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Abstract

We address the problem of monopoly in general equilibrium in a
mixed version of a monopolistic two-commodity exchange economy
where the monopolist, represented as an atom, is endowed with one
commodity and “small traders,” represented by an atomless part, are
endowed only with the other. We provide a theoretical foundation of
the monopoly solution in this bilateral framework through a formal-
ization of an explicit trading process inspired by Pareto (1896) for an
exchange economy with a finite number of commodities. Then, we pro-
vide a game theoretical foundation of our monopoly solution through a
two-stage reformulation of our model. This allows us to prove that the
set of the allocations corresponding to a monopoly equilibrium and the
set of the allocations corresponding to a subgame perfect equilibrium
of the two-stage game coincide. Finally, we give the conditions un-
der which our monopoly solution coincides with that defined by Kats
(1974) and those, more restrictive, under which it has the geomet-
ric characterization proposed by Schydlowsky and Siamwalla (1966).
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Moreover, we establish the formal relationships between our concept
of a monopoly equilibrium and that proposed by Pareto (1896), by
redefining the latter in terms of our bilateral exchange setting.
Journal of Economic Literature Classification Numbers: D42, D51.

1 Introduction

To the best of our knowledge, Vilfredo Pareto was the first who gave a for-
malized treatment of the problem of monopoly for a general pure exchange
economy with any finite number of commodities, in the first volume of his
Cours d’économie politique, published in 1896, pp. 62-68 (henceforth just
Pareto (1896)). His monopoly quantity-setting solution rests on the as-
sumption that the monopolist gets no utility from the only commodity he is
endowed with, but only cares about the revenue he can obtain by selling it.

Seventy years later, Schydlowsky and Siamwalla (1966) proposed a for-
mulation of the problem of monopoly without any mention to the previ-
ous work by Pareto (1896). In the context of a pure exchange economy,
they considered a bilateral framework where one commodity is held by one
trader behaving as a monopolist while the other is held by a “competi-
tors’ community.” In contrast to Pareto’s analysis, the monopolist desires
both commodities. The authors provided a geometrical representation of
the monopoly solution as the point of tangency between the monopolist’s
indifference curve and the offer curve of the competitors’ community. They
did not mention either the geometrical treatment of the monopoly problem
previously given, at a very embryo stage, by Edgeworth (1881).

A few years later, Kats (1974), again without mentioning Pareto (1896),
analyzed a pure exchange economy where one trader behaves as a monop-
olist, “calling the game” and maximizing his utility, whereas all the other
traders in the economy behave competitively. He claimed that the monopoly
quantity-setting solution must correspond to the monopolist’s most pre-
ferred commodity bundle compatible with the aggregate initial endowments
and with the offer curve of the competitive traders.

In this paper, we provide a theoretical foundation of the monopoly solu-
tion by formalizing an explicit trading process inspired to that first sketched
by Pareto (1896).

We consider the mixed version of a monopolistic two-commodity ex-
change economy introduced by Shitovitz (1973) in his Example 1, in which
one commodity is held only by the monopolist, represented as an atom, and
the other is held only by small traders, represented by an atomless part.
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This framework can also be used to represent a finite exchange economy if
the atomless part is split into a finite number of types with traders of the
same type having the same endowments and preferences.

In our setup, the monopolist acts strategically, making a bid of the com-
modity he holds in exchange for the other commodity, while the atomless
part behaves à la Walras. Given the monopolist’s bid, prices adjust to
equate the monopolist’s bid to the aggregate net demand of the atomless
part. Each trader belonging to the atomless part then obtains his Walrasian
demand whereas monopolist’s final holding is determined as the difference
between his endowment and his bid, for the commodity he holds, and as
the value of his bid in terms of relative prices, for the other commodity. We
define a monopoly equilibrium as a strategy played by the monopolist, cor-
responding to a positive bid of the commodity he holds, which guarantees
him to obtain, via the trading process described above, a most preferred
final holding among those he can achieve through his bids.

Then, we adapt to our monopoly bilateral exchange context the version
of the Shapley window model used by Busetto et al. (2020) and we assume
that the atomless part behaves à la Cournot making bids of the commodity
it holds. We show that there is no Cournot-Nash equilibrium in the market
game generated by the strategic interaction between the monopolist and
the atomless part through the Shapley window trading process, thereby
confirming an analogous negative result obtained by Okuno et al. (1980,
p. 24) for the monopolistic version of their bilateral strategic market game.
Moreover, we provide an example exhibiting a bilateral exchange economy
which admits a monopoly equilibrium but no Cournot-Nash equilibrium.
Our example shows that it is not possible to provide a game theoretical
foundation of our monopoly solution in terms of an equivalence between the
set of the allocations corresponding to a monopoly equilibrium and the set of
the allocations corresponding to a Cournot-Nash equilbrium, in a one-stage
setting.

Sadanand (1988, p. 174) started from the negative result about the
existence of a Cournot-Nash equilibrium in a one-shot monopolistic bilateral
strategic market game obtained by Okuno et al. (1980) and this lead him
to introduce a monopoly price-setting solution in a two-stage version of the
strategic market game analyzed by those authors.

Following Sadanand (1988), we provide a sequential reformulation of the
mixed version of the Shapley window model in terms of a two-stage game
with observed actions where the quantity-setting monopolist moves first and
the atomless part moves in the second stage, after observing the moves of
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the monopolist in the first stage. This two-stage reformulation of our model
allows us to provide a game theoretical foundation of the quantity-setting
monopoly solution: we prove that the set of the allocations corresponding
to a monopoly equilibrium and the set of those corresponding to a subgame
perfect equilibrium of the two-stage game coincide.

The theoretical framework proposed in this paper to define and analyse
monopoly equilibrium in bilateral exchange can be simplified, under the as-
sumption that the aggregate demand of the atomless part for the commodity
held by the monopolist is invertible, and compared with the standard partial
equilibrium analysis of monopoly. Indeed, we show that, if this assumption
holds, at an allocation corresponding to a monopoly equilibrium, the utility
of the monopolist is maximal in the feasible (with respect to aggregate initial
endowments) complement of the offer curve of the atomless part, thereby
providing a foundation of the monopoly solution proposed by Kats (1974).
Moreover, we show that, if the aggregate demand of the atomless part for the
commodity held by the monopolist is not only invertible but also differen-
tiable, a monopoly equilibrium has the geometric characterization proposed
by Schydlowsky and Siamwalla (1966). This result rests on a notion which
has a well-known counterpart in partial equilibrium analysis and was also
used by Pareto (1896) to formulate his solution to the monopoly problem in
exchange economies: the marginal revenue of the monopolist.

Finally, we go deeper into the relationship between our analysis and that
proposed by Pareto (1896), by redefining and studying this author’s concept
of a monopoly equilibrium within our framework of bilateral exchange, under
the assumption that the aggregate demand of the atomless part for the
commodity held by the monopolist is invertible.

The paper is organized as follows. In Section 2, we introduce the math-
ematical model and we define the notion of a monopoly equilibrium. In
Section 3, we compare the monopoly equilibrium and the Cournot-Nash
equilibrium. In Section 4, we provide a game theoretical foundation of the
monopoly solution in a two-stage framework. In Section 5, we discuss the
model. In Section 6, we characterize the monopoly equilibrium under the
assumption that the aggregate demand of the atomless part for the commod-
ity held by the monopolist is invertible and we discuss the literature related
to our monopoly solution. In Section 7, we draw some conclusions and we
suggest some further lines of research. The proofs of all the propositions are
reported in the appendix.
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2 Mathematical model

We consider a pure exchange economy with large traders, represented as
atoms, and small traders, represented by an atomless part. The space of
traders is denoted by the measure space (T, T , µ), where T is the set of
traders, T is the σ-algebra of all µ-measurable subsets of T , and µ is a real
valued, non-negative, countably additive measure defined on T . We assume
that (T, T , µ) is finite, i.e., µ(T ) <∞. Let T0 denote the atomless part of T .
We assume that µ(T0) > 0.1 Moreover, we assume that T \ T0 = {m}, i.e.,
the measure space (T, T , µ) contains only one atom, the “monopolist.” A
null set of traders is a set of measure 0. Null sets of traders are systematically
ignored throughout the paper. Thus, a statement asserted for “each” trader
in a certain set is to be understood to hold for all such traders except possibly
for a null set of traders. The word “integrable” is to be understood in the
sense of Lebesgue.

In the exchange economy, there are two different commodities. A com-
modity bundle is a point in R2

+. An assignment (of commodity bundles
to traders) is an integrable function x: T → R2

+. There is a fixed initial
assignment w, satisfying the following assumption.

Assumption 1. wi(m) > 0, wj(m) = 0 and wi(t) = 0, wj(t) > 0, for each
t ∈ T0, i = 1 or 2, j = 1 or 2, i 6= j.

An allocation is an assignment x such that
∫
T x(t) dµ =

∫
T w(t) dµ.

The preferences of each trader t ∈ T are described by a utility function
ut : R2

+ → R, satisfying the following assumptions.

Assumption 2. ut : R2
+ → R is continuous, strongly monotone, and

strictly quasi-concave, for each t ∈ T .

Let B denote the Borel σ-algebra of R2
+. Moreover, let T

⊗
B denote

the σ-algebra generated by the sets D × F such that D ∈ T and F ∈ B.

Assumption 3. u : T × R2
+ → R, given by u(t, x) = ut(x), for each t ∈ T

and for each x ∈ R2
+, is T

⊗
B-measurable.

A price vector is a nonnull vector p ∈ R2
+. Let X0 : T0 × R2

++ →
P(R2

+) be a correspondence such that, for each t ∈ T0 and for each p ∈
R2

++, X0(t, p) = argmax{u(x) : x ∈ R2
+ and px ≤ pw(t)}. For each p ∈

R2
++, let

∫
T0

X0(t, p) dµ = {
∫
T0

x(t, p) dµ : x(·, p) is integrable and x(t, p) ∈

1The symbol 0 denotes the origin of R2
+ as well as the real number zero: no confusion

will result.
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X0(t, p), for each t ∈ T0}. Since the correspondence X0(t, ·) is nonempty
and single-valued, by Assumption 2, it is possible to define the Walrasian
demand of traders in the atomless part as the function x0 : T0×R2

++ → R2
+

such that X0(t, p) = {x0(t, p)}, for each t ∈ T0 and for each p ∈ R2
++.

