, 2018; Holmes, 2013,
Our focus, in this paper, is on competing narratives and the resolution of these competing narratives via an equilibrium selection adapting Young (1998) to select the risk-dominant equilibrium. In a simple, bi-narrative model, De Grauwe (2011) shows that agents continuously switch between bouts of optimism and pessimism, thereby leading to expectation-driven, animal-spirit-like cycles unrelated to fundamentals. In contrast, in our model, which equilibrium is risk dominant depends on economic fundamentals.

With the availability of digital archives of newspaper articles, more or less sophisticated forms of natural language processing have been used to identify bouts of policy uncertainty (Baker et al., 2016) or the focus of monetary policy communication (Ernst et al., 2018). The resulting anxiety among households their social and economic conditions has been captured through pre-classified news articles in the ILO’s Social Unrest indicator (ILO, 2015). Finally, specific survey evidence, for instance provided by the Manpower Hiring Index, has been used to characterise the implied uncertainty for firms to find the right skills on labour market, the so-called hiring uncertainty index (Ernst and Viegelahn, 2014). Similarly, Makridis (2019) leverages individual-level Gallup data to construct a business cycle sentiment indicator.

Both Lagerborg et al. (2020) and Makridis (2019) consider the impact of sentiment shocks on the economy through household consumption. In their approach, higher uncertainty leads to less household consumption over a protracted period of time, substantially lowering economic activity. In contrast, Bloom (2009) considers the impact of uncertainty on investment decisions, similarly concluding that it leads to a reduction in investment, production and employment. Yet another approach considers deviations from rational expectations through the formation of subjective beliefs and Bayesian learning, demonstrating the large quantitative impact of bouts of pessimism on unemployment (Bhandari et al., 2019). Common to all these papers is the exogenous nature of the sentiment shock, whether in the form of negative news (see also Song and Tang, 2018), higher (policy) uncertainty or unexplained shifts in beliefs.

None of these approaches considers that sentiment shifts might arise endogenously out of the individual predisposition to different psychological states, such as anxiety. As Andy Haldane pointed out, however, such endogenous, ratcheting-up effects in peoples’ mood are likely at work and might explain why mood swings persist long after any negative news have been reversed (Haldane, 2020). Media coverage and the strategic interaction between journalists and their readership might be one possibility that explains such an endogenous interaction between news and mood (Ghosh et al., 2020). Alternatively, mood swings can arise from comparing oneself with others, an effect famously dubbed the “Tunnel effect” by Hirschman and Rothschild (1973).

Our contribution to this empirical literature is in the construction of a novel anxiety...
index, capturing the impact of changing emotions, establishing its plausibility and using it to establish the impact of an exogenous increase in anxiety on stock market outcomes.

3 Anxiety, Consensus and Aggregate Welfare: A Simple Model

3.1 Model setup

There is a continuum of identical agents $i \in [0,1]$. We consider two time periods $t = 1, 2$ and a single good in each period denoted by $x_t, t = 1, 2$. Individuals are endowed with one unit of the good at $t = 1$ and have zero endowments at $t = 2$. All consumption occurs in $t = 2$. Individuals have linear utility from consumption in period 2, $u(x_{2,i}) = x_{2,i}$. Each individual owns a storage technology where one unit of input invested at $t = 1$ yields one unit of output at $t = 2$.

There is a single price-taking firm in which each individual $i \in [0,1]$ is an equal shareholder. At $t = 1$, the firm mobilizes investment in the risky asset by issuing a contingent claim over its output at $t = 2$. The returns to the risky asset depend on aggregate amount investment in it as well as an underlying state of the world (interpreted as representing economic fundamentals). Let $\theta \in [0,1]$ denote the economic fundamentals.

Let $s_i \in [0,1]$ denote the investment made by individual i in the risky asset; $s_i = 0$ denotes the choice whereby individual i investments entirely in the storage technology while $s_i = 1$ denotes the choice whereby individual i investments entirely in the risky technology. Let s denote the average investment in the risky asset associated with $s = \{s_i, i \in [0,1]\}$, an assignment of strategies i.e. a combination of investment decisions over the set of agents $[0,1]$ which is integrable.

The production technology of the risky asset is as follows: one unit of input at $t = 1$ yields either $R_H > 1$ units of output with probability θs or $R_L < 1$ units of output with probability $1 - \theta s$ at $t = 2$. This stochastic production technology of the risky asset has constant returns to scale where the probability distribution over returns depends both on economic fundamentals as well as the average level of investment. In what follows, for ease of exposition, we set $R_L = 0$.

The firm mobilizes investment in the risky asset by issuing a contingent claim on the return of the risky asset in period $t = 1$. When the individual invests s_i in the firm, the individual obtains a contingent claim of $p_H s_i$ when the state of the world is H and of $p_L s_i$ when the state of the world is L on the future output of the firm. The price of the consumption good in period $t = 1$ is the numeraire so that p_H (respectively, p_L) is the...
As long as $0 < \delta < 1$ is a discount factor the discount factor. The individual is anxiety averse so that a higher level of anxiety corresponds to lower discounted expected utility. Note that we can re-write the expected utility function as follows:

$$
\tilde{v}(s_i, s, \theta, p_H) = \delta \left(-\frac{\gamma}{\delta} \frac{\theta s(1 - \theta s)p_H^2 s_i^2}{2} + [1 - s_i + \theta s p_H s_i + \pi] \right)
$$

(2)

As long as $0 < \delta \leq 1$, the above expected utility function represents the same underlying preferences as

$$
v(s_i, s, \theta, p_H) = -\frac{\gamma}{\delta} \frac{\theta s(1 - \theta s)p_H^2 s_i^2}{2} + [1 - s_i + \theta s p_H s_i + \pi]
$$

(3)
where $\gamma = \frac{\beta}{2}$. It follows that the more impatient the decision-maker is (the lower the value of δ) the higher the degree of anxiety aversion. That the degree of anxiety aversion varies with the changing values of δ is key to differentiating anxiety aversion from risk aversion over lotteries over consumption at $t = 2$: if the individual is risk averse over consumption at $t = 2$ (equivalently, has strictly concave preferences over consumption at $t = 2$), then the degree of risk-aversion will be unaffected by varying the discount factor as long as $0 < \delta \leq 1$. Equivalently, the degree of risk aversion can be modified without affecting the discount factor and the degree of anxiety aversion. For ease of exposition, in what follows, we will work with the expected utility function $v(s, s', \theta, p_H)$.

In our model an agent’s payoffs depend on both the average level of investment and prices. We require that in a Nash-Walras equilibrium Ghosh et al. (2020), given prices and the level of average investment, each agent must act optimally, and prices must clear markets.

