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Abstract

When are heterogenous beliefs compatible with equilibrium and if not,
which non-equilibrium outcomes do they lead to? In this paper, we exam-
ine the conditions under which heterogenous beliefs lead to approximately
self-fulfilling outcomes consistent with all that is commonly known by each
agent via an iterative elimination process. We develop a formal definition
of approximately self-fulfilling outcomes, p−consensus, and an associated,
continuous measure of the degree of stability of equilibrium, p−stability.
Applying our concepts to intertemporal trade in a two period economy, we
examine how heterogenous beliefs and heterogenous preferences interact
to create to asset price bubbles.
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1 Introduction

When do heterogeneous beliefs lead to equilibrium and if not, what kind of
outcomes do they lead to?
In this paper, our starting point is that agents beliefs about outcomes are

described by p−beliefs, namely, beliefs which put probability at least p on a
specific outcome; with probability 1 − p beliefs are heterogenous. We define
a p−consensus outcome as one which, given p−beliefs on it, is rationalizable.
Heuristically, a p−consensus outcome is approximately self-fulfilling where p is
a measure of the degree of approximation.
The only outcome consistent with 1−beliefs is an equilibrium one.1 The

closer p is to one, the lower is the degree of heterogeneity of beliefs; the closer p
is to zero, the more heterogeneous beliefs are. For some value of p is less than
one, we say an equilibrium is p−stable if is the unique rationalizable outcome
with p−beliefs on it. The interpretation is that p is a continuous index for
stability, a measure of the robustness of equilibrium to heterogeneous beliefs,
less coarse that the usual "stable/unstable" typology.
Which equilibria are p−stable? Which features of an equilibrium does

p−stability relate to? What non-equilibrium outcomes are also p−consensus
outcomes? What insights can we obtain when we apply these concepts to the
study of markets about the conditions under which non-equilibrium can be sus-
tained and how can these non-equilibrium outcomes be characterized?
For ease of exposition, we initially work in a simple setting of strategic com-

plements where the identical best response of each agent is the same function
of the expected average action. We obtain an explicit characterization of link
between a non-equilibrium outcome and the value of p required to sustain it as
a p−consensus outcome. We show that corner equilibria have a higher degree of
stability (corresponding to a lower bound on the degree "p" of their p−stability).
In a linear example with one interior and two corner Nash equilibria, we ob-
tain closed form solutions for p−consensus outcomes and calculate the bounds
on the p−stability of equilibrium outcomes. These results show that a Nash
equilibrium is robust to some degree of heterogeneity of beliefs while sustaining
a non-equilibrium outcome as a p−consensus outcome requires that beliefs be
suffi ciently heterogenous (hence, the upper bound on p).
The two concepts introduced by us bring added value to the analysis of large

games and markets only when there are multiple rationalizable outcomes. Our
results explore this point in greater detail in a general strategic setting due to
MasColell (1984).
Our first main result demonstrates the link between the set of rationalizable

outcomes and the set of p−consensus outcomes: any outcome in the interior of
the set of rationalizable outcomes is also p−consensus outcome for some p > 0,
thus characterizing the set of outcomes that are "approximately" self-fulfilling.

1This observation echoes, in our setting, the seminal characterization of the epistemic
conditions underpinning a Nash equilibrium in Aumann and Brandenburger (1995). Since
each player knows the choices of the others, and is rational, his choice must be optimal given
theirs; so any outcome must be a Nash equilibrium outcome.
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We say that a Nash equilibrium is inadmissible if the best-response map is
"vertical at the equilibrium" i.e. a small change in the other players actions
implies a infinitely large change in any one player’s best response. We show
that every admissible Nash equilibrium is p−stable for some p < 1. This result
provides a precise characterization of Nash equilibria which are robust to some
degree of heterogeneity of beliefs.
Under a mild continuity restriction, we show that a p−stable equilibrium is

a locally isolated p−consensus distribution i.e. there is no other p−consensus
distribution in its vicinity. Under an additional interiority condition, we also
prove the converse statement: if an equilibrium is not p−stable, then there is
always a p−consensus outcome in its vicinity.
Further, we show that in smooth settings, p−stability is related to the inverse

of the slope of the best-response, thus confirming the intuition that the slope of
the best-response matters for the strategic stability of equilibrium. Moreover, in
settings with multiple equilibria, the p−stability of a Nash equilibrium is related
to the inverse of the slope of the best-response and not to the size of it’s basin
of attraction.
We, then, apply our analysis to re-examine the foundations of intertemporal

trade in a two period economy with p−beliefs over second period prices. We
assume that individuals submit demand functions so that belief coordination in
current spot market prices is never a problem: instead the individuals need to
coordinate beliefs about future spot market prices when they trade in current
spot markets. We derive conditions under which a p−consensus outcome differs
from perfect foresight equilibria. These conditions require preference hetero-
geneity over second period consumption. We show, when individual preferences
are additive in consumption over the two periods and they have identical, homo-
thetic preferences over second period commodities, second-period spot market
prices do not depend on redistribution of revenue within that period. In this
case, any p−consensus outcome must be a perfect foresight equilibrium outcome.
In a local analysis, we show that when (a) second period spot market prices

are sensitive to redistributions of revenue in second period markets or a redis-
tribution of commodities in period 1 change second period spot market prices,
and (b) there is lack of consensus over second period prices (so that beliefs over
second period prices are heterogeneous to a suffi cient degree), then an asset
price bubble exists. Conversely, even with lack of consensus over future prices
in a small enough neighborhood of a perfect foresight equilibria, an asset price
bubble will not exist if these conditions do not hold.
We, then, conduct a global analysis in a simple example with an unique PFE

at which there is no trade in asset markets. In a global analysis, we demonstrate
how the interaction of heterogeneous beliefs and heterogeneous preferences im-
plies the existence of p−consensus outcomes characterized by asset price bub-
bles. The distance of a PFE asset price a p−consensus asset price is entirely
constrained by the heterogeneity of preferences.
The notion of p−consensus and p−stability builds on the seminal work on

eductive stability (Guesnerie (1992), Evans and Guesnerie (1993), Guesnerie
(2005), Evans, Guesnerie and McCullogh (2019)). The analysis developed here
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differs in that we propose a new solution concept that allows belief heterogeneity
and our measure of stability is continuous one. Related solution concepts include
those allowing for heterogeneous beliefs off the equilibrium path of play (e.g. the
notion of self-confirming equilibrium, Fudenberg and Levine (1993)) and in the
macro literature by Angeletos, Collard and Dellas (2018) (where heterogenous
beliefs are treated as a model parameter).
The next section considers the simple setting with strategic complements

to introduce and illustrate the workings of our concepts. The next section is
devoted to the study of a general model and provides a number of basic results
and illustrates the application of the two concepts using examples. In section 4,
we study partial consensus in a two period economy. The last section concludes.
The appendix contains the proofs of most of our results stated in the main body
of the paper.

2 A game with strategic complements

Consider a game with a continuum [0, 1] of agents with identical preferences and
action set. The action set is a compact interval I ⊂ R. Denote ai ∈ I denote an
action agent i and ā an average action. The belief of agent i is a distribution
of average actions (an element in ∆ (I)). Denote Ei (ā) the mean value of i’s
belief. The best-response of agent i to his belief is

ai = φ (Ei (ā)) ,

where φ is a non-decreasing and C1 map (φ′ ≥ 0). This is a game with strate-
gic complements with the feature that only the mean average action is payoff
relevant for determining an individual agent’s best-response.
Assume that there is a finite number N > 1 of Nash equilibria a∗1 < a∗2 <

... < a∗N . Normalize the action set for the smallest and the largest Nash actions
to be −1 and 1. With some abuse of notation, let a to denote the Dirac measure
on a, a ∈ [−1, 1]. A well-known result (Milgrom and Roberts (1990)) is that the
set of rationalizable outcomes is [−1, 1]. Denote ‖φ′‖ = sup[−1,1] φ

′ (ā). Nash
multiplicity implies ‖φ′‖ > 1. Let p0 ∈ (0, 1) be the unique value such that
(1− p0) ‖φ′‖ = 1.

For a fixed a ∈ [−1, 1] and p ∈ [0, 1], a p−belief assigns a probability p to
the average action a and a probability 1 − p to some other a′ ∈ [−1, 1]. We
define a p−consensus outcome iteratively as follows. For a fixed a ∈ [−1, 1] and
p ∈ [0, 1], let

S0
a,p = {a′′ : a′′ = pa+ (1− p)a′, a′ ∈ [−1, 1]} .

Consider the sequence of sets Sna,p (a) =
[
φ(Sn−1

a,p )
]
∩ Sn−1

a,p for n ≥ 1. This

sequence is decreasing and therefore, it converges to a set S∞a,p. Then, a is a
p−consensus outcome if a ∈ S∞a,p′ for all p′ ≤ p.

Straightforwardly from the definition of a p−consensus outcome, every ra-
tionalizable outcome is a 0−consensus outcome. Evidently, every p−consensus
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outcome, some p ∈ [0, 1], is also a rationalizable outcome and every rationaliz-
able outcome ā ∈ [−1, 1] is a p−consensus outcome for some p ∈ [0, 1]. Hence,
the interpretation is that p is the maximum degree of consensus compatible with
sustaining a ∈ [−1, 1] as a rationalizable outcome.
Any non Nash outcome ā ∈ [−1, 1], must lie between two Nash outcomes (ā ∈(

a∗n, a
∗
n+1

)
). The following proposition characterizes the degree of consensus

compatible with a non-equilibrium outcome ā ∈ [−1, 1]:
Proposition 1. For any non Nash outcome ā ∈ [−1, 1]: (a) if φ (ā) < ā

for ā ∈
(
a∗n, a

∗
n+1

)
, then the value of p required to sustain a as a p−consensus

increases in ā for ā ∈
(
a∗n, a

∗
n+1

)
; (b) if φ (ā) > ā for ā ∈

(
a∗n, a

∗
n+1

)
, then

the value of p required to sustain a as a p−consensus decreases in ā for ā ∈(
a∗n, a

∗
n+1

)
. If φ′ (a∗1) < 1, then the value of p for which ā ∈

(
a∗2n+1, a

∗
2n+2

)
is

a p−consensus outcome increases in ā and decreases in ā for ā ∈
(
a∗2n, a

∗
2n+1

)
.

If φ′ (a∗1) > 1, the value of p for which ā ∈
(
a∗2n+1, a

∗
2n+2

)
decreases in a, and

increases in ā ∈
(
a∗2n, a

∗
2n+1

)
.

Proof. Consider a non Nash rationalizable outcome ā such that φ (ā) < ā.
For p′ ∈ [0, 1] and x ∈ [−1, 1], denote BRā,p′ (x) = φ (p′ā+ (1− p′)x) where
BRā,p′(x) is non-decreasing and C1. For any p′ ∈ [0, 1], BRā,p′ (−1) ≥ −1 and
BRā,p′ (ā) < ā, which implies that BRā,p′ admits a fixed point in [−1, ā). Note
that the limit set S∞ā,p′ is an interval whose bounds are the lowest and highest
fixed points of BRā,p′ . This implies that ā ∈ S∞ā,p′ iff BRā,p′ admits a fixed
point in [ā, 1]. By continuity, the degree p of consensus of ā is such that BRā,p
admits a fixed āf in [ā, 1] and BR′ā,p (āf ) = 1 (the map BRā,p is tangent to
the 45◦ line at āf ). Consider now another non Nash rationalizable outcome ā′

such that φ (ā′) < ā′ and ā′ > ā . Since φ is increasing, BRā′,p (āf ) > āf and
by continuity BRā′,p admits a fixed point in [ā′, āf ] (and even another one in
[āf , 1]). It follows that ā′ ∈ S∞ā′,p′ and the degree p̄′ of consensus of is strictly
larger than p̄. This proves part (a). The proof of part (b), when φ (ā) > ā
for a non Nash rationalizable outcome ā is analogous (the core of the argument
relies now on the existence of a fixed point in [−1, ā]). : When φ′ (a∗1) < 1, the
values ā in (a∗1, a

∗
2) are such that φ (ā) < ā, the values ā in (a∗2, a

∗
3) are such that

φ (ā) < ā and so on. Applying part (a) repeatedly, the required result. When
φ′ (a∗1) > 1, the inequalities go the other way. Applying part (b) repeatedly, the
required result.�
We define a Nash equilibrium a∗ to be p−stable if a∗ = S∞a∗,p′ for all p

