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When is partial consensus is compatible with equilibrium and when
does it lead to non-equilibrium outcomes in large games and markets?In
this paper, (a) we develop a new solution concept that allows for partial
consensus about the outcomes of strategic and market interaction, and
(b) an associated, continuous measure of the degree of stability, via belief
coordination, for equilibrium outcomes. We differentiate the properties of
our concepts from related notions developed elsewhere. In an economic
application we examine the foundations of intertemporal trade via belief
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1 Introduction

When is partial consensus is compatible with equilibrium and when does it
lead to non-equilibrium outcomes in large games and markets? How does the
possibility that partial consensus is "approximately" self-fulfilling change the
analysis of strategic interaction and market behavior? What additional eco-
nomic insights can be obtained?
In this paper, we take a first step toward answering these questions by de-

veloping (i) a new solution concept that allows for partial consensus about the
outcomes of strategic and market interaction, (ii) an associated, continuous
measure of the degree of stability, via belief coordination, for equilibrium out-
comes, (iii) examples, illustrating and differentiating the properties of these two
concepts from related notions developed elsewhere, and (iv) an economic appli-
cation examining the foundations of intertemporal trade via belief coordination
in a two period economy where, under certain conditions, partial consensus over
future prices is consistent with an asset price bubble.
Our starting point is that agents’heterogeneous beliefs about the outcomes

of strategic and market interaction may be characterized by partial consensus.
We model partial consensus as common knowledge of p-beliefs (beliefs that put
probability at least p on a specific outcome); with probability 1 − p beliefs
over outcomes are heterogenous and aren’t required to be common knowledge.
We model belief coordination with partial consensus and for an outcome to be
"approximately" self-fulfilling, we require it to be consistent with all that is
commonly known by each agent via an iterative elimination process. Heuristi-
cally, our solution concept for large games and markets, p-consensus, requires
that an outcome, about which there is partial consensus, is "approximately self-
fulfilling" as referred to in the preceding sentence. Associated with our solution
concept is a continuous index of stability, p-stability, which requires equilib-
rium to be the unique rationalizable outcome compatible with p-beliefs. The
continuous index for stability we develop can be assigned to each equilibrium
within a large class of games. It is less coarse that the usual "stable/unstable"
typology and justifies, in smooth applications, the intuition that the stability of
equilibrium relates to the slope of the best response map.
The two concepts introduced by us bring added value to the analysis of large

games and markets only when there are multiple rationalizable outcomes. Our
results explore this point in greater detail.
We begin by demonstrating the link between the set of rationalizable out-

comes and the set of p−consensus outcomes: any outcome in the interior of
the set of rationalizable outcomes is also p−consensus outcome for some p > 0,
thus characterizing the set of outcomes over which partial consensus can be
"approximately" self-fulfilling (with p serving as a measure of the approxima-
tion). We say that a Nash equilibrium is inadmissible if the best-response map
is "vertical at the equilibrium" i.e. a small change in the other players actions
implies a infinitely large change in any one player’s best response. We show
that every admissible Nash equilibrium is p−stable for some p < 1. Under an
additional, mild continuity restriction, we show that a p−stable equilibrium is
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a locally isolated p−consensus distribution i.e. there is no other p−consensus
distribution in its vicinity. Under an additional interiority condition, we also
prove the converse statement: if an equilibrium is not p−stable, then there is
always a p−consensus outcome in its vicinity.
Next, using a number of examples, where the best responses of players de-

pend only on the average action, we work obtain closed form solutions for
p−consensus outcomes and characterize the p−stability of equilibrium out-
comes. We check that these can be supported as the outcomes of a correlated
equilibrium with such two states, and in the case of strategic complements (but
not strategic substitutes), are consistent with a common prior. In smooth set-
tings, setting we show that the degree of stability is related to the inverse of
the slope of the best-response, thus confirming the intuition that the slope of
the best-response matters for the strategic stability of equilibrium. In a setting
with multiple equilibria, we examine the link between the size of the basin of
attraction of an equilibrium outcome and p−stability and we show that two
aren’t related.
Our results generalize, the intuition obtained in a game with a finite number

of pure strategies that any strict Nash equilibrium is p−dominant (Morris, Rob
and Shin (1995)). We show that the approximate common of beliefs (and the
corresponding concept of belief potential) is quite different from the common
knowledge of p−beliefs (which is needed for the definition of p−consensus and
p−stability) because approximate common knowledge of a Nash equilibrium
profile of actions is consistent with the fact that the Nash equilibrium profile
of actions is not p−believed anywhere (while this is required for the definition
of p−consensus and p−stability). We examine the link between p−BR, iterated
p−BR (Tercieux, 2006) and p−stability. We show that although iterated p−BR
sets and p−stability are equivalent in finite games, p−stability is adapted to
game with continuous set of actions, while iterated p−stability is not. In eco-
nomic analysis of large games and markets the typical assumption is that agents
have continuous action sets: hence, the concepts, p−consensus and p−stability,
proposed here enable the analysis of the implications of partial consensus in
such settings.
Next, we examine the foundations of intertemporal trade via belief coordi-

nation in a two period economy. In contrast to Chatterji and Ghosal (2004), we
assume that individuals submit demand functions so that belief coordination in
current spot market prices is never a problem: instead the individuals need to
coordinate beliefs about future prices when they trade in current spot markets.
We show that when redistributions of revenue in second period markets change
or when redistributions of commodities in period 1 change second period spot
market prices and the there is lack of consensus over second period prices (so
that beliefs over second period prices are heterogeneous to a suffi cient degree),
then an asset pice bubble exists.
The notion of p−consensus and p−stability builds on the seminal work on

eductive stability (Guesnerie (1992), Evans and Guesnerie (1993), Guesnerie
(2005), Evans, Guesnerie and McCullogh (2019)). The analysis developed here
differs in that we propose a new solution concept that allows belief heterogene-
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ity and our measure of stability is continuous one. Related solution concepts
allowing for heterogeneous beliefs off the equilibrium path of play (e.g. the no-
tion of self-confirming equilibrium, Fudenberg and Levine (1993)) and in the
macro literature by Angeletos, Collard and Dellas (2018), Woodford (2013)):
in the second paper, belief heterogeneity is treated as part of the data of the
economy (in contrast, (iterated) belief coordination is central to our analysis)
while the third paper carries out an analysis similar to local eductive stability in
New Keynesian model. Although the formal definitions are very different, our
solution concept is motivated by concerns similar to the literature on sunspot
equilibria (Cass and Shell (1983), Farmer and Platonov (2019)).
The next section introduces the formal model within which we define our two

concepts, provides a number of basic results. Section 3 illustrates the workings
of the two concepts using a number of examples. Section 4 is devoted to finite
games. In section 5, we study partial consensus in a two period economy. The
last section concludes. The appendix contains proofs of most of our results and
the detailed working out of examples.

2 The concepts and basic properties

In this section, we begin by describing the underlying strategic framework. We
then define p−stability and state the conditions under which a Nash equilibrium
is p-stable.

2.1 The model

The underlying strategic framework is due to MasColell (1984). Let A be a non-
empty compact metric space of actions and∆ (A) be the compact and metrizable
set of Borel probability measures on A endowed with the weak convergence
topology which is metrizable using the Prohorov metric. For later reference, we
note that the Prohorov metric is defined by:

d∆(A) (m, τ∗a ) = inf {ε > 0 : m (M) ≤ τ∗a (Mε) + ε for all Borel subsets M of A} ,

where Mε = {y ∈ A/dA (x, y) ≤ ε for some x ∈M}.1 Let UA be the set of con-
tinuous utility functions u : A × ∆ (A) → R endowed with the supremum
norm, the metric, separable and complete space of player characteristics. A
game with a continuum of players is a Borel measure µ on UA. For any
probability measure τ on UA × A, let τu and τa denote the respective mar-
ginal distribution on UA and A respectively. Let T denote the set of proba-
bility measures on UA × A such that τu = µ, τ ∈ T : T denotes the set of
"strategy profiles", i.e., a distribution of actions for each u. For τ ∈ T , let
Bτ = {(u, a) : u (a, τa) ≥ u (A, τa)}. The best-response correspondence is a map

1See Dudley (1989) for this definition and other properties of the Prohorov metric not
explicitly mentioned in this paper.
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φ : T → T such that φ(τ) = {τ ′ ∈ T : τ ′(Bτ ) = 1}, i.e., φ is the set of "strat-
egy profiles" putting probability one on the fact that each player plays a best-
response to τ . A Nash equilibrium is a measure τ∗ ∈ T such that τ∗ ∈ φ(τ∗).
Existence result (Theorem 1 in MasColell (1984)). For a given µ,

there exists a Nash equilibrium distribution τ∗.
Remark: The above framework requires all agents who have the same utility

function must also choose the same actions and/or have the same the beliefs
over distributions. On the face of it, in an example where all agents have the
same utility functions, this would require agents to have "homogeneous" beliefs.
But, by re interpreting the framework so that utility functions are differ up to
an additive constant, we can use the above framework in setting where agents
with the same utility functions have heterogeneous beliefs.

2.2 p-consensus and p-stability: definition

For a fixed τ and p ∈ [0, 1], a p−belief is a probability distribution τp = pτ+(1−
p)τ ′ for any τ ′ ∈ T , i.e., a belief that assigns a probability p to the distribution
τ . Let Tτ,p ⊆ T denote the corresponding set.

We define a p−consensus distribution iteratively as follows. Let S0
τ,p = Tτ,p

and consider the sequence of sets Snτ,p (τ) =
[
φ(Sn−1

τ,p )
]
∩ Tτ,p for n ≥ 1. This

sequence is decreasing and therefore, it converges to a set S∞τ,p. Then, τ is a
p−consensus distribution if τ ∈ S∞τ,p.
For any p′ < p, p, p′ ∈ [0, 1], we have that Snτ,p ⊆ Snτ,p′ as Tτ,p ⊆ Tτ,p′ .