Definition 1 For each $\theta \in [0, 1]$, a Nash-Walras equilibrium is a triple $(s^*(\theta), p_H^*(\theta), p^*(\theta), y^*(\theta))$ where $s^*(\theta)$ is an assignment of investment strategies, $p_H^*(\theta)$ is an asset price and $y^*(\theta)$ a level of investment by the firm such that given $s^*(\theta)$ (the level of aggregate investment corresponding to $s^*(\theta)$):

(i) $s^*_i(\theta) \in \text{argmax}_{s_i \in [0, 1]} v((s_i, s^*(\theta), \theta, p^*_H(\theta)))$, for all $i \in [0, 1]$,
(ii) given $p^*_H(\theta), s^*(\theta), y^*(\theta) \in \text{argmax}_{y \geq 0} \pi(s^*(\theta), \theta, p^*_H)$
(iii) $p^*(\theta) = \theta p_H^*(\theta)$,
(iv) $y^*(\theta) = s^*(\theta)$

3.2 Results

The following proposition characterizes the Nash-Walras equilibria:

Proposition 3.1. There exists a threshold value $\hat{\theta}$, $0 < \hat{\theta} = \frac{\gamma R_H - 2 + \sqrt{(2 - \gamma R_H)^2 + 8 \gamma}}{2 \gamma R_H} < 1$, such that (i) for each $\theta < \hat{\theta}$, $s^*(\theta) = s^*(\theta) = 0$, $p^*(\theta) = 0$, $y^*(\theta) = s^*(\theta) = 0$ is the only Nash-Walras equilibrium, and (ii) when $\theta > \hat{\theta}$, both $(s^*(\theta) = s^*(\theta) = 0, p_H^*(\theta) = R_H, p^*(\theta) = 0, y^*(\theta) = s^*(\theta) = 0)$ and $(s^*(\theta) = s^*(\theta) = 1, p_H^*(\theta) = R_H, p^*(\theta) = \theta R_H, y^*(\theta) = s^*(\theta) = 1)$ are Nash-Walras equilibria and the latter Pareto dominates the former.

Proof. Given that $R_L = p_L = 0$, the price of a share is $p = \theta s p_H$. Given constant returns to scale, as the firm is a price-taker, at a Nash-Walras equilibrium, it must make zero profits. Hence, $p^*_H(\theta) = R_H$ and $\theta s^*(\theta) R_H = p^*(\theta)$ at a Nash-Walras equilibrium. At
\(t = 1 \), given \(s_i, s, \theta, p^*_H(\theta) = R_H \) in equilibrium the lottery over future consumption at \(t = 2 \) is \(l(s_i, s, \theta, R_H) = \{ 1 - s_i + R_H s_i, \theta s; 1 - s_i, 1 - \theta s \} \). By computation, the corresponding average level of future consumption is \(\mu(l(s_i, s, \theta, R_H)) = 1 - s_i + \theta s R_H s_i \) and the variance of future consumption is \(\sigma^2(l(s_i, s, \theta, R_H)) = \frac{\theta s (1-\theta s) R_H^2 s_i^2}{2} \). Note that the average level of future consumption is when the individual invests only in the storage technology is \(\mu(l(0, s, \theta, R_H)) = 1 \) and the variance of future consumption is \(\sigma^2(l(0, s, \theta, R_H)) = 0 \).

By computation, for a given \(s \) and \(\theta \), setting \(s_i = 0 \) implies a payoff of
\[
v(0, s, \theta, R_H) = 1, \forall s \in [0, 1]
\]
In equilibrium, setting \(s_i = 1 \) implies a payoff of
\[
v(1, s, \theta, R_H) = \theta s R_H - \gamma \frac{\theta s (1-\theta s) R_H^2 s_i^2}{2}.
\]
Let \(b_i(s, \theta, p_H) \) denote the best-response by player \(i \). It follows that:
\[
b_i(s, \theta, R_H) = \begin{cases}
1, & \text{if } (\theta s R_H - 1) - \gamma \frac{\theta s (1-\theta s) R_H^2 s_i^2}{2} \geq 0 \\
0, & \text{otherwise}
\end{cases}
\]
It follows that if \(s = 0 \), the best response is to set \(s_i = 0 \) for all \(i \in [0, 1] \). Hence, for each \(\theta \), the investment strategy profile \((s^*_i(\theta) = 0 : i \in [0, 1]) \) is a Nash-Walras equilibrium. Next, by computation, note that when \(s = 1 \):
\[
v(1, 1, \theta, R_H) = (\theta R_H - 1) - \gamma \frac{\theta (1-\theta) R_H^2 s_i^2}{2}
\]
Observe that
\[
\lim_{\theta \to 0} v(1, 1, \theta, R_H) = 0 < 1 = v(0, s, \theta),
\]
while
\[
\lim_{\theta \to 1} v(1, 1, \theta, R_H) = R_H > 1 = v(0, s, \theta), \forall s \in [0, 1]
\]
Hence, there exists \(\theta, 0 < \hat{\theta} < 1 \), such that whenever \(\theta > \hat{\theta} \), the investment strategy profile \((s^*_i(\theta) = 1 : i \in [0, 1]) \) is also an equilibrium.

By computation, the roots of the equation \(v(1, 1, \theta, R_H) - 1 = 0 \) are \(\frac{\gamma R_H - 2 + \sqrt{(2 - \gamma R_H)^2 + 8 \gamma}}{2 \gamma R_H} \). Of the two roots, only \(\frac{\gamma R_H - 2 + \sqrt{(2 - \gamma R_H)^2 + 8 \gamma}}{2 \gamma R_H} > 0 \) and when \(\delta R_H > 1 \), \(\frac{\gamma R_H - 2 + \sqrt{(2 - \gamma R_H)^2 + 8 \gamma}}{2 \gamma R_H} < 1 \). By computation, note that \(\frac{\partial}{\partial \theta} v(1, 1, \theta, R_H) > 0 \iff \delta R_H > \frac{\sigma R_H^2 (1 - 2 \theta)}{\gamma R_H} \iff \theta > \frac{\gamma R_H - 2}{\gamma R_H} \). Moreover, by computation, it must be the case that \(\hat{\theta} > \frac{\gamma R_H - 2}{\gamma R_H} \) as \(v(1, 1, \frac{\gamma R_H - 2}{\gamma R_H}, R_H) < \). Hence, \(\hat{\theta} = \frac{\gamma R_H - 2 + \sqrt{(2 - \gamma R_H)^2 + 8 \gamma}}{2 \gamma R_H} \). Finally, note that when \(\theta > \hat{\theta} \), \(v(1, 1, \theta, R_H) > v(0, 0, \theta, R_H), \forall s \in [0, 1] \). Hence the Nash-Walras equilibrium with \((s^*(\theta) = s^*(\theta) = 1, p^*_H(\theta) = R_H, p^*(\theta) = \theta R_H, y^*(\theta) = s^*(\theta) = 1) \) Pareto dominates the Nash-Walras equilibrium \((s^*(\theta) = s^*(\theta) = 0, p^*_H(\theta) = R_H, p^*(\theta) = 0, y^*(\theta) = s^*(\theta) = 0) \).

\(\square \)
The key implication of Proposition 3.1 is that when (a) economic fundamentals are low, $0 \leq \theta < \hat{\theta}$, there is no investment in the risky asset, (b) when economic fundamentals are high, $\hat{\theta} < \theta < 1$, then there are multiple Nash Walras equilibria, one with, and the other without, investment in the risky asset with the latter Pareto dominated by the former.

When economic fundamentals are low, $0 \leq \theta < \hat{\theta}$, the return from investing in the risky asset, even when all other individuals choose to do so, cannot compensate for the negative impact of the resulting level of anxiety. Hence, it is a dominant action for individuals to invest in the storage technology.

When economic fundamentals are high, $\hat{\theta} < \theta < 1$, there is no dominant action. If all individuals expect all other individuals to invest in the storage technology, then investing in the storage technology is a best response: hence, the expectation that no individual invests in the risky asset becomes self-fulfilling. On the other hand, the return from investing in the risky asset, even when all other individuals choose to do so, more than compensates for the negative impact of the resulting level of anxiety; hence, the expectation that every individual invests in the risky asset becomes self-fulfilling. So when economic fundamentals are high but individuals coordinate on the Pareto dominated equilibrium, there is coordination failure and aggregate welfare is reduced.