′ > p,
p < 1. As already noted the set of 1−consensus outcomes and Nash equilibrium
outcomes must coincide.
Assume N = 3 so that there are 3 Nash equilibria: two "corner" equilibria

a∗1 = −1 and a∗3 = 1 and an "interior" Nash equilibrium a∗2 ∈ (−1, 1). We
characterize the p−stability of Nash equilibria for the case of three equilibria
with the following corollary to the preceding proposition:
Corollary 1. Assume N = 3. If a∗2 is such that φ

′ (a∗2) < 1, then every Nash
outcome is 0−stable and every non Nash rationalizable outcome is 0−consensus.
If a∗2 is such that φ

′ (a∗2) > 1, then a∗2 is p−stable for p2 > 0 and a∗1 and a
∗
3 have

lower stability index, i.e. they are p1−stable and p3−stable respectively with
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p1 < p2 and p3 < p2

Proof. Consider the case φ′ (a∗2) < 1. We have φ (x) > x for x ∈ (a∗1, a
∗
2)

and φ (x) < x for x ∈ (a∗2, a
∗
3). Therefore, for any p > 0, BRa∗2p (x) > x

for x ∈ [a∗1, a
∗
2) and BRa∗2p (x) < x for x ∈ (a∗2, a

∗
3]. This implies that S∞a∗2 ,p

reduces to a single value (that is a∗2). This proves 0−stability of a∗2. Proposition
1 immediately proves the other part of the result. Consider the case φ′ (a∗2) > 1.
We have φ (x) < x for x ∈ (a∗1, a

∗
2) and φ (x) > x for x ∈ (a∗2, a

∗
3). Therefore, for

p > 0 close to 0, BRa∗2 ,p (−1) ≥ −1 and BRa∗2 ,p (x) < x for some x ∈ (a∗1, a
∗
2),

which implies that BRa∗2 ,p admits a fixed point in [−1, x] and this fixed point is
strictly smaller than a∗2. A similar argument shows that BRa∗2 ,p admits another
fixed point strictly larger than a∗2. Hence, S

∞
a∗2 ,p

does not reduce to a single
value. This proves p̄−stability of a∗2 for some p̄ > 0. Proposition i1 immediately
proves the other part of the result.�
The corollary demonstrates that the interesting implication is that the two

"corner" equilibria are more stable than the "interior" one.
As an example to illustrate the preceding results, consider the following step-

wise linear example where I = [−1, 1] and the best-response map is as follows:

ai = φ(a) =


βā for ā ∈

[
−1
|β| ,

1
|β|

]
−1 for ā < −1

|β|
1 for ā > 1

|β|

and β > 0. Note that β
|β| is either −1 or 1 depending on the sign of β.

When β < 1, the unique Nash equilibrium outcome is a∗ = {0}When β > 1,
there are three Nash equilibria: a∗ ∈ {−1, 0, 1}.

By computation, note that when |β| < 1, the unique rationalizable outcome
is the (unique) Nash equilibrium outcome a∗ = 0 (the equilibrium outcome is
0−stable). When β > 1, by computation, it follows that (i) a∗ = 0 is p−stable
for p = 1 − 1

β , (ii) the equilibrium outcomes a∗ = −1 and a∗ = 1 are p−stable
for p = 1

2

(
1− 1

β

)
. If β < 1, no outcome different from a Nash equilibrium is

a p−consensus outcome, and we restrict attention to the case β > 1 in what
follows.
Corollary 2. For β > 1, every a that differ from any Nash equilibrium

(a /∈ {−1, 0, 1}) is a p−consensus outcome for

p =
1

1 + |ā|

(
1− 1

β

)
∈
[

1

2

(
1− 1

β

)
, 1− 1

β

]
.

Proof. By computation, BRā,p (x) = β (pā+ (1− p)x) if β (pā+ (1− p)x) ∈
[−1, 1] and BRā,p (x) = −1 or 1 if β (pā+ (1− p)x) is smaller than −1 or larger
than 1. Evidently, BRā,p (x) is converging if and only if β (1− p) < 1 (and the

limit is βpā
1−β(1−p) ). In this case, S

∞
ā,p =

{
βpā

1−β(1−p)

}
and a /∈ S∞ā,p: a is not a

p−consensus outcome for a value p > 1− 1
β . When p ≤ 1− 1

β (i.e., 1 ≤ β (1− p)),
then there are three cases to consider:
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(a) If ā > β(1−p)−1
βp (BRā,p (−1) > −1), then 1 is the unique fixed point,

BRā,p (a) ≥ a for every a. Any sequence BRnā,p (a) converges to 1. Hence,
S∞ā,p = {1}.

(b) If ā < 1−β(1−p)
βp (BRā,p (1) < 1), then −1 is the unique fixed point,

BRā,p (a) ≤ a for every a. Any sequence BRnā,p (a) converges to −1. Hence,
S∞ā,p = {−1}.
(c) If β(1−p)−1

βp ≥ ā ≥ 1−β(1−p)
βp (BRā,p (−1) = −1 and BRā,p (1) = 1),

then BRā,p admits 3 fixed points (equal to −1, βpā
1−β(1−p) and 1). For a ≤

βpā
1−β(1−p) , any sequence BRā,p (a) converges to −1. For a ≥ βpā

1−β(1−p) , any
sequence BRā,p (a) converges to 1. Hence, S∞ā,p = [−1, 1]. Therefore, ā ∈
S∞ā,p iff

β(1−p)−1
βp ≥ ā ≥ 1−β(1−p)

βp or equivalently p ≤ 1
1+ā

(
1− 1

β

)
and p ≤

1
1−ā

(
1− 1

β

)
.�

This following diagram illustrates the preceding corollary:

­1.0 ­0.8 ­0.6 ­0.4 ­0.2 0.0 0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

a

p

p−consensus in the case β > 1 (example with β = 3)

3 The concepts and key properties

We begin by describing the underlying strategic framework. We define the two
main concepts we develop here, p−consensus and p−stability and provide a
characterization of their basic properties.
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3.1 The Model

The underlying model is due to MasColell (1984). Let A be a non-empty com-
pact metric space of actions and ∆ (A) be the compact and metrizable set of
Borel probability measures on A endowed with the weak convergence topology
which is metrizable using the Prohorov metric. For later reference, we note that
the Prohorov metric is defined by:

d∆(A) (m, τ∗a ) = inf {ε > 0 : m (M) ≤ τ∗a (Mε) + ε for all Borel subsets M of A} ,

where Mε = {y ∈ A/dA (x, y) ≤ ε for some x ∈M}.2 Let UA be the set of con-
tinuous utility functions u : A × ∆ (A) → R endowed with the supremum
norm, the metric, separable and complete space of player characteristics. A
game with a continuum of players is a Borel measure µ on UA. For any
probability measure τ on UA × A, let τu and τa denote the respective mar-
ginal distribution on UA and A respectively. Let T denote the set of proba-
bility measures on UA × A such that τu = µ, τ ∈ T : T denotes the set of
"strategy profiles", i.e., a distribution of actions for each u. For τ ∈ T , let
Bτ = {(u, a) : u (a, τa) ≥ u (A, τa)}. The best-response correspondence is a map
φ : T → T such that φ(τ) = {τ ′ ∈ T : τ ′(Bτ ) = 1}, i.e., φ is the set of "strat-
egy profiles" putting probability one on the fact that each player plays a best-
response to τ . A Nash equilibrium is a measure τ∗ ∈ T such that τ∗ ∈ φ(τ∗).
Existence result (Theorem 1 in MasColell (1984)). For a given µ,

there exists a Nash equilibrium distribution τ∗.
Remark: The above framework requires all agents who have the same utility

function must also choose the same actions and/or have the same the beliefs
over distributions. On the face of it, in an example where all agents have the
same utility functions, this would require agents to have "homogeneous" beliefs.
But, by re-interpreting the framework so that utility functions are differ up to
an additive constant, we can use the above framework in setting where agents
with the same utility functions have heterogeneous beliefs.

3.2 p-consensus and p-stability: definition

For a fixed τ and p ∈ [0, 1], a p−belief is a probability distribution τp = pτ+(1−
p)τ ′, for some τ ′ ∈ T i.e., a belief that assigns a probability p to the distribution
τ . Let Tτ,p ⊆ T denote the corresponding set.
We define a p−consensus distribution iteratively as follows. Let S0

τ,p = Tτ,p
and consider the sequence of sets Snτ,p (τ) =

[
φ(Sn−1

τ,p )
]
∩ Sn−1

τ,p for n ≥ 1. This
sequence is decreasing and therefore, it converges to a set S∞τ,p. Then, τ is a
p−consensus distribution if τ ∈ S∞τ,p.

For any p′ < p, p, p′ ∈ [0, 1], we have that Snτ,p ⊆ Snτ,p′ as Tτ,p ⊆ Tτ,p′ .
Therefore, S∞τ,p ⊆ S∞τ,p′ and if τ ∈ S∞τ,p then τ ∈ S∞τ,p′ . It follows only a rational-
izable distribution can be a p−consensus distribution and for a rationalizable

2See Dudley (1989) for this definition and other properties of the Prohorov metric not
explicitly mentioned in this paper.
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distribution, the set Iτ =
{
p ∈ [0, 1] : τ ∈ S∞τ,p

}
is either empty or [0, p] for some

p ∈ [0, 1].
Definition 1. When Iτ is non-empty, we say τ is a p−consensus distribution

for p = sup Iτ .
The standard definition of rationalizability in this set-up would be to require

τ ∈ S∞τ,0 (note that S∞τ,0 doesn’t depend on the choice of τ). It follows that Iτ
is non-empty iff τ is rationalizable. In this sense, p−consensus is a refinement
of rationalizability and the interesting question is whether τ is a p−consensus
distribution for p 6= 0.
When p = 1, the set of 1−consensus distributions and Nash equilibrium

distributions must coincide.
We define a Nash equilibrium τ∗ to be p−stable if the equilibrium distribu-

tion is the only element surviving the iterated elimination of non best-responses
to a p′−belief for all p′ > p. This definition relies on a "standard" definition of
rationalizable outcomes in a game where the strategy set is restricted to Tτ∗,p:
a p−stable equilibrium is an equilibrium that is the only rationalizable outcome
in a game with the restricted strategy set Tτ∗,p.
For any p < p′, p, p′ ∈ [0, 1], note that S∞τ∗,p′ ⊆ S∞τ∗,p and if S

∞
τ∗,p = {τ∗}

then S∞τ∗,p′ = {τ∗}. In particular, the set Jτ∗ =
{
p ∈ [0, 1] : S∞τ∗,p = {τ∗}

}
is an

interval of the form [p, 1] for p ∈ [0, 1].
Definition 2. ANash equilibrium τ∗ is p−stable if p = inf Jτ∗ =

{
p′ ∈ [0, 1] : S∞τ∗,p′ = {τ∗}

}
.

The interesting question is whether p < 1.
Remark:
1. We do not require that S∞τ∗,p = {τ∗} for a p−stable equilibrium. In some

classes of games (for example, in the smooth one-dimensional case in section 3
below), S∞τ∗,p 6= {τ∗} at a p−stable equilibrium.
2. If τ∗ is 0−stable then τ∗ is the unique rationalizable outcome.
3. If τ∗ is p′−dominant then it follows that S1

τ∗,p′ = {τ∗}. Hence, S∞τ∗,p′ =
{τ∗} and therefore, τ∗ is p-stable where p ≤ p′.

3.3 Characterization of p−consensus and p−stability
The two definitions above bring added value in the analysis of strategic outcomes
only when there are multiple rationalizable distributions. In what follows, this
point is explored in greater detail.
We begin by providing an existence result for p−consensus distributions with

p 6= 0.
Proposition 2. Suppose the set S∞0 of rationalizable distributions has a

non-empty interior in T . Any distribution in the interior of S∞0 is p− consensus
distribution for some p 6= 0.
Proof. Consider τ̂ ∈ Int.S∞0 and a small neighborhood N ⊂ Int.S∞0 of τ̂ .