We can now state and show the following proposition.

Proposition 1. Under Assumptions 1, 2, and 3, the function x0(·, p) is
integrable and

∫
T0

X0(t, p) dµ =
∫
T0

x0(t, p) dµ for each p ∈ R2
++.

We now provide the definition of a monopoly equilibrium in the bilateral
exchange model introduced in the previous section. Let E(m) = {(eij) ∈
R4

+ :
∑2

j=1 eij ≤ wi(m), i = 1, 2} denote the strategy set of atom m. We
denote by e ∈ E(m) a strategy of atom m, where eij , i, j = 1, 2, represents
the amount of commodity i that atom m offers in exchange for commodity j.
Moreover, we denote by E the matrix corresponding to a strategy e ∈ E(m).

We then provide the following definition.

Definition 1. Given a strategy e ∈ E(m), a price vector p is said to be
market clearing if

p ∈ R2
++,

∫
T0

x0j(t, p) dµ+

2∑
i=1

eijµ(m)
pi

pj
=

∫
T0

wj(t) dµ+

2∑
i=1

ejiµ(m), (1)

j = 1, 2.

The following proposition shows that market clearing price vectors can
be normalized.

Proposition 2. Under Assumptions 1, 2, and 3, if p is a market clearing
price vector, then αp, with α > 0, is also a market clearing price vector.

Henceforth, we say that a price vector p is normalized if p ∈ ∆ where
∆ = {p ∈ R2

+ :
∑2

i=1 p
i = 1}. Moreover, we denote by ∂∆ the boundary of

the unit simplex ∆.
The next proposition shows that the two equations in (1) are not inde-

pendent.

Proposition 3. Under Assumptions 1, 2, and 3, given a strategy e ∈ E(m),
a price vector p ∈ ∆ \ ∂∆ is market clearing for j = 1 if and only if it is
market clearing for j = 2.

The next proposition is based on Property (iv) of the aggregate demand of
an atomless set of traders established by Debreu (1982, p. 728).
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Proposition 4. Under Assumptions 1, 2, and 3, let {pn} be a sequence of
normalized price vectors such that pn ∈ ∆ \ ∂∆, for each n = 1, 2, . . ., and
which converges to a normalized price vector p̄. If p̄i = 0 and wi(m) > 0,
then the sequence {

∫
T0

x0i(t, pn) dµ} diverges to +∞.

The following proposition provides a necessary and sufficient condition for
the existence of a market clearing price vector. In order to state and prove
it, we provide the following preliminary definitions.

Definition 2. A square matrix C is said to be triangular if cij = 0 whenever
i > j or cij = 0 whenever i < j.

Definition 3. We say that commodities i, j stand in relation Q if wi(t) > 0,
for each t ∈ T0, and there is a nonnull subset T i of T0 such that ut(·) is
differentiable, additively separable, i.e., ut(x) = vit(x

i) + vjt (x
j), for each

x ∈ R2
+, and

dvjt (0)
dxj

= +∞, for each t ∈ T i.2

Moreover, we introduce the following assumption.

Assumption 4. Commodities i, j stand in relation Q.

Proposition 5. Under Assumptions 1, 2, 3, and 4, given a strategy e ∈
E(m), there exists a market clearing price vector p ∈ ∆ \ ∂∆ if and only if
the matrix E is triangular.

We denote by π(·) a correspondence which associates, with each strategy
e ∈ E(m), the set of price vectors p satisfying (1), if E is triangular, and is
equal to {0}, otherwise. A price selection p(·) is a function which associates,
with each strategy selection e ∈ E(m), a price vector p ∈ π(e).

Given a strategy e ∈ E(m) and a price vector p, consider the assignment
determined as follows:

xj(m, e, p) = wj(m)−
2∑
i=1

eji +

2∑
i=1

eij
pi

pj
, if p ∈ ∆ \ ∂∆,

xj(m, e, p) = wj(m), otherwise,

j = 1, 2,

xj(t, p) = x0j(t, p), if p ∈ ∆ \ ∂∆,

xj(t, p) = wj(t), otherwise,

2In this definition, differentiability is to be understood as continuous differentiability
and includes the case of infinite partial derivatives along the boundary of the consumption
set (for a discussion of this case, see, for instance, Kreps (2012, p. 58)).
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j = 1, 2, for each t ∈ T0.
Given a strategy e ∈ E(m) and a price selection p(·), traders’ final

holdings are determined according to this rule and consequently expressed
by the assignment

x(m) = x(m, e, p(e)),

x(t) = x(t, p(e)),

for each t ∈ T0.
The next proposition shows that traders’ final holdings constitute an

allocation.

Proposition 6. Under Assumptions 1, 2, 3, and 4, given a strategy e ∈
E(m) and a price selection p(·), the assignment x(m) = x(m, e, p(e)), x(t) =
x(t, p(e)), for each t ∈ T0, is an allocation.

We can now provide the definition of a monopoly equilibrium.

Definition 4. A strategy ẽ ∈ E(m) such that Ẽ is triangular is a monopoly
equilibrium, with respect to a price selection p(·), if

um(x(m, ẽ, p(ẽ)) ≥ um(x(m, e, p(e)),

for each e ∈ E(m).

A monopoly allocation is an allocation x̃ such that x̃(m) = x(m, ẽ, p(ẽ))
and x̃(t) = x0(t, p(ẽ)), for each t ∈ T0, where ẽ is a monopoly equilibrium,
with respect to a price selection p(·).

3 Monopoly equilibrium and Cournot-Nash equi-
librium

We now provide the definition of a Cournot-Nash equilibrium in the bilateral
exchange model introduced in Section 2, adapting to this framework the
version of the Shapley window model used by Busetto et al. (2020) (see
also Dickson and Tonin (2021) for a survey of the literature on imperfect
competition in bilateral exchange).

A strategy correspondence is a correspondence B : T → P(R4
+) such

that, for each t ∈ T , B(t) = {(bij) ∈ R4
+ :

∑2
j=1 bij ≤ wi(t), i = 1, 2}.

We denote by b(t) ∈ B(t) a strategy of trader t, where bij(t), i, j = 1, 2,
represents the amount of commodity i that trader t offers in exchange for
commodity j. A strategy selection is an integrable function b : T → R4

+,
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such that, for each t ∈ T , b(t) ∈ B(t). Given a strategy selection b, we
denote by B̄ the matrix such that b̄ij = (

∫
T bij(t) dµ), i, j = 1, 2. Moreover,

we denote by b \ b(t) the strategy selection obtained from b by replacing
b(t) with b(t) ∈ B(t).

We need to provide now the following two definitions (see Sahi and Yao
(1989)).

Definition 5. A nonnegative square matrix C is said to be irreducible if, for

every pair (i, j), with i 6= j, there is a positive integer k such that c
(k)
ij > 0,

where c
(k)
ij denotes the ij-th entry of the k-th power Ck of C.

Definition 6. Given a strategy selection b, a price vector p is said to be
market clearing if

p ∈ R2
++,

2∑
i=1

pib̄ij = pj(

2∑
i=1

b̄ji), j = 1, 2. (2)

By Lemma 1 in Sahi and Yao (1989), there is a unique, up to a scalar
multiple, price vector p satisfying (2) if and only if B̄ is irreducible. Then,
we denote by p(b) a function which associates with each strategy selection
b the unique, up to a scalar multiple, price vector p satisfying (1), if B̄ is
irreducible, and is equal to 0, otherwise. For each strategy selection b such
that p(b)� 0, we assume that the price vector p(b) is normalized.

Given a strategy selection b and a price vector p, consider the assignment
determined as follows:

xj(t,b(t), p) = wj(t)−
2∑
i=1

bji(t) +

2∑
i=1

bij(t)
pi

pj
, if p ∈ ∆ \ ∂∆,

xj(t,b(t), p) = wj(t), otherwise,

j = 1, 2, for each t ∈ T .
Given a strategy selection b and the function p(b), traders’ final holdings

are determined according to this rule and consequently expressed by the
assignment

x(t) = x(t,b(t), p(b)),

for each t ∈ T . It is straightforward to show that this assignment is an
allocation.

We are now able to define a notion of Cournot-Nash equilibrium for this
reformulation of the Shapley window model.
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Definition 7. A strategy selection b̂ such that
¯̂
B is irreducible is a Cournot-

Nash equilibrium if

ut(x(t, b̂(t), p(b̂))) ≥ ut(x(t, b(t), p(b̂ \ b(t)))),

for each b(t) ∈ B(t) and for each t ∈ T .

A Cournot-Nash allocation is an allocation x̂ such that x̂(t) = x(t, b̂(t),
p(b̂)), for each t ∈ T , where b̂ is a Cournot-Nash equilibrium.

The next proposition provides, for our framework, the same negative
result about the existence of a Cournot-Nash equilibrium obtained by Okuno
et al. (1980 p. 24) and by Sadanand (1988, p. 174).

Proposition 7. Under Assumptions 1, 2, 3, and 4, there exists no Cournot-
Nash equilbrium.

Proposition 7 has the relevant consequence that the set of monopoly alloca-
tions cannot coincide with the set of Cournot-Nash allocations in a one-stage
setting, as confirmed by the following example.

Example 1. Consider the following specification of an exchange economy
satisfying Assumptions 1, 2, 3, and 4. T0 = [0, 1], T \ T0 = {m}, µ(m) = 1,
w(m) = (1, 0), um(x) = 1

2x1 +
√
x2, T0 is taken with Lebesgue measure,

w(t) = (0, 1), ut(x) =
√
x1 + x2, for each t ∈ T0. Then, there is a unique

monopoly allocation and no Cournot-Nash allocation.

Proof. The unique monopoly equilibrium is the strategy ẽ ∈ E(m) such
that ẽ12 = 1

4 and the unique monopoly allocation is x̃(m) = (3
4 ,

1
4) and

x̃(t) = (1
4 ,

3
4), for each t ∈ T0. However, there is no Cournot-Nash allocation,

by Proposition 7.