Given the existence of multiple Pareto dominated Nash Walras equilibria, which one do agents coordinate on? In the context of two player coordination games, Harsanyi and Selten (1988)’s selected the risk-dominant equilibrium, which has a higher degree of immunity to strategic uncertainty when there is a lack of consensus about what each agent believes other agents are going to do. In what follows, we adapt the concept of stochastic stability (developed by Young (1988) to our setting, to develop an equilibrium selection argument that also selects the risk-dominant equilibrium and how the selection depends on economic fundamentals.

In the model, strategic uncertainty arises due to multiple narratives. Formally, a narrative map is a function $\sigma : [0,1] \rightarrow [0,1]$ which specifies the proportion of agents $\sigma(\theta) \in [0,1]$ who associate an aggregate level of investment 1 in the risky asset when economic fundamentals take on the value of θ; the corresponding fraction of agents who disagree and associate an aggregate investment level of 0 in the risky asset when economic fundamentals are θ is given $1 - \sigma(\theta)$. Whenever $0 < \sigma(\theta) < 1$, the narrative map allows for multiple narratives: there are two null sets of agents who disagree with each other about the what the aggregate level of investment in the risky asset is going to be when economic fundamentals are θ.

Suppose an agent believes that whenever any other agent chooses to play a specific action, she ends up choosing some other action with probability $q, 0 < q < 1$. In the presence of multiple narratives, agents who associate an aggregate level of investment 1 when economic fundamentals take on the value of θ will choose to invest in the risky asset.
with probability $1 - q$ and invest in the storage technology with probability q and vice versa, agents who associate an aggregate investment level of 0 when economic fundamentals are θ will invest in the storage technology with probability $1 - q$ and in the risky asset with probability q.

We adapt the notion of a stochastically stable equilibrium (Young, 1998) to select between the equilibria. Let G be an arbitrary finite normal form game with a set of N players, an action set A^i for each player $i = 1, \ldots, N$ and a payoff $u^i : \prod (i = 1)^N A^i \to \mathbb{R}$. Suppose each player believes that whenever any other player chooses to play a specific action, with probability q, $0 < q < 1$, she ends up choosing some other action in A^i (with probability $1 - q$ he plays the chosen action). Let $G(q)$ denote the perturbed game. For each action profile, let each player pick a best response to that action state in $G(q)$ i.e. taking into account the possibility that other individuals will make a mistake with probability q. This defines a function σ from the set of action profiles to itself. If there are many best responses, then there will be many such functions σ. When q is small enough, let the set of σ's that remain best responses for all smaller q be denoted by $S(G)$. Any $\sigma \in S(G)$, together with q, defines a Markov process over the set of action profiles that is both irreducible and aperiodic and therefore has a unique steady-state distribution. A stochastically stable action profile is one which has positive probability under the limit of the steady state distribution of the preceding Markov process as q goes to zero for any selection $\sigma \in S(G)$. If an action profile is both a Nash equilibrium of G and is stochastically stable, then it is said to be a stochastically stable equilibrium of G.

To be able to apply the concept of stochastically stable equilibrium in our setting we proceed as follows.

First, we reformulate the Nash Walras equilibrium as a Nash equilibrium. As the firm has constant returns to scale technology it must make zero profits in equilibrium so that $p^*_H = R_H$ and $\pi^*_H = 0$. Hence, a payoff equivalent reformulation of the model is a non-cooperative game where each individual can invest in either the storage technology or the risky asset and the returns of the risky asset depend on θ and s in a manner already described and $p_H = R_H$ and $\pi = 0$ throughout. In this formulation, the role of the firm is eliminated and there is no market where contingent claims on the risky asset are traded and instead of a Nash-Walras equilibrium, we have a Nash equilibrium. Formally:

Definition 2 For each $\theta \in [0, 1]$, a Nash equilibrium is $s^*(\theta)$ an assignment of investment strategies, such that given $s^*(\theta), s^*_i(\theta) \in \text{argmax} s_i \in [0, 1] v((s_i, s^*(\theta), \theta, R_H))$, for all $i \in [0, 1]$.

It follows directly from Proposition 3.1, that there exists a threshold value $0 < \hat{\theta} = \frac{\gamma R_H - 2 + \sqrt{(2 - \gamma R_H)^2 + 8 \gamma}}{2 \gamma R_H} < 1$, such that (i) for each $\theta < \hat{\theta}$, $s^*(\theta) = 0$, the only Nash equilibrium, and (ii) when $\theta > \hat{\theta}$, both $(s^*(\theta) = 0)$ and $(s^*(\theta) = 1)$ are both Nash-Walras equilibria and
the latter equilibrium Pareto dominates the former.

Second, it will be useful to define \(\tilde{s}(\theta) \) as a solution to the equation \(v(1,s,\theta,R_H) = 1 = 0 \). The following result provides characterization of \(\tilde{s}(\theta) \):

Lemma There is a unique solution define \(\tilde{s}(\theta) \) to the equation \(v(1,s,\theta) = 1 \) given by

\[
\tilde{s}(\theta) = \frac{\gamma R_H - 2 + \sqrt{(2 - \gamma R_H)^2 + 8\gamma}}{2\gamma R_H}
\]

Proof. The equation \(v(1,s,\theta) = 1 \) can be written as \((\theta s R_H - 1) - \gamma \frac{\theta s (1-\theta s) R_H^2}{2} = 0 \). Let \(x = \theta s \), \(0 \leq x \leq 1 \). Substituting \(x \) in the preceding equation, we obtain \(\delta(x R_H - 1) - \gamma x (1-x) R_H^2 = 0 \). By computation, the roots of the equation are \(\frac{\gamma R_H - 2 + \sqrt{(2 - \gamma R_H)^2 + 8\gamma}}{2\gamma R_H} \). Of the two roots, only \(\frac{\gamma R_H - 2 + \sqrt{(2 - \gamma R_H)^2 + 8\gamma}}{2\gamma R_H} > 0 \) and when \(R_H > 1 \), \(\frac{\gamma R_H - 2 + \sqrt{(2 - \gamma R_H)^2 + 8\gamma}}{2\gamma R_H} < 1 \).

By computation, note that \((x R_H - 1) - \gamma x (1-x) R_H^2 > 0 \) \(\iff \frac{\gamma R_H - 2 + \sqrt{(2 - \gamma R_H)^2 + 8\gamma}}{2\gamma R_H} > \frac{\gamma R_H - 2}{2\gamma R_H} \).

Moreover, by computation, it must be the case that \(\frac{\gamma R_H - 2 + \sqrt{(2 - \gamma R_H)^2 + 8\gamma}}{2\gamma R_H} > \frac{\gamma R_H - 2}{2\gamma R_H} \).