For τ ∈ N , by upper hemi-continuity of φ, there exists p close enough to zero
and τ ′ ∈ S∞0 in a neighborhood N ′ of τ̂ such that φ(pτ̂ +(1−p)τ ′) = τ . Denote
the corresponding set Bτ̂ ,τ,p and let Bτ̂ ,p = ∪τ∈S∞0 Bτ̂ ,τ,p. Note that Bτ̂ ,p ⊆
N ′. Let Tτ̂ ,p(B) = {pτ̂ + (1 − p)τ, τ ∈ B}. Note that Tτ̂ ,p(Bτ̂ ,p) ⊆ Int.Tτ̂ ,p.
Hence, for any τ in N , for each N small enough, Tτ̂ ,p(Bτ̂ ,p) ⊆ Int.Tτ,p, so that
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Tτ̂ ,p(Bτ̂ ,p) = Tτ,p(Bτ,p); moreover, by upper hemi-continuity of φ, Bτ,p ⊆ S∞0
and hence, N ⊆ S∞0 , as required.�
Next, we examine the conditions under which an equilibrium is p−stable. To

this end, define a best-response correspondenceB(u,m) = {a ∈ A : u (a,m) ≥ u (A,m)}:
an action in B(u,m) is a best-response for u ∈ UA to some m ∈ ∆ (A).
For each m ∈ ∆ (A), consider the set

ŨA(m) =

{
u ∈ UA : B(u,m) is not single-valued or

lim supm′→m
dA(B(u,m′),B(u,m))

d∆(A)(m′,m) <∞

}
,

where dA denotes a distance on A and d∆(A)(., .) denotes the Prohorov metric
on ∆ (A). Consider two Dirac measures δx and δy. Then, d∆ (A) (δx, δy) =

dA (x, y). Note that for each u ∈ ŨA(m), a small change in m induces an
infinitely large change in best-responses.
Consider a given τ∗. For every u, let

ku,τ = lim sup
m→τa

dA(B(u,m), B(u, τa))

d∆(A)(m, τa)
,

and
Kτ = sup ess

u∈UA
ku,τ .

Kτ is the essential upper bound of ku,τ w.r.t. measure µ (that is: the set of u
such that ku,τ > Kτ has µ−measure 0).
Definition 3. The equilibrium τ∗ of a game µ is admissible if µ

(
ŨA(τ∗a )

)
=

0 and
Kτ < +∞.

As a preliminary step, the following lemma3 summarizes three key properties
of the Prohorov metric that will be useful in proving the result below.
Lemma 1. (i) Consider τ = pτ̂ + (1− p) τ ′. Then,

d∆(A) (τa, τ̂a) ≤ (1− p) d∆(A) (τ ′a, τ̂a) .

(ii) Consider a Dirac measure δx and a distribution τa ∈ ∆ (A). Consider S the
support of τa (the smallest closed set s.t. τa (S) = 1) and d = supy∈S dA (x, y)
(d is the radius of the smallest ball centered on x that contains S)4 . Then,

d∆(A) (δx, τa) ≤ d.
(iii) Consider τa ∈ ∆ (A) defined by τa =

∫
τλf (dλ) where f is a probability

distribution on a set of parameters λ. Consider another distribution ν ∈ ∆ (A).
We have

d∆(A) (τa, ν) ≤ sup ess
λ

d∆(A) (τλ, ν) .

3We state and prove this lemma for completeness as we are not aware of an explicit proof
of the three properties of the Prohorov metric contained in the lemma and these required for
the proof of Proposition 1 below.

4Notice that x may be in S or not.
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Proof. See appendix.�
We are now in a position to state and prove the following result:
Proposition 3. For any admissible equilibrium, there is a p̂ < 1 such that

the equilibrium is p̂−stable.
Proof. See appendix.�
Heuristically, the idea underlying the proof is as follows. An equilibrium

τ∗ is p−stable if the best-response map, restricted to p−beliefs, generating the
sequence of sets Snτ∗,p is a contraction. For p close to one, when the equilibrium
τ∗ is admissible, we show that the best-response map, restricted to p−beliefs,
cannot vary much (i.e. in the smooth case, the derivative of the best-response
map, restricted to p−beliefs, is small). If, on the contrary, the equilibrium τ∗

isn’t admissible, even when restricted to p−beliefs, it can change dramatically
around the equilibrium implying that the preceding step of the argument doesn’t
hold.
We conclude our characterization by proving a result linking p−consensus

and p−stability.
Proposition 4. Consider a p−stable equilibrium τ∗.
(i) Suppose Kτ is continuous in τ . Then, for any p̂ > p, there is a neigh-

borhood of τ∗ such that no τ belonging to the neighborhood is a p′−consensus
distribution for a value p′ ≥ p̂.
(ii) Suppose S∞τ∗,p has a non-empty interior in T and φ is a continuous

correspondence. Then, for any p̂ < p, there exists a τ ∈ S∞τ∗,p arbitrarily close
to τ∗ such that τ is a p′−consensus distribution for some p′ ≥ p̂.
Proof. (i) The proof relies on the proof of Proposition 3 where it is

shown that a necessary condition for p−stability is Kτ∗ (1− p) ≤ 1; hence,
Kτ∗ (1− p̂) < 1. By the smoothness assumption, it follows that for τ arbi-
trarily close to τ∗, Kτ (1− p̂) < 1. So S∞τ,p̂ is either empty of has a radius 0;
and τ 6∈ S∞τ,p̂ given that τ is not a Nash distribution. Since p

′ ≥ p̂ implies
S∞τ,p′ ⊂ S∞τ,p̂, the result follows.
(ii) Consider an open neighborhood N of τ∗ in S∞τ∗,p. By continuity of φ

and definition of S∞τ∗,p, we have that S
∞
τ∗,p = φ

(
S∞τ∗,p

)
∩ Tτ∗,p. This means

that for every τ ∈ N , there exists a non empty set Bτ∗,p (τ) of distributions
τ ′ ∈ S∞τ∗,p such that φ(pτ∗ + (1− p′)τ ′) = τ . Let Bτ∗,p = ∪τ∈NBτ∗,p (τ). Note
that Bτ∗,p ⊂ S∞τ∗,p and τ

∗ ∈ Bτ∗,p (since τ∗ ∈ Bτ∗,p (τ∗)). Let Tτ∗,p(N) =
{pτ∗ + (1− p)τ ′, τ ′ ∈ N}. Note that Tτ∗,p(Bτ∗,p) ⊆ Int.Tτ∗,p; hence, for any τ
in N (provided N is chosen small enough), Tτ∗,p(Bτ∗,p) ⊆ Int.Tτ,p. Therefore,
Tτ∗,p(Bτ∗,p) = Tτ,p(Bτ,p) so that, by continuity of φ, Bτ,p ⊆ S∞τ∗,p so that
N ⊆ S∞τ,p, as required.�
An informal interpretation of Point (i) is that under a mild continuity restric-

tion (which would typically be satisfied, for example, in smooth settings (see
Section 3.2 below)), a p−stable equilibrium is a locally isolated p−consensus
distribution, i.e. there is no p′−consensus distribution in its vicinity with a
degree of consensus p′ larger than p. Informally again, point (ii) says the con-
verse statement also holds provided the best-response map φ is continuous: in
the vicinity of a p−stable equilibrium, there is always at least one p′−consensus
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distribution with a degree of consensus p′ smaller than p and arbitrarily close
to p (provided that the interior of S∞τ∗,p is not empty).

However, note that these informal interpretations are offered to aid under-
standing of Proposition 4; the analogous formal statements cannot, in general,
be proved. Indeed, the (very simple) game developed in Section 3.1 below is
a counterexample: there is a p−stable equilibrium such that every distribution
τ in its neighborhood is a pτ−consensus distribution for some value pτ > p
(pτ depends on τ); there is another p−stable equilibrium with no pτ−consensus
distribution in its neighborhood satisfying pτ ≥ p. The point is that pτ tends
to p when τ tends to the equilibrium.
Lastly, the requirement that S∞τ∗,p has a non-empty interior in T is a re-

striction that is key to Proposition 4 and may not always be satisfied when the
action set has at least two dimensions. To see this point, consider the simple
case of a game where an action is a vector in <K for some K ≥ 2 and the utility
depends only on the individual action and the average action (i.e. only the first
moment of the distribution of actions matter for the strategic interaction). The
notation S∞τ,p and τ are easily redefined as sets and elements in <K . In such a
game, it may be the case that S∞τ∗,p has a dimension strictly less than K (hence,
an empty interior). For τ close to τ∗, the set S∞τ,p may have a dimension strictly
less than K as well (it may be close to S∞τ∗,p by a continuity argument). Because
of the low dimension of S∞τ,p, it is fully possible that τ is close to τ

∗, S∞τ,p is close
to S∞τ∗,p and yet τ 6∈ S∞τ,p. Consequently, there may be no τ in the vicinity of τ∗
that are p−consensus.

3.4 p-stability in the smooth one-dimensional case

To obtain an intuitive feel for the notion of stability being studied in this paper,
we extend the piecewise linear setting of the previous subsection to a non linear
setting.
Consider a simple, smooth model of strategic interaction where there is a

continuum of agents each whom chooses an action a ∈ A (a compact set in R)
to maximize u (a, ā) (C2, with u′′aa < 0) where ā is the average action. Without
loss of generality, A = [−1, 1]. Suppose, there is a (not necessarily) unique Nash
that is interior and is normalized to 0 so that u′a (0, 0) = 0. Denote BR (ā) the
(unique) best response to ā (characterized by u′a (BR (ā) , ā) = 0). We assume
that the BR map is not vertical at equilibrium (BR′ (0) < +∞).
We are now in a position to state the following result:
Proposition 5. There is p̂ < 1 such that the equilibrium is p̂-stable. If

supā∈[−1,1] |BR′ (ā)| < 1, then p̂ = 0. Otherwise, we have:

1− 1

|BR′ (0)| ≤ p̂ ≤ 1− 1

1 + (M − 1)m
, (1)
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where

m = sup
a,ā∈[−1,1]

u′′aā (a, ā)

u′′aā (a, 0)
≥ 1,

M = sup
a,ā∈[−1,1]

∣∣∣∣u′′aā (a, ā)

u′′aa (a, ā)

∣∣∣∣ ≥ 1.

For any p < p̂, there exists a neighborhood of 0 such that every action in this
neighborhood is the average action of a p−consensus distribution. For any p > p̂,
there exists a neighborhood of 0 such that no action in this neighborhood is the
average action of a p−consensus distribution.
Proof. See appendix.�
Notice that by implicit functions theorem, |BR′ (ā)| ≤ M for any ā. To

relate p̂ with exogenous variables, rewrite the left inequality (1) using BR′ (0) =
−u′′aā (0, 0) /u′′aa (0, 0) (by implicit functions theorem, again). The linear case
developed in the previous subsection corresponds to the case with a quadratic
utility: m = 1, BR′ is constant (equal to M) and p̂ = 1− 1/M . As in the linear
case, our stability concept gives a motivation for looking at the slope of the best
response map as a stability index.
A special case of the model studied so far is the Muth model with a large

number of farmers who have to commit to an output level before selling their
products in a competitive market in Guesnerie (1992). Farmer i maximizes
πq − q2

2Ci (π is the output price). Aggregate supply in this market is given by
S(π) = Cπ where C =

∫
Cidi. Aggregate demand in this market is:

D(π) =

{
A−Bπ if π ≤ A

B

0, otherwise

Let π∗ be the competitive equilibrium price. Guesnerie (1992) shows that when
the slope of the best response map B/C < 1, π∗ is the unique rationalizable
outcome.
Applying Proposition 5 immediately yields that the equilibrium in Gues-

nerie’s model is p̂−stable for p̂ = max {1− C/B, 0}. Thus, p−stability describes
more precisely the degree of stability of the equilibrium when it is not the unique
rationalizable outcome.
The remainder of the section is devoted to the proof of Proposition 5. The

proof shows that p−stability relies on the best response map BR0,p (ā) (best
response to beliefs "probability p on 0, probability (1− p) on ā"). When p is
close to one, the slope BR′0,p (ā) is small enough (whatever ā is). The map
BR0,p is then globally contracting and p−stability obtains. Intuitively, when p
is close to one, the best response is not very sensible to the value ā and the best
response cannot deviate very much from the equilibrium value 0. This is the
condition needed to get p−stability.
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3.5 Basin of attraction and p-stability

In this subsection, in an example with three equilibria, we show that the p−stability
of a corner equilibrium is linked to the slope of the aggregate best response at
that equilibrium but not to the size of the basin of attraction.
We consider a game with a continuum of individuals of mass one who must

choose an action a ∈ [−1, 1] to maximize the payoffs

−a
2

2
+ aP (a)

where a denotes the average action and P (.) is a third degree polynomial speci-
fied below. At an interior best response, the first order condition is P (a)−a = 0.
Assume that P (a) = −A (a− 1) (a+ 1) (a− α), where A > 0 and α ∈

(−1, 1). Then, there are three equilibria (fix points): a = 1, a = −1, a = α. By
computation, we can check that

∂P (a)

∂a

∣∣∣∣
a=1

= 1−2A(1−α),
∂P (a)

∂a

∣∣∣∣
a=−1

= 1−2A(1+α),
∂P (a)

∂a

∣∣∣∣
a=α

= 1+A(1−α2).