4 Monopoly equilibrium as a subgame perfect equi-
librium

Example 1 shows the nonequivalence between the set of monopoly and
Cournot-Nash allocations in a one-stage game. The analogous negative re-
sult reached by Okuno et al. (1980) lead these authors to conclude that “[...]
we are unable to model pure monopoly without a competitive fringe in a
useful way in this setup” (see Footnote 1, p. 24). In his pathbreaking anal-
ysis of monopoly in mixed exchange economies, Sadanand (1988) already
recognized the two stage-flavor of monopoly equilibrium. Taking inspiration
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from his work, we now introduce a two-stage game where the monopolist
moves first and the atomless part moves in the second stage, after observing
the moves of the monopolist in the first stage. Therefore, borrowing from
Busetto et al. (2008), we provide a sequential reformulation of the mixed
version of the Shapley window model introduced in the previous section, in
terms of a two-stage game with observed actions, following Fudenberg and
Tirole (1991, p. 70).

The game is played in two stages, labelled as 0 and 1. An action cor-
respondence in stage 0 is a correspondence A0 : T → P(R4

+) such that

A0(m) = {(aij) ∈ R4
+ :

∑2
j=1 aij ≤ wi(m), i = 1, 2} and A0(t) is the sin-

gleton {“do nothing”}, for each t ∈ T0. An action correspondence in stage
1 is a correspondence A1 : T → P(R4

+) such that A1(m) is the singleton

{“do nothing”} and A1(t) = {(aij) ∈ R4
+ :

∑2
j=1 aij ≤ wi(t), i = 1, 2}, for

each t ∈ T0. We denote by a0(t) ∈ A0(t) an action of trader t in stage 0,
where a0

ij(m), i, j = 1, 2, represents the amount of commodity i that atom
m offers in exchange for commodity j. An action selection in stage 0 is a
function a0 : T → R4

+, such that a0(t) ∈ A0(t), for each t ∈ T . We denote
by a1(t) ∈ A1(t) an action of trader t in stage 1, where a1

ij(t), i, j = 1, 2,
represents the amount of commodity i that a trader t ∈ T0 offers in exchange
for commodity j. An action selection in stage 1 is a function a1 : T → R4

+,
whose restriction on T0 is integrable, such that a1(t) ∈ A1(t), for each t ∈ T .
Let S0 and S1 denote the sets of all action selections in stage 0 and in stage
1, respectively. Any action selection at the end of a stage determines a
history at the beginning of the next stage.

We denote by h0 = ∅ the history at the beginning of stage 0 and by h1

a history at the beginning of stage 1 where h1 = a0, for some a0 ∈ S0. Let
H0 and H1 denote the sets of all stage 0 and stage 1 histories, respectively,
where H0 = ∅ and H1 = S0 Let H2 = S0×S1 denote the set of all terminal
histories. Given a terminal history h2 = (a0,a1), we denote by Ā the matrix
such that āij = a0

ij(m) +
∫
T0

a1
ij(t) dµ, i, j = 1, 2.

We now provide the following definition (see Sahi and Yao (1989)).

Definition 8. Given a terminal history h2 = (a0,a1), a price vector p is
said to be market clearing if

p ∈ R2
++,

2∑
i=1

piāij = pj(

2∑
i=1

āji), j = 1, 2. (3)

By Lemma 1 in Sahi and Yao (1989), there is a unique, up to a scalar
multiple, price vector p satisfying (3) if and only if Ā is irreducible. Then,
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we denote by p(h2) a function which associates with each final history h2 =
(a0,a1) the unique, up to a scalar multiple, price vector p satisfying (3),
if Ā is irreducible, and is equal to 0, otherwise. For each final history
h2 = (a0,a1) such that p(h2)� 0, we assume that the price vector p(h2) is
normalized.

Given a terminal history h2 = (a0,a1) and a price vector p, consider the
assignment determined as follows:

xj(m,h2(m), p) = wj(m)−
2∑
i=1

a0
ji(m) +

2∑
i=1

a0
ij(m)

pi

pj
, if p ∈ ∆ \ ∂∆,

xj(m,h2(m), p) = wj(m), otherwise,

j = 1, 2,

xj(t,h2(t), p) = wj(t)−
2∑
i=1

a1
ji(t) +

2∑
i=1

a1
ij(t)

pi

pj
, if p ∈ ∆ \ ∂∆,

xj(t,b(t), p) = wj(t), otherwise,

j = 1, 2, for each t ∈ T0.
Given a terminal history h2 = (a0,a1) and the function p(h2), traders’

final holdings are determined according to this rule and consequently ex-
pressed by the assignment

x(t) = x(t,h2(t), p(h2)),

for each t ∈ T . It is straightforward to show that this assignment is an
allocation.

We denote by s(t) a strategy of trader t, where s(t) denotes the sequence
of functions {s0(t, ·), s1(t, ·)} such that s0(t, ·) : H0 → A0(t) and s1(t, ·) :
H1 → A1(t). A strategy profile s is a map which associates with each t ∈ T
a sequence of functions {s0, s1} such that s0(t, ·) : H0 → A0(t), s1(t, ·) :
H1 → A1(t), s0(·,h0) ∈ S0, and s1(·,h1) ∈ S1, for each h1 ∈ H1. Given a
strategy profile s, the functions s0(·,h0) and s1(·,h1), for each h1 ∈ H1, are
called strategy selections. We denote by s\s(t) = {s0\s(t, ·), s1\s1(t, ·)} the
strategy profile obtained from s0 and s1 by replacing, respectively, s0(t, ·)
with s0(t, ·) and s1(t, ·) with s1(t, ·). Finally, we denote by h2(s) the function
which associates with each strategy profile s the terminal history which
corresponds to the action selections {a0(s),a1(s)} such that a0(s) = s0(·,h0)
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and a1(s) = s1(·,h1), with h1 = s0(·,h0), and by Ā(s) the corresponding
aggregate matrix.

We now proceed to consider the subgame represented by the stage 1 of
the game outlined above, given the history h1 ∈ H1. Given a strategy s(t)
of trader t and a history h1 ∈ H1, we denote by s|h1(t) the action such that
s|h1(t) = s1(t,h1). Given a strategy profile s and a history h1 ∈ H1, we
denote by s|h1 the strategy selection such that s|h1(t) = s1(t,h1), for each
t ∈ T . Given a history h1 ∈ H1, we denote by s|h1 \ s|h1(t) the strategy
selection obtained from s|h1 by replacing s|h1(t) with s|h1(t). Finally, we
denote by h2(s|h1) the function which associates with each strategy selec-
tion s|h1 the terminal history which corresponds to the action selections
{a0(s|h1),a1(s|h1)} such that a0(s|h1) = h1 and a1(s|h1) = s|h1, and by
Ā(s|h1) the corresponding aggregate matrix.

We are now able to define the notion of subgame perfect equilibrium for
the two-stage game described above.

Definition 9. A strategy profile s∗ such that Ā(s∗) is irreducible is a sub-
game perfect equilibrium if

ut(x(t,h2(s∗)(t), p(h2(s∗)))) ≥ ut(x(t,h2(s∗ \ s(t))(t), p(h2(s∗ \ s(t))))),

for each s(t) and for each t ∈ T , Ā(s∗|h1)) is irreducible, for each h1 ∈ H1

such that h1(m) > 0, and

ut(x(t,h2(s∗|h1)(t), p(h2(s∗|h1))))

≥ ut(x(t,h2(s∗|h1 \ s|h1)(t))(t), p(h2(s∗|h1 \ s|h1)(t))))),

for each h1 ∈ H1, for each s|h1(t), and for each t ∈ T .

A subgame perfect allocation is an allocation x∗ such that x(t,h2(s∗)(t),
p(h2(s∗))), for each t ∈ T , where s∗ is a subgame perfect equilibrium.

The following proposition shows the equivalence between the set of monopoly
allocations and the set of subgame perfect allocations for our two-stage game.

Proposition 8. Under Assumptions 1, 2, 3, and 4, the set of monopoly
allocations coincides with the set of subgame perfect allocations.

Besides the mixed two-stage game framework, our analysis of monopoly
equilibrium as a subgame perfect equilibrium differs from the one pro-
posed by Sadanand (1988) in that it considers a quantity setting monopo-
list whereas Sadanand (1988) deals with an endogenously determined price-
setting monopoly. We leave for further research a reformulation of our model
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in terms of a price-setting monopolist and a comparison between the two
monopoly configurations.

As reminded above, Busetto et al (2008) proposed a respecification à
la Cournot-Walras of the mixed version of the Shapley window model for
an exchange economy with a finite number of commodities. Since they
obtained the negative result that the set of the Cournot-Walras equilib-
rium allocations of this respecification does not coincide with the set of the
Cournot-Nash allocations of the mixed version of the original Shapley model
in a one-stage setting, they provided a further reformulation of the Shapley
model as a two-stage game. They showed that the set of the Cournot-
Walras equilibrium allocations coincides with the set of the Markov perfect
equilibrium allocations of the two-stage reformulation of the Shapley model.

The monopoly model developed in this paper cannot be considered as
a two-commodity monopoly version of the Cournot-Walras model proposed
by Busetto et al. (2008): this would require in fact that the atomless part,
in the aggregate, held both commodities.

In this regard, it is worth noticing that a model of partial monopoly,
where a monopolist shares a market with a competitive fringe, was pro-
posed in a pioneering work by Forchheimer (1908) (see also Reid (1979) for
a detailed analysis of this work). A two-commodity monopoly version of
the Cournot-Walras framework proposed by Busetto et al. (2008), where
one commodity is held by the monopolist and a fringe of the atomless
part whereas the other commodity is only held by the atomless part, could
be interpreted indeed as a bilateral exchange generalization of the partial
monopoly model introduced by Forchhemeir (1908). An analysis of the re-
lationship between these two approaches deserves to be developed in the
detail and we leave it for further research.