Hence, \(x = \theta s = \frac{\gamma R_H - 2 + \sqrt{(2 - \gamma R_H)^2 + 8\gamma}}{2\gamma R_H} \) or equivalently, \(\tilde{s}(\theta) = \frac{\gamma R_H - 2 + \sqrt{(2 - \gamma R_H)^2 + 8\gamma}}{2\gamma R_H} \). \(\square \)

Third, for a fixed value of \(\theta \in [0,1] \), consider a sequence of finite grids contained in \([0,1]\) whose limit is \([0,1]\). Denote such a sequence of finite grids by \(N_j, j \geq 1 \). Let \(N_j = \# \tilde{N}_j \). We call a sequence of finite grids admissible if (i) there exists a \(\tilde{N}_j \), \(0 < \tilde{N}_j < N_j \) such that \(\tilde{N}_j = \tilde{s}(\theta) \), (ii) the payoff to agent \(i \) is \(v(s_i,s,\theta) \) where \(s_i \in \{0,1\} \). We are now able to state the following definition:

Definition 3 A Nash equilibrium \(s^*(\theta) \) (equivalently, a Nash Walras equilibrium \((s^*(\theta), p_H^*(\theta), p^*(\theta), y^*(\theta)) \) to be stochastically stable if it is the limit of the sequence of stochastically stable equilibria of all admissible sequences of finite grids converging to \([0,1]\). The following proposition characterizes which equilibrium will be selected:

Proposition 3.2. If \(\theta > \hat{\theta} = \frac{\gamma R_H - 2 + \sqrt{(2\delta - \gamma R_H)^2 + 8\gamma}}{\gamma R_H} \), then \(s_i(\theta) = 1 \) for all \(i \in \{0,1\} \) (respectively, \(s^*(\theta) = 1, p_H^*(\theta) = R_H, p^*(\theta) = \hat{\theta} R_H, y^*(\theta) = 1 \)) is the only stochastically stable Nash (respectively, Nash Walras) equilibrium; if \(\theta < \hat{\theta} = \frac{\gamma R_H - 2 + \sqrt{(2\delta - \gamma R_H)^2 + 8\gamma}}{\gamma R_H} \), then \(s_i(\theta) = 0 \) for all \(i \in \{0,1\} \) (respectively, \(s^*(\theta) = 0, p_H^*(\theta) = R_H, p^*(\theta) = 0 R_H, y^*(\theta) = 0 \)) is the only stochastically stable Nash (respectively, Nash Walras) equilibrium.

Proof. Fix \(j \) and consider \(\tilde{N}_j \). For \(q \) small enough, if at least \(\tilde{N}_j \) individuals invest in the risky asset, then the best response of other individuals must be to invest in the risky asset as well. Similarly, if at most \(\tilde{N}_j - 1 \) invest in the risky asset, then the best response of each other individual must be to continue to invest in the storage technology. In action profiles
where exactly \(N_j - 1 \) invest in the risky asset, choosing either of the two options, invest in the risky asset or invest in the storage technology, are both possible best responses for an individual investing in the storage technology. It follows that that best responses differ only in action profiles where the number of individuals choosing to invest in the risky asset is exactly \(\tilde{N}_j - 1 \). Now, consider the associated Markov process for small \(q \). There are two recurrent communication classes (for the definition of the terms "recurrent communication classes", "resistance" and "minimum stochastic potential", see Young, 1993), one where all individuals invest in the risky asset (labelled \(a \)) and one in which all individuals invest in the storage technology (labelled \(b \)). By Theorem 4 in Young (1993), only action profiles in a recurrent communication class with least resistance will have positive probability weight in the limit of the steady state distribution of the Markov process as \(q \) goes to zero. Consider the action profile \(b \). Then, (i) there is a best response selection such that given \(N_j - \tilde{N}_j + 2 \) errors, the best response of each individual is to be in \(a \) and (ii) there is a best response selection such that given \(N_j - \tilde{N}_j + 1 \) errors, the best response of each individual is to be in \(a \). Therefore, the minimum resistance of leaving the action profile \(b \), depending on the selection made, is either \(N_j - \tilde{N}_j + 1 \) or \(N_j - \tilde{N}_j + 2 \). It follows that the minimum resistance of a tree oriented from the action profile \(b \) to the action profile \(a \), depending on the best response selection made, is either \(N_j - \tilde{N}_j + 1 \) or \(N_j - \tilde{N}_j + 2 \). Next, consider the action profile \(a \). Then, there is both a best response selection such that given \(\tilde{N}_j - 1 \) errors, the best response of each individual is to be in \(b \), and a best response selection such that given \(\tilde{N}_j - 2 \) errors, the best response of each individual is to be in \(b \). Therefore, the minimum resistance of leaving the action profile \(a \), depending on the best response selection is either \(\tilde{N}_j - 1 \) or \(\tilde{N}_j - 2 \). It follows that the minimum resistance of a tree oriented from the action profile \(a \) to the action profile \(b \), depending on the best response selection made, is also either \(\tilde{N}_j - 1 \) or \(\tilde{N}_j - 2 \). The action profile \(b \) is the unique stochastically stable equilibrium if and only if both \(N_j - \tilde{N}_j + 1 < \tilde{N}_j - 1 \) and \(N_j - \tilde{N}_j + 2 < \tilde{N}_j - 2 \) or equivalently, both \(\tilde{N}_j > N_j^1 + 2 \) and \(\tilde{N}_j > N_j^2 + 2 \). As \(N_j^1 + 2 < N_j^2 + 2 \) if \(\tilde{N}_j - 1 > N_j \), the action profile \(a \) is the unique stochastically stable equilibrium. Rewriting these inequalities, it follows that action profile \(a \) is the unique stochastically stable equilibrium if and only if \(\frac{N_j - 2}{N_j} > \frac{1}{2} \). Given \(\theta \), for any admissible sequence of finite grids, \(\lim_{j \to \infty} \frac{N_j - 2}{N_j} = s(\theta) \) so that when \(s(\theta) > \frac{1}{2} \), the unique stochastically stable equilibrium is one where all individuals invest in the storage technology or conversely, when \(s(\theta) < \frac{1}{2} \), the unique stochastically stable equilibrium is one where all individuals invest in the risky asset. Finally, by computation, note that \(\tilde{s}(\theta) < \frac{1}{2} \) (respectively, \(\tilde{s}(\theta) > \frac{1}{2} \)) if and only if \(\theta > \frac{\gamma R_H - 2 + \sqrt{(2 - \gamma R_H)^2 + 8 \gamma}}{\gamma R_H} \) (respectively, \(\theta < \frac{\gamma R_H - 2 + \sqrt{(2 - \gamma R_H)^2 + 8 \gamma}}{\gamma R_H} \)). \(\square \)

Heuristically, by Proposition 3.1, when \(\theta < \hat{\theta} \), there is only one possible outcome namely that all individuals will invest in the storage technology as this is the dominant action. Hence, as the probability of making a mistake \(q \) goes to zero, no investment in the risky asset can be the only equilibrium outcome: there is, endogenously, no strategic
uncertainty. When \(\theta > \hat{\theta} \), unless \(\sigma(\theta) = 1 \) or \(\sigma(\theta) = 0 \), the optimal action an agent will depend on what other do, which in turn depends on the aggregate level of investment they associate with a particular value of economic fundamentals. Note that for a given value of \(\theta \) when \(s(\theta) < \frac{1}{2} \) (when \(\theta > \hat{\theta} \)) the Nash (respectively, Nash-Walras) equilibrium where \((s_1^*(\theta) = 1)\) (respectively, \((s_1^*(\theta) = 1, p_H^*(\theta) = R_H, p^*(\theta) = \theta R_H, y^*(\theta) = 1)\) is risk dominant; conversely when \(s(\theta) > \frac{1}{2} \) (when \(\theta < \hat{\theta} \)) the Nash (respectively, Nash-Walras) equilibrium where \((s_1^*(\theta) = 0)\) (respectively, \((s_1^*(\theta) = 1, p_H^*(\theta) = R_H, p^*(\theta) = \theta R_H, y^*(\theta) = 0)\) is risk dominant. In the presence of multiple narratives and the resulting strategic uncertainty, using stochastic stability as an equilibrium selection argument, as \(q \) converges to zero, we select the equilibrium that is risk dominant.