Note that ∂P (a)
∂a

∣∣∣
a=α

> 1 while ∂P (a)
∂a

∣∣∣
a=1

and ∂P (a)
∂a

∣∣∣
a=−1

are both less than

one. To ensure that we are in the case of strategic complements we restrict the

parameters so that both ∂P (a)
∂a

∣∣∣
a=1

> 0 and ∂P (a)
∂a

∣∣∣
a=−1

> 0. Therefore, a = 1

(respectively, a = −1) is stable in the best-response dynamics on its basin of
attraction (α, 1] (respectively, [−1, α)). Furthermore, it follows that the whole
action set is rationalizable so, in particular, none of the three equilibria is 0-
stable.
Next, we show that by choosing different value of A we can choose different

values of α consistent with the p−stability of a = 1. By computation, the
p−best response map is

pP (a) + (1− p)P (a′) = pP (a)−A [+(1− p) (a′ − 1) (a′ + 1) (a′ − α)] + (1− p)a′

Observe that p−stability requires the above best-response map to be con-
vergent and we need a unique fix point of the preceding map. So we look for
value of p for which the preceding p−best response has exactly one root. So the
requiring p−stability of either one of the two equilibria for all p > p requires us
to calculate the value of p for which the preceding p−best response has exactly
two roots one of which is the equilibrium and the other one is the double root.
So this implies

pP (a) + (1− p)P (a′) = −A(1− p)(a′ − a)(a′ − δ)2

where δ is the unknown double root.
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Consider the p−stability of x = 1. Identifying the coeffi cients (the coeffi -
cients of degree 3 are identical)

(1− p)αA = (1− p)A (1 + 2δ)

(1− p) (1 +A) = 1− (1− p)A (2 + δ) δ

p− (1− p)αA = (1− p)Aδ2

The first one requires δ = α−1
2 while the second one requires

(1− p)A (1 + δ)
2

= p

which is δ =
√

p
(1−p)A − 1 (the second one follows from the others). Hence, p is

such that

α− 1

2
=

√
p

(1− p)A − 1

A (α+ 1)
2

4
=

p

(1− p)

Observe that we can rewrite the preceding expression as(
1− ∂P (a)

∂a

∣∣∣
a=1

)
(α+ 1)

2

8(1− α)
=

p

(1− p)

It follows that by choosing different value of A we can choose different values
of α consistent with the p−stability of a = 1.
Therefore, there is no link between p−stability of a = 1 and the size of its

basin of attraction.

4 Intertemporal trade, expectations coordina-
tion and bubbles

In this section, we study the partial consensus outcomes in a two period econ-
omy with a single asset linking the two periods. The aim is to examine the
foundations, via belief coordination, of perfect foresight equilibria. We are in a
setting where all agents are price-takers and payoffs depend on their own actions
and market prices; hence, we adopt a slightly different formalization of a large
economy from MasColell (1984). The analysis generalizes and extends Ghosal
(2006)’s local stability analysis of a perfect foresight equilibrium. In addition,
to a new solution concept for intertemporal economies being proposed and its
links with perfect foresight equilibria being analyzed, we allow preferences to be
non-separable over time.
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4.1 The Economy

The economy consists of a mass of individuals of finite measure, formally, an
atomless measure space of individuals, {I, ι, µ}, with I the set of agents, ι the
σ-algebra on I and µ an atomless measure defined on I. Null sets of individu-
als are systematically ignored throughout the paper. For some arbitrary finite
K−dimensional Euclidian space, an assignment is any function g : I → <K each
coordinate of which is integrable5 .Trade in this economy is sequential and takes
place at two time periods, t = 1, 2, with Lt, t = 1, 2, commodities traded in
the spot commodity markets in period t6 and an asset market that opens in the
first period. In time period t = 1, each individual submits commodity demands
in the spot commodity markets and asset demands in the asset market. Prices
in these markets then adjust to ensure market clearing. In time period t = 2,
each individual submits commodity demands in the spot commodity markets.
Prices in these markets then adjust to ensure market clearing.
A commodity bundle is x ∈ <L1

+ × <L2
+ with xtl denoting quantities of con-

sumption of commodity l in period t. Endowments are w : I → <L1
+ × <L2

+

with w = (w1,w2), and w̄t= ∫ wi
tdi � 0 for t = 1, 2. The asset traded in the

first period pays off in units of the first commodity traded in the second period
and further, it is in zero net supply. Preferences of trader i are described by a
utility function ui : <L1

+ × <L2
+ → < such that two assumptions are satisfied:

(A1) For each traders i ∈ I, ui satisfies strict monotonicity, strict concavity, is
twice continuously differentiable on <L1

+ ×<L2
+ ; (A2) u : I ×<L1

+ ×<L2
+ → < is

measurable and uniformly smooth. The requirement of uniform smoothness in
(A2) follows Aumann (1975, sections 4 and 10) except that we do not require
the utility functions of any trader to be bounded. A consequence of (A2) is
that u : I × <L1

+ × <L2
+ → < viewed as a map from (i, x1, x2) to real numbers

is measurable as a function of (i, x1, x2). The asset traded in the first period
pays off in units of the first commodity traded in the second period and fur-
ther, it is in zero net supply. An allocation is a triple (x1,y,x2) such that
xit ∈ <Lt+ , t = 1, 2, for all i ∈ I and yi∈<. An allocation is feasible if, in addi-
tion,

∫
xitdi = x̄t= w̄t =

∫
wi
tdi, t = 1, 2 and ȳ =

∫
yidi = 0. An economy is

E ={I, ι, µ, (ui, wi) : i ∈ I}.
Prices are (π1, q, π2) where πtl is the spot commodity market price of com-

modity l in period t and q is the price of the asset. Normalize prices so that
π11 = 1 and π21 = 1. As the utility function of each individual is strongly
monotone, without loss of generality it is possible to restrict attention to prices
where πt ∈ <Lt−1

++ , t = 1, 2 and q ∈ <++. Asset payoffs are therefore denoted in
the second period numeraire.
At prices (π1, q, π2) the maximization problem that each individual solves has

two stages. In the second stage, at t = 2, given (π1, q, π2, x1, y) each individual

5Throughout this subsection, the bold face type will be used to denote an assignment,
with the ith component of the assignment g denoted by gi and the kth coordinate of the
assignment g denoted by gk.

6Note that when L2 = 1, with only one commodity at t = 2, the coordination problem in
second period spot markets studied here disappears. Hence, we assume that L2 ≥ 2.
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solves:
Max{x2} u

i(x1, x2) s.t. π2x2 ≤ π2w
i
2 + y, x2 ∈ <L2

+

For a solution x̂i2 to this maximization problem, let v
i(x1, π2, π2w

i
2 + y) =

ui(x1, x̂
i
2

(
x1, π2, π2w

i
2 + y

)
). In the first stage, at t = 1, given (π1, q, π2) each

individual solves the following maximization problem:

Max{x1,y} v
i(x1, π2, π2w

i
2 + y) s.t. π1x1 + qy ≤ π1w

i
1, x1 ∈ <L1

+

Let (x̂i1, ŷ
i) denote a solution to this sequential, two-stage maximization

problem. Let Ŝi(π1, q, π2) denote the set of all possible solutions (x̂i1, ŷ
i, x̂i2) at

prices (π1, q, π2).

Definition 1 A Perfect Foresight Equilibrium (PFE) is a vector of prices (π̂1, q̂, π̂2)
and allocations (x̂1, ŷ, x̂2) such that (a) at prices (π̂1, q, π̂2), (x̂i1, ŷ

i, x̂i2) ∈ Ŝi(π̂1, q, π̂2),
for all i ∈ I, (b) x̂t ∈ <Lt++, t = 1, 2, and (c)

∫
x̂itdi= w̄t, t = 1, 2 and

∫
ŷidi = 0.

4.2 A local analysis of bubbles and preference heterogene-
ity

In this part of paper, we work with prices and allocations in the vicinity of a
Perfect foresight equilibrium. This allows us to provide a reasonably complete
characterization of the p−stability of a PFE and the condition under which,
locally, bubbles exist.
The market clearing equations corresponding to a PFE are:∫

x̂i1(π̂1, q̂, π̂2)di = w̄1,

∫
ŷi(π̂1, q̂, π̂2)di = 0,

∫
x̂i2(x̂i1(π̂1, q̂, π̂2), π̂2, ŷ

i(π̂1, q̂, π̂2)) = w̄2

Let x̄t =
∫

x̂itdi, t = 1, 2 denote mean commodity demand in period t and
ȳ =

∫
ŷidi denote mean asset demand. Let N(π̂1, q̂, π̂2) ⊂ <L1

++ × <++ × <L2
++

be a neighborhood of an interior PFE price vector. Then, for all (π1, q, π2) ∈
N(π̂1, q̂, π̂2), the derivatives ∂πt′l′ x̄tl, ∂πt′l′ ȳ, ∂qx̄tl, ∂qȳ exist for all t, t′ =
1, 2 and all l, l′ = 1, ..., L and are equal to ∂πt′l′ x̄tl =

∫
∂πt′l′ x̂

i
tldi, ∂πt′l′ ȳ =∫

∂pt′l′ ŷ
idi, ∂qx̄tl =

∫
∂qx̂

i
tldi, ∂qȳ =

∫
∂qŷ

idi. This follows from the fact that
∂πt′l′ x̂

i
tl, ∂πt′l′ ŷ

i, ∂qx̂itl, ∂qŷ
i, for all l, l′ = 1, ..., Lt, t, t′ = 1, 2, , i ∈ I are

integrally bounded (see, for instance, page 154, Jones (1993)).
After deleting the numeraire commodity in each period, consider the Jaco-

bian of the market clearing equations J =

(
J11 J12

J21 J22

)
where J11 =

(
∂π1

x̄1 ∂qx̄1

∂π1
ȳ ∂qȳ

)
,

J12 =

(
∂π2 x̄1

∂π2
ȳ

)
, J21 =

(
∂π1

x̄2 ∂qx̄2

)
, J22 = (∂π2

x̄2) evaluated at the

market clearing prices (π̂1, q̂, π̂2) ∈ <L1−1
++ ×<++×<L2−1

++ , where the numeraire
commodity in each period has been deleted as well. For any assignment x1,y
such that

∫
xi1di = w̄1,

∫
yidi = 0, let ∂π2

x̄2(x1,y) =
∫
∂π2

x̂i2(xi1, p2,y
i).
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Definition 2 (Regularity, Strong Regularity and Sequential Regularity)7 An in-
terior PFE is regular (respectively, strongly regular) if J is invertible (respec-
tively, J11and J22 are invertible). It is sequentially regular if, in addition to being
regular and strongly regular, (∂π2 x̄2(x1,y))

−1 exists for all assignment of assets
y such that yi = ŷi(π′1, q

′, π′2) for all i ∈ I and some (π′1, q
′, π′2) ∈ N(π̂1, q̂, π̂2, ε).

An economy is regular (respectively, strongly regular and sequentially regular) if
all its interior PFE are regular (respectively, strongly regular and sequentially
regular).

In a regular economy, each PFE is locally isolated. In a strongly regular
economy, in addition, it follows as a consequence of the implicit function theo-
rem that for a given (π̄1, q̄) ∈ N(π̂1, q̂, , ε) ⊂ <L2−1

++ ×<, there is a locally unique
second period price π2 that solves

∫
x̂i2(x̂i1(π̄1, q̄, π2), p2, ŷ

i(π̄1, q̄, p2)) = w̄2; fur-
ther, it is a continuous function of (π̄1, q̄, ) ∈ N(π̂1, q̂, ε). Moreover, in a se-
quentially regular economy, again as a consequence of the implicit function
theorem, for all (π′1, q

′, π′2) ∈ N(π̂1, q̂, π̂2, ε) with
∫

x̂i1(π′1, q
′, π′2)di = w̄1 and∫

ŷi(π′1, q
′, π′2)di = 0, there exists a unique second period price π2 that solves∫

x̂i2(π′1, q
′, π′2), π2, ŷ

i(π′1, q
′, π′2)) = w̄2; further, it is a continuous function of

(π′1, q
′, π′2) ∈ N(π̂1, q̂, π̂2, ε).