Therefore, S∞τ,p ⊆ S∞τ,p′ and if τ ∈ S∞τ,p then τ ∈ S∞τ,p′ . It follows only a rational-
izable distribution can be a p−consensus distribution and for a rationalizable
distribution, the set Iτ =

{
p ∈ [0, 1] : τ ∈ S∞τ,p

}
is either empty or [0, p] for some

p ∈ [0, 1].
Definition 1. When Iτ is non-empty, we say τ is a p−consensus distribution

for p = sup Iτ .
Note that a standard definition of rationalizability in this set-up would be

to require τ ∈ S∞τ,0 (note that this set doesn’t depend on the choice of τ). It
follows that Iτ is non-empty iff τ is rationalizable. In this sense, p−consensus
is a refinement of rationalizability and the interesting question is whether τ is
a p−consensus distribution for p 6= 0.
When p = 1, the set of 1−consensus distributions and Nash equilibrium

distributions must coincide.
We define a Nash equilibrium τ∗ to be p−stable if the equilibrium distribu-

tion is the only element surviving the iterated elimination of non best-responses
to a p′−belief for all p′ > p. This definition relies on a "standard" definition of
rationalizable outcomes in a game where the strategy set is restricted to Tτ∗,p:
a p−stable equilibrium is an equilibrium that is the only rationalizable outcome
in a game with the restricted strategy set Tτ∗,p.
For any p < p′, p, p′ ∈ [0, 1], note that S∞τ∗,p′ ⊆ S∞τ∗,p and if S

∞
τ∗,p = {τ∗}

then S∞τ∗,p′ = {τ∗}. In particular, the set Jτ∗ =
{
p ∈ [0, 1] : S∞τ∗,p = {τ∗}

}
is an

interval of the form [p, 1] for p ∈ [0, 1].
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Definition 2. ANash equilibrium τ∗ is p−stable if p = inf Jτ∗ =
{
p′ ∈ [0, 1] : S∞τ∗,p′ = {τ∗}

}
.

The interesting question is whether p < 1.
Remark:
1. We do not require that S∞τ∗,p = {τ∗} for a p−stable equilibrium. In

some classes of games (for example in the smooth one-dimensional case below),
S∞τ∗,p 6= {τ∗} at a p−stable equilibrium.
2. If τ∗ is 0−stable then τ∗ is the unique rationalizable outcome.
3. If τ∗ is p′−dominant then it follows that S1

τ∗,p′ = {τ∗}. Hence, S∞τ∗,p′ =
{τ∗} and therefore, τ∗ is p-stable where p ≤ p′.
4. The two definitions above bring added value in the analysis of strategic

outcomes only when there are multiple rationalizable distributions. In what
follows, this point is explored in greater detail.

2.3 Characterization of p−consensus and p−stability
We begin by providing an existence result for p−consensus distributions with
p 6= 0.
Proposition 1. Suppose the set S∞0 of rationalizable distributions has a

non-empty interior in T . Any distribution in the interior of S∞0 is p− consensus
distribution for some p 6= 0.
Proof of Proposition 1. Consider τ̂ ∈ Int.S∞0 and a small neighborhood

N ⊂ Int.S∞0 of τ̂ . For τ ∈ N , by upper hemi-continuity of φ, there exists
p close enough to zero and τ ′ ∈ S∞0 in a neighborhood N ′ of τ̂ such that
φ(pτ̂ + (1 − p)τ ′) = τ . Denote the corresponding set Bτ̂ ,τ,p and let Bτ̂ ,p =
∪τ∈S∞0 Bτ̂ ,τ,p. Note that Bτ̂ ,p ⊆ N ′. Let Tτ̂ ,p(B) = {pτ̂ + (1 − p)τ, τ ∈ B}.
Note that Tτ̂ ,p(Bτ̂ ,p) ⊆ Int.Tτ̂ ,p. Hence, for any τ in N , for each N small
enough, Tτ̂ ,p(Bτ̂ ,p) ⊆ Int.Tτ,p, so that Tτ̂ ,p(Bτ̂ ,p) = Tτ,p(Bτ,p); moreover, by
upper hemi-continuity of φ, Bτ,p ⊆ S∞0 and hence, N ⊆ S∞0 , as required.�

Next, we examine the conditions under which an equilibrium is p−stable.
To this end, define a best-response correspondence for each u ∈ UA to each
m ∈ ∆ (A) as B(u,m) = {a ∈ A : u (a,m) ≥ u (A,m)}: an action in B(u,m) is
a best-response for u ∈ UA to some m ∈ ∆ (A). For each m ∈ ∆ (A), consider
the set

ŨA(m) =

{
u ∈ UA : B(u,m) is not single-valued or

lim supm′→m
dA(B(u,m′),B(u,m))

d∆(A)(m′,m) <∞

}
,

where dA denotes a distance on A and d∆(A)(., .) denotes the Prohorov metric
on ∆ (A). Consider two Dirac measures δx and δy. Then, d∆ (A) (δx, δy) =

dA (x, y). Note that for each u ∈ ŨA(m), a small change in m induces an
infinitely large change in best-responses.

Consider a given τ∗. For every u, let

ku,τ = lim sup
m→τa

dA(B(u,m), B(u, τa))

d∆(A)(m, τa)
,
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and
Kτ = sup ess

u∈UA
ku,τ .

Kτ is the essential upper bound of ku,τ w.r.t. measure µ (that is: the set of u
such that ku,τ > Kτ has µ−measure 0).
Definition 3. The equilibrium τ∗ of a game µ is admissible if µ

(
ŨA(τ∗a )

)
=

0 and
Kτ < +∞.

As a preliminary step, the following lemma2 summarizes three key properties
of the Prohorov metric that will be useful in proving the result below.
Lemma 1. (i) Consider τ = pτ̂ + (1− p) τ ′. Then,

d∆(A) (τa, τ̂a) ≤ (1− p) d∆(A) (τ ′a, τ̂a) .

(ii) Consider a Dirac measure δx and a distribution τa ∈ ∆ (A). Consider S the
support of τa (the smallest closed set s.t. τa (S) = 1) and d = supy∈S dA (x, y)
(d is the radius of the smallest ball centered on x that contains S)3 . Then,

d∆(A) (δx, τa) ≤ d.

(iii) Consider τa ∈ ∆ (A) defined by τa =
∫
τλf (dλ) where f is a probability

distribution on a set of parameters λ. Consider another distribution ν ∈ ∆ (A).
We have

d∆(A) (τa, ν) ≤ sup ess
λ

d∆(A) (τλ, ν) .

Proof. See appendix.�
We are now in a position to state and prove the following result:
Proposition 2. For any admissible equilibrium, there is a p̂ < 1 such that

the equilibrium is p̂− stable.
Proof. See appendix.�
Heuristically, the idea underlying the proof is as follows. An equilibrium

τ∗ is p−stable if the best-response map, restricted to p−beliefs, generating the
sequence of sets Snτ∗,p is a contraction. For p close to one, when the equilibrium
τ∗ is admissible, we show that the best-response map, restricted to p−beliefs,
cannot vary much (i.e. in the smooth case, the derivative of the best-response
map, restricted to p−beliefs, is small). If, on the contrary, the equilibrium τ∗

isn’t admissible, even when restricted to p−beliefs, it can change dramatically
around the equilibrium implying that the preceding step of the argument doesn’t
hold.
We conclude our characterization by proving a result linking p−consensus

and p−stability.
Proposition 3. Consider a p−stable equilibrium τ∗.

2We state and prove this lemma for completeness as we are not aware of an explicit proof
of the three properties of the Prohorov metric contained in the lemma and these required for
the proof of Proposition 1 below.

3Notice that x may be in S or not.
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(i) Suppose Kτ is continuous in τ . Then, for any p̂ > p, there is a neigh-
borhood of τ∗ such that no τ belonging to the neighborhood is a p′−consensus
distribution for a value p′ ≥ p̂.
(ii) Suppose S∞τ∗,p has a non-empty interior in T and φ is a continuous

correspondence. Then, for any p̂ < p, there exists a τ ∈ S∞τ∗,p arbitrarily close
to τ∗ such that τ is a p′−consensus distribution for some p′ ≥ p̂.
Proof. (i) The proof relies on the proof of Proposition 2: A straightforward

necessary condition for p−stability is Kτ∗ (1− p) ≤ 1; hence, Kτ∗ (1− p̂) <
1; by the smoothness assumption it follows that for τ arbitrarily close to τ∗,
Kτ (1− p̂) < 1; so S∞τ,p̂ is either empty of has a radius 0; and τ 6∈ S∞τ,p̂ given
that τ is not a Nash distribution. Since p′ ≥ p̂ implies S∞τ,p′ ⊂ S∞τ,p̂, the result
follows.
(ii) Consider an open neighborhood N of τ∗ in S∞τ∗,p. By continuity of φ

and definition of S∞τ∗,p, we have that S
∞
τ∗,p = φ

(
S∞τ∗,p

)
∩ Tτ∗,p. This means

that for every τ ∈ N , there exists a non empty set Bτ∗,p (τ) of distributions
τ ′ ∈ S∞τ∗,p such that φ(pτ∗ + (1− p′)τ ′) = τ . Let Bτ∗,p = ∪τ∈NBτ∗,p (τ). Note
that Bτ∗,p ⊂ S∞τ∗,p and τ

∗ ∈ Bτ∗,p (since τ∗ ∈ Bτ∗,p (τ∗)). Let Tτ∗,p(N) =
{pτ∗ + (1− p)τ ′, τ ′ ∈ N}. Note that Tτ∗,p(Bτ∗,p) ⊆ Int.Tτ∗,p; hence, for any τ
in N (provided N is chosen small enough), Tτ∗,p(Bτ∗,p) ⊆ Int.Tτ,p. Therefore,
Tτ∗,p(Bτ∗,p) = Tτ,p(Bτ,p) so that, by continuity of φ, Bτ,p ⊆ S∞τ∗,p so that
N ⊆ S∞τ,p, as required.�
An informal interpretation of Point (i) is that under a mild continuity restric-

tion (which would typically be satisfied, for example, in smooth settings (see
Section 3.2 below)), a p−stable equilibrium is a locally isolated p−consensus
distribution, i.e. there is no p′−consensus distribution in its vicinity with a
degree of consensus p′ larger than p. Informally again, Point (ii) says the con-
verse statement also holds provided the best-response map φ is continuous: in
the vicinity of a p−stable equilibrium, there is always at least one p′−consensus
distribution with a degree of consensus p′ smaller than p and arbitrarily close
to p (provided that the interior of S∞τ∗,p is not empty).