3.3 Anxiety and Asset Prices

So far, in our analysis, we have taken \(\theta \), the value of economic fundamentals, to be a constant. It will be convenient, at this point, to assume that there is a continuous CDF \(F(\theta) \) (with \(f(\theta) \)) which determines the distribution of \(\theta \) in \([0,1]\). Given our equilibrium selection argument in 3.2, the distribution over \(\theta \) induces a distribution over asset prices \(p^*(\theta) \). A straightforward calculation shows that, in equilibrium, the mean asset price is \(E(p^*(\theta)) = R_H \int_0^1 \theta dF(\theta) \) and the variance of asset prices is \(V(p^*(\theta)) = \int_0^1 (\theta R_H - Ep^*(\theta))^2 dF(\theta) \).

The following proposition demonstrates the impact of changes in the value of the anxiety parameter \(\gamma \) and the equilibrium variance of asset prices \(V(p^*(\theta)) \):

Proposition 3.3. An increase in the value of the anxiety parameter, \(\gamma \), reduces the value of the equilibrium variance prices \(V(p^*(\theta)) \) of the asset price \(p^*(\theta) \).

Proof. The proof is in two steps. First, we show that \(\hat{\theta} = \frac{\gamma R_H - 2 + \sqrt{(2 - \gamma R_H)^2 + 8 \gamma}}{\gamma R_H} \) is increasing for all \(\gamma > 0 \). By computation:

\[
\frac{d\theta}{d\gamma} = 2 + \left\{ \gamma \left[(2 - \gamma R_H)^2 + 8 \gamma \right]^{\frac{1}{2}} (2 - \gamma R_H)^2 R_H + 4 \right\} - \left[(2 - \gamma R_H)^2 + 8 \gamma \right]^{\frac{1}{2}} \right\} \frac{1}{R_H \gamma^2} \tag{11}
\]

Furthermore, by computation:

\[
\left\{ \gamma \left[(2 - \gamma R_H)^2 + 8 \gamma \right]^{\frac{1}{2}} (2 - \gamma R_H)^2 R_H + 4 \right\} - \left[(2 - \gamma R_H)^2 + 8 \gamma \right]^{\frac{1}{2}} \right\} \geq 0 \tag{12}
\]

If and only if \(\gamma \geq \frac{R_H - 2}{2} \). When \(0 \leq \gamma < \frac{R_H - 2}{2} \), note that \(\{ \gamma \left[(2 - \gamma R_H)^2 + 8 \gamma \right]^{\frac{1}{2}} (2 - \gamma R_H)^2 R_H + 4 \} - \left[(2 - \gamma R_H)^2 + 8 \gamma \right]^{\frac{1}{2}} \right\} \geq -2 \). Hence, it follows that \(2 + \left\{ \gamma \left[(2 - \gamma R_H)^2 + 8 \gamma \right]^{\frac{1}{2}} (2 - \gamma R_H)^2 R_H + 4 \right\} - \left[(2 - \gamma R_H)^2 + 8 \gamma \right]^{\frac{1}{2}} \right\} > 0 \) for all \(\gamma > 0 \). Second, we show that \(V(p^*(\theta)) = \int_0^1 (\theta R_H - Ep^*(\theta))^2 dF(\theta) \) is decreasing in \(\hat{\theta} \). Indeed, by computation,

\[
V(p^*(\theta)) = (Ep^*(\theta))^2 + R_H^2 \int_0^1 \theta^2 dF(\theta) + 2 R_H E p^*(\theta) \int_0^1 \theta dF(\theta) \tag{13}
\]
Note that $E p^*(\theta) f^{\dot{\theta}}_\theta \theta^2 dF(\theta)$, $f^{\dot{\theta}}_\theta \theta dF(\theta)$ are all decreasing in $\dot{\theta}$; hence by the product rule, $E p^*(\theta) f^{\dot{\theta}}_\theta \theta dF(\theta)$ is also decreasing in $\dot{\theta}$. It follows that an increase in the value of the anxiety parameter, γ, reduces the value of the equilibrium variance prices $V(p^*(\theta))$ of the asset price $p^*(\theta)$.

Proposition 3.3 establishes a key empirical prediction of the model, that the variance of the equilibrium price of the risky asset is negatively correlated with the level of anxiety. The intuition is simple. Each agent reacts to an increased degree to anxiety by reducing their exposure to the risky asset so that its variance is reduced. In the process, however, opportunities for socially valuable investment is lost. In the following section, we construct a high frequency, empirical measure of anxiety and using it provide evidence consistent with our comparative static result.

4 Empirical analysis

4.1 Scoring the anxiety

We extract an anxiety index from the news articles published online by Daily Mail, Reuters and Press Association. In the main body of the paper, in this section, we illustrate the scoring criteria. In the Appendix A we explain the sentiment analysis using a machine learning approach to extend the scores of a training set of articles to the whole population of articles we deploy in the empirical analysis.

We associate to each article a perceived level of anxiety based on the content of the article. We will focus on one specific category, that of economic anxiety related to macroeconomic facts (unemployment, inflation, GDP, government policy).

We distinguish four levels of anxiety. We are aware of the subjective nature of the classification involved which is based in the following rationale. We label an article high anxiety when it deals with an extraordinary fact, which for macroeconomic anxiety could be "the largest crisis" or "the highest unemployment rate". Such content may have different impacts depending on the reader’s values, however we believe that it has high probability to generate anxiety given the unique circumstances which are reported. We label medium anxiety an article which refers to a bad situation which is however known and already tackled by the key agents (firms, workers, government) or when the negative connotation of the topic is limited to a specific sector and points to a structural weakness. For instance, it deals with bail-out interventions in a period of high insolvency or with private considerations on the tax system. Then, we label an article low anxiety when the fact reported is of limited impact or when the negative connotation of the topic is just sketched. Usually the content deals with small changes in unemployment rate or with
<table>
<thead>
<tr>
<th>Anxiety Level</th>
<th>Article</th>
</tr>
</thead>
<tbody>
<tr>
<td>High anxiety</td>
<td>Could we see a repeat of the roaring twenties or the Wall Street Crash? Experts believe the 2020s could see a rise in prosperity much like in the 1920s - but also warn that recession "looks inevitable"</td>
</tr>
<tr>
<td>Medium anxiety</td>
<td>Tesco chairman launches blistering attack on business rates and calls for major overhaul of tax system to help struggling High Street stores survive</td>
</tr>
<tr>
<td>Low anxiety</td>
<td>Dollar dips as investors prepare for volatile markets, Fed meeting</td>
</tr>
</tbody>
</table>

reference to vague pessimistic outlook. This type of article may generate high levels of anxiety in sensitive readers, but it is less likely for the overall pool of readers. Lastly, in order to train the machine learning algorithm, we also use the label no anxiety, which either indicates no reference to bad events or presents a mix of positive and negative outlook.

To construct our anxiety index, we then assign an anxiety score to each article that lies between 0 to 1: the higher the score, the higher is the level of anxiety. We assume that the anxiety we detect from newspapers is a sort of average anxiety within fractions (terciles) of the anxiety burden. This is equivalent to assuming that the anxiety of the articles in a newspaper corresponds on average to the anxiety of the median reader. If it were not the case, the newspapers would be likely unpopular and would lose readers. However, we abstract from any consideration on the appeal of the newspaper, which would fall beyond the purpose of this paper, and we prefer to think of the anxiety detected by the newspaper as a proxy for the median reader anxiety.

On a scale of individual anxiety σ between zero and one, logically no anxiety has a $\sigma = 0$. Low anxiety corresponds to the average level within zero and the first tercile of the anxiety burden, which means $\sigma = 0.17$. Medium anxiety corresponds to $\sigma = 0.50$. High anxiety corresponds to $\sigma = 0.83$. Then, we build an index of daily anxiety by using the weighted average number of articles corresponding to each anxiety level. The index σ_d for day d goes from 0.17 to 0.83 with a continuous of values in between, depending on the number of articles for each anxiety level. Formally, it corresponds to

$$\sigma_d = \frac{0.17N_{dL} + 0.50N_{dM} + 0.83N_{dH}}{N_d}$$ (14)
where N_{dL} is the number of articles in day d labelled with low anxiety, N_{dM} is the number of articles labelled with medium anxiety and N_{dH} is the number of articles labelled with high anxiety.