We begin our analysis assuming that individuals have expectations over fu-
ture prices whose support is some set8 Π0

2 ⊂⊆ N(π̂2, ε). Consider π̃2 ∈ Π0
2. A

p-belief puts a weight p on π̃2 and a weight 1 − p on πe,i2 ∈ Π0
2 (not assumed

to be common knowledge). The interpretation is that there is partial consensus
(where p measures the degree of consensus) on π̃2. Let f : I → Π0

2 ⊂ <L2−1
++ : an

assignment of expectations where f i = πe,i2 . Let x̂i2
(
x1, π̃2, π̃2w

i
2 + y

)
denote

the (unique) solution to

Max{x2} u
i(x1, x2) s.t. π̃2x2 ≤ π̃2w

i
2 + y, x2 ∈ <L2

+

Let x̂i2
(
x1, f

i, f iwi
2 + y

)
) denote the (unique) solution to

Max{x2} u
i(x1, x2) s.t. f ix2 ≤ f iwi

2 + y, x2 ∈ <L2
+

For each p− belief , there is an associated lottery over period 2 consumption
lip, with probability p on x̂i2

(
x1, π̃2, π̃2w

i
2 + y

)
and with probability 1 − p on

x̂i2
(
x1, f

i, f iwi
2 + y

)
. Let lp denote an assignment of lotteries. At t = 1, given

(π1, q) and lir an individual solves:

Max{x1,y} pv
i
(
x1, π̃2, π̃2w

i
2 + y

)
+(1−p)vi

(
x1, f

i, f iwi
2 + y

)
] s.t. π1x1+qy ≤ π1w

i
1, x1 ∈ <L1

+ .

Let x̂i1(π1, q, l
i
p), ŷi(π′1, q

′, lip) denote a solution to the preceding sequential,
two-stage maximization problem.

7Sequential regularity was introduced by Balasko (1994).
8Our analysis, in this subsection is in the vicinity of a PFE; hence, we ignore any issues that

arise with bankruptcy in the initial set of prices Π0
2. In a global analysis, as in the subsection

below, bankruptcy constraints will be explicitly incorporated in the characterization of Π0
2.
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For a fixed lp, (π′1, q
′) is a period 1 equilibrium if and only if

∫
x̂i1(π′1, q

′, lip)di =∫
wi

1di and
∫

ŷi((π′1, q
′, lip)di = 0. Let Ê1 (lp) denote the set of such equilibria.

For a pair (π1, q) first period prices, with a mild abuse of notation, the second
period price π′2 is a period 2 equilibrium if and only if

∫
x̂i2(x̂i1, π

′
2, ŷ

i(π1, q, l
i
p)) =∫

wi
2di. Let Ê2 (x̂1, π1, q, lp) denote the set of such equilibria.
Fix Π0

2 ⊂ <L2−1
++ . For n = 1, ..., define

Πn
2,p =

{
π2 ∈ <L2−1

++ : ∃ lp s.t. π2 ∈ Ê2 (x̂1, π1, q, lp) ,

for some (x̂1, π1, q) ∈ Ê1 (lp)

}
∩Πn−1

2,p

Obviously, Πn
2,p ⊆ Πn−1

2,p , n = 1, ....
Rationalizable (second period) price expectations: Π̃2,p = Π∞2,p.
Partial Consensus outcomes: For 0 ≤ p < 1, given Π0

2 ⊂ <L2−1
++ , a

consensus outcome is a triple (π̃1, q̃, π̃2) and an allocation (x̃1, ỹ, x̃2) such that
(x̃1, π̃1, q̃) ∈ Ê1 (lp) for some lp on Π̃2,p with probability at least p on π̃2 ∈ Π̃2,p.
Proposition 6. Consider a PFE vector of prices (π̂1, q̂, π̂2). Suppose

ui(x1, x2) = ui1(x2) +u2(x2) where u2(.) homothetic for all i ∈ I. Then, for any
Π0

2 ⊂ <L2−1
++ ,such that π̂2 ∈ Π0

2, Π̃2,p = {π̃2} for all 0 ≤ p < 1.
Proof. As market clearing in both periods is common knowledge

∫
ŷidi = 0,

and therefore,
∫
dŷidi = 0. As ui2(x2) is identical and homothetic for all i ∈ I,

∂yx̂
i
2(π̂2, ŷ

i(π̂1, q̂, π̂2)) = ∂yx̂
j
2(π̂2, ŷ

j(π̂1, q̂, π̂2))

for all i, j ∈ I, and therefore,
∫
∂yx̂

i
2dŷ

idi = ∂yx̂
i
2

∫
dŷidi = 0 so that as long as

π̂2 ∈ Π0
2, Ê2 (x1, π1, q, lp) = {π̂2} for all (π1, q) ∈ Ê1 (lp), 0 ≤ p < 1. Therefore,

Π̃2,p = {π̂2}.�
A partial consensus outcomes reduces to a PFE when all individuals are

able to continue eliminating prices till π̃2 is the only element in Π̃2,p. When
preferences are additively separable in consumption across the two time periods,
a change in the asset holdings in period 1 amounts to a redistribution of revenue
in period 2 spot markets. When preferences over consumption in period 2 spot
markets are identical and homothetic, a redistribution of revenue will have no
impact on period 2 spot prices. Therefore, as long the PFE second period price
π̂2 is in Π0

2, it is the only price vector consistent with market clearing in period
2 irrespective of what second price expectations individuals started out with: it
is the unique rationalizable second price expectation.
We are now in a position to examine the p−stability of a PFE:
Proposition 7. Consider a sequentially regular PFE vector of prices (π̂1, q̂, π̂2).

Whenever the degree of consensus p on π̂2 ∈ Π0
2 ⊆ N(π̂2, ε) of π̂2 is higher than

a critical threshold value p < 1, the PFE is the unique rationalizable outcome.
Proof. When the PFE is sequentially regular, then the admissibility con-

dition required for Proposition 3 is satisfied. By relabelling variables appropri-
ately, the result is an immediate consequence of Proposition 3. �
Fix a strongly regular (π̂1, q̂, π̂2). Clearly, as long as π̂2 ∈ Π0

2 ⊆ N(π̂2, ε) of
π̂2, there is a partial consensus outcome that is Pareto optimal. However, by
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Proposition 1, when Π̃2,p has a non-empty interior in <L2−1
++ , it also contains

partial consensus outcomes are distinct from a PFE such that the associated
allocations aren’t Pareto optimal. Evidently, the marginal rates of substitution
will be equalized across individuals in spot markets within a time period but not
across time periods. Moreover, at a strongly regular (π̂1, q̂, π̂2), the associated
partial consensus asset price q̃ 6= q̂: hence, there is an asset price bubble.
In what follows, starting from a fixed strongly regular (π̂1, q̂, π̂2) and a Π0

2

such that π̂2 ∈ Π0
2, a local characterization of the as set of suffi cient conditions

that ensures the existence of a Π̃2,p that has a non-empty interior in <L2−1
++

is carried out for p small enough. Suppose Π0
2 = N(π̂2, ε),Π

0
2 6= {π̂2} with

N(π̂2, ε) ⊂ <L2−1
++ a neighborhood around π̂2, the second period component

of a PFE vector of prices (π̂1, q̂, π̂2). Let ‖.‖ be a monotone vector norm9 on
<L2−1. Let S(ε) = {z ∈ <L2−1

++ : ‖z − π̂2‖ = ε, ε > 0}. Let B(ε̄) = {x ∈
<L2−1

++ : ‖x− π̂2‖ < ε̄}.
As the economy is sequentially regular, it will be convenient to provide a local

characterization of the map from each assignment of expectations f : I → Π0
2

(remember p = 0) to a market clearing price in the second period π2 in the
vicinity of a PFE:
Lemma 2: Fix a sequentially regular PFE (π̂1, q̂, π̂2). There exists a neigh-

borhood N(π̂2, ε) of π̂2 and matrices M i for each i ∈ I such that for each
assignment of expectations f : I → Π0

2, Π0
2 = N(π̂2, ε), dπ2 =

∫
Midf idi where

dπ2 = (π2 − π̂2) and df i = (f i − π̂2). Moreover Π̃2,0 = {π2 ∈ N(π̂2, ε) : dπ2 =∫
Midf idi, for some f : I → Π̃2,0}.
Proof. See appendix.�
What conditions ensure that redistributions of revenue in second period

markets or when redistributions of commodities in period 1 change second period
spot market prices? The following proposition provides an answer:
Proposition 8. (a) If there exists ε̄ > 0 such thatΠ0

2 ⊆ N(π̂2, ε), (a)
∥∥∫ Midvidi

∥∥ <
ε̄, for all assignment of expectations v : I → S(ε̄), then Π̃2,p = {π̂2}, (b) if∥∥∫ Midvidi

∥∥ > ε, for all assignment of expectations v : I → S(ε), for each
ε ≤ ε̄, N(π̂2, ε) ⊆ Π̃2,p for p < p̃, for some p̃ > 0. Moreover, the condition that∥∥∫ Midvidi

∥∥ < ε̄ is invariant to the choice of the second period numeraire. (b)
Consider a sequentially regular PFE vector of prices (π̂1, q̂, π̂2). If there exists
ε̃ > 0 such that either (i)

max
{∥∥∥∂yx̂i2(x̂i1,π̂2, ŷ

i)− ∂yx̂j2(x̂i1,π̂2, ŷ
i)
∥∥∥ ,∥∥∥∂x1

x̂i2(x̂i1,π̂2, ŷ
i)− ∂x1

x̂j2(x̂i1, π̂2, ŷ
i)
∥∥∥} < ε̃

for all i, j ∈ I, or (ii) max
{∥∥∂π2

ŷi
∥∥ ,∥∥∂π2

x̂i1
∥∥} < ε̃ for all i ∈ I, there exists

a neighborhood N(π̂2, ε) of π̂2 and Π0
2 ⊂ N(π̂2, ε) such that Π̃2,p = {π̂2},

0 ≤ p ≤ 1.

9For any x ∈ <K , let |x| = (|x1| , ..., |xK |). It follows that |x| ≥ |y| if and only if |xl| ≥ |yl|
for all l = 1, ...,K. A vector norm, ‖.‖ on <K is monotone if and only if |x| ≥ |y| =⇒
‖x‖ ≥ ‖y‖. All lp norms, including the euclidean norm, are monotone. However, (see Horn
and Johnson (1985)) the following vector norm on <K , ‖x‖ = |x1 − x2| +

∑
l′ 6=1 |xl′ |, is not

monotone.
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Proof. See appendix.�
Heuristically, when (a) second period spot market prices are sensitive to

redistributions of revenue in second period markets or a redistribution of com-
modities in period 1 change second period spot market prices, and (b) there is
lack of consensus over second period prices (so that beliefs over second period
prices are heterogeneous to a suffi cient degree), then an asset pice bubble exists.
Conversely, even with lack of consensus over future prices in a small enough
neighborhood of a perfect foresight equilibria, an asset price bubble will not
exist if (a) the sensitivity of second period spot commodity prices to a redistrib-
ution of revenue in the same period and a redistribution in period 1 endowments
is small and (b) the sensitivity of period 1 consumption and asset demands to
small changes in expectations of second period prices is small.
Notice that when the conditions under which proposition 8a holds, any asset

market price in an appropriately chosen interval of the PFE asset market price
can be a partial consensus asset market price. Therefore, local bubbles exist.

4.3 A global analysis of bubbles and preference hetero-
geneity: an example

In this part of the paper, we develop a simple example of intertemporal trade
with an unique PFE with no trade in asset markets. In a global analysis, we
demonstrate how the interaction of heterogeneous beliefs and heterogeneous
preferences implies the existence of p−consensus outcomes characterized by as-
set price bubbles. The distance of a PFE asset price a p−consensus asset price
is entirely constrained by the heterogeneity of preferences.
There is a continuum [0, 2] of infinitesimal agents, 2 groups i = A,B (size

1 each) of agents. 2 periods t = 1, 2. At t = 1, there is a single commodity
available for consumption and as before agents can transfer revenue over time
using an asset in zero net supply. There are two commodities available for
consumption at t = 2 and as before, asset payoffs are denoted in commodity,
the numéraire good. Denote π2 the relative of price of commodity 2 at t = 2.
Every agent in groupA has an intertemporal utility function uA(x1,1, x1,2, x2,2) =

(x1,1)1−σ

1−σ +(x1,2)
α

(x2,2)
1−α, σ ≥ 0, σ 6= 1, 0 < α < 1; every agent in group B has

an intertemporal utility function uB(x1,1, x1,2, x2,2) =
(x1,1)1−σ

1−σ +(x1,1)
1−α

(x2,2)
α.