However, note that these informal interpretations are offered to aid under-
standing of Proposition 3; the analogous formal statements cannot, in general,
be proved. Indeed, the (very simple) game developed in Section 3.1 is a coun-
terexample: there is a p−stable equilibrium such that every distribution τ in its
neighborhood is a pτ−consensus distribution for some value pτ > p (pτ depends
on τ); there is another p−stable equilibrium with no pτ−consensus distribution
in its neighborhood satisfying pτ ≥ p. The point is that pτ tends to p when τ
tends to the equilibrium.
Lastly, the requirement that S∞τ∗,p has a non-empty interior in T is a re-

striction that is key to Proposition 3 and may not always be satisfied when the
action set has at least two dimensions. To see this point, consider the simple
case of a game where an action is a vector in <K for some K ≥ 2 and the utility
depends only on the individual action and the average action (i.e. only the first
moment of the distribution of actions matter for the strategic interaction). The
notation S∞τ,p and τ are easily redefined as sets and elements in <K . In such a
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game, it may be the case that S∞τ∗,p has a dimension strictly less than K (hence,
an empty interior). For τ close to τ∗, the set S∞τ,p may have a dimension strictly
less than K as well (it may be close to S∞τ∗,p by a continuity argument). Because
of the low dimension of S∞τ,p, it is fully possible that τ is close to τ

∗, S∞τ,p is close
to S∞τ∗,p and yet τ 6∈ S∞τ,p. Consequently, there may be no τ in the vicinity of τ∗
that are p−consensus.

3 Illustrative examples

In this section, we demonstrate how the two concepts developed here apply in
a number of illustrative examples (one dimensional linear and smooth settings)
and examine the link between the two concepts and a number of other related
concepts studied in finite games.

3.1 Games with linear one-dimensional best responses

As p−consensus is a refinement of rationalizability, we might expect a link be-
tween the set of p−consensus distributions and subjective correlated equilibria.
To obtain a clear link with simple correlated equilibria, we work in a simpler
framework where payoffs depend on own action and the average action.
A game with a continuum of players i ∈ [0, 1], actions a ∈ [−1, 1] and every

player has the same BR map as follows:

ai = βā for ā ∈ [−1/ |β| , 1/ |β|] ,

ai = − β

|β| for ā < −1/ |β| ,

ai =
β

|β| for ā > 1/ |β| ,

where ā denotes the average action and β is a real parameter (β > 0 is the case
with strategic complements and β < 0 the case with strategic substitutes). β

|β|
is either −1 or 1 depending on the sign of β.
In what follows, with some abuse of notation and ease of exposition, we use

a to denote the Dirac measure on a for any action a ∈ [−1, 1] and we call an
average action ā a rationalizable or a p−consensus outcome when it corresponds
to a rationalizable or a p−consensus distribution of individual actions.

p−stability. When |β| < 1, the unique rationalizable outcome is the
(unique) Nash equilibrium 0 (the equilibrium is 0−stable). When |β| > 1,
the result differs according to the sign of β.
When β > 1, there are three Nash equilibria: −1, 0, 1. Then, by compu-

tation, it follows that (i) the equilibrium 0 is p−stable for p = 1 − 1
β , (ii) the

equilibria −1 and 1 are p−stable for p = 1
2

(
1− 1

β

)
.

When β < −1, there is still exactly one Nash equilibrium: 0. It is p−stable
for p = 1− 1

|β| .
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Note that for the equilibrium 0, the upper bound Kτ∗ introduced in Defini-
tion 3 (to check admissibility of an equilibrium) is |β|. For the corner equilibria
−1 and 1, this upper bound is 0. Hence, every equilibrium in this game is
admissible and it is p−stable for some p < 1 (by Proposition 2).

p−consensus. We compute the p−consensus outcomes that differ from
Nash equilibria. If |β| < 1, no outcome different from a Nash equilibrium
is a p−consensus outcome, and we restrict attention to the case |β| > 1 in
what follows. The results in the cases with strategic complements and strategic
substitutes are slightly different.
Proposition 4a (strategic complements). For β > 1, every a that differ

from any Nash equilibrium (a /∈ {−1, 0, 1}) is a p−consensus outcome for

p =
1

1 + |ā|

(
1− 1

β

)
∈
[

1

2

(
1− 1

β

)
, 1− 1

β

]
.

Proof. See appendix.�
Observe that every outcome is a p−consensus outcome for a value p between

the degree 1
2

(
1− 1

β

)
of p−stability of the corner equilibria ±1 and the degree(

1− 1
β

)
of p−stability of the interior equilibrium 0. This result illustrates

Proposition 3.
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p

p−consensus in the case β > 1 (example with β = 3)

The logic of the proof is analogous to the well-known argument characterizing
the rationalizable outcomes (as the outcomes between the lowest and the highest
fixed points of the best-response map): The p−BR map is increasing and the
bounds of the set S∞ā,p are the lowest and the highest fixed points of the p−BR
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map; since the p−BR map has either one fixed point or 3 fixed points (including
−1 and 1), the set S∞ā,p is either reduced to a single point (either −1 or 1 or

βpā
1−β(1−p) , and ā /∈ S

∞
ā,p) or equal to [−1, 1] (and ā ∈ S∞ā,p).

Proposition 4b (strategic substitutes). For β < −1, every a that differ
from the Nash equilibrium (a 6= 0) is a p−consensus outcome for

p = min

(
1

1 + |ā|

(
1 +
|ā|
β

)
, 1 +

1

β

)
∈
[

1

2

(
1 +

1

β

)
, 1 +

1

β

]
.

Proof. See appendix.�
Observe that every outcome is a p−consensus outcome for a value p lower

than the degree
(

1− 1
β

)
of p−stability of the Nash equilibrium.
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0.4

0.5

0.6

0.7

0.8

0.9

1.0

a

p

p−consensus in the case β < −1 (example with β = −3)

Again, the logic of the proof is analogous to the argument characterizing the
rationalizable outcomes (as the outcomes between the 2 points of the largest
2-cycle, i.e., the lowest and the highest fixed points of the 2nd iterate of the
best-response map): The second iterate of the p − BR map is increasing and
the bounds of the set S∞ā,p are the lowest and the highest fixed points of this
second iterate; since the second iterate map has either one fixed point or 3 fixed
points, the set S∞ā,p is either reduced to a single point (and ā /∈ S∞ā,p) or equal to
an interval. The difference with the case with strategic complements is that the
bounds of this interval (the fixed points of the 2nd iterate) are not necessarily
−1 and 1. Then, the condition ā ∈ S∞ā,p is not the same as in the case with
strategic complements.
Correlated Equilibrium. Consider a p−consensus outcome ā. Clearly,

for any p′ > p, there cannot exist a correlated equilibrium such that (i) ā is

11



one of the possible outcomes and (ii) at every state, conditionally to his/her
information, everyone assigns a probability at least p′ to ā.4 This follows from
the fact that every outcome of this correlated equilibrium should belong to S∞ā,p′ ,
which is impossible since ā 6∈ S∞ā,p′ . We show the converse statement: we exhibit
a simple correlated equilibrium (2 outcomes only) such that (i) ā is one of the
possible outcomes and (ii) at every state, everyone assigns a probability at least
p to ā.
The case β > 0 is the simple case, while β < 0 is less convenient to solve.
Consider first β > 0 and an outcome ā > 0. ā is a p−consensus for the

value of p defined in Proposition 4a. We define the correlated equilibrium as
follows. The 2 outcomes are ā (with probability π, defined below) and −1(with
probability 1−π). Individual belief is either the "informed" belief (probability 1
on ā) or the "uninformed" belief "ā with probability p and −1 with probability
1 − p". When the outcome is −1, every agent holds the "uninformed" belief.
When the outcome is ā, a proportion α of agents (defined below) holds the
"informed" belief and the remaining proportion holds the "uninformed" belief.
We now check that this distribution of actions is a correlated equilibrium.

The optimal action of an "uninformed" is −1 since (given the value of p)

−1 ≥ β (pā+ (1− p) (−1)) .

Hence, when the outcome is −1, the optimal action of every agent is −1, and
the distribution of belief is consistent with the outcome.
We distinguish between 2 subcases.
In the subcase ā ≤ 1/β, let

π =
1

ā+ 1
and α =

ā+ 1

βā+ 1
∈ (0, 1) .

The optimal action of an "informed" is βā. Hence, when the outcome is ā,
the optimal action of every agent is either −1 or βā, the resulting average action
is

αβā+ (1− α) (−1) = ā,

and the distribution of belief is consistent with the outcome. Lastly, the "unin-
formed" belief is consistent with the prior distribution since Bayes rule writes
p = π(1−α)

π(1−α)+1−π .
In the subcase 1 > ā ≥ 1/β, let

π =

1
1+ā

(
1− 1

β

)
1
2

(
1− 1

β

)
+ 1−ā

2

∈ (0, 1) and α =
ā+ 1

2
∈ (0, 1) .

The optimal action of an "informed" is 1. Hence, when the outcome is ā, the
optimal action of every agent is either −1 or 1, the resulting average action is

α+ (1− α) (−1) = ā,

4Even a weak form of correlated equilibrium, like subjective correlated equilibrium cannot
satisfy these properties.
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and the distribution of belief is consistent with the outcome. Lastly, the "unin-
formed" belief is consistent with the prior distribution since Bayes rule writes
p = π(1−α)

π(1−α)+1−π .
The correlated equilibrium with ā < 0 is defined analogously (with +1 for

the second outcome).
We now consider β < 0 and an outcome ā > 0. ā is a p−consensus for the

value of p defined in Proposition 4b. We distinguish between the 2 subcases
ā ≤ −1/β and ā > −1/β.
In the first subcase ā ≤ −1/β, for any small enough ε > 0, we define the

correlated equilibrium as follows. The 2 outcomes are ā and some other outcome
ā′. There are 2 types of agents: Either an agent holds the "uninformed" belief
(ā with probability p− ε and ā′ with probability 1− p+ ε) and plays an action
âU (defined below), or an agent holds the "almost informed" belief (ā with
probability q > p and ā′ with probability 1−q) and plays the action âI (defined
below). When the outcome is ā, a proportion α of agents (defined below)
holds the "uninformed" belief and the remaining proportion holds the "almost
informed" belief. When the outcome is ā′, the proportion of agents holding the
"uninformed" belief is α′ (defined below).