4.2 Descriptive statistics

In this section, we present a visualization and the descriptive statistics of the anxiety index. First, we provide evidence for the plausibility of our anxiety score. The spread of the pandemic due to the virus COVID-19 provides an ideal ground to test whether and to what extent our score for economic anxiety mimics the feeling of general anxiety. Figure 1 plots the total number of cases in the week (data is publicly available on the COVID webpage of the UK Government) starting from the 30th of January 2020. The trend takes off around the 10th week, i.e. the 1st of March, which is the date after which the expression ”stay at home” started to appear in the titles of our population of articles. Although a proper lockdown was not yet implemented back then, it is reasonable to expect that people had started to be worried about their personal health, their social life and, most importantly for us, their economic conditions.

The Office of National Statistics (ONS) of the UK measures an overall sentiment of anxiety, not related in particular to a specific economic perspective. The survey asks ”Overall, how anxious did you feel yesterday?” and answers are given on a scale of 0 to 10, where 0 is ”not at all anxious” and 10 is ”completely anxious”. The data is available from the 13th week of 2020. To our scope, it is a useful indicator because it embeds also the concept of economic anxiety, depending on whether the respondent is more anxious about her health, her economic situation and her social life. Figure 2 plots the mean of the ONS responses on a weekly basis together with the weekly mean of economic anxiety (smoothed with an HP filter). Economic anxiety indicator shows anxiety starts increasing rapidly in February, peaking mid-March. Economic anxiety maintains peak longer and reduces...
Table 2: Example of article labelling.

<table>
<thead>
<tr>
<th></th>
<th>Observations</th>
<th>Mean</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macroeconomic anxiety</td>
<td>255</td>
<td>0.41</td>
<td>0.04</td>
<td>0.28</td>
<td>0.50</td>
</tr>
<tr>
<td>Stock market volatility</td>
<td>255</td>
<td>5.04</td>
<td>0.46</td>
<td>3.75</td>
<td>7.02</td>
</tr>
</tbody>
</table>

more slowly than the self-reported subjective anxiety recorded in the ONS Well-being and Quality of Life Survey. This signifies greater amplification coming from news generated anxiety than self-reported anxiety.

Figure 2: Comparison between general personal anxiety (ONS) and economic anxiety.

In the econometric analysis, we estimate the shock of anxiety on the volatility of the stock market in 2019. To this end, we use data from investing.com and compute the (log) difference in the max-min daily price of FTSE 250. After excluding the weekends and holidays to match the two series, we end up with 255 observations.

Average anxiety is 0.41, with a relatively small standard deviation of 0.04. The mean points to a slight prevalence of low anxiety sentiment, which suggests a conservative operationalization of our score. Anxiety fluctuates substantially across time, which reflects a change of newspaper sentiment in a relatively short time. The same is true for the volatility of the stock market. Figure 3 plots the two series for 2019, the base year for our econometric analysis. We smoothed both series using an HP filter.

A first interesting pattern is a countercyclical nature of the co-movement between our anxiety index and stock market volatility. This countercyclicality is confirmed by the negative correlation between the two series ($\rho = -0.50$). Despite the intense fluctuation, there are some more stable trends which corresponds either to periods of political instability or to clearer expectations concerning the Brexit and political scenarios in the UK. For
instance, the shaded area (1st of January – 18th of April) at the beginning of 2019 corresponds to a period of Brexit impasse, namely, when premier Teresa May was not able to pass an agreement with the EU while the negotiation deadline of the 29th of March was approaching. After the last attempt to pass her proposal on a deal, Theresa May asked the EU Parliament to extend the Brexit and the 11th of April the EU leaders agreed to postpone it to the 31st of October. Conversely, the shaded area in the second half of 2019 (8th of November – 16th of December) follows a period of remarkable political instability in the UK, namely, when the premier Boris Jonson expressed himself in favour of a hard Brexit against a large majority of the Parliament. Failing to go for new elections, the UK government was forced to negotiate a Brexit deal and the Parliament agreed on holding Early Parliamentary General Elections the 12th of December 2020.

Stock market volatility fluctuates similarly to economic anxiety (the coefficient of variations are 0.10 and 0.09 respectively). We observe two important positive spikes at the end of the series: one on the 11th of October and another on the 13th of December, the day of the general elections.

4.3 Estimation

Our purpose is to measure the dynamic properties of anxiety on the stock market (henceforth, SM) volatility. Therefore, in our econometric analysis we will use unfiltered daily data. Both series are statistically stationary, according to the Dickey-Fuller test (see Table B1 in the Appendix B). This allows us to estimate the relationship between the two variables in a vector autoregressive (VAR) setting. We start with the following model

![Figure 3: Economic anxiety and stock market (FTSE250) volatility.](image)
\[y_t = c_0 + \sum_{i=1}^{d} A_i y_{t-i} + u_t \]

where \(y_t \) represents the vector of the two endogenous variables log of volatility and anxiety, \(A_i \) are \(n \times n \) coefficients capturing their interlinkage and \(u_t \) is an \(n \)-dimensional vector of white noise errors. As deterministic term, we allow for a \(n \times 1 \) vector of constants \(c_0 \).

In order to estimate causal dynamic effects, we need to impose a set of restrictions on our coefficients. In this context, the conceptualization of anxiety, especially its forward looking generation, is of great usefulness, because it provides the ground for our identification strategy. Hence, we test two specifications: one with short-run/contemporaneous restrictions and another one with long-run restrictions.

In the short-run specification, we select a Cholesky identification imposing a lower-triangular matrix \(A \) and an identity matrix \(B \) of the error terms. This is equivalent to assume zero contemporaneous impact of SM volatility on economic anxiety. The impulse response functions of this identification strategy are reported in Figure 4. Positive economic anxiety shocks impact negatively on SM volatility, statistically significant with a 2-days lag. This negative impact remains significant for the subsequent two days and then become insignificant. The cumulative impact is negative and significant.

As a robustness check, we allow for the opposite restriction, namely, that is economic anxiety to have no contemporaneous impact on SM volatility. This identification strategy delivers very similar results (see Figure B1 in the Appendix B).

Both strategies illustrated above do not allow both series to contemporaneously affect each other. Therefore, we use a third identification strategy and impose the long-run

Figure 4: Impulse response of stock market volatility from a shock of economic anxiety (short-run restrictions).
restrictions. Given the forward-looking generation of anxiety and the stationarity of the two series, we impose a restriction on the impact that SM volatility has on economic anxiety on the long-run, while we leave both series to be interlinked contemporaneously and economic anxiety to impact on the SM volatility in the long-run. In other words, if anxiety corresponds to the bad feeling on future outcome, we assume that it is unlikely that old information on stock market volatility can impact in a significant manner on economic anxiety today. If it were the case, it would mean that a person expects the future to change even further, which would likely imply a non-stationary stock market volatility.

Figure shows the impulse responses of this identification strategy. Shocks of both series have no contemporaneous impact on each other. Shocks on economic anxiety, similarly to the short-run specification, shows a negative and significant impact on SM volatility which starts already from day one and lasts for nearly a week before turning insignificant. Conversely, shocks from SM volatility have no impact in the short-run and, as imposed by the identification strategy, no impact also in the long-run.