5 Discussion of the model

The analysis of the monopoly problem in bilateral exchange proposed in the
previous sections can be simplified by introducing the assumption that the
aggregate demand of the atomless part for the commodity held by the mo-
nopolist is invertible and compared, under this restriction, with the standard
partial equilibrium analysis of monopoly.

The following proposition states a necessary and sufficient condition for
the atomless part’s aggregate demand to be invertible.

Proposition 9. Under Assumptions 1, 2, 3, and 4, let wi(m) > 0. Then,
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the function
∫
T0

x0i(t, ·) dµ is invertible if and only if, for each x ∈ R++,

there is a unique p ∈ ∆ \ ∂∆ such that x =
∫
T0

x0i(t, p) dµ.

Let p0i(·) denote the inverse of the function
∫
T0

x0i(t, ·) dµ. The following
proposition shows that, when the aggregate demand of the atomless part for
the commodity held by the monopolist is invertible, there exists a unique
price selection.

Proposition 10. Under Assumptions 1, 2, 3, and 4, if wi(m) > 0 and the
function

∫
T0

x0i(t, ·) dµ is invertible, then there exists a unique price selection
p̊(·).

By analogy with partial equilibrium analysis, p̊(·) can be called the inverse
demand function of the monopolist. When the aggregate demand of the
atomless part for the commodity held by the monopolist is invertible, the
monopoly equilibrium can be reformulated as in Definition 3, with respect
to monopolist’s inverse function p̊(·).

Turchet (2021) started to investigate the issue of the existence of a
monopoly equilibrium under the assumption that the aggregate demand
of the atomless part for the commodity held by the monopolist is invertible
and that traders belonging to the atomless part have an identical CES util-
ity function. In this paper, we do not provide a proof of the existence of
a monopoly equilibrium but we use the framework considered by Turchet
(2021) in order to assess the role of the assumptions we have made in Section
2 to guarantee an existence result. In particular, Assumption 1 guarantees
the pure monopoly nature of the economy while Assumption 3 is a standard
measurability assumption extended to mixed exchange economies by Shi-
tovitz (1973). These assumptions must be maintained to assure the basic
economic and mathematical consistency of the monopoly model. On the
other hand, the following example shows that Assumptions 2 and 4 cannot
be weakened or omitted without affecting the existence of monopoly equi-
librium. The example exhibits an exchange economy where traders in the
atomless part have continuous, monotone, and quasi concave utility func-
tions that do not satisfy Assumption 4: in this case, a monopoly equilibrium
does not exist.

Example 2. Consider the following specification of an exchange economy
satisfying Assumptions 1 and 3. T0 = [0, 1], T \ T0 = {m}, µ(m) = 1,
w(m) = (1, 0), um(x) =

√
x1 +

√
x2, T0 is taken with Lebesgue measure,

w(t) = (0, 1), ut(x) = min{x1, x2}, for each t ∈ T0. Then, um(·) satisfies
Assumption 2, ut(·) is continuous, monotone, and quasi concave, for each
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t ∈ T0, the function
∫
T0

x01(t, ·) dµ is invertible, p̊(e) = (1 − e12, e12), and
there is no monopoly equilibrium.

Proof. It is straightforward to verify that um(·) satisfies Assumption 2
and that ut(·) is continuous, monotone, and quasi concave. The function∫
T0

x01(t, ·) dµ is invertible as
∫
T0

x01(t, ·) dµ = p2. Moreover, it is immediate
to verify that p̊(e) = (1 − e12, e12). Suppose that the strategy ẽ ∈ E(m) is
a monopoly equilibrium. Then, we have that ẽ > 0 and x(m, ẽ, p(ẽ)) =
(1 − ẽ12, 1 − ẽ12). Let e′ ∈ E(m) be a strategy such that 0 < e′12 < ẽ12.
Then, we have that

um(x(m, e′, p(e′)) =
√

1− e′12 +
√

1− e′12

>
√

1− ẽ12 +
√

1− ẽ12 = um(x(m, ẽ, p(ẽ)),

a contradiction. Hence there is no monopoly equilibrium

6 Discussion of the literature

We now show that, when the aggregate demand of the atomless part for the
commodity held by the monopolist is invertible, our model can provide an
economic theoretical foundation of the solutions proposed by Schydlowsky
and Siamwalla (1966) and Kats (1974).

Under this assumption, the monopoly equilibrium can be characterized
by means of the notion of offer curve of the atomelss part, defined as the set
{x ∈ R2

+ : x =
∫
T0

x0(t, p) dµ for some p ∈ ∆ \ ∂∆}, and that of the notion
of feasible complement of the offer curve of the atomless part, defined as the
set {x ∈ R2

+ : xµ(m) +
∫
T0

x0(t, p) dµ =
∫
T w(t) dµ for some p ∈ ∆ \ ∂∆}.

The following proposition shows that, when the aggregate demand of the
atomless part for the commodity held by the monopolist is invertible, the
feasible complement of the atomless part’s offer curve is a subset of the set
of the monopolist’s final holdings.

Proposition 11. Under Assumptions 1, 2, 3, and 4, if wi(m) > 0 and
the function

∫
T0

x0i(t, ·) dµ is invertible, then the feasible complement of the

offer curve of the atomless part, the set {x ∈ R2
+ : xµ(m) +

∫
T0

x0(t, p) dµ =∫
T w(t) dµ for some p ∈ ∆ \ ∂∆}, is a subset of the set {x ∈ R2

+ : x =
x(m, e, p̊(e)) for some e ∈ E(m)}, the set of the final holdings of the mo-
nopolist.
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Kats (1974) considered both the cases of a quantity setting and a price set-
ting monopoly in a pure exchange economy where one trader behaves as
a monopolist, calling the game and maximizing his utility, whereas all the
other traders in the economy behave competitively. He claimed that the
monopoly quantity setting solution must correspond to the monopolist’s
most preferred commodity bundle compatible with the aggregate initial en-
dowments and the offer curve of the competitive traders. However, he did
not propose any explicit trading process which could lead to the monopoly
solution. The following proposition, which follows from Proposition 11, es-
tablishes that, at a monopoly allocation, the utility of the monopolist is
maximal in the feasible complement of the atomless part’s offer curve. This
way, it provides an explicit economic theoretical foundation of the monopoly
solution proposed by Kats (1974).

Proposition 12. Under Assumptions 1, 2, 3, and 4, if wi(m) > 0, the
function

∫
T0

x0i(t, ·) dµ is invertible, and ẽ ∈ E(m) is a monopoly equilib-

rium, then um(x(m, ẽ, p̊(ẽ))) is maximal in the set {x ∈ R2
+ : xµ(m) +∫

T0
x0(t, p) dµ =

∫
T w(t) dµ for some p ∈ ∆ \ ∂∆}.

In order to provide the characterization of a monopoly equilibrium proposed
by Schydlowsky and Siamwalla (1966), we need to introduce also the follow-
ing assumption.

Assumption 5. ua : R2
+ → R is differentiable.

We show that, under the assumption that the aggregate demand of the
atomless part for the commodity held by the monopolist is not only invertible
but also differentiable, the monopoly equilibrium introduced in Definition 3
has also the geometric characterization previously proposed by Schydlowsky
and Siamwalla (1966): at a strictly positive monopoly allocation, the mo-
nopolist’s indifference curve is tangent to the atomless part’s offer curve.3

The following proposition shows that the function h(·), defined on R++

and such that

pixi + pjxj = pi
∫
T0

wi(t) dµ+ pj
∫
T0

wj(t) dµ,

where p = p0i(xi) and xj = h(xi), represents the offer curve of the atomless
part in the sense that its graph coincides with the atomless part’s offer curve.

3This characterization of the monopoly equilibrium has been diffusely reproposed in
standard textbooks in microeconomics (see, for instance, Varian (2014, p. 619), among
others).
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Proposition 13. Under Assumptions 1, 2, 3, and 4, if wi(m) > 0 and
the function

∫
T0

x0i(t, ·) dµ is invertible, then the graph of the function h(·),
the set {x ∈ R2

+ : xj = h(xi)}, coincides with the set {x ∈ R2
+ : x =∫

T0
x0(t, p) dµ for some p ∈ ∆ \ ∂∆}, the offer curve of the atomless part.

Borrowing from Pareto (1896), we now introduce in our general frame-
work a notion which has a counterpart in partial equilibrium analysis: The
marginal revenue of the monopolist.

In the rest of this section, with a slight abuse of notation, given a price

vector (pi, pj) ∈ ∆ \ ∂∆, we denote by p the scalar p = pi

pj
, whenever

wi(m) > 0. Suppose that wi(m) > 0, that the function
∫
T0

x0i(t, ·) dµ
is invertible, and that the function p0i(·) is differentiable. Then, p̊(·), the in-
verse demand function of the monopolist, is differentiable and we have that
dp̊(e)
deij

=
dp0i(eijµ(m))

dxi
µ(m), at each e ∈ E(m) such that E is triangular, by

Proposition 9. In this context, the revenue of the monopolist can be defined
as p̊(e)eij and his marginal revenue as dp̊(e)

deij
eij + p̊(e), for each e ∈ E(m)

such that E is triangular.
Then, in the next proposition, we can provide a formal foundation of

the geometric characterization of the monopoly equilibrium proposed by
Schydlowsky and Siamwalla (1966). Indeed, our proposition establishes that,
at an interior monopoly solution, the slope of the monopolist’s indifference
curve and the slope of the atomless part’s offer curve are both equal to
the opposite of the monopolist’s marginal revenue. Therefore, the tangency
characterization of a monopoly equilibrium is demonstrated.

Proposition 14. Under Assumptions 1, 2, 3, 4, and 5, if wi(m) > 0, the
function

∫
T0

x0i(t, ·) dµ is invertible, the function p0i(·) is differentiable, and

ẽ ∈ E(m) is a monopoly equilibrium such that ẽ < wi(m), then

−
∂ua(x̃(m)

∂xi

∂um(x̃(m))
∂xj

= −
(
dp̊(ẽ)

deij
ẽij + p̊(ẽ)

)
=
dh(
∫
T0

x̃i(t) dµ)

dxi
,

where x̃ is the monopoly allocation corresponding to ẽ.