We now write the conditions ensuring that this distribution of actions and
beliefs is a correlated equilibrium. The optimal action âU of an "uninformed"
satisfies

âU = β ((p− ε) ā+ (1− p+ ε) ā′) ∈ (−1, 1) ,

and the optimal action âI of an "almost informed" satisfies

âI = β (qā+ (1− q) ā′) ∈ (−1, 1) .

When the outcome is ā, given the distribution of beliefs in the population, the
equilibrium condition is

ā = αâI + (1− α) âU ,

and, when the outcome is ā′, the equilibrium condition is

ā′ = α′âI + (1− α′) âU .
An equilibrium is obtained for (α, α′, q, ā′, âU , âI) satisfying

ā′ ∈
(
βā,

(1− ε)β
1− βε ā

)
⊆ (−1, 0) ,

q ∈
((

1− 1

β

)
ā′

ā′ − ā , 1
)

and

âU = β ((p− ε) ā+ (1− p+ ε) ā′) ∈ (ā, 1) ,

âI = β (qā+ (1− q) ā′) ∈ (−1, ā′) ,

α =
ā− âU
âI − âU

∈ (0, 1) ,

α′ =
ā′ − âU
âI − âU

∈ (0, 1) .
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(note that there exist parameters values consistent with these conditions since

−1 ≤ βā < (1−ε)β
1−βε ā < 0 and

(
1− 1

β

)
ā′

ā′−ā < 1).

Proof. Given that p = 1 + 1
β , β < −1 and −1/β ≥ ā > 0, computations

show âU < 1 for ε small enough (note that βā+ ā− ā′ < −ā′ < 1) and âU > ā

follows from ā′ < (1−ε)β
1−βε ā. Hence, âU is the optimal action for an "uninformed"

agent. Computations show âI > −1 (since qā + (1− q) ā′ < ā ≤ − 1
β ) and

âI < ā′ follows from the lower bound on q. Hence, âI is the optimal action for
an "informed" agent. Lastly, α and α′ satisfy the equilibrium conditions. The
conditions âU ∈ (ā, 1) and âI ∈ (−1, ā′) imply α, α′ ∈ (0, 1). �
A heterogenous prior distribution can be defined.

In the second subcase ā > −1/β, p = 1
1+ā

(
1 + ā

β

)
, for any small enough

ε > 0, we define the correlated equilibrium as follows. The 2 outcomes are ā and
some other outcome ā′. There are 2 types of agents: Either an agent holds the
"uninformed" belief (ā with probability p− ε and ā′ with probability 1− p+ ε)
and plays an action âU (defined below), or an agent holds the "almost informed"
belief (ā with probability q > p and ā′ with probability 1 − q) and plays the
action −1. When the outcome is ā, a proportion α of agents (defined below)
holds the "uninformed" belief and the remaining proportion holds the "almost
informed" belief. When the outcome is ā′, the proportion of agents holding the
"uninformed" belief is α′ (defined below).

We now write the conditions ensuring that this distribution of actions and
beliefs is a correlated equilibrium. The optimal action âU of an "uninformed"
satisfies

âU = β ((p− ε) ā+ (1− p+ ε) ā′) ∈ (−1, 1) ,

and the optimal action of an "almost informed" is −1 if

−1 ≥ β (qā+ (1− q) ā′) .

When the outcome is ā, given the distribution of beliefs in the population, the
equilibrium condition is

ā = α (−1) + (1− α) âU ,

and, when the outcome is ā′, the equilibrium condition is

ā′ = α′ (−1) + (1− α′) âU .

An equilibrium is obtained for (α, α′, q, ā′, âU ) satisfying

ā′ ∈
(
−1,

1− β (p− ε)
β (1− p+ ε)

ā

)
⊆ (−1, 0) ,

q ∈
(
−

1
β + ā′

ā− ā′ , 1
)
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and

âU = β ((p− ε) ā+ (1− p+ ε) ā′) ∈ (ā, 1)

α =
âU − ā
âU + 1

∈ (0, 1) ,

α′ =
âU − ā′
âU + 1

∈ (0, 1) .

(note that there exist parameters values consistent with these conditions since

−1 < 1−β(p−ε)ā
β(1−p+ε) < 0 and −

1
β+ā′

ā−ā′ < 1).

Proof. Given that p = 1
1+ā

(
1 + ā

β

)
, β < −1 and ā > −1/β, computa-

tions show âU < 1 for ε small enough (note that ā (β − 1) ā′ < ā (1− β) <

(1 + ā) − (β + ā) ā) and âU > ā follows from ā′ < 1−β(p−ε)
β(1−p+ε) ā. Hence, âU is the

optimal action for an "uninformed" agent. The condition on q implies that the
optimal action of the "informed" is −1. Lastly, α and α′ satisfy the equilibrium
conditions. The conditions âU > ā and ā′ < 0 imply α, α′ ∈ (0, 1). �
The last case (β < 0 and ā ≤ 0) is analogous to the above case β < 0 and

ā ≥ 0, using +1 instead of −1 as a 2nd outcome when needed (to check this
point, one just has to multiply every equilibrium condition by −1).

3.2 p-stability in the smooth one-dimensional case

To get an intuitive feel for the notion of stability being studied in this paper,
we extend the piecewise linear setting of the previous subsection to a non linear
setting.
Consider a simple, smooth model of strategic interaction where there is a

continuum of agents each whom chooses an action a ∈ A (a compact set in R)
to maximize u (a, ā) (C2, with u′′aa < 0) where ā is the average action. Without
loss of generality, A = [−1, 1]. Suppose, there is a (not necessarily) unique Nash
that is interior and is normalized to 0 so that u′a (0, 0) = 0. Denote BR (ā) the
(unique) best response to ā (characterized by u′a (BR (ā) , ā) = 0). We assume
that the BR map is not vertical at equilibrium (BR′ (0) < +∞).
We are now in a position to state the following result:
Proposition 5. There is p̂ < 1 such that the equilibrium is p̂-stable. If

supā∈[−1,1] |BR′ (ā)| < 1, then p̂ = 0. Otherwise, we have:

1− 1

|BR′ (0)| ≤ p̂ ≤ 1− 1

1 + (M − 1)m
, (1)

where

m = sup
a,ā∈[−1,1]

u′′aā (a, ā)

u′′aā (a, 0)
≥ 1,

M = sup
a,ā∈[−1,1]

∣∣∣∣u′′aā (a, ā)

u′′aa (a, ā)

∣∣∣∣ ≥ 1.
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For any p < p̂, there exists a neighborhood of 0 such that every action in this
neighborhood is the average action of a p−consensus distribution. For any p > p̂,
there exists a neighborhood of 0 such that no action in this neighborhood is the
average action of a p−consensus distribution.
Proof. See appendix.�
Notice that by implicit functions theorem, |BR′ (ā)| ≤ M for any ā. To

relate p̂ with exogenous variables, rewrite the left inequality (1) using BR′ (0) =
−u′′aā (0, 0) /u′′aa (0, 0) (by implicit functions theorem, again). The linear case
developed in the previous subsection corresponds to the case with a quadratic
utility: m = 1, BR′ is constant (equal to M) and p̂ = 1− 1/M . As in the linear
case, our stability concept gives a motivation for looking at the slope of the best
response map as a stability index.
A special case of the model studied so far is the Muth model with a large

number of farmers who have to commit to an output level before selling their
products in a competitive market in Guesnerie (1992). Farmer i maximizes
πq − q2

2Ci (π is the output price). Aggregate supply in this market is given by
S(π) = Cπ where C =

∫
Cidi. Aggregate demand in this market is:

D(π) =

{
A−Bπ if π ≤ A

B

0, otherwise

Let π∗ be the competitive equilibrium price. Guesnerie (1992) shows that when
the slope of the best response map B/C < 1, π∗ is the unique rationalizable
outcome.
Applying Proposition 5 immediately yields that the equilibrium in Gues-

nerie’s model is p̂−stable for p̂ = max {1− C/B, 0}. Thus, p−stability describes
more precisely the degree of stability of the equilibrium when it is not the unique
rationalizable outcome.
The remainder of the section is devoted to the proof of Proposition 5. The

proof shows that p−stability relies on the best response map BR0,p (ā) (best
response to beliefs "probability p on 0, probability (1− p) on ā"). When p is
close to one, the slope BR′0,p (ā) is small enough (whatever ā is). The map
BR0,p is then globally contracting and p−stability obtains. Intuitively, when p
is close to one, the best response is not very sensible to the value ā and the best
response cannot deviate very much from the equilibrium value 0. This is the
condition needed to get p−stability.

3.3 Basin of attraction and p-stability

In this subsection, we show, in an example with three equilibria, that the
p−stability of a corner equilibrium is linked to the slope of the aggregate best
response at that equilibrium but not to the size of the basin of attraction.
We consider a game with a continuum of individuals of mass one who must

choose an action a ∈ [−1, 1] to maximize the payoffs

−a
2

2
+ aP (a)
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where a denotes the average action and P (.) is a third degree polynomial speci-
fied below. At an interior best response, the first order condition is P (a)−a = 0.
Assume that P (a) = −A (a− 1) (a+ 1) (a− α), where A > 0 and α ∈

(−1, 1). Then, there are three equilibria (fix points): a = 1, a = −1, a = α. By
computation, we can check that

∂P (a)

∂a

∣∣∣∣
a=1

= 1−2A(1−α),
∂P (a)

∂a

∣∣∣∣
a=−1

= 1−2A(1+α),
∂P (a)

∂a

∣∣∣∣
a=α

= 1+A(1−α2).