5 The role of policy

5.1 Credible Lighthouse Policies

The theoretical model makes a clear case for a credible policy that enables agents to coordinate on the Pareto dominant equilibrium when it is not the risk dominant equilibrium. In what follows, we call such a policy a lighthouse policy.

By Proposition 3.2, note that $\frac{\gamma R_H - 2 + \sqrt{(2-\gamma R_H)^2 + 8\gamma}}{2\gamma R_H} = \hat{\theta} < \tilde{\theta} = \frac{\gamma R_H - 2 + \sqrt{(2-\gamma R_H)^2 + 8\gamma}}{\gamma R_H}$.
Hence, when $\theta \in (\hat{\theta}, \tilde{\theta})$, both $(s^*(\theta) = 0, p^*_H(\theta) = R_H, p^*(\theta) = \theta R_H, y^*(\theta) = s^*(\theta) = 0)$ and $(s^*(\theta) = 1, p^*_H(\theta) = R_H, p^*(\theta) = \theta R_H, y^*(\theta) = s^*(\theta) = 1)$ are Nash-Walras equilibria with the latter equilibrium Pareto dominant but crucially, risk dominated by the former equilibrium. In this case, in the presence of multiple narratives, the Pareto dominated equilibrium is the one all agents will coordinate on to mitigate the anxiety resulting from extra variance in asset returns due to strategic uncertainty.

Hence, when $\theta \in (\hat{\theta}, \tilde{\theta})$, a Pigouvian tax $t(\theta) = \bar{s}(\theta) + \epsilon > 0$ for small but positive $\epsilon > 0$, on every unit invested in the storage technology can be used to finance a floor on the investment in the risky technology. With such a policy in place, it follows that investing in the risky asset becomes a dominant action for each individual. In this way, the underlying coordination problem is solved.

If such a policy announced before agents make their investment decisions, in equilibrium, no actual taxation will need to be levied on the investment in the storage technology as no individual will choose to invest in the storage technology. That such a policy intervention is common knowledge before investment decisions are made and it is credible, ensures that the underlying coordination problem is solved.

A lighthouse policy, as our analysis makes clear, is a public good – non-rivalous and non-excludable (Tucker 2020). Note that provided it is suitably timed and financed appropriately, our conception of lighthouse policies does not automatically mean public spending. At the heyday of the European sovereign debt crisis in 2012, for instance, ECB President Mario Draghi, announced to undertake “whatever it takes” to save the euro. Without spending a single euro by intervening in the market, this simple – and credible – announcement created a floor against the speculation regarding the sovereign debt of individual member countries.

Our analysis also points to central role of competing narratives in driving the need for a lighthouse policy. We see narratives as complex, multi-dimensional stories that specific actors convey to influence people’s opinions and expectations.

For policy to lead to coordination in the presence of multiple narratives hinges on its legitimacy and credibility Schelling (1960). Credible policy actions – rather than simple announcements – are required to guide the economy through times of high economic anxiety by stabilising expectations and creating a degree of common knowledge and strategic certainty, which enables and encourages investment in future welfare enhancing productive investments today.

Schelling (1960) explains the role of a focal point in co-ordinating economic activity. As Dow (2015) asserts that “expectations are socially constructed, communicated and believed”. Focal points are not absolutes but also social constructs. Economic models rely on the assumption of “knowing others will do the same” (Basu 2015) demonstrating a need
for common knowledge (Schelling, 1960) e.g. Keynes’ beauty contest. Galbraith defined the concept of conventional wisdom: “people approve most of what they understand ... acceptable ideas have great stability” (Galbraith, 1998, p7-8). Obliquely Galbraith also discussed the difficulty in establishing new “conventional wisdom” reliant as it is on vested interests and past experiences.

5.2 Policy, Brexit and the Coronacrisis

As an application of our analysis, we examine the role of anxiety in relation to Brexit in determining the outcome of the 2019 UK General Election. This episode can be viewed as quasi-natural experiments with before and after the ‘shocks’ and multiple equilibria thus allowing us to analyse the dynamic interactions of economic anxiety and policy.

Since the 2016 referendum the UK’s decision to leave the EU has had continuing impact investment expectations and consumer confidence. This may be attributed to anxiety, as we have defined it as an anticipatory preference, demonstrating a strategic ‘wait and see’ consensus view among investors and consumers (congruent with our storage asset investment strategy).

Our analysis explicitly accounts for the temporal nature of news sentiment. A shorter horizon (for example if the prevailing narrative was that Brexit negotiations were going to be concluded quickly, or if a coronavirus lockdown would be short – is one factor which may minimise ‘wait and see’ investment effects). Faccini and Palombo (2019) argue that “the expected duration of the negotiations is key for the propagation of the news, and that its effects are larger, the sooner uncertainty is expected to resolve. The policy implication is that to keep postponing the Brexit deadline generates a succession of cliff edges in the negotiations that, by setting up expectations of a quick resolution of uncertainty, maximizes its damage”. Our analysis supports this. The Brexit timeline is a factor and heightened anxiety can be seen in the run up to the Brexit “cliff edges” – the initial date for leaving the EU, subsequent extensions, and the election date. We see this in our economic anxiety indicator (Figure 6) and in the Scottish Consumer Sentiment data (Figure 7).

The Brexit referendum triggered a multiplicity of policy options (from continued full access to the EU single market to no deal), with policy-makers facing a time limited to resolve the policy uncertainty. The multiple failures of the Government to persuade parliament to vote in favour of any of its options resulted first in the proroguing of parliament and then the 2019 general election. It was assumed that the outcome of the general election would decisively bring domestic Brexit negotiations on the UK’s preferred type of relationship with the EU to a close.

As shown in Figure 6 peak economic anxiety occurs mid-November, one month before the UK General Election. This is intuitive, as an anticipatory emotion anxiety will
peak before any actual event/decision, and be amplified by competing narratives (firstly, continuing policy decisions such as failing to reach consensus in the House of Commons and the proroguing of Parliament). Following peak anxiety it gradually reduces to previous levels. This may seem counter-intuitive as anxiety is steadily falling during the election campaign. However, it is also purdah, when there is a halt to policy announcements and a switch to political campaigning. Anxiety then drops in the run up to the election and stabilises from two weeks before the election once a putative majority in favour of one policy option becomes evident. However, as negotiations stall and the households and businesses fully grasp the potential uncertainties surrounding Brexit anxiety continues to increase until the end of the year.

The Brexit negotiations were domestically fraught within the UK due to a lack of clarity and agreement over such ‘acceptable ideas’, the UK’s strategy and even its objectives. Contrasted with an EU27 seemingly agreed on a mutual position. With a thin 52% v 48% majority that approval was never consolidated through establishing the required policy focal point to guide the path forward through the Brexit negotiations.

The fact that our anxiety indicators shows a steady decline in anxiety during the election campaign is consistent with voters forming beliefs anchored within ‘a range of indeterminancy’: the general election outcome is bounded within a limited number of possible outcomes – Conservative majority; Labour majority; minority government; coalition government; hung parliament and re-election. This reduces anxieties for households, investors and consumers. Then following the outcome of the election anxiety reduces further, and stabilises around the outcome (established new equilibrium). Once the Conservative government was elected many believed this would be the end of the Brexit debate, as they had been elected on a ‘Get Brexit done’ mandate.

However, consistent with the upward turn in our anxiety indicator by the end of 2019, there are signals of remaining anxiety and instability in investment and consumption.