We will assume α > 1/2. Note α is a measure of preference heterogeneity be-
tween the two groups of agents: closer α is to one, the higher the degree of
preference of preference heterogeneity between the two groups.
To focus on the role of preference heterogeneity in generating p−consensus

outcomes, we will assume that both groups of agents have the same endowments
i.e. for i = A,B,

(
wi

1,1,w
i
1,2,w

i
2,2

)
= (w1,w1,2,w2,2). Furthermore, we will

assume that w1,2 = w2,2 = w2. For simplicity, we also will assume that all the
agents in group i have the same asset holding, denoted yi i.e. all agents in a
group share the same price expectations and have therefore the same optimal
behavior.
The budget constraint at t = 0 for all agents is x1,1 + qyi = w1, i = A,B.
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As already noted, we want to avoid bankruptcy in period 2. For i = A,B, when
yi < 0, an agent borrows at t = 1 with a promise to repay at t = 2 we may have
w2(1+π2)+yi < 0 (i.e. the agent defaults on her debt). Given π2, y

i, we define
the t = 2 wealth W i(π2, y

i) of an agent of group i = A,B as follows: if yi < 0,
is W i(π2, y

i) = max
{

0,w2(1 + π2) + yi
}
; otherwise W i(π2, y

i) = w2(1 +π2)y′i

where 0 ≤ y′i ≤ yi (an agent may not get back all that is owed to her).
Therefore, at t = 2, three cases are possible: if W i(π2, y

i) ≥ 0 for both i =
A,B, the wealth of an agent in group i = A,B is w2(1+π2)+yi; W i(π2, y

i) < 0
(group i defaults), asset market clearing yi+yj = 0 at t = 1 impliesW j(π2, y

j) >
0 so that W i(π2, y

i) = 0 and W j(π2, y
j) = 2w2(1 + π2), j 6= i, i, j = A,B, (i.e.

each the defaulting agent gives everything to some market maker who then
redistributes the wealth to all creditors equally),
At the beginning of t = 1, the price π2 depends on asset holdings. As pref-

erences over period 2 commodities are homothetic preferences, period 2 de-
mand (and indirect utility) is linear in wealth. Market clearing for good 1
is αWA(π2, y

A) + (1− α)WB(π2, y
A) = 2w2 so that when W i(π2, y

i) ≥ 0
for both i = A,B (there is no default), the market clearing relative price is

π2 = 1 − (2α−1)yA

w2
and we must have that −yB ≤ w2

α as well as −yA ≤ w2

(1−α)

(i.e. debt is bounded). When agents in group A default, πmax
2 = α

1−α , and
−yA > w2

(1−α) ; when agents in group B default, πmin
2 = 1−α

α , and −yB > w2

α .
Hence, allowing for asset market clearing in period 1, at t = 2, we must

have that π2 ∈ Π0
2 =

[
πmin

2 , πmax
2

]
=
[

1−α
α , α

1−α

]
. Notice that set of period 2

prices compatible with no default is entirely determined by the parameter α:
the closer α is to one (the more heterogenous preferences are), the bigger is the
set Π0

2.
The indirect utility over period two consumption for each group is given as

follows: vA
(
π2,W

A(π2, y
A)
)

= αα(1−α)1−α

π1−α
2

WA(π2, y
A) and vB

(
π2,W

B(π2, y
B)
)

=

αα(1−α)1−α

πα2
WB(π2, y

B). Evidently, these are linear in W i and hence, piecewise

linear in yi, i = A,B.
Let ymin

A = − w1

(1−α) and y
max
A = w1

α . Then, no default in period 2 implies
(using ,asset market clearing in period one so that yB = −yA) implies the
following: yA ∈

[
yAmin, y

A
max

]
and yB ∈

[
yBmin, y

B
max

]
=
[
−yAmax,−yAmin,

]
.

Hence at t = 0, a group A individual maximizes

max
yA∈[yAmin,y

A
max]

(
w1 − qyA

)1−σ
1− σ +

αα (1− α)
1−α

π1−α
2

WA(π2, y
A)

and a group B individual maximizes

max
yB∈[yBmin,y

B
max]

(
w1 − qyB

)1−σ
1− σ +

αα (1− α)
1−α

πα2
WB(π2, y

B)

A straightforward computation show that at a PFE π̂2 = 1, q̂ = (w1)
σ
αα (1− α)

1−αand
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ŷA = ŷB = 0. Observe that at the unique PFE, there is no trade in asset mar-
kets.
To characterize the set of p−consensus outcomes, to begin with, we assume

that σ = 0. In this case, observe that intertemporal utility function is piece
wise linear in the amount of the asset held. Given a p-belief over π2 ∈ Π0

2, let

EAp

(
1

π1−α
2

)
(respectively, Ep

(
1
πα2

)
) denote the expected value of π2 for a group

A agent (resp., group B agent). For a given q and a p-belief over π2 ∈ Π0
2, the

optimal yA is determined as follows:

yA
(
q, EAp

(
1

π1−α
2

))
=


yAmin if q > αα (1− α)

1−α
EAp

(
1

π1−α
2

)
[
yAmin, y

A
max

]
if q = αα (1− α)

1−α
EAp

(
1

π1−α
2

)
yAmax if q < αα (1− α)

1−α
EAp

(
1

π1−α
2

)
The optimal yB

(
q, EBp

(
1
πα2

))
is defined analogously.

No asset price q can be strictly smaller (resp., strictly greater) than αα (1− α)
1−α

EAp

(
1

π1−α
2

)
and αα (1− α)

1−α
EBp

(
1
πα2

)
clears the market, as yA

(
q, EAp

(
1

π1−α
2

))
> 0 and

yB
(
q, EBp

(
1
πα2

))
> 0 (resp., as both yA

(
q, EAp

(
1

π1−α
2

))
< 0 and yB

(
q, EBp

(
1
πα2

))
<

0). Hence, the asset market clearing price is determined as follows:

q′
(
EAp

(
1

π1−α
2

)
, EBp

(
1

πα2

))

=


αα (1− α)

1−α
EAp

(
1

π1−α
2

)
, if EAp

(
1

π1−α
2

)
= EBp

(
1
πα2

)[
EAp

(
1

π1−α
2

)
, EBp

(
1
πα2

)]
, if EAp

(
1

π1−α
2

)
< EBp

(
1
πα2

)[
EBp

(
1
πα2

)
, EAp

(
1

π1−α
2

)]
, if EAp

(
1

π1−α
2

)
> EBp

(
1
πα2

)
The market clearing π′2 price at t = 2 is determined as follows: if EAp

(
1

π1−α
2

)
<

EBp

(
1
πα2

)
, yA

(
q, EAp

(
1

π1−α
2

))
< 0 and yB

(
q, EBp

(
1
πα2

))
> 0 so that π′2 = πmax

2 ;

if EAp
(

1
π1−α

2

)
> EBp

(
1
πα2

)
, yA

(
q, EAp

(
1

π1−α
2

))
> 0 and yB

(
q, EBp

(
1
πα2

))
< 0,

so that π′2 = πmin
2 ; if EAp

(
1

π1−α
2

)
= EBp

(
1
πα2

)
, yA

(
q, EAp

(
1

π1−α
2

))
∈
[
yAmin, y

A
max

]
and π′2 ∈ [πmin

2 , πmax
2 ].

At an interior PFE π̂2 ∈ (πmin
2 , πmax

2 ), we must have that 1
π̂1−α

2

= 1
π̂α2
. As

1 ∈ ( 1−α
α , α

1−α ) = (πmin
2 , πmax

2 ), the unique PFE is π̂2 = 1 with yA = yB = 0.

Note, however, when EAp
(

1
π1−α

2

)
= EBp

(
1
πα2

)
= 1, any yA ∈

[
yAmin, y

A
max

]
is an

optimal choice. So, the optimal choice of an agent isn’t uniquely defined at a
PFE. Hence, the PFE is 1−stable but can never be p−stable for p < 1.
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It remains to compute the partial consensus outcomes. Given a p−belief on
a price π2 ∈ Π0

2, we must have that

EAp

(
1

π1−α
2

)
∈
[

p

π1−α
2

+
1− p

(πmax
2 )

1−α ,
p

π1−α
2

+
1− p(

πmin
2

)1−α
]

EBp

(
1

πα2

)
∈
[
p

πα2
+

1− p
(πmax

2 )
α ,

p

πα2
+

1− p(
πmin

2

)α
]

Hence, an interior price π2 ∈ (πmin
2 , πmax

2 ) is a partial consensus outcome if and
only if the both the preceding intervals intersect.
If π2 > 1, we require that p

πα2
+ 1−p

(πmin
2 )

α ≥ p

π1−α
2

+ 1−p
(πmax

2 )
1−α since 1

πα2
< 1

π1−α
2

(because α > 1/2). The intuition is that agents in A must be pessimistic enough

(so that EAp
(

1
π1−α

2

)
is less than 1

π1−α
2

) and agents inB must be optimistic enough

(so that EBp
(

1
πα2

)
is greater than 1

πα2
), so this cannot be possible if p is too close

to 1. Note that

p

πα2
+

1− p(
πmin

2

)α ≥ p

π1−α
2

+
1− p

(πmax
2 )

1−α ⇔ p ≤
1

(πmin
2 )

α − 1

(πmax
2 )

1−α

1

(πmin
2 )

α − 1

(πmax
2 )

1−α + 1
π1−α

2

− 1
πα2

=def pc (π2)

where 1
π1−α

2

− 1
πα2
≥ 0 (as α > 1

2 ) and
1

(πmin
2 )

α − 1

(πmax
2 )

1−α > 0 as
(

α
1−α

) 1
2α−1

> 1

(again, as α > 1
2 ). Moreover, p

c (π2) tends to 1 when π2 tends to 1 (as 1
π1−α

2

− 1
πα2

tends to 0).
If π2 < 1, we require that p

πα2
+ 1−p

(πmax
2 )

α ≤ p

π1−α
2

+ 1−p
(πmin

2 )
1−α since 1

πα2
> 1

π1−α
2

so that, by an analogous computation to the one above, we obtain that

p

πα2
+

1− p
(πmax

2 )
α ≤

p

π1−α
2

+
1− p(

πmin
2

)1−α ⇔ p ≤
1

(πmin
2 )

1−α − 1

(πmax
2 )

α

1

(πmin
2 )

1−α − 1

(πmax
2 )

α + 1
πα2
− 1

π1−α
2

=def pc (π2)

As before, pc (π2) tends to 1 when π2 tends to 1 (as 1
π1−α

2

− 1
πα2

tends to 0).

Therefore, the level of p−consensus is arbitrarily high for prices π2 close to the
interior PFE with an upper bound π2 is from one.
Note that at a PFE, q̂ = αα (1− α)

1−α; at a partial consensus outcome with

EAp

(
1

π1−α
2

)
= EBp

(
1
πα2

)
6= 1, q′ = αα (1− α)

1−α
EAp

(
1

π1−α
2

)
6= αα (1− α)

1−α.