Note that ∂P (a)
∂a

∣∣∣
a=α

> 1 while ∂P (a)
∂a

∣∣∣
a=1

and ∂P (a)
∂a

∣∣∣
a=−1

are both less than

one. To ensure that we are in the case of strategic complements we restrict the

parameters so that both ∂P (a)
∂a

∣∣∣
a=1

> 0 and ∂P (a)
∂a

∣∣∣
a=−1

> 0. Therefore, a = 1

(respectively, a = −1) is stable in the best-response dynamics on its basin of
attraction (α, 1] (respectively, [−1, α)). Furthermore, it follows that the whole
action set is rationalizable so, in particular, none of the three equilibria is 0-
stable.
Next, we show that by choosing different value of A we can choose different

values of α consistent with the p−stability of a = 1. By computation, the
p−best response map is

pP (a) + (1− p)P (a′) = pP (a)−A [+(1− p) (a′ − 1) (a′ + 1) (a′ − α)] + (1− p)a′

Observe that p−stability requires the above best-response map to be con-
vergent and we need a unique fix point of the preceding map. So we look for
value of p for which the preceding p−best response has exactly one root. So the
requiring p−stability of either one of the two equilibria for all p > p requires us
to calculate the value of p for which the preceding p−best response has exactly
two roots one of which is the equilibrium and the other one is the double root.
So this implies

pP (a) + (1− p)P (a′) = −A(1− p)(a′ − a)(a′ − δ)2

where δ is the unknown double root.
Consider the p−stability of x = 1. Identifying the coeffi cients (the coeffi -

cients of degree 3 are identical)

(1− p)αA = (1− p)A (1 + 2δ)

(1− p) (1 +A) = 1− (1− p)A (2 + δ) δ

p− (1− p)αA = (1− p)Aδ2

The first one requires δ = α−1
2 while the second one requires

(1− p)A (1 + δ)
2

= p

which is δ =
√

p
(1−p)A − 1 (the second one follows from the others). Hence, p is
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such that

α− 1

2
=

√
p

(1− p)A − 1

A (α+ 1)
2

4
=

p

(1− p)

Observe that we can rewrite the preceding expression as(
1− ∂P (a)

∂a

∣∣∣
a=1

)
(α+ 1)

2

8(1− α)
=

p

(1− p)

It follows that by choosing different value of A we can choose different values
of α consistent with the p−stability of a = 1.
Therefore, there is no link between p−stability of a = 1 and the size of its

basin of attraction.

4 p−consensus and p−stability in finite games
In this subsection, we relate the two notions of p−consensus and p−stability to
a number of related concepts developed in games with a finite number of players
and (pure) actions.
It is evident that an equilibrium strategy profile with a positive measure of

players with more than 1 best response to it cannot be p−stable. Consistent
with common knowledge of the equilibrium outcome, a player can choose a
strategy different from the equilibrium if the player expects other players’ to
do so: the belief that the equilibrium outcome is common knowledge does not
imply that a player chooses the equilibrium strategy as a best response to the
equilibrium outcome. Hence, in a finite game, no mixed strategy equilibrium or a
pure strategy equilibrium in weakly dominated strategies can be p−stable. The
same point applies to games with a a finite number of players but a continuum of
actions where there are several best-responses to an equilibrium outcome, as in
a second-price auction where truth-telling (an equilibrium in weakly dominated
strategies) isn’t p−stable. In many mechanisms (tournaments, voting games)
used to implement socially optimal outcomes as a weakly dominant strategy,
whether a player is a winner/loser doesn’t depend on the action of the player.,
In such cases, equilibrium outcomes are "structurally" supported by several best
responses: as the equilibrium actions profile implies a profile of winner/losers,
which defines payoffs to any individual player, a player’s payoffas a winner/loser
does not depend on profile of winner/losers over other players.
Next, we point out that the approximate common of beliefs (and the

corresponding concept of belief potential) is quite different from the common
knowledge of p−beliefs (which is needed for the definition of p−consensus and
p−stability) because approximate common knowledge of a Nash equilibrium
profile of actions is consistent with the fact that the Nash equilibrium profile of
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actions is not p−believed anywhere (while this is required for the definition of
p−consensus and p−stability). The following example illustrates the preceding
point:
Example. There are two players and each player has three actions in the

following symmetric game (call the actions: Up(U), Middle(M), Bottom(B)):
U M B

U 1, 1 1, 0 0,−1
M 0, 1 −1,−1 1, 0
B −1, 0 0, 1 1, 1


We show: (a) (U,U) is a 1

3−stable Nash equilibrium, (b) the existence of a
correlated equilibrium with belief potential (see Morris, Rob and Shin (1995)
for a formal definition) of 1

3 and (U,U) is played with probability strictly greater
than 1

3 but other actions are played as well. Ex-ante, it is common knowledge
that (U,U) is played with probability strictly greater than 1

3 , but the interim
information provided on the other player’s action is such that (U,U) is not
necessarily played (at the interim stage, it is not always true that (U,U) is
1
3−believed).for p = 1

3−stable.
By computation, observe that (U,U) is a p−stable Nash equilibrium for

p = 1/3−stable: S
1
3
0 = {(U,U), (M,M), (B,B)}, S

1
3
1 = {(U,U), (M,M)},

S
1
3
2 = {(U,U)}. For B to be a best response and not to be in Sp1 , we need
that for each player B is a best response to beliefs putting some probability

on (B, b).For M to be in S
1
3
1 and not S

1
3
2 , it is required that M is a best re-

sponse to beliefs putting some probability on B (so that U cannot be a best
response to B) while U strictly dominatesM for beliefs putting probability 1 on
{U,M}. Hence, 1/3-stability obtains as soon as B is not a best-response to any
1/3−beliefs on U (which is guaranteed by the fact that B is not a best response
to U). Next, we construct a correlated equilibrium with belief potential 1/3.
We want a correlated equilibrium with belief potential p = 1

3 where a player
plays different actions (not only U). At the equilibrium, the set of the actions
played at a correlated equilibrium is common knowledge; hence this set cannot
be restricted to 2 actions (otherwise, given the belief potential, U is the unique
best response at every state: a contradiction). Hence, the set of actions played
by each player at the correlated equilibrium is {U,M,B}. The construction is
as follows: B is played when {M,B} is expected (restrict attention to informa-
tion sets containing 2 actions for simplicity - hence, no other set is possible to
justify B because of 1

3−stability), M is played when another set of 2 actions is
expected (which must necessarily be {U,B}) and U is played when {U,M} is
expected. Consider the set Ω of "sunspot states" and the information partition
of each player. At a correlated equilibrium, for every player, at an element in
this partition where U (respectively M , respectively B) is played, we want that
the other player plays the following actions with positive probability (and only
these actions): U,M (respectively U,B, respectively M,B). The simplest set Ω
consistent with this contains 6 states, information partition are

19



• For player Row: {1, 2} , {4, 5} , {3, 6} and the respective equilibrium ac-
tions must be U,M,B

• For player Col: {1, 4} , {2, 3} , {5, 6} and the respective equilibrium actions
must be U,M,B

• In every element of the partition, the beliefs are of the form (1/2, 1/2)
so that p = 1/3 < 1/2; hence with a uniform common prior the belief
potential is 1

2 .

• One can also define the prior probability as follows: π on state 1, 1−π
5

on every other state. The correlated equilibrium described above is still
a correlated equilibrium with this prior (state 1 is the state where (U,U)
is played). If π = 2/3, then the belief potential is 1/3. We therefore have
a correlated equilibrium with belief potential 1

3 and (U,U) is played with
probability strictly greater than 1

3 but other actions are played as well.
Ex-ante, it is common knowledge that (U,U) is played with probability
strictly greater than 1

3 , but the interim information provided on the other
player’s action is such that (U,U) is not necessarily played (at the interim
stage, it is not always true that (U,U) is 1/3−believed).�

Finally, we examine the link between p−BR, iterated p−BR (Tercieux, 2006)
and p−stability. We show that although iterated p−BR sets and p−stability are
equivalent in finite games, p−stability is adapted to game with continuous set
of actions, while iterated p−stability is not.
We begin with a short summary of the key notation in Tercieux (2006)

relevant for our purposes. Consider a game G : 2 players, set of actions Ai
compact in RL; a game G [S] : game G with set of actions restricted to S;
Πp (S−i) p-belief on S−i, Λi (S−i, p) best response of player i to p-belief on S−i,
Λ (S, p) product of BR sets; p-BR set : S such that Λ (S, p) ⊂ S (if everyone
pbelieves in S, then the outcome is in S); p-MBR set : p-BR set with no proper
subset being a p-BR set; Iterated p-BR set: there exists a decreasing sequence
S0, ...Sn such that S0 = A and Sl+1 is a p-BR set in G

[
Sl
]
and Sn = S.

Tercieux shows that p-BR sets are iterated p-BR sets (with S0 = A and S1 = S).
The converse is not necessarily true. Some remarks: (1) A strategy profile is a
1-MBR set iff it is a strict Nash, minimal curb set (Basu and Weibull (1991).
In a 2x2 game, risk dominance = 1/2-MBR set. An action profile is pdominant
equilibrium iff it is a p-MBR set. (2) Theorem 1 in Tercieux (2006) shows
the existence of p−BR sets. (3) Although Tercieux doesn’t address this point
directly, how do players coordinate on a p-BR set? If it is common knowledge
that everyone pbelieves in a p-BR set S and Common knowledge of rationality,
then everyone 1believes in S. Hence, a p-BR set is a self-fulfilling set (= a
1-BR set) where the self-fulfilling property is robust to p < 1 (some strategic
uncertainty). (4) Recall that p-dominance is particularly interesting for p = 1/2.
If an equilibrium is pdominant, then there is no (1− p)-BR set not containing
this equilibrium. Furthermore, if there is a p-BR set S, then there is no (1− p)-
BR set disjoint from S
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Result 1. p−MBR implies p−stability; the converse is not true.
Proof. Common knowledge of rationality and p-belief on a Nash equilibrium

τ∗ implies common knowledge that the outcome is in the p−MBR including τ∗.
Furthermore, "{τ∗} is a p−MBR" implies p−stability ("{τ∗} is a p−MBR"
means p−dominance, that is: p−stability in 1 step). However, the converse
implication is not true. Example 2.5 in Tercieux (2006) contains a p−stable
equilibrium that is not a p-MBR set. This is intuitive: p-BR is only one step of
elimination of non best-response, while p−stab is an iterative process).�

Result 2. In a finite game, for a strict Nash τ∗, p − stability of τ∗ is
equivalent to the statement "{τ∗} is an iterated p−BR set".
Remark about the proof. The proof that {τ∗} is an iterated p − BR

set is straightforward. To prove the converse implication, we need an auxiliary
result showing that, whenever τ∗ is an iterated p−BR set, it can be associated
with a "canonical" sequence of sets.
Proof. (i) Consider a strict Nash τ∗ that is p−stable. We have SNp = {τ∗}

for some N (denote N the smallest integer with this property). We show that
{τ∗} is an iterated p − BR set. By definition, τ∗ is a p−MBR in SN−1

p (to be
rigorous, one needs to distinguish between the Snp of the paper that correspond
to mixed strategy sets and the Snp used here that are implicitly pure strategy
sets - we don’t do this here, this should not be a problem as it seems obvious
that the Snp in mixed strategy is the set of all the mixed strategy based on the
pure strategy in Snp ). SN−1

p is a p−BR in SN−2
p (as τ∗ ∈ SN−1

p ). We now
show that it is a p−MBR. Assume there is a p−MBR S′′ in SN−2

p including τ∗

and included in SN−1
p . Observe that (1) beliefs p on τ∗ and (1− p) on SN−2

p

implies action in SN−1
p , (2) beliefs p on S′′ and (1− p) on SN−2

p implies action
in S′′, (3) then SN−1

p ⊂ S′′, then SN−1
p = S′′. We have shown that SN−1

p is the
p −MBR in SN−2

p including τ∗. We iterate the argument: SN−2
p is a p − BR

set in SN−3.We show that it is a p−MBR. Assume there is a p−MBR S′′ in
SN−3
p including τ∗ and included in SN−2

p . Observe that (1) beliefs p on τ∗ and
(1− p) on SN−3

p implies action in SN−2
p , (2) beliefs p on S′′ and (1− p) on

SN−3
p implies action in S′′, (3) then SN−2

p ⊂ S′′, then SN−2
p = S′′. We have

shown that SN−2
p is the p−MBR in SN−3

p including τ∗.Iterating the argument
shows that {τ∗} is an iterated p−BR set (associated with Snp ). This shows the
direct implication.
(ii) Define the sequence MBRn as follows: MBR0 = S, and for every n,

MBRn+1 is the p −MBR including τ∗ in the game with a restricted strategy
set MBRn. Notice that the above proof of the direct implication shows that,
whenever τ∗ is p − stable, the sequence Snp is the sequence MBRn. Assume
that {τ∗} is an iterated p − BR set associated with a sequence BRn (denote
{τ∗} = BRN ). We compare BRn to MBRn. By definition, MBR1 ⊂ BR1.
Observe that (a) beliefs p on MBR2 and (1− p) on MBR1 implies action in
MBR2, (b) beliefs p on BR2 and (1− p) on BR1 implies action in BR2, (c) As
MBR1 ⊂ BR1, BR2 is a p−BR set inMBR1. Hence,MBR2 ⊂ BR2 (iterating
the argument shows that MBRn ⊂ BRn and MBRN = {τ∗}). We have shown
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that {τ∗} is an iterated p−BR set associated with a sequenceMBRn. We now
show that τ∗ is p− stable. We compare Snp and MBRn. So, (a) beliefs p on τ∗

and (1− p) on S implies action in S1
p , (b) beliefs p on MBR1 and (1− p) on

S implies action in MBR1, (c) then S1
p ⊂ MBR1. We iterate the argument.

Assume that Snp ⊂MBRn. Then: (a) beliefs p on τ∗ and (1− p) on Snp implies
action in Sn+1

p , (b) beliefs p on MBRn+1 and (1− p) on MBRn implies action
in MBRn+1, (c) and Sn+1

p ⊂ MBRn+1. This shows that SNp = {τ∗}, τ∗ is
p− stable. �

Result 3. Iterated p − BR sets are not adpated to games with
continuous action sets.
We demonstrate this via an example. Consider a one-dimensional example

with a continuum [0, 1] of players, the action set is [−1, 1], the interior equilib-
rium is 0 and the BR map is ai = φE (ā) where ā is the average action. We
know that the equilibrium is p−stable for φ (1− p) < 1.
Remark. There is sometimes corner equilibrium (with equilibrium action

being −1 or 1): this equilibrium isn’t considered here.
Claim 1. An interval [−b, b] (for b < 1) is a p−BR set iff φ < 1 and

φ(1−p)
1−φp < b. Existence of p−BR sets requires eductive stability (φ < 1).
Notice that the fact that strategic stability is a necessary condition for exis-

tence of p−BR sets is an argument in favor of p−stability.
Proof. The smallest BR to p−belief in [−b, b] is φ (− (1− p)− pb) and the

largest one is φ ((1− p) + pb). Then, we have a p−BR iff φ (1− p) + φpb < b.
That is: φ (1− p) < (1− φp) b, that is: φp < 1 and φ(1−p)

1−φp < b. This is

equivalent to φ < 1 and φ(1−p)
1−φp < b. Summing up, [−b, b] is a p−BR set when

φ < 1 and φ(1−p)
1−φp < b. �

We now characterize when the equilibrium is an iterated p−BR set.
Claim 2. Consider a given p. The equilibrium is an iterated p−BR set iff

the equilibrium is eductively stable (φ < 1).
Notice here that the fact that the equilibrium is an iterated p−BR set does

not depend on p, which makes the concept useless. Again, this is an argument
in favor of p− stability.
Proof. First consider the case φ > 1. Clearly, the equilibrium cannot be

an iterated p − BR set as there is no p − BR set containing the equilibrium
(see Claim 1 above). We now consider the case φ < 1. When is an interval
[−b, b] is a p−BR set in a game restricted to [−c, c] (c > b)? The smallest BR to
p−belief in [−b, b] is φ (− (1− p) c− pb) and the largest one is φ ((1− p) c+ pb).
Then, we have a p−BR iff φ (1− p) c + φpb < b. That is: φc−b

φ(c−b) < p. This

rewrites b > φ(1−p)
1−φp c. Define the sequence bn by: b1 = φ(1−p)

1−φp , and, for every

n, bn+1 = φ(1−p)
1−φp bn. We have that [−bn+1, bn+1] is a p−BR set in a game

restricted to [−bn, bn]. Notice that φ < 1 implies φ(1−p)
(1−φp) < 1 and bn+1 < bn.

Hence, [−bn+1, bn+1] ⊂ [−bn, bn] and the sequence [−bn, bn] converges to {0}.
We have just shown that the equilibrium is an iterated p−BR set for any p.�
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5 Intertemporal trade, expectations coordina-
tion and bubbles

In this section, we study the partial consensus outcomes of a standard two period
economy to examine the foundations, via belief coordination, of perfect foresight
equilibria. We are in a setting where all agents are price-takers and payoffs de-
pend on their own actions and market prices; hence, we adopt a slightly different
formalization of a large economy from MasColell (1984). The analysis gener-
alizes and extends Ghosal (2006)’s local stability analysis of a perfect foresight
equilibrium: a new solution concept for intertemporal economies is proposed
and its links with perfect foresight equilibria is analyzed in a general setting
which allows preferences to be non-separable over time.

5.1 The Economy

The economy consists of a mass of individuals of measure one, formally, an atom-
less measure space of individuals, {I, ι, µ}, with I = [0, 1] the set of agents, ι the
σ-algebra on I and µ an atomless measure defined on I. Null sets of individu-
als are systematically ignored throughout the paper. For some arbitrary finite
K−dimensional Euclidian space, an assignment is any function g : I → <K each
coordinate of which is integrable5 .Trade in this economy is sequential and takes
place at two time periods, t = 1, 2, with Lt, t = 1, 2, commodities traded in
the spot commodity markets in period t6 and an asset market that opens in the
first period. In time period t = 1, each individual submits commodity demands
in the spot commodity markets and asset demands in the asset market. Prices
in these markets then adjust to ensure market clearing. In time period t = 2,
each individual submits commodity demands in the spot commodity markets.
Prices in these markets then adjust to ensure market clearing.
A commodity bundle is x ∈ <L1

+ × <L2
+ with xtl denoting quantities of con-

sumption of commodity l in period t. Endowments are w : I → <L1
+ × <L2

+

with w = (w1,w2), and w̄t= ∫ wi
tdi � 0 for t = 1, 2. The asset traded in the

first period pays off in units of the first commodity traded in the second period
and further, it is in zero net supply. Preferences of trader i are described by a
utility function ui : <L1

+ × <L2
+ → < such that two assumptions are satisfied:

(A1) For each traders i ∈ I, ui satisfies strict monotonicity, strict concavity, is
twice continuously differentiable on <L1

+ × <L2
+ ; (A2) u : I × <L1

+ × <L2
+ → <

is measurable and uniformly smooth. The requirement of uniform smoothness
in (A2) follows Aumann [2, sections 4 and 10] except that we do not require
the utility functions of any trader to be bounded. A consequence of (A2) is
that u : I × <L1

+ × <L2
+ → < viewed as a map from (i, x1, x2) to real numbers

is measurable as a function of (i, x1, x2). The asset traded in the first period

5Throughout this subsection, the bold face type will be used to denote an assignment,
with the ith component of the assignment g denoted by gi and the kth coordinate of the
assignment g denoted by gk.

6Note that when L2 = 1, with only one commodity at t = 2, the coordination problem in
second period spot markets studied here disappears. Hence, we assume that L2 ≥ 2.
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pays off in units of the first commodity traded in the second period and fur-
ther, it is in zero net supply. An allocation is a triple (x1,y,x2) such that
xit ∈ <Lt+ , t = 1, 2, for all i ∈ I and yi∈<. An allocation is feasible if, in addi-
tion,

∫
xitdi = x̄t= w̄t =

∫
wi
tdi, t = 1, 2 and ȳ =

∫
yidi = 0. An economy is

E ={I, ι, µ, (ui, wi) : i ∈ I}.
Prices are (π1, q, π2) where πtl is the spot commodity market price of com-

modity l in period t and q is the price of the asset. Normalize prices so that
π11 = 1 and π21 = 1. As the utility function of each individual is strongly
monotone, without loss of generality it is possible to restrict attention to prices
where πt ∈ <Lt−1

++ , t = 1, 2 and q ∈ <++. Asset payoffs are therefore denoted in
the second period numeraire.
At prices (π1, q, π2) the maximization problem that each individual solves has

two stages. In the second stage, at t = 2, given (π1, q, π2, x1, y) each individual
solves:

Max{x2} u
i(x1, x2) s.t. π2x2 ≤ π2w

i
2 + y, x2 ∈ <L2

+

For a solution x̂i2 to this maximization problem, let v
i(x1, π2, π2w

i
2 + y) =

ui(x1, x̂
i
2

(
x1, π2, π2w

i
2 + y

)
). In the first stage, at t = 1, given (π1, q, π2) each

individual solves the following maximization problem:

Max{x1,y} v
i(x1, π2, π2w

i
2 + y) s.t. π1x1 + qy ≤ π1w

i
1, x1 ∈ <L1

+

Let (x̂i1, ŷ
i) denote a solution to this sequential, two-stage maximization

problem. Let Ŝi(π1, q, π2) denote the set of all possible solutions (x̂i1, ŷ
i, x̂i2) at

prices (π1, q, π2).