Finally, we provide an example that illustrates the geometric characteriza-
tion of a monopoly equilibrium proposed by Schydlowsky and Siamwalla
(1966).

Example 1′. Consider the exchange economy specified in Example 1. Then,
at the unique monopoly equilibrium ẽ ∈ E(m), the slope of the indifference
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curve of the monopolist is equal to the opposite of his marginal revenue,
which, in turn, is equal to the slope of the function which represents the
offer curve of the atomless part.

Proof. From Example 1, we have that the unique monopoly equilibrium
is the strategy ẽ ∈ E(m) such that ẽ12 = 1

4 , p̊(ẽ) = 1, x̃(m) = (3
4 ,

1
4), and

x̃(t) = (1
4 ,

3
4), for each t ∈ T0. Moreover, we have that x2 = h(x1) = −

√
x
1

2 +1
and

−
∂um(x̃(m)

∂xi

∂um(x̃(m))
∂xj

= −
(
dp̊(ẽ)

deij
ẽij + p̊(ẽ)

)
= −1

2
=
dh(
∫
T0

x̃i(t) dµ)

dxi
.

Pareto (1986) was the first author who gave a formalized treatment of
the problem of monopoly for a general pure exchange economy. To better
understand the relationship between the analysis developed in the previ-
ous sections and that proposed by Pareto (1896), we reformulate now this
author’s monopoly solution within our framework of bilateral exchange.

Pareto (1896) assumed that, for the monopolist, the commodity he is
endowed with is “neutral,” i.e., it is a commodity from which he does not
get any utility.4 To incorporate this assumption in our model, we amend
Assumption 2 as follows.

Assumption 2′. um(x) = xj , whenever wi(m) > 0, i 6= j, and ut : R2
+ → R

is continuous, strongly monotone, strictly quasi-concave, for each t ∈ T0.

It is straightforward to verify that Assumption 2′ implies that the utility
function of the monopolist is continuous, monotone, and quasi-concave. As
in the previous section, given a price vector (pi, pj) ∈ ∆ \ ∂∆, we denote by

p the scalar p = pi

pj
, whenever wi(m) > 0. Hereafter, we assume that the

function
∫
T0

x0i(t, ·) dµ is invertible, whenever wi(m) > 0. Therefore, the
revenue of the monopolist can be defined again as p̊(e)eij .

According to Pareto (1896), the goal of the monopolist is to maximize
his revenue. Therefore, we can provide the following definition of a Pareto
monopoly equilibrium.

Definition 10. Let wi(m) > 0. A strategy ê ∈ E(m) such that Ê is trian-
gular is a Pareto monopoly equilibrium, with respect to the price selection

4For a discussion of the properties of neutral commodities, see, for instance, Varian
(2014).
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p̊(·), if
p̊(ê)êij ≥ p̊(e)eij ,

for each e ∈ E(m).

A Pareto monopoly allocation is an allocation x̂ such that x̂(m) =
x(m, ê, p̊(ê)) and x̂(t) = x0(t, p̊(ê)), for each t ∈ T0, where ê is a Pareto
monopoly equilibrium.

The following proposition shows that, when Assumption 2 is replaced
with Assumption 2′, a strategy of the monopolist is a Pareto monopoly equi-
librium if and only if it is a monopoly equilibrium. Moreover, it shows that,
if p0i(·) is differentiable whenever wi(m) > 0, then at a Pareto monopoly
solution the monopolist’s marginal revenue must be nonnegative.

Proposition 15. Under Assumptions 1, 2′, 3, and 4, let wi(m) > 0. Then,
a strategy ê ∈ E(m) is a Pareto monopoly equilibrium, with respect to
the unique price selection p̊(·), if and only if it is a monopoly equilibrium,
with respect to the same price selection. Moreover, if the function p0i(·) is
differentiable, and ê ∈ E(m) is a Pareto monopoly equilibrium, then

dp̊(ê)

deij
êij + p̊(ê) ≥ 0.

We now provide an example of a Pareto monopoly equilibrium.

Example 3. Consider the following specification of an exchange economy
satisfying Assumptions 1, 2′, 3, 4. T0 = [0, 1], T \ T0 = {m}, µ(m) = 1,
w(m) = (1, 0), um(x) = x2, T0 is taken with Lebesgue measure, w(t) =
(0, 1), ut(x) =

√
x1 + x2, for each t ∈ T0. Then, there is a unique Pareto

monopoly equilibrium ê ∈ E(m) such that

dp̊(ê)

deij
êij + p̊(ê) > 0.

Proof. The unique Pareto monopoly equilibrium is the strategy ê such that
ê12 = 1, p̊(ê) = 1

2 , x̂(m) = (0, 1
2), x̂(t) = (1, 1

2), for each t ∈ T0. Moreover,
we have that

dp̊(ê)

deij
êij + p̊(ê) =

1

4
.
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Comparing the monopoly solution of Example 1 with the Pareto monopoly
solution of Example 3, we can observe that the atomless part is better off
at the Pareto monopoly solution than at the monopoly solution as

ut(x̂)(t) =
3

2
>

5

4
= ut(x̃)(t),

for each t ∈ T0. Moreover, Example 3 shows that when the utility function
of the monopolist is continuous, monotone, and quasi-concave a monopoly
equilibrium may exist whereas Example 2 showed that this is not the case
when those weaker assumptions than those imposed by Assumption 2 hold
for the atomless part.

7 Conclusion

In this paper, we have provided a general economic and a game theoret-
ical foundation of the quantity-setting monopoly solution in bilateral ex-
change which, to the best of our knowledged, was a gap in the literature
on monopoly in general equilibrium. Then, we have shown that the ad hoc
monopoly solutions proposed by Schydlowsky and Siamwalla (1966) and
Kats (1974) fit well in suitable specifications of our general model, as well
as the ante litteram solution proposed by Pareto (1986).

We leave for future research addressing the problem of a price-setting
monopolist, in the same bilateral framework as used in this paper. This
goal could be pursued by drawing inspiration from another pioneering work
by Vilfredo Pareto (see Pareto (1909)) and could lead to a game theoretical
foundation of a monopoly solution of this type in a two-stage setup, as
suggested by Sadanand (1988).

Kats (1974), in his final remarks (see p. 31), raised the question of the
relationship between monopoly equilibrium and cooperative game theory.
He formalized a monopolistic market game based on the notion of a mo-
nopolistic quasi-core. He mentioned Shitovitz (1973) as the only other work
offering a contribution on this issue. Shitovitz (1973), in his Example 1, ac-
tually showed that, in the mixed version of a monopolistic two-commodity
exchange economy, the set of allocations in the core does not coincide with
the set of Walrasian allocations. This example raised the question whether
the core solution to monopolistic market games is “advantageous” or “dis-
advantageous” for the monopolist (see Aumann (1973), Drèze et al. (1977),
Greenberg and Shitovitz (1977), among others). The same issue could be
analysed using our monopoly equilibrium solution.
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8 Appendix

Proof of Proposition 1. Let p ∈ Rl++. Then, the graph of the corre-
spondence X(·, p), {(t, x) : x ∈ X(·, p)}, is a subset of T

⊗
B, by the same

argument as that used by Busetto et al. (2011) (see the proof of their Propo-
sition). But then, by the measurable choice theorem in Aumann (1969),
there exists a measurable function x̄(·, p) such that, x̄(t, p) ∈ X(t, p), for

each t ∈ T0, which is also integrable as x̄j(t, p) ≤
∑l
i=1 p

iwi(t)

pj
, j = 1, 2, for

each t ∈ T0. We must have that x0(·, p) = x̄(·, p) as X0(t, p) = {x0(t, p)}, for
each t ∈ T0. Hence, the function x0(·, p) is integrable and

∫
T0

X0(t, p) dµ =∫
T0

x0(t, p) dµ, for each p ∈ R2
++.

Proof of Proposition 2. It straightforwardly follows from homogeneity of
degree zero of the function x0(t, ·), for each t ∈ T0, and from (1).

Proof of Proposition 3. Let a strategy e ∈ E(m) be given. Suppose,
without loss of generality, that w1(m) > 0. Let p ∈ ∆ \ ∂∆ be a price
vector. Suppose that p is market clearing for j = 1. Then, (1) reduces to∫

T0

x01(t, p) dµ = e12µ(m).

We have that

p1

∫
T0

x01(t, p) dµ+ p2

∫
T0

x02 dµ(t, p) = p2

∫
T0

w2(t) dµ,

as p1x01(t, p) + p2x02(t, p) = p2w2(t), by Assumption 2, for each t ∈ T0.
Then, we have that∫

T0

x02 dµ(t, p) + e12µ(m)
p1

p2
=

∫
T0

w2(t) dµ.

Therefore, p is market clearing for j = 2. Suppose now that (1) is satisfied
for j = 2. Then, (1) reduces to∫

T0

x02 dµ(t, p) + e12µ(m)
p1

p2
=

∫
T0

w2(t) dµ.

But then, we have that

p2

∫
T0

x02 dµ(t, p) + p1e12µ(m) = p2

∫
T0

w2(t) dµ.
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On the other hand, we know from the previous argument that

p1

∫
T0

x01(t, p) dµ+ p2

∫
T0

x02 dµ(t, p) = p2

∫
T0

w2(t) dµ.

Then, we obtain that ∫
T0

x01(t, p) = e12µ(m).

Therefore, p is market clearing for j = 1. Hence, p ∈ ∆ \ ∂∆ is market
clearing for j = 1 if and only if it is market clearing for j = 2.

Proof of Proposition 4. According to Debreu (1982), we let |x| =∑2
i=1 |xi|, for each x ∈ R2

+, and d[0, V ] = infx∈V |x|, for each V ⊂ R2
+.