Hence, a partial consensus asset price can be made large or small relative to the

unique PFE by choosing different values of EAp
(

1
π1−α

2

)
constrained entirely by

the heterogeneity of the preferences.
One concern with the analysis so far is that by focusing on the case with

σ = 0, the characterization of p−consensus outcomes may not be robust. We
address this concern by carrying out an analysis of p−consensus outcomes for
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values of σ in the vicinity of zero. When σ 6= 0, the first order conditions
characterizing an interior optimum to the intertemporal optimization problem
for a group A individual is:

q
(
w1 − qyA

)−σ
= αα (1− α)

1−α
EAp

(
1

π1−α
2

)
so that

yA
(
q, EAp

(
1

π1−α
2

))
=

1

q

w1 −
(

q

αα (1− α)
1−α

) 1
σ (

EAp

(
1

π1−α
2

))− 1
σ


An symmetric computation yields that

yB
(
q, EBp

(
1

πα2

))
=

1

q

w1 −
(

q

αα (1− α)
1−α

) 1
σ (

EBp

(
1

πα2

))− 1
σ


Asset market clearing requires that yA + yB = 0. Hence, by computation, the
market clearing asset price is

q′
(
EAp

(
1

π1−α
2

)
, EBp

(
1

πα2

))

= (2w1)
σ
αα (1− α)

1−α
[(

EAp

(
1

π1−α
2

))− 1
σ

+

(
EBp

(
1

πα2

))− 1
σ

]−σ
The market clearing second period commodity price is

π′2

(
EAp

(
1

π1−α
2

)
, EBp

(
1

πα2

))

= 1− (2α− 1)

w2q′
(
EAp

(
1

π1−α
2

)
, EBp

(
1
πα2

))


w1− q′
(
EAp

(
1

π
1−α
2

)
,EBp

(
1
πα2

))
αα(1−α)1−α

 1
σ (

EAp

(
1

π1−α
2

))− 1
σ


Evaluated at the PFE, by computation, it is checked that

∣∣∣∣∂π′2 (1, 1)

∂π2

∣∣∣∣ = (2α−1)(1−p)

∣∣∣∣∣∣
 −22σ−1wσ

1α
α (1− α)

1−α
(

1−α
π2−3α

2

+ α
π1−α

2

)
+

2−2σw1−σ
1

σ

(
(1+σ)

2

(
1−α
π2−3α

2

+ α
π1−α

2

)
− (1−α)

π2−3α
2

) ∣∣∣∣∣∣
Hence, the closer p is to 1, the flatter is the derivative

∣∣∣∂π′2(1,1)
∂π2

∣∣∣. There-

fore, for each value of σ > 0, the PFE is p−stable. Moreover, for a fixed

value of p < 1, p ≥ 0, limσ−→0

∣∣∣∂π′2(1,1)
∂π2

∣∣∣ = ∞. Hence, in the limit, as
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σ → 0, the PFE is 1−stable, consistent with the computation for the case with
σ = 0 presented above. Furthermore, by computation, for π2 ∈ (πmin

2 , πmax
2 ),

limσ−→0

∣∣∣∣∣∣
∂π′2

(
EAp

(
1

π
1−α
2

)
,EBp

(
1
πα2

))
∂π2

∣∣∣∣∣∣ = ∞. Therefore, there exists σ > 0 such

that for all σ ∈ [0, σ),

∣∣∣∣∣∣
∂π′2

(
EAp

(
1

π
1−α
2

)
,EBp

(
1
πα2

))
∂π2

∣∣∣∣∣∣ > 1 for all π2 ∈ (πmin
2 , πmax

2 ).

Hence, each π2 ∈ (πmin
2 , πmax

2 ) is rationalizable and therefore, by Proposition 2,
a p−consensus outcome.
At a partial consensus outcome asset prices are q′

(
EAp

(
1

π1−α
2

)
, EBp

(
1
πα2

))
6=

q̂. Hence, as before, a partial consensus asset price can be made large or small

relative to the unique PFE by choosing different values of EAp
(

1
π1−α

2

)
6= 1 and

EBp

(
1
πα2

)
6= 1 constrained entirely by the heterogeneity of the preferences.

5 Conclusion

In this paper, we have developed a new solution concept that allows for partial
consensus about the outcomes of strategic and market interaction and an as-
sociated, continuous measure of the degree of stability, via belief coordination,
for equilibrium outcomes. In a number of key results and examples, we have
illustrated the properties of our concepts. We have examined the foundations of
intertemporal trade via belief coordination in a two period economy and show
that, under certain conditions, lack of consensus over future prices is consistent
with an asset price bubble.
Our contributions are a preliminary step towards understanding how the

possibility that non-equilibrium outcomes are approximately self-fulfilling com-
plicate the analysis of strategic interaction and market behavior. In future
research, we intend to examine this point in grater detail to obtain new insights
in a variety of economic applications and their implications for policy.
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Appendix
Proof of Lemma 1.
(i) For every M , for every ε > d∆(A) (τ ′a, τ̂a), we have

τ̂a (M) ≤ τ ′a (Mε) + ε,

then

(1− p) τ̂a (M) ≤ (1− p) τ ′a (Mε) + (1− p) ε,
τ̂a (M) ≤ pτ̂a (M) + (1− p) τ ′a (Mε) + (1− p) ε,
τ̂a (M) ≤ pτ̂a (Mε) + (1− p) τ ′a (Mε) + (1− p) ε.

27



This implies: d∆(A) (τa, τ̂a) ≤ (1− p) ε and d∆(A) (τa, τ̂a) ≤ (1− p) d∆(A) (τ ′a, τ̂a).
(ii) For a Borel set M s.t. x ∈M , for every ε, we have δx (Mε) = 1 and

τa (M) ≤ δx (Mε) + ε.

For a Borel set M that does not intersect S, for every ε, we have τa (M) = 0
and

τa (M) ≤ δx (Mε) + ε.

Consider now a Borel set M that does not contain x and that intersects S. For
every ε > d, we have that x ∈Mε (consider a y in S ∩M) and δx (Mε) = 1 and

τa (M) ≤ δx (Mε) + ε.

(iii) Consider ε > sup ess
λ

d∆(A) (τλ, ν). For f−almost every λ, we have: for
every M

τλ (M) ≤ ν (Mε) + ε.

Summing over λ gives:∫
τλ (M) f (dλ) ≤

∫
(ν (Mε) + ε) f (dλ) = ν (Mε) + ε,

as (ν (Mε) + ε) does not depend on λ and
∫
f (dλ) = 1. �

Proof of Proposition 3.
There is a neighborhood N ⊂ ∆ (A) of τ∗a such that for µ−almost every u

in UA,
∀m ∈ N, dA (B (u,m) , B (u, τ∗a )) ≤ Kd∆(A) (m, τ∗a ) . (2)

Now for each τ ∈ Tp (with τ = pτ∗ + (1− p) τ ′), we must have that

∀M ⊂ A, τa (M) = pτ∗a (M) + (1− p) τ ′a (M) ,

It straightforwardly follows from Lemma 1(i) that

d∆(A) (τa, τ
∗
a ) ≤ (1− p) d∆(A) (τ ′a, τ

∗
a ) . (3)

As the Prohorov metric is always bounded by 1, we have d∆(A) (τ ′a, τ
∗
a ) ≤ 1 and

d∆(A) (τa, τ
∗
a ) ≤ 1 − p. Then, for p large enough, the following property holds:

the inequality (2) holds for the marginal τa of any distribution τ in Tp. From
now on, we consider p such that this property holds. Define the set An (u) ⊂ A
of actions that are best responses of u to a distribution of actions τa that is the
marginal on A of some τ ∈ Sn−1

p . φ
(
Sn−1
p

)
contains the distributions τ ∈ T

such that, for µ-almost every u, τ (An (u) |u) = 1. For µ-almost every u, for
every a in An (u), a writes B(u, τa) for some τ in Sn−1

p . Inequality (2) writes:

dA(a,B(u, τ∗a )) ≤ Kd∆(A)(τa, τ
∗
a ).

As τ ∈ Sn−1
p = φ

(
Sn−2
p

)
∩ Tp, τ = pτ∗ + (1− p) τ ′ for some τ ′ ∈ φ

(
Sn−2
p

)
.

Inequality (3) implies

dA(a,B(u, τ∗a )) ≤ K (1− p) d∆(A)(τ
′
a, τ
∗
a ).
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Denote RnA (u) = supa∈An(u) dA(a,B(u, τ∗a )) (this is the radius of the smallest
ball containing An (u) and centered on τ∗A). We have

RnA (u) ≤ K (1− p) d∆(A)(τ
′
a, τ
∗
a ).

Denote RnA = sup essu∈UA RnA (u) for every n. We have

RnA ≤ K (1− p) d∆(A)(τ
′
a, τ
∗
a ). (4)

Consider now that by definition, for every M , τ∗a (M) =
∫
τ∗ (M |u)µ (du). By

admissibility of τ∗, for µ−almost every u, the conditional distribution τ∗ (.|u)
is a Dirac measure δB(τ∗a ,u) on the equilibrium action of u (denoted B (τ∗a , u)).
By Lemma 1(ii), for every Dirac measure centered on x ∈ A,

d∆(A)(τ
′
a, δx) ≤ sup

y∈S
dA (x, y) , (5)

where S is the support of τ ′a (the smallest closed set such that τ
′
a (S) = 1).

Then, we have:
d∆(A)(τ

′
a, δB(τ∗a ,u)) ≤ Rn−2

A (u)

As τ∗a =
∫
δB(τ∗a ,u)µ (du), by Lemma 1(iii),

d∆(A)(τ
′
a, τ
∗
a ) ≤ sup ess

u∈UA
d∆(A)(τ

′
a, δB(τ∗a ,u)) ≤ sup

u∈UA
ess Rn−2

A (u) = Rn−2
A .

From Inequality (4), we have

RnA ≤ K (1− p)Rn−2
A .

Hence, for p large enough, K (1− p) < 1 and the sequence of RnA tends to 0,
which implies that Snp tends to {τ∗}. We have shown p−stability for p < 1 large
enough. �
Proof of Proposition 5
We first give some notation. For every ā in [−1, 1], the best response

BR0,p (ā) is the solution of:

max
a

pu (a, 0) + (1− p)u (a, ā) .

With the notation of the previous section, an element τ in T is such that τu
is a Dirac measure on u. Then, τ is characterized by a distribution on A (that
is τa). With a slight abuse of notation, we identify an element τ in T with its
marginal τa on A.
We now prove the following statement:
Statement. Consider an interval of actions [a−, a+] (0 ∈ [a−, a+]), an ac-

tion that is a best response to some beliefs on [a−, a+] putting at least probability
p on 0 is an action in the interval

[
a′−, a

′
+

]
where

a′− = inf
ā∈[a−,a+]

BR0,p (ā) and a′+ = sup
ā∈[a−,a+]

BR0,p (ā) ,
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Proof. The best response a of a player to belief on [a−, a+] putting at least
probability p on 0 solves a FOC

pu′a (a, 0) + (1− p)
∫
u′a (a, ā) dP (ā) = 0,

where dP is some Borel measure on [a−, a+]. Notice that the LHS of this FOC
is an integral over the family of functions pu′a (a, 0) + (1− p)u′a (a, ā) (indexed
by ā). Furthermore, BR0,p (ā) is characterized as the solution of pu′a (a, 0) +
(1− p)u′a (a, ā) = 0.The conclusion follows. �
We are now in a position to define the sequence of sets Sn0,p. To this purpose,

denote a0
− = −1 and a0

+ = +1 and, for every n ≥ 1, define iteratively the values
an− and a

n
+ in [−1, 1] by

∀n ≥ 1, an− = inf
ā∈[an−1

− ,an−1
+ ]

BR0,p (ā) and an+ = sup
ā∈[an−1

− ,an−1
+ ]

BR0,p (ā) ,

(clearly, 0 ∈
[
an−, a

n
+

]
and

[
an−, a

n
+

]
⊂
[
an−1
− , an−1

+

]
for every n). Let Tp (that is

S0
0,p) denote is the set of distributions on

[
a0
−, a

0
+

]
putting at least probability

p on 0. An action that is a best response to some beliefs in S0
0,p is an action

in
[
a1
−, a

1
+

]
(from the Statement above). As every player is rational and has

beliefs in S0
0,p, the aggregate action is in

[
a1
−, a

1
+

]
. Hence, φ

(
S0

0,p

)
is the set of

distributions on
[
a1
−, a

1
+

]
. Define S1

0,p = φ
(
S0

0,p

)
∩S0

0,p is the set of distributions
on
[
a1
−, a

1
+

]
putting at least probability p on 0.

A comment about this argument: the key point here is that p has 2 effects
on the transition between Sn−1

0,p and Sn0,p: the "straight" effect that S
n
0,p is a set

of distributions on a subset X of actions putting at least probability p on one
specific action (the equilibrium), and the other effect (on which the iterative
contraction argument relies), that the support X on the distributions in Sn0,p
shrinks with p (X decreases in p, for a given size of the support of Sn−1

0,p ).
We now iterate the argument. If Sn−1

0,p is the set of distributions on
[
an−1
− , an−1

+

]
putting at least probability p on 0, then an action that is a best response to
some beliefs in Sn−1

0,p is an action in
[
an−, a

n
+

]
(from the Statement above). So

φ
(
Sn−1

0,p

)
is then the set of distributions on

[
an−, a

n
+

]
and Sn0,p = φ

(
Sn−1

0,p

)
∩S0

0,p

is the set of distributions on
[
an−, a

n
+

]
putting at least probability p on 0.