Definition 1 A Perfect Foresight Equilibrium (PFE) is a vector of prices (π̂1, q̂, π̂2)
and allocations (x̂1, ŷ, x̂2) such that (a) at prices (π̂1, q, π̂2), (x̂i1, ŷ

i, x̂i2) ∈ Ŝi(π̂1, q, π̂2),
for all i ∈ I, (b) x̂t ∈ <Lt++, t = 1, 2, and (c)

∫
x̂itdi= w̄t, t = 1, 2 and

∫
ŷidi = 0.

The corresponding market clearing equations are∫
x̂i1(π̂1, q̂, π̂2)di = w̄1,

∫
ŷi(π̂1, q̂, π̂2)di = 0,

∫
x̂i2(x̂i1(π̂1, q̂, π̂2), π̂2, ŷ

i(π̂1, q̂, π̂2)) = w̄2

Let x̄t =
∫

x̂itdi, t = 1, 2 denote mean commodity demand in period t and
ȳ =

∫
ŷidi denote mean asset demand. Let N(π̂1, q̂, π̂2) ⊂ <L1

++ × <++ × <L2
++

be a neighborhood of an interior PFE price vector. Then, for all (π1, q, π2) ∈
N(π̂1, q̂, π̂2), the derivatives ∂πt′l′ x̄tl, ∂πt′l′ ȳ, ∂qx̄tl, ∂qȳ exist for all t, t′ =
1, 2 and all l, l′ = 1, ..., L and are equal to ∂πt′l′ x̄tl =

∫
∂πt′l′ x̂

i
tldi, ∂πt′l′ ȳ =∫

∂pt′l′ ŷ
idi, ∂qx̄tl =

∫
∂qx̂

i
tldi, ∂qȳ =

∫
∂qŷ

idi. This follows from the fact that
∂πt′l′ x̂

i
tl, ∂πt′l′ ŷ

i, ∂qx̂itl, ∂qŷ
i, for all l, l′ = 1, ..., Lt, t, t′ = 1, 2, , i ∈ I are

integrally bounded (see, for instance, page 154, Jones (1993)).
After deleting the numeraire commodity in each period, consider the Jaco-

bian of the market clearing equations J =

(
J11 J12

J21 J22

)
where J11 =

(
∂π1

x̄1 ∂qx̄1

∂π1
ȳ ∂qȳ

)
,

J12 =

(
∂π2

x̄1

∂π2
ȳ

)
, J21 =

(
∂π1 x̄2 ∂qx̄2

)
, J22 = (∂π2

x̄2) evaluated at the
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market clearing prices (π̂1, q̂, π̂2) ∈ <L1−1
++ ×<++×<L2−1

++ , where the numeraire
commodity in each period has been deleted as well. For any assignment x1,y
such that

∫
xi1di = w̄1,

∫
yidi = 0, let ∂π2

x̄2(x1,y) =
∫
∂π2

x̂i2(xi1, p2,y
i).

Definition 2 (Regularity, Strong Regularity and Sequential Regularity)7 An in-
terior PFE is regular (respectively, strongly regular) if J is invertible (respec-
tively, J11and J22 are invertible). It is sequentially regular if, in addition to being
regular and strongly regular, (∂π2 x̄2(x1,y))

−1 exists for all assignment of assets
y such that yi = ŷi(π′1, q

′, π′2) for all i ∈ I and some (π′1, q
′, π′2) ∈ N(π̂1, q̂, π̂2, ε).

An economy is regular (respectively, strongly regular and sequentially regular) if
all its interior PFE are regular (respectively, strongly regular and sequentially
regular).

In a regular economy, each PFE is locally isolated. In a strongly regular
economy, in addition, it follows as a consequence of the implicit function theo-
rem that for a given (π̄1, q̄) ∈ N(π̂1, q̂, , ε) ⊂ <L2−1

++ ×<, there is a locally unique
second period price π2 that solves

∫
x̂i2(x̂i1(π̄1, q̄, π2), p2, ŷ

i(π̄1, q̄, p2)) = w̄2; fur-
ther, it is a continuous function of (π̄1, q̄, ) ∈ N(π̂1, q̂, ε). Moreover, in a se-
quentially regular economy, again as a consequence of the implicit function
theorem, for all (π′1, q

′, π′2) ∈ N(π̂1, q̂, π̂2, ε) with
∫

x̂i1(π′1, q
′, π′2)di = w̄1 and∫

ŷi(π′1, q
′, π′2)di = 0, there exists a unique second period price π2 that solves∫

x̂i2(π′1, q
′, π′2), π2, ŷ

i(π′1, q
′, π′2)) = w̄2; further, it is a continuous function of

(π′1, q
′, π′2) ∈ N(π̂1, q̂, π̂2, ε).

5.2 Partial consensus outcomes, Perfect Foresight Equi-
libria and Bubbles

Our starting point is the assumption that it is common knowledge that individ-
uals have expectations over future prices whose support is some set Π0

2 ⊂ <L2−1
++ .

Let π̃2 ∈ Π0
2. A p-belief8 puts a weight r on π̃2 and a weight 1− p on πe,i2 ∈ Π0

2

(not assumed to be common knowledge). The interpretation is that there
is partial consensus (where p measures the degree of consensus) on π̃2. Let
f : I → Π0

2 ⊂ <L2−1
++ : an assignment of expectations where f i = πe,i2 . Let

x̂i2
(
x1, π̃2, π̃2w

i
2 + y

)
denote the (unique) solution to

Max{x2} u
i(x1, x2) s.t. π̃2x2 ≤ π̃2w

i
2 + y, x2 ∈ <L2

+

Let x̂i2
(
x1, f

i, f iwi
2 + y

)
) denote the (unique) solution to

Max{x2} u
i(x1, x2) s.t. f ix2 ≤ f iwi

2 + y, x2 ∈ <L2
+

For each p− belief , there is an associated lottery over period 2 consumption
lip, with probability p on x̂i2

(
x1, π̃2, π̃2w

i
2 + y

)
and with probability 1 − p on

7Sequential regularity was introduced by Balasko (1994).
8The slight change in notation is made for ease of exposition.
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x̂i2
(
x1, f

i, f iwi
2 + y

)
. Let lp denote an assignment of lotteries. At t = 1, given

(π1, q) and lir an individual solves:

Max{x1,y} pv
i
(
x1, π̃2, π̃2w

i
2 + y

)
+(1−p)vi

(
x1, f

i, f iwi
2 + y

)
] s.t. π1x1+qy ≤ π1w

i
1, x1 ∈ <L1

+ .

Let x̂i1(π1, q, l
i
p), ŷi(π′1, q

′, lip) denote a solution to the preceding sequential,
two-stage maximization problem.
For a fixed lp, (π′1, q

′) is a period 1 equilibrium if and only if
∫

x̂i1(π′1, q
′, lip)di =∫

wi
1di and

∫
ŷi((π′1, q

′, lip)di = 0. Let Ê1 (lp) denote the set of such equilibria.
For a pair (π1, q) first period prices, with a mild abuse of notation, the second
period price π′2 is a period 2 equilibrium if and only if

∫
x̂i2(x̂i1, π

′
2, ŷ

i(π1, q, l
i
p)) =∫

wi
2di. Let Ê2 (x̂1, π1, q, lp) denote the set of such equilibria.
Fix Π0

2 ⊂ <L2−1
++ . For n = 1, ..., define

Πn
2,p =

{
π2 ∈ <L2−1

++ : ∃ lp s.t. π2 ∈ Ê2 (x̂1, π1, q, lp) ,

for some (x̂1, π1, q) ∈ Ê1 (lp)

}
∩Πn−1

2,p

Obviously, Πn
2,p ⊆ Πn−1

2,p , n = 1, ....
Rationalizable (second period) price expectations: Π̃2,p = Π∞2,p.
Partial Consensus outcomes: For 0 ≤ p < 1, given Π0

2 ⊂ <L2−1
++ , a

consensus outcome is a triple (π̃1, q̃, π̃2) and an allocation (x̃1, ỹ, x̃2) such that
(x̃1, π̃1, q̃) ∈ Ê1 (lp) for some lp on Π̃2,p with probability at least p on π̃2 ∈ Π̃2,p.
Proposition 6. Consider a PFE vector of prices (π̂1, q̂, π̂2). Suppose

ui(x1, x2) = ui1(x2) +u2(x2) where u2(.) homothetic for all i ∈ I. Then, for any
Π0

2 ⊂ <L2−1
++ ,such that π̂2 ∈ Π0

2, Π̃2,p = {π̃2} for all 0 ≤ p < 1.
Proof. As market clearing in both periods is common knowledge

∫
ŷidi = 0,

and therefore,
∫
dŷidi = 0. As ui2(x2) is identical and homothetic for all i ∈ I,

∂yx̂
i
2(π̂2, ŷ

i(π̂1, q̂, π̂2)) = ∂yx̂
j
2(π̂2, ŷ

j(π̂1, q̂, π̂2))

for all i, j ∈ I, and therefore,
∫
∂yx̂

i
2dŷ

idi = ∂yx̂
i
2

∫
dŷidi = 0 so that as long as

π̂2 ∈ Π0
2, Ê2 (x1, π1, q, lp) = {π̂2} for all (π1, q) ∈ Ê1 (lp), 0 ≤ p < 1. Therefore,

Π̃2,p = {π̂2}.�
A partial consensus outcomes reduces to a PFE when all individuals are

able to continue eliminating prices till π̃2 is the only element in Π̃2,p. When
preferences are additively separable in consumption across the two time periods,
a change in the asset holdings in period 1 amounts to a redistribution of revenue
in period 2 spot markets. When preferences over consumption in period 2 spot
markets are identical and homothetic, a redistribution of revenue will have no
impact on period 2 spot prices. Therefore, as long the PFE second period price
π̂2 is in Π0

2, it is the only price vector consistent with market clearing in period
2 irrespective of what second price expectations individuals started out with: it
is the unique rationalizable second price expectation.
Proposition 7. Consider a sequentially regular PFE vector of prices (π̂1, q̂, π̂2).