Let {pn} be a sequence of normalized price vectors such that pn ∈ ∆ \ ∂∆,
for each n = 1, 2, . . ., which converges to a normalized price vector p̄. Sup-
pose, without loss of generality, that p̄1 = 0 and w1(m) > 0. Then, we
have that p̄2 = 1. But then, the sequence {d[0,X0(t, pn)]} diverges to
+∞ as p̄2w2(t) > 0, for each t ∈ T0, by Lemma 4 in Debreu (1982, p.
721). Therefore, the sequence {d[0,

∫
T0

X0(t, pn) dµ]} diverges to +∞, by
the argument used in the proof of Property (iv) in Debreu (1982, p. 728).
This implies that the sequence

∑2
i=1{

∫
T0

x0i(t, pn) dµ} diverges to +∞ as∫
T0

X0(t, p) dµ =
∫
T0

x0(t, p) dµ, for each p ∈ ∆ \ ∂∆, by Proposition 1.

Suppose that the sequence {
∫
T0

x02(t, pn) dµ} diverges to +∞. Then, there

exists an n0 such that
∫
T0

x02(t, pn) dµ >
∫
T0

w2(t) dµ, for each n ≥ n0. But

we have that x02(t, p) ≤ w2(t), for each t ∈ T0 and for each p ∈ ∆ \ ∂∆,
a contradiction. Then, the sequence {

∫
T0

x01(t, pn) dµ} diverges to +∞.

Hence, the sequence {
∫
T0

x0i(t, pn) dµ} diverges to +∞ whenever p̄i = 0 and

wi(m) > 0.

Proof of Proposition 5. Suppose, without loss of generality, that w1(m) >
0 and let e ∈ E(m) be a strategy. Suppose that there exists a market clear-
ing price vector p ∈ ∆\∂∆ and that the matrix E is not triangular. Then, it
must be that e12 = 0. But then, we have that

∫
T 2 x01(t, p) dµ = 0 as µ(T 2) >

0, by (1). Consider a trader τ ∈ T 2. We have that ∂uτ (x0(τ,p))
∂x1

= +∞ as 2

and 1 stand in the relation Q, by Assumption 4, and ∂uτ (x0(τ,p))
∂x1

≤ λp̂1,
by the necessary conditions of the Kuhn-Tucker theorem. Moreover, it
must be that x02(τ, p) = w2(τ) > 0 as uτ (·) is strongly monotone, by

Assumption 2, and pw(τ) > 0. Then, ∂uτ (x0(τ,p))
∂x2

= λp2, by the neces-
sary conditions of the Kuhn-Tucker theorem. But then, it must be that
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∂uτ (x̂(τ))
∂x2

= +∞ as λ = +∞, contradicting the assumption that uτ (·) is
continuously differentiable. Therefore, the matrix E must be triangular.
Suppose now that E is triangular. Then, it must be that e12 > 0. Let
{pn} be a sequence of normalized price vectors such that pn ∈ ∆ \ ∂∆, for
each n = 1, 2, . . ., which converges to a normalized price vector p̄ such that
p̄1 = 0. Then, the sequence {

∫
T0

x01(t, pn) dµ} diverges to +∞, by Proposi-

tion 4. But then, there exists an n0 such that
∫
T0

x01(t, pn) dµ > e12µ(m),

for each n ≥ n0. Therefore, we have that
∫
T0

x01(t, pn0) dµ > e12µ(m). Let

q ∈ ∆ \ ∂∆ be a price vector such that
q2

∫
T0

w2(t) dµ

q1
= e12µ(m). Con-

sider first the case where
∫
T0

x01(t, q) dµ = e12µ(m). Then, q is market
clearing as it is market clearing for j = 1, by Proposition 3. Consider
now the case where

∫
T0

x01(t, q) dµ 6= e12µ(m). Then, it must be that∫
T0

x01(t, q) dµ < e12µ(m) as x01(t, q) ≤ q2w2(t)
q1

, for each t ∈ T0. But then,

we have that
∫
T0

x01(t, q) dµ < e12µ(m) <
∫
T0

x01(t, pn0) dµ. Let O ⊂ ∆\∂∆
be a compact and convex set which contains pn0 and q. Then, the correspon-
dence

∫
T0

X0(t, ·) dµ is upper hemicontinuous on O, by the argument used
in the proof of Property (ii) in Debreu (1982, p. 728). But then, the func-
tion {

∫
T0

x01(t, ·) dµ} is continuous on O as
∫
T0

X0(t, p) dµ =
∫
T0

x0(t, p) dµ,
for each p ∈ ∆ \ ∂∆, by Proposition 1. Therefore, there is a price vector
p̌ ∈ ∆ \ ∂∆ such that

∫
T0

x01(t, p̌) dµ = e12µ(m), by the intermediate value
theorem. Then, p̌ is market clearing as it is market clearing for j = 1, by
Proposition 3. Hence, given a strategy e ∈ E(m), there exists a market
clearing price vector p ∈ ∆ \ ∂∆ if and only if the matrix E is triangular.

Proof of Proposition 6. Let a price selection p(·) and a strategy e ∈
E(m) be given. Suppose that E is not triangular. Then, we have that
x(m) = x(m, e, p(e)) = w(m) and x(t) = x(t, p(e)) = w(t), for each t ∈ T0

as p(e) = 0. Suppose that E is triangular. Then, we have that∫
T

xj(t) dµ = (wj(m)−
2∑
i=1

eji +
2∑
i=1

eij
pi

pj
)µ(m) +

∫
T0

x0j(t, p) dµ

=

∫
T

wj(t) dµ,

j = 1, 2, as p(e) is market clearing. Hence, given a price selection p(·) and a
strategy e ∈ E(m), the assignment x(m) = x(m, e, p(e)), x(t) = x(t, p(e)),
for each t ∈ T0, is an allocation.

Proof of Proposition 7. Suppose, without loss of generality, that w1(m) >
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0 and that b̂ is a Cournot-Nash equilibrium. Then, we have that x(m, b̂(m),

p(b̂)) = (w1(m) − b̂12(m),
¯̂
b21). Let b′(m) be a strategy such that 0 <

b′12(m) < b̂12(m). Then, we have that

um(x(m, b̂ \ b′(m), p(b̂ \ b′(m)))) > um(x(m, b̂(m), p(b̂))),

as x(m, b̂\b′(m), p(b̂\b′(m))) = (wi(m)−b′12(m)),
¯̂
b21) and um(·) is strongly

monotone, by Assumption 2, a contradiction. Hence, there is no Cournot-
Nash equilibrium.

Proof of Proposition 8. Suppose, without loss of generality, that w1(m) >
0. Let x̃ be a monopoly allocation. Then, we have that x̃(m) = x(m, ẽ, p(ẽ))
and x̃(t) = x0(t, p(ẽ)), for each t ∈ T0, where ẽ is a monopoly equilibrium,
with respect to a price selection p(·). Consider, first, stage 1 of the game.
Let e ∈ E(m) be a strategy selection and let h1 be a history at the be-
ginning of stage 1 of the game such that h1(m) = e. Suppose that E is
triangular. Then, we have that p(e) � 0 and p(e)x0(t, p(e)) = p(e)w2(t),
for each t ∈ T0, by Assumption 2. But then, there exist λj(t) ≥ 0, j = 1, 2,∑2

j=1 λ
j(t) = 1, such that

x0(t, p(e)) = λj(t)
p2(e)w2(t)

pj(e)
,

j = 1, 2, for each t ∈ T0, by Lemma 5 in Codognato and Ghosal (2000).
Let λ : T0 → R2

+ be a function such that λj(t) = λj(t), j = 1, 2, for
each t ∈ T0. It is straightforward to show that the function wi(t)λj(t),
i, j = 1, 2, for each t ∈ T0, is integrable on T0. Let s̃|h1 denote a strategy
selection of the subgame represented by the stage 1 of the game such that
a1(s̃|h1)(m) = {“do nothing”} and a1

ij(s̃|h1)(t) = wi(t)λj(t), i, j = 1, 2, for

each t ∈ T0. It is immediate to verify that (s̃|h1)(t) ∈ A1(t), for each t ∈ T .
Consider the matrix Ā(s̃|h1). We have that

ā12(s̃|h1) = a0
12(s̃|h1)(m)µ(m) +

∫
t∈T0

a1
12(s̃|h1)(t) dµ = e12µ(m) > 0.

By the same argument used in the proof of Proposition 5, Assumption 4
implies that x01(t, p(e)) > 0, for each t ∈ T 2. Then, we have that λ1(t) > 0,
for each t ∈ T 2. But then, we have that

ā21(s̃|h1) = a0
21(s̃|h1)(m)µ(m) +

∫
t∈T0

a1
21(s̃|h1)(t) dµ

=

∫
t∈T0

w2(t)λ1(t) dµ > 0.
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Therefore, the matrix Ā(s̃|h1) is irreducible. Then, from (1), we obtain that∫
T0

x1(t, p(e)) dµ =

∫
T0

λ1(t)
p2(e)w2(t)

p1(e)
dµ

=

∫
T0

a1
21(s̃|h1)(t)

p2(e)

p1(e)
dµ = e12µ(m).

But then, it must be that p(e) = p(h2(s̃|h1)) as p(e) satisfies (3) and the
matrix Ā(s̃|h1) is irreducible. Therefore, it is straightforward to verify that

x(m,h2(s̃|h1)(m), p(h2(s̃|h1))) = x(m, e, p(e))

and
x(t,h2(s̃|h1)(t), p(h2(s̃|h1))) = x(t, p(e)),

for each t ∈ T0. It remains now to show that no trader t ∈ T , in stage 1 of
the game, has an advantageous deviation from s̃|h1. This is trivially true
for m. Suppose that there exist a trader τ ∈ T0 and a strategy s(τ) such
that

uτ (x(τ,h2(s̃|h1 \ s|h1(τ))(τ), p(h2(s∗|h1 \ s|h1(τ)))))

> uτ (x(τ,h2(s̃|h1)(τ), p(h2(s̃|h1)))).

It is straightforward to verify that Definition 8 implies that p(h2(s̃|h1 \
s|h1)(τ))) = p(h2(s̃|h1)). Then, we have that

uτ (x(τ,h2(s̃|h1 \ s|h1(τ))(τ), p(h2(s̃|h1))))

> uτ (x(τ,h2(s̃|h1)(τ), p(h2(s̃|h1)))) = uτ (x(τ, p(e))).