By a standard argument, the two sequences an− and a
n
+ converge, and S∞0,p

is the set of distributions on
[
a∞− , a

∞
+

]
putting at least probability p on 0. S∞0,p

reduces to the equilibrium iff a∞− = a∞+ = 0. If S∞0,p does not reduce to the
equilibrium, then every distribution on

[
a∞− , a

∞
+

]
putting at least probability p

on 0 is a p−consensus distribution.
A necessary condition for a∞− = a∞+ = 0 is that BR0,p is locally contracting

at 0, that is: ∣∣BR′0,p (0)
∣∣ < 1.

By the implicit functions theorem, we have:

BR′0,p (ā) = − (1− p)u′′aā (BR0,p (ā) , ā)

pu′′aa (BR0,p (ā) , 0) + (1− p)u′′aa (BR0,p (ā) , ā)
.
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Then (given BR0,p (0) = 0)

BR′0,p (0) = − (1− p)u′′aā (0, 0)

u′′aa (0, 0)
,

and the condition
∣∣BR′0,p (0)

∣∣ < 1 writes:

p > 1−
∣∣∣∣u′′aa (0, 0)

u′′aā (0, 0)

∣∣∣∣ ,
or, equivalently (differentiating the FOC u′a (BR (ā) , ā) = 0 at (0, 0)):

p > 1− 1

|BR′ (0)| . (6)

On the other hand, a suffi cient condition for a∞− = a∞+ = 0 is that BR0,p is
globally contracting:

∀ā ∈ [−1, 1] ,
∣∣BR′0,p (ā)

∣∣ < 1.

If M < 1, then this condition holds true for every value of p and p̂ = 0. We
assume M ≥ 1 from now on. We have (given u′′aa < 0):∣∣BR′0,p (ā)

∣∣ =
(1− p) |u′′aā (BR0,p (ā) , ā)|

p |u′′aa (BR0,p (ā) , 0)|+ (1− p) |u′′aa (BR0,p (ā) , ā)| ,

and
∣∣BR′0,p (ā)

∣∣ < 1 writes:

p

1− p >
(∣∣∣∣u′′aā (BR0,p (ā) , ā)

u′′aa (BR0,p (ā) , ā)

∣∣∣∣− 1

) ∣∣∣∣u′′aa (BR0,p (ā) , ā)

u′′aa (BR0,p (ā) , 0)

∣∣∣∣ .
The RHS of this inequality is smaller than (M − 1)m ≥ 0. It follows that the
suffi cient condition for convergence holds for every p such that p

1−p is above this
upper bound. Hence, the degree p̂ of p−stability satisfies:

p̂

1− p̂ < (M − 1)m,

or, equivalently:

p̂ < 1− 1

1 + (M − 1)m
. (7)

The existence of p̂ is shown in Proposition 2. Inequalities (6) and (7) imply
the first part of the proposition. Propositions 1 and 3 imply the result on
p−consensus distributions. �
Proof of Lemma 2.
As the economy is sequentially regular, using the implicit function theorem,

we obtain the existence of a neighborhood N(π̂2, ε) of π̂2 such that evaluated
at the PFE (π̂1, q̂, π̂2),

dπ2 = −
(∫

∂π2
x̂i2(x̂1, ŷ)di

)−1 ∫
[∂yx̂

i
2dŷ

i + ∂x1
x̂i2dx̂

i
1]di

31



where dŷi = ∂π1 ŷ
idπ1 + ∂qŷ

idq + ∂π2 ŷ
idf i and dx̂i1 = ∂π1 x̂

i
1dπ1 + ∂qx̂

i
1dq +

∂π2 x̂
i
1df

i for all i ∈ I and dπ1 = (π1 − p̂1), dq = (q − q̂) and df i =
(
f i − π̂2

)
.

As the PFE is sequentially regular, J−1
11 =

(
z1 z2

z3 z4

)
exists. From the

market clearing conditions in the spot markets at t = 1, by computation,
it is checked that dπ1 = −z1(

∫
∂π2

x̂i1df
idi) − z2(

∫
∂π2

ŷidf idi) while dq =
−z3(

∫
∂π2

x̂i1df
idi)− z4(

∫
∂π2

ŷidf idi). It follows that setting

Mi =

(∫
∂π2 x̂

i
2di

)−1
 (
∫ (
∂yx

i
2∂p1 ŷ

i + ∂x1 x̂
i
2∂π1 x̂

i
1

)
di)(z1∂π2 x̂

i
1 + z2∂π2 ŷ

i)
+(
∫

(∂yx
i
2∂qŷ

i + ∂x1 x̂
i
2∂qx̂

i
1)di)(z3∂π2 x̂

i
1 + z4∂π2 ŷ

i)
−(∂yx

i
2∂π2

ŷi + ∂x1
x̂i2∂π2

x̂i1)


for each i ∈ I yields the desired conclusion.�
Proof of Proposition 8.
Let B(ε̄) = {x ∈ <L2−1

++ : ‖x− π̂2‖ < ε̄}. By choosing N(π̂2, ε) ⊆ B(ε̄) so
that Π0

2 ⊂ B(ε̄), the first-order approximation used in part (i) applies to all
assignments of expectations f : I → Π0

2. It follows that

Πn
2,0 = {π2 ∈ N(π̂2, ε) : dπ2 =

∫
Midf idi, for some f : I → Πn−1

2,0 } ∩Πn−1
2,0

for n = 1, 2, 3, .... Let ṽ : I → Π0
2 be an assignment. For each i ∈ I, define v′i ∈

S(ε̄) by sign v′il = sign ṽil . Suppose there exists ε̄ > 0 such that
∥∥∫ Midvidi

∥∥ <
ε̄, for all assignment of expectations v : I → S(ε̄). Observe that the map v′ :
I → S(ε̄) is an assignment. As ‖.‖ is a monotone vector norm,

∥∥∫ Midṽidi
∥∥ ≤∥∥∫ Midv′idi

∥∥ < ε̄. Let γ(1) = supv:I→Π0
2

‖∫ Midvidi‖
ε̄ . Then, γ(1) < 1 and

Π1
2,0 ∩Π0

2,0 ⊆ B(γ(1)ε̄). For n = 1, 2, ... define γ(n) = supv:I→Πn−1
2,0

‖∫ Midvidi‖
ε̄ .

Observe that Πn
2,0 ∩ Πn−1

2,0 ⊆ B(γ(n)ε̄). Further, as ‖.‖ is a monotone vector
norm, 1 > γ(n − 1) > γ(n). It follows that ∩n≥0Πn

2,0 ⊆ ∩n≥0B(γ(n)ε̄) ⊆
B(γ(0)nε̄) = {π̂2}. As {π̂2} ⊆ Π̃2,0, it follows that Π̃2,0 = {π̂2}.
Next, suppose there exists ε̄ > 0 such that

∥∥∫ Midvidi
∥∥ > ε, for all as-

signment of expectations v : I → S(ε) where ε ≤ ε̄. Then, γ(1) > 1 and
B(γ(1)ε̄) ⊆ Πn

2,0 ∩ Πn−1
2,0 so that B(γ(1)ε̄) ⊆ ∩n≥0Πn

2,0 so that Π̃2,0 6= {π̂2} .
Suppose there exists ε̄ > 0 such that

∥∥∫ Midvidi
∥∥ > ε, for all assignment of

expectations v : I → S(ε), for each ε ≤ ε̄. For π2 ∈ N(π̂2, ε), there exists ε′ > 0
and an assignment of expectations v : I → N(π̂2, ε

′) such that
∫

Midvidi =
π2. Denote the corresponding set Mπ̂2,v and let Mπ̂2

= ∪v∈VMπ̂2,v. Note
that Mπ̂2

⊆ N(π̂2, ε
′). Hence, for any π2 in N(π̂2, ε), whenever ε is small

enough, Mπ̂2 ⊆ N(p2, ε
′), so that Mπ̂2 = Mπ2 ; moreover, Mπ2 ⊆ Π̃2,0 for each

π2 ∈ N(π̂2, ε
′′), and hence, N(π̂2, ε

′′) ⊆ Π̃2,0 for all ε′′ ≤ ε. By assumption,
Π̃2,0 ⊆ N(π̂2, ε), by continuity in p, there exists p̃ > 0 such that for all p < p̃,
Π̃2,p ⊆ N(π̂2, ε).

To check that the condition that
∥∥∫ Midvidi

∥∥ < ε̄ is invariant to the choice
of the second period numeraire, note that multiplying all prices by the same
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positive scalar β > 0 implies that ε̄ on the right hand side of the condition is
now βε̄ while the expression on the left-hand side is equal to∥∥∥∥∥

∫
−β
(∫

∂π2 x̂
i
2(x̂1, ŷ)di

)−1

[∂yx̂
i
2dŷ

i + ∂x1 x̂
i
2dx̂

i
1]di

∥∥∥∥∥ = β

∥∥∥∥∫ M ividi

∥∥∥∥
for all v : I → S(ε̄) which implies that the condition

∥∥∫ Midvidi
∥∥ < ε̄ itself

remains unchanged.
Next, for a fixed assignment of expectations v :I→Π0

2, Π0
2 = N(π̂2, ε), for

some sequentially regular PFE (π̂1, q̂, π̂2), we can write∥∥∥∥∫ Mividi

∥∥∥∥ =

∥∥∥∥∥−
(∫

∂π2
x̂i2(x̂1, ŷ)

)−1 ∫
[∂yx̂

i
2dŷ

i + ∂x1
x̂i2dx̂

i
1]di

∥∥∥∥∥
=

∥∥∥∥∥−
(∫

∂π2
x̂i2(x̂1, ŷ)

)−1
∥∥∥∥∥
∥∥∥∥∫ [∂yx̂

i
2dŷ

i + ∂x1
x̂i2dx̂

i
1]di

∥∥∥∥ .
As market clearing in both periods is common knowledge,

∫
ŷidi = 0 and∫

x̂i1di = w̄1 and therefore,
∫
dŷidi =

∫
dx̂i1di = 0. If both

∂yx̂
i
2(x̂i1, ŷ

i(π̂1, q̂, π̂2))) = ∂yx̂
j
2(x̂i1, ŷ

i(π̂1, q̂, π̂2))) = ∂yx̂2(x̂i1, ŷ
i(π̂1, q̂, π̂2)))

and
∂x1

x̂i2(x̂i1,π̂2, ŷ
i) = ∂x1

x̂j2(x̂i1,π̂2, ŷ
i) = ∂x1

x̂2(x̂i1,π̂2, ŷ
i)

for all i, j ∈ I,
∫

[∂yx̂
i
2dŷ

i + ∂x1
x̂i2dx̂

i
1]di = ∂yx̂2

∫
dŷidi + ∂x1

x̂2

∫
dx̂i1di = 0,

which, in turn, implies that
∥∥∫ M ividi

∥∥ = 0 for every v :I→S(ε), and every
ε > 0 such that S(ε) ⊂ Π0

2. Therefore, for n = 1, 2, ..., Πn
2 = {π̂2}. By continuity

of ‖.‖, there is an ε̃1 > 0 such that if

max
{∥∥∥∂yx̂i2(x̂i1,π̂2, ŷ

i)− ∂yx̂j2(x̂i1,π̂2, ŷ
i)
∥∥∥ ,∥∥∥∂x1

x̂i2(x̂i1,π̂2, ŷ
i)− ∂x1

x̂j2(x̂i1,π̂2, ŷ
i)
∥∥∥} < ε̃1

for all i, j ∈ I, there exists ε > 0 such that S(ε) ⊂ Π0
2 and

∥∥∫ M ividi
∥∥ < ε, for

all v : I → S(ε) and hence, Π̃2,0 = Π̃2,p {π̂2}, 0 ≤ p ≤ 1. By lemma 2:

Mi =

(∫
∂π2 x̂

i
2di

)−1
 (
∫ (
∂yx

i
2∂p1 ŷ

i + ∂x1 x̂
i
2∂π1 x̂

i
1

)
di)(z1∂π2 x̂

i
1 + z2∂π2 ŷ

i)
+(
∫

(∂yx
i
2∂qŷ

i + ∂x1
x̂i2∂qx̂

i
1)di)(z3∂π2

x̂i1 + z4∂π2
ŷi)

−(∂yx
i
2∂π2

ŷi + ∂x1
x̂i2∂π2

x̂i1)


Hence, by continuity of ‖.‖, there is an ε̃2 > 0 such that ifmax

{∥∥∂π2
ŷi
∥∥ ,∥∥∂π2

x̂i1
∥∥} <

ε̃2, for all i ∈ I, there exists ε > 0 such that S(ε) ⊂ Π0
2 and

∥∥∫ M ividi
∥∥ < ε,

for all v : I → S(ε). Finally, the set ε̃ = min {ε̃1, ε̃2}. �
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