Figure 6: Economic anxiety across UK General Elections of December 2019.
data. An illustration of this is Scottish Consumer Sentiment indicator which shows strong co-relation to the Brexit referendum result. Turning from positive to negative after the Brexit shock. This negative sentiment intensified in the run up to the first date that the UK was due to officially leave the EU March 2019.

Time is one factor, as we have shown with the Brexit timeline – but so also is the nature of the Brexit policy agreement (hard/soft/no deal). Thus we argue that the role of policy is fundamental in stabilising sentiment and expectations.

Distinct from uncertainty, anxiety can turn into fear of future and endogenously lead to endogenous amplification of anticipation effects. Anxiety deters investment today in long term productive investment, not only resulting in a misallocation of resources today but a reduction in resources tomorrow. Thus anxiety is different from uncertainty because of its dual aversive and anticipatory future looking nature. It is the anticipatory and aversive nature of anxiety, which skews the distribution to endogenously amplify perceived future risk. Our analysis highlights key role of lighthouse policies in reducing anxiety in response to the coronacrisis. Such lighthouse policies would build on strategic complementarities by committing to minimum levels of investment in activities that mitigate future risk and are welfare enhancing. Such a lighthouse policy would facilitate opportunities for a raft of complementary public, private, education and civil society solutions. This insight is relevant as governments devise policies to create a path out of the coronacrisis.

By stabilizing expectations and creating a common, credible narrative, lighthouse policies help address economic anxiety. One example in this regard is to create a lower floor on expected returns through policy announcements. When the coronavirus pandemic struck markets responded by flocking to safe havens/assets and a run towards gold and government bonds. The scale of the coronavirus shock resulted in central banks increasing the supply of government bonds to match the demand for safe assets and investments to prevent a sudden rise in spreads for assets considered to be high-risk. Even when bond yields turned negative investors where still choosing ‘safe’ government bonds at a negative rate of return because the alternatives – provided even greater risk of loss). Distinct from myopia (preference for payoff now regardless of the variance of future uncertainty) anxiety (fear of future uncertainty) was greater than loss today (the guaranteed minor loss on
government bonds), leading to a massive drop on stock market that could be reverted through a broad-based provision of liquidity across different asset classes.

6 Conclusion

In this paper, we have analysed the link between anxiety and investment in risky assets both theoretically and empirically. We developed a model where anxiety is a response to future uncertainty about payoffs in a risky asset resulting in strategic uncertainty driven by multiple narratives. We constructed a new empirical measure of anxiety via a machine learning algorithm that applies sentiment analysis on news articles published online by Daily Mail, Reuters and Press Association. We demonstrated the plausibility of our anxiety measure in two case studies, namely Brexit and the current coronacrisis, and carried out an empirical test of how anxiety impact on the volatility of stock market outcomes to verify a key prediction of the theoretical model.

In times of crises then the role of policy needs to be to create a credible floor to risky assets. If expectations are not anchored competing narratives and sentiment will create instability. The ultimate goal of lighthouse policies is to provide a floor supporting a range of indeterminacy within which a degree of strategic co-ordination can happen. Most importantly through the combination of lighthouse policy communication, forward guidance and implementation (of floors) it provides a (simple) viable and actionable way to implement strategic coordination at an aggregate macroeconomic level.

In future research, we plan to extend the theoretical analysis of anxiety to settings with growth and endogenous fluctuations accompanied by enlarging the breadth and depth scope our anxiety index and recommendations for policy.
References

Bhandari, A., J. Borovička, and P. Ho (2019). Survey data and subjective beliefs in business cycle models. *Available at SSRN 2763942*.

Appendix

A. Technical Appendix of the Machine Learning methodology

The construction of the dataset can be broken down into 3 key steps: (i) Data Acquisition (Data Warehousing), (ii) Data Set Generation (Search, Dataset generation), and (iii).

A1. Data Acquisition (Data Warehousing)

The Data Warehouse is a pool of source articles/documents harvested using proprietary software methods. In the context of this project it contains news articles from the Daily Mail, however it does have the support for articles/documents/reports in formats such as DOC (word), PDF and other news sources for further possible enhancement/research. Articles are harvested from the various sources either using published API’s or text scraping / formats such as DOC/PDF are additionally processed with Apache Tika. The resulting raw data is cleaned, structured and stored in Elastic Search (nonSQL) document store for later retrieval.

A2. Data Set Generation (Search, Dataset generation)

The research team is able to query the data warehouse though the project specific portal https://anxietydata.com/ to generate research datasets. The researcher provides search terms and/or date ranges along with a label to name their dataset. The results are stored as a labelled dataset in a graph database. During the dataset generation each article is extracted from the data warehouse, processed with Natural Language Processing (NLP) to extract additional metadata and classified with machine learning for anxiety. All this data is stored to allow for near real-time retrieval/querying to support simple through to deep complex extractions. Researchers use the Neo4J Query language to extract directly from the Graph Database to downloadable files for additional analysis.

A3. Machine Learning Model as a Service (MaaS) / Anxiety Classification

The classification approach builds upon the method proposed by Joulin et al (2016) of the Facebook AI Research team, a technique that is particularly efficient for text classification on very large datasets. Two classification models are generated to classify the news articles within a dataset: the class of anxiety (Macroeconomic; None) and the level of anxiety (High; Medium; Low; None).
The creation of the classifier has involved:

1. **Generation of a training dataset of class and levels of anxiety.** Initially a set of articles are extracted from the data warehouse without any classification (cold start problem).

2. **Machine Learning Models building and training.** Once the articles are labelled, the labels, the unique article ID’s (UID) and the full text of each article are extracted from the data warehouse using the UID as a reference. Article texts are pre-processed, cleaned and formatted into a unified format. Additionally every word is reduced to its lemma using lemmatization provided by the NLP library spaCy. This set of articles is separated into two parts for each classifier: a Training Set (approximately 75% of the articles) and a Validation Set (approximately 25% of the articles). The training data is presented to fastText for supervised classifier generation. The validation set is used to assess the level of performance of the trained classifier (model generated). The resulting models are then embedded within a microservice which provides the anxiety scoring to the dataset generator.

3. **Deployment of the Model for augmenting the dataset.** Once the model has been built, it is deployed as part of a highly scalable microservice (written in Golang) to servers and accessed using a RESTful call mechanism, potentially available for other research studies. The classifiers are invoked during the dataset generation resulting classification stored within the graph database for later query by the researchers.

All the technology blocks are built upon proprietary data acquisition/intelligence platforms provided by East Village Software Consultants Ltd. Due to the proprietary software in use source code will not be published. The authors are willing to provide their training set of articles to the purpose of replicating the scoring methodology.

Appendix B
Figure B1: Robustness check. Impulse response of stock market volatility from a shock of economic anxiety (short-run restrictions inverted).

Table B1: Augmented Dickey-Fuller test on economic anxiety and stock market volatility.

<table>
<thead>
<tr>
<th></th>
<th>$\Delta \text{Anxiety}_t$ (SE)</th>
<th>$\Delta \text{SM volatility}_t$ (SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y_{t-1}</td>
<td>-0.32 (0.07)</td>
<td>-0.59 (0.08)</td>
</tr>
<tr>
<td>ΔY_{t-1}</td>
<td>-0.31 (0.07)</td>
<td>-0.17 (0.08)</td>
</tr>
<tr>
<td>ΔY_{t-2}</td>
<td>-0.16 (0.06)</td>
<td>0.00 (0.06)</td>
</tr>
</tbody>
</table>

$Z(t)$ test

-4.94

-7.13

Critical values: 1% = -3.460; 5% = -2.880; 10% = -2.570. MacKinnon approximate p-value for $Z(t) = 0.000$.