It is also immediate to verify that

p(h2(s̃|h1))x(τ,h2(s̃|h1 \ s|h1(τ))(τ), p(h2(s̃|h1))) = p(h2(s̃|h1))w(τ).

Then, we have that

uτ (x(τ, p(e))) > uτ (x(τ,h2(s̃|h1 \ s|h1(τ))(τ), p(h2(s̃|h1)))),

a contradiction. Therefore, it must be that

ut(x(t,h2(s̃|h1)(t), p(h2(s̃|h1))))

≥ ut(x(t,h2(s̃|h1 \ s|h1(t))(t), p(h2(s̃|h1 \ s|h1(t))))),
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for each t ∈ T0.
Suppose that E is not triangular. Then, we have that p(e) = 0. Let

s̃|h1 denote a strategy selection of the subgame represented by the stage 1
of the game such that a1(s̃|h1)(m) = {“do nothing”} and a1

ij(s̃|h1)(t) = 0,

i, j = 1, 2, for each t ∈ T0. It is immediate to verify that (s̃|h1)(t) ∈ A1(t),
for each t ∈ T and that the matrix Ā(s̃|h1) is not irreducible. Then, it must
be that p(e) = p(h2(s̃|h1). Therefore, we have that

x(m,h2(s̃|h1)(m), p(s̃|h1)) = w1(m) = x(m, e, p(e))

and
x(t,h2(s̃|h1)(t), p((s̃|h1))) = w2(t) = x(t, p(e)),

for each t ∈ T0. It remains now to show that no trader t ∈ T , in stage 1 of
the game, has an advantageous deviation from s̃|h1. This is trivially true
for m. Suppose that there exist a trader τ ∈ T0 and an strategy s(τ) such
that

uτ (x(τ,h2(s̃|h1 \ s|h1(τ))(τ), p(h2(s̃|h1 \ s|h1(τ)))))

> uτ (x(τ,h2(s̃|h1)(τ), p(h2(s̃|h1)))).

Then, we have that

w2(τ) = uτ (x(τ,h2(s̃|h1 \ s|h1(τ))(τ), p(h2(s̃|h1))))

> uτ (x(τ,h2(s̃|h1)(τ), p(h2(s̃|h1)))) = w2(τ),

as p(h2(s̃|h1 \ s|h1(τ))) = p(h2(s̃|h1)) = 0, a contradiction. Therefore, we
conclude that Ā(s∗|h1) is irreducible, for each h1 ∈ H1 such that h1(m) > 0,
and

ut(x(t,h2(s̃|h1)(t), p(h2(s̃|h1))))

≥ ut(x(t,h2(s̃|h1 \ s|h1(t))(t), p(h2(s̃|h1 \ s|h1(t))))),

for each h1 ∈ H1, for each s|h1(t), and for each t ∈ T . Consider now stages
0 and 1 of the game. Let s̃ be a strategy profile such that s̃(m,h0) = ẽ and
s̃(t,h0) = {“do nothing”}, for each t ∈ T0, and s̃(t,h1) = (s̃|h1)(t), for each
h1 ∈ H1, and for each t ∈ T . Let h̃1 be such that h̃1(m) = ẽ. We have
that h2(s̃) = h2(s̃|h̃1) as a0(s̃) = s̃0(·,h0) = h̃1 = a0(s̃|h̃1) and a1(s̃) =
s̃1(·, h̃1) = s̃|h̃1 = a1(s̃|h̃1). Then, it must be that p(ẽ) = p(h2(s̃|h̃1)) =
p(h2(s̃)). But then, it is straightforward to verify that

x(m,h2(s̃)(m), p(h2(s̃))) = x(m, ẽ, p(ẽ))
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and
x(t,h2(s̃(t)), p(h2(s̃))) = x(t, p(ẽ)),

for each t ∈ T0. Suppose that there exists a strategy s(m) of the monopolist
such that

um(x(m,h2(s̃\s(m))(m), p(h2(s̃\s(m))))) > um(x(m,h2(s̃)(m), p(h2(s̃)))).

Let e = s̃0 \ s(m,h0)(m). Then, we have that p(e) = p(h2(s̃ \ s(m))) by the
same argument used before. But then, we have that

x(m,h2(s̃ \ s(m))(m), p(h2(s̃ \ s(m)))) = x(m, e, p(e)).

Therefore, it must be that

umx(m, e, p(e)) = um(x(m,h2(s̃ \ s(m))(m), p(h2(s̃ \ s(m)))))

> um(x(m,h2(s̃)(m), p(h2(s̃)))) = x(m, ẽ, p(ẽ)),

a contradiction. Suppose that there exist a trader τ ∈ T0 and a strategy
s(τ) such that

uτ (x(τ,h2(s̃ \ s(τ))(τ), p(h2(s̃ \ s(τ)))))

> uτ (x(τ,h2(s̃(τ), p(h2(s̃)))).

It is straightforward to verify that Definition 8 implies that p(h2(s̃\s(τ))) =
p(h2(s̃)). Then, we have that

uτ (x(τ,h2(s̃|h1 \ s|h̃1(τ))(τ), p(h2(s̃|h̃1 \ s|h̃1(τ)))))

= uτ (x(τ,h2(s̃ \ s(τ))(τ), p(h2(s̃ \ s(τ)))))

> uτ (x(τ,h2(s̃(τ), p(h2(s̃))))

= uτ (x(τ,h2(s̃|h̃1)(τ), p(h2(s̃|h̃1)))),

a contradiction. Thus the set of monopoly allocations is a subset of the set of
subgame perfect allocations. Let x∗ be a subgame perfect allocation. Then,
we have that x∗ = x(t,h2(s∗)(t), p(h2(s∗))), for each t ∈ T , where s∗ is a sub-
game perfect equilibrium. Let p(e) be a function which associates, with each
strategy selection e ∈ E(m), the price vector p(h2(s∗|h1)) corresponding to
the history h1 such that h1(m) = e. Let e ∈ E(m) be a strategy selection.
Suppose that E is triangular. Then, it must that p(e) = p(h2(s∗|h1)) � 0
as the matrix Ā(s∗|h1)) is irreducible. Suppose that E is not triangular.
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Then, it must be that p(e) = p(h2(s∗|h1)) = 0 as the matrix Ā(s∗|h1)) is
not irreducible. It is straightforward to verify that

x(m, e, p(e)) = x(m,h2(s̃|h1)(m), p(h2(s∗|h1))),

for each strategy selection e ∈ E(m) and for each history h1 such that
h1(m) = e. It is also straightforward to show that

ut(x(t,h2(s∗|h1)(t), p(h2(s∗|h1)))) > ut(y),

for all y ∈ {x ∈ R2
+ : p(h2(s∗|h1))x = p(h2(s∗|h1))w2(t)}, for each h1 ∈ H1

such that h1(m) > 0 and for each t ∈ T0, by the same argument used by
Codognato and Ghosal (2000) in the proof of their Theorem 2 p. 49. Then,
we have that

x(t, p(e)) = x(t,h2(s∗|h1)(t), p(h2(s∗|h1))),

for each strategy e ∈ E(m), for each history h1 such that h1(m) = e, and for
each t ∈ T0. Let e ∈ E(m) be a strategy selection such that E is triangular
and let h1 be a history such that h1(m) = e. Then, we have that∫

T0

x1(t, p(e)) dµ+ x1(m, e, p(e)) =

∫
T0

x1(t, p(e)) dµ+ e12

=

∫
T0

x1(t,h2(s∗|h1)(t), p(h2(s∗|h1))) dµ

+x1(m,h2(s̃|h1)(m), p(h2(s∗|h1))) = w1(m)

as the assignment x(t,h2(s∗|h1)(t), p(h2(s∗|h1))), for each t ∈ T , is an al-
location. But then, p(e) satisfies (1) by Proposition 3. Therefore, p(e) is a
price selection. Let e∗ be a strategy selection such that e∗ = s∗(m,h0) and
let h1∗ be such that h1∗(m) = e∗. We have that h2(s∗) = h2(s∗|h1∗) as
a0(s∗) = s0∗(·,h0) = h1∗ = a0(s∗|h1∗) and a1(s∗) = s1∗(·,h1∗) = s∗|h1∗ =
a1(s∗|h1∗). Then, it must be that e∗ > 0 as Ā(s∗) is irreducible and
p(e∗) = p(h2(s∗|h1∗) = p(h2(s∗)). But then, it is straightforward to ver-
ify that

x(m, e∗, p(e∗)) = x(m,h2(s∗)(m), p(h2(s∗))).

Suppose that there exists a strategy e ∈ E(m) such that

um(x(m, e, p(e))) > um(x(m, e∗, p(e∗))).
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Let s(m) be a strategy of the monopolist such that s0∗ \ s(m,h0)(m) = e.
Then, we have that p(e) = p(h2(s∗ \ s(m))) by the same argument used
before. But then, we have that

x(m, e, p(e)) = x(m,h2(s∗ \ s(m))(m), p(h2(s∗ \ s(m)))).

Therefore, it must be that

um(x(m,h2(s∗ \ s(m))(m), p(h2(s∗ \ s(m))))) = umx(m, e, p(e))

> x(m, e∗, p(e∗)) = um(x(m,h2(s∗)(m), p(h2(s∗)))),

a contradiction. Thus the set of subgame perfect allocations is a subset
of the set of monopoly allocations. Hence, the set of monopoly allocations
coincides with the set of subgame perfect allocations.

Proof of Proposition 9. Let wi(m) > 0. Suppose that
∫
T0

x0i(t, p) dµ = 0,

for some p ∈ ∆ \ ∂∆. Then, we have that
∫
T i x

0i(t, p) dµ = 0 as µ(T i) > 0
and the necessary Kuhn-Tucker conditions lead, mutatis mutandis, to the
same contradiction as in the proof of Proposition 5. But then, we have
that

∫
T0

x0i(t, p) dµ > 0, for each p ∈ ∆ \ ∂∆. Therefore, the function∫
T0

x0i(t, ·) dµ is restricted to the codomain R++. For each x ∈ R++, there

exists at least one p ∈ ∆\∂∆ such that x =
∫
T0

x0i(t, p) dµ, by the same argu-

ment used in the proof of Proposition 5. Then, the function
∫
T0

x0i(t, ·) dµ
is onto as its range coincides with its codomain. Therefore, the function∫
T0

x0i(t, ·) dµ is invertible if and only if it is one-to-one. Hence, the func-

tion
∫
T0

x0i(t, ·) dµ is invertible if and only, for each x ∈ R++, there is a

unique p ∈ ∆ \ ∂∆ such that x =
∫
T0

x0i(t, p) dµ.