Whenever the degree of consensus p on π̂2 ∈ Π0
2 is higher than a critical thresh-

old value p < 1, the PFE is the unique rationalizable outcome.
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Proof. When the PFE is sequentially regular, then the admissibility con-
dition required for Proposition 2 is satisfied. By relabelling variables appropri-
ately, the result is an immediate consequence of Proposition 2. �
Fix a strongly regular (π̂1, q̂, π̂2). Clearly, as long as π̂2 ∈ Π0

2, there is a
partial consensus outcome that is Pareto optimal. However, by Proposition 1,
when Π̃2,p has a non-empty interior in <L2−1

++ , it also contains partial consensus
outcomes are distinct from a PFE such that the associated allocations aren’t
Pareto optimal. Evidently, the marginal rates of substitution will be equalized
across individuals in spot markets within a time period but not across time peri-
ods. Moreover, at a strongly regular (π̂1, q̂, π̂2), the associated partial consensus
asset price q̃ 6= q̂: hence, there is an asset price bubble.
In what follows, starting from a fixed strongly regular (π̂1, q̂, π̂2) and a Π0

2

such that π̂2 ∈ Π0
2, a local characterization of the as set of suffi cient conditions

that ensures the existence of a Π̃2,p that has a non-empty interior in <L2−1
++

is carried out for p small enough. Suppose Π0
2 = N(π̂2, ε),Π

0
2 6= {π̂2} with

N(π̂2, ε) ⊂ <L2−1
++ a neighborhood around π̂2, the second period component

of a PFE vector of prices (π̂1, q̂, π̂2). Let ‖.‖ be a monotone vector norm9 on
<L2−1. Let S(ε) = {z ∈ <L2−1

++ : ‖z − π̂2‖ = ε, ε > 0}. Let B(ε̄) = {x ∈
<L2−1

++ : ‖x− π̂2‖ < ε̄}.
As the economy is sequentially regular it is possible to provide a local char-

acterization of the map from each assignment of expectations f : I → Π0
2 (re-

member p = 0) to a market clearing price in the second period π2 in the vicinity
of a PFE.
Proposition 8: Fix a sequentially regular PFE (π̂1, q̂, π̂2). There exists

a neighborhood N(π̂2, ε) of π̂2 and matrices M i for each i ∈ I such that for
each assignment of expectations f : I → Π0

2, Π0
2 = N(π̂2, ε), dπ2 =

∫
Midf idi

where dπ2 = (π2 − π̂2) and df i = (f i − π̂2). Moreover Π̃2,0 = {π2 ∈ N(π̂2, ε) :

dπ2 =
∫

Midf idi, for some f : I → Π̃2,0}. If there exists ε̄ > 0 such that
Π0

2 ⊆ N(π̂2, ε), (a)
∥∥∫ Midvidi

∥∥ < ε̄, for all assignment of expectations v :

I → S(ε̄), then Π̃2,p = {π̂2}, (b) if
∥∥∫ Midvidi

∥∥ > ε, for all assignment of
expectations v : I → S(ε), for each ε ≤ ε̄, N(π̂2, ε) ⊆ Π̃2,p for p < p̃, for some
p̃ > 0.Moreover, the condition that

∥∥∫ Midvidi
∥∥ < ε̄ is invariant to the choice

of the second period numeraire.
Proof. See appendix.�
Heuristically, what the preceding proposition shows is that when redistrib-

utions of revenue in second period markets change or when redistributions of
commodities in period 1 change second period spot market prices and the there
is lack of consensus over second period prices (so that beliefs over second period
prices are heterogeneous to a suffi cient degree), then an asset pice bubble exists.
To interpret the condition under which, locally, partial consensus outcomes

9For any x ∈ <K , let |x| = (|x1| , ..., |xK |). It follows that |x| ≥ |y| if and only if |xl| ≥ |yl|
for all l = 1, ...,K. A vector norm, ‖.‖ on <K is monotone if and only if |x| ≥ |y| =⇒
‖x‖ ≥ ‖y‖. All lp norms, including the euclidean norm, are monotone. However, (see Horn
and Johnson (1985)) the following vector norm on <K , ‖x‖ = |x1 − x2| +

∑
l′ 6=1 |xl′ |, is not

monotone.
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coincide with perfect foresight equilibria, it is useful to consider the special
case with homogeneous expectations. In this case, the condition in part (ii)
of Proposition 1 reduces to the condition that

∥∥M̄(πe − π̂2)
∥∥ < ε̄ whenever

‖πe − π̂2‖ = ε̄ which is equivalent to requiring that
∥∥M̄∥∥ < 1. This is nothing

but the requirement that the map that goes from expectations of second period
prices to a market clearing second period price is locally a contraction map.
What conditions ensure that redistributions of revenue in second period mar-

kets change or when redistributions of commodities in period 1 change second
period spot market prices? The following proposition provides a (negative)
answer:
Proposition 9. Consider a sequentially regular PFE vector of prices (π̂1, q̂, π̂2).

If there exists ε̃ > 0 such that either (i)

max
{∥∥∥∂yx̂i2(x̂i1,π̂2, ŷ

i)− ∂yx̂j2(x̂i1,π̂2, ŷ
i)
∥∥∥ ,∥∥∥∂x1

x̂i2(x̂i1,π̂2, ŷ
i)− ∂x1

x̂j2(x̂i1, π̂2, ŷ
i)
∥∥∥} < ε̃

for all i, j ∈ I, or (ii) max
{∥∥∂π2

ŷi
∥∥ ,∥∥∂π2

x̂i1
∥∥} < ε̃ for all i ∈ I. Then there

exists a neighborhood N(π̂2, ε) of π̂2 and Π0
2 ⊂ N(π̂2, ε) such that Π̃2,p = {π̂2},

0 ≤ p ≤ 1.
Proof. See appendix.�
The preceding proposition shows that even with lack of consensus over future

prices in a small enough neighborhood of a perfect foresight equilibria, an asset
price bubble will not exist if (a) the sensitivity of second period spot commodity
prices to a redistribution of revenue in the same period and a redistribution in
period 1 endowments is small and (b) the sensitivity of period 1 consumption
and asset demands to small changes in expectations of second period prices is
small.
Finally, we construct an example with a unique PFE, where with hetero-

geneity in intertemporal preferences implies the existence of partial consensus
outcomes distinct from the PFE outcome because second period spot commod-
ity prices to a redistribution of revenue in the same period and asset demands
to small changes in expectations of second period prices, thus demonstrating
the robust existence of bubbles.
Example: There is a single commodity at t = 1 and two commodities at

t = 2. The preferences of individuals are as follows. There are two types of
individuals. Type 1 individuals are those with ui(x) = x11 + (1− β) log x21 +
β log x22,

1
2 < β < 1 and endowments wi = (wi

11,w
i
21,w22) � 0. Type 2 indi-

viduals are those with ui(x) = x11 +β log x21 +(1− β) log x22, and endowments
wi = (wi

11,w
i
21,w22) � 0. Let p2 denote the price of commodity 2 at t = 2

and let w̄tl denote the aggregate endowment of commodity l at time t. Both
type 1 and type 2 individuals have equal measure. Let w′21 denote the aggregate
endowments of the numeraire commodity at t = 2 for type 1 individuals and
w′′21 denote the aggregate endowments of the numeraire commodity at t = 2 for

type 2 individuals. It is assumed that w′21 > w′′21. Let Π0
2 =

[
w̄21

w̄22
− ε, w̄21

w̄22
+ ε
]
.

By computation, it is verified that there is a unique perfect foresight equilibrium
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configuration of prices (π̂2, q̂) =
(

w̄21

w̄22
, 1

2w̄21

)
and

M i =

{− w′21+w′′21

βw′21+(1−β)w′′21

(
1
2 − β

)
for type 1 individuals

w′21+w′′21

βw′21+(1−β)w′′21

(
1
2 − β

)
for type 2 individuals

Let Π0
2 =

[
w̄21

w̄22
− ε, w̄21

w̄22
+ ε
]
. We restrict attention to the case where in-

dividuals have point expectations over second period prices. Let S(ε) = {z ∈
<++ :

∣∣∣z − w̄21

w̄22

∣∣∣ = ε}. Consider the assignment of expectations v+ : I → S(ε)

(respectively, v− : I → S(ε)) where vi+ = w̄21

w̄22
− ε (respectively, vi− = w̄21

w̄22
+ ε)

for type 1 individuals and vi+ = w̄21

w̄22
+ ε (respectively, vi− = w̄21

w̄22
− ε) for type

2 individuals. Then, by computation it is checked that∥∥∥∥∫ Midvi+di

∥∥∥∥ =

∥∥∥∥∫ Midvi−di

∥∥∥∥
=

∣∣∣∣ w′21 + w′′21

βw′21 + (1− β)w′′21

(
1

2
− β

)
ε

∣∣∣∣ > ε

as long as 1
2 < β < 1 and w′21 < w′′21. It follows that Πn

2,0 = P 0
2 , n ≥ 1 and by

continuity in p, there exists p̃ > 0 such that for all p < p̃, Πn
2,p = P 0

2 , n ≥ 1.

Hence, Π̃2,p = Π0
2 p < p̃, for some p̃ > 0. �

6 Conclusion

In this paper, we have developed a new solution concept that allows for par-
tial consensus about the outcomes of strategic and market interaction and an
associated, continuous measure of the degree of stability, via belief coordina-
tion, for equilibrium outcomes. In a number of examples we have illustrated
and differentiated the properties of our concepts from related notions developed
elsewhere. We have examined the foundations of intertemporal trade via belief
coordination in a two period economy and show that, under certain conditions,
lack of consensus over future prices is consistent with an asset price bubble.
Our contributions are a preliminary step towards understanding how the

possibility that non-equilibrium outcomes are approximately self-fulfilling com-
plicate the analysis of strategic interaction and market behavior. In future re-
search, we intend to examine this point in grater detail to obtain new economic
insights and their implications for policy.
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Appendix
Proof of Lemma 1.
(i) For every M , for every ε > d∆(A) (τ ′a, τ̂a), we have

τ̂a (M) ≤ τ ′a (Mε) + ε,

then

(1− p) τ̂a (