Proof of Proposition 10. Suppose that wi(m) > 0 and that the function∫
T0

x0i(t, ·) dµ is invertible. Let p̊(e) be a function which associates, with

each strategy e ∈ E(m), the price vector p = p0i(eijµ(m)), if E is triangular,
and is equal to {0}, otherwise. Then, p̊(·) is the unique price selection as
π(e) = {p̊(e)}, for each e ∈ E(m).

Proof of Proposition 11. Suppose, without loss of generality, that w1(m) >
0 and that

∫
T0

x01(t, ·) dµ is invertible. Suppose that x̄ ∈ {x ∈ R2
+ :

xµ(m) +
∫
T0

x0(t, p) dµ =
∫
T w(t) dµ for some p ∈ ∆ \ ∂∆}. Moreover, sup-

pose that x̄1 = w1(m). Then, we have that
∫
T0

x01(t, p) dµ = 0, for some

p ∈ ∆ \ ∂∆. But then, we have that
∫
T 2 x01(t, p) dµ = 0 as µ(T 2) > 0 and

the necessary Kuhn-Tucker conditions lead, mutatis mutandis, to the same
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contradiction as in the proof of Proposition 5. Therefore, we must have that
0 ≤ x̄1 < w1(m). Let ē ∈ E(m) be such that ē12 = w1(m) − x̄1 and let
p̄ = p̊(ē). Then, we have that

x̄1µ(m) +

∫
T0

x01(t, p̄) dµ

= (w1(m)− ē12)µ(m) +

∫
T0

x01(t, p̄) dµ = w1(m)µ(m),

as p̄ = p̊(ē). Moreover, p̄ is the unique price vector such that

(w1(m)− x̄1)µ(m) =

∫
T0

x01(t, p̄) dµ,

as the function
∫
T0

x01(t, ·) dµ is invertible. Then, it must be that

x̄2µ(m) +

∫
T0

x02(t, p̄) dµ =

∫
T0

w2(t) dµ,

by Proposition 3. But then, we have that

x̄2 = e12
p̄1

p̄2
,

as p̄ is market clearing. Therefore, we conclude that

x̄ = x(m, ē, p̄) = x(m, ē, p̊(ē)).

Hence, the feasible complement of the offer curve of the atomless part, the
set {x ∈ R2

+ : xµ(m) +
∫
T0

x0(t, p) dµ =
∫
T w(t) dµ for some p ∈ ∆ \ ∂∆},

is a subset of the set {x ∈ R2
+ : x = x(m, e, p̊(e)) for some e ∈ E(m)}, the

set of the final holdings of the monopolist.

Proof of Proposition 12. Suppose, without loss of generality, that w1(m) >
0 and that the function

∫
T0

x01(t, ·) dµ is invertible. Let ẽ ∈ E(m) be a
monopoly equilibrium. Let p̃ = p̊(ẽ). We have that

x1(m, ẽ, p̃)µ(m) +

∫
T0

x01(t, p̃) dµ

= (w1(m)− ẽ12)µ(m) +

∫
T0

x01(t, p̃) dµ = w1(m)µ(m),

31



and

x2(m, ẽ, p̃)µ(m) +

∫
T0

x02(t, p̃) dµ

= ẽ12µ(m)
p̃1

p̃2
+

∫
T0

x02(t, p̃) dµ =

∫
T0

w2(t) dµ,

as p̃ is market clearing. Then, we have shown that x(m, ẽ, p̊(ẽ)) ∈ {x ∈
R2

+ : xµ(m) +
∫
T0

x0(t, p) dµ =
∫
T w(t) dµ for some p ∈ ∆ \ ∂∆}. But then,

we have that um(x(m, ẽ, p̊(ẽ))) is maximal in the set {x ∈ R2
+ : xµ(m) +∫

T0
x0(t, p) dµ =

∫
T w(t) dµ for some p ∈ ∆ \ ∂∆} as um(x(m, ẽ, p̊(ẽ)) ≥

um(x(m, e, p̊(e)), for each e ∈ E(m), and {x ∈ R2
+ : xµ(m)+

∫
T0

x0(t, p) dµ =∫
T w(t) dµ for some p ∈ ∆\∂∆} ⊂ {x ∈ R2

+ : x = x(a, e, p̊(e)) for some e ∈
E(m)}, by Proposition 11.

Proof of Proposition 13. Suppose that wi(m) > 0 and that the function∫
T0

x0i(t, ·) dµ is invertible. Suppose that x̄ ∈ {x ∈ R2
+ : xj = h(xi)}. Then,

there is a unique price vector p̄ = p0i(x̄i) such that x̄i =
∫
T0

x0i(t, p̄) dµ, as

the function
∫
T0

x0i(t, ·) dµ is invertible. We have that

p̄i
∫
T0

x0i(t, p̄) dµ+ p̄j
∫
T0

x0j(t, p̄) dµ = pi
∫
T0

wi(t) dµ+ pj
∫
T0

wj(t) dµ,

by Walras’ law. Then, it must be that x̄j =
∫
T0

x0j(t, p̄) dµ, where x̄j =

h(x̄i). But then, x̄ ∈ {x ∈ R2 : x =
∫
T0

x0(t, p) dµ for some p ∈ ∆ \ ∂∆}.
Therefore, {x ∈ R2

+ : xj = h(xi)} ⊂ {x ∈ R2
+ : x =

∫
T0

x0(t, p) dµ for some

p ∈ ∆\∂∆}. Suppose now that x̄ ∈ {x ∈ R2 : x =
∫
T0

x0(t, p) dµ for some p ∈
∆ \ ∂∆}. Let p̄ be such that x̄ =

∫
T0

x0(t, p̄) dµ. Then, we have that

p̄ = p0i(x̄i) as the function
∫
T0

x0i(t, ·) dµ is invertible. We have that

p̄ix̄i + p̄j x̄j = p̄i
∫
T0

wi(t) + pj
∫
T0

wj(t),

by Walras’ law. Then, we have that x̄j = h(x̄i). But then, x̄ ∈ {x ∈
R2

+ : xj = h(xi)}. Therefore, {x ∈ R2
+ : x =

∫
T0

x0(t, p) dµ for some p ∈
∆ \ ∂∆} ⊂ {x ∈ R2

+ : xj = h(xi)}. Hence, the graph of the function h(·),
the set {x ∈ R2

+ : xj = h(xi)}, coincides with the set {x ∈ R2
+ : x =∫

T0
x0(t, p) dµ for some p ∈ ∆ \ ∂∆}, the offer curve of the atomless part.
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Proof of Proposition 14. Suppose that wi(m) > 0, that the function∫
T0

x0i(t, ·) dµ is invertible and that the function p0i(·) is differentiable. Let

ẽ ∈ E(m) be a monopoly equilibrium such that ẽ < wi(m) and let x̃ be
the corresponding monopoly allocation. Then, p̊(·), the inverse demand
function of the monopolist, is differentiable and the necessary Kuhn-Tucker
conditions imply that

−∂um(x̃(m))

∂xi
+
∂um(x̃(m))

∂xj

(
dp̊(ẽ)

deij
ẽij + p̊(ẽ)

)
= 0.

Then, we have that

−
∂um(x̃(m)

∂xi

∂um(x̃(m))
∂xj

= −
(
dp̊(ẽ)

deij
ẽij + p̊(ẽ)

)
.

Moreover, we have that

h(xi) = −p0i(xi)xi +

∫
T0

wj(t) dµ.

Differentiating the function h(·), we obtain

dh(xi)

xi
= −

(
dp0i(xi)

dxi
xi + p0i(xi)

)
.

At the monopoly allocation x̃, we have that

dp̊(ẽ)

deij
ẽij + p̊(ẽ) =

dp0i(
∫
T0

x̃i(t) dµ)

dxi

∫
T0

x̃i(t) dµ+ p0i(

∫
T0

x̃i(t) dµ),

as dp̊(ẽ)
deij

=
dp0i(ẽijµ(m))

dxi
µ(m) and ẽ12µ(m) =

∫
T0

x0i(t, p(ẽ)) dµ. Hence, we

have that

−
∂um(x̃(m)

∂xi

∂um(x̃(m))
∂xj

= −
(
dp̊(ẽ)

deij
ẽij + p̊(ẽ)

)
=
dh(
∫
T0

x̃i(t) dµ)

dxi
.

Proof of Proposition 15. Let wi(m) > 0. Suppose that the strategy ê ∈
E(m) is a Pareto monopoly equilibrium, with respect to the price selection
p̊(·). Then, we have that

p̊(ê)êij ≥ p̊(e)eij ,
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for each e ∈ E(m). But then, we must have that

um(x(m, ê, p̊(ê)) ≥ um(x(m, e, p̊(e)),

for each e ∈ E(m), as

um(x(m, e, p̊(e)) = p̊(e)eij ,

by Assumption 2′, for each e ∈ E(m). Therefore, the strategy ê ∈ E(m)
is a monopoly equilibrium, with respect to the price selection p̊(·). The
converse can be straightforwardly proved by the same argument. Hence, a
strategy ê ∈ E(m) is a Pareto monopoly equilibrium, with respect to the
price selection p̊(·), if and only if it is a monopoly equilibrium, with respect
to the same price selection. Suppose that the function p0i(·) is differentiable.
Let ê ∈ E(m) be a Pareto monopoly equilibrium. Then, p̊(·), the inverse
demand function of the monopolist, is differentiable and the necessary Kuhn-
Tucker conditions imply that

dp̊(ê)

deij
êij + p̊(ê) ≥ 0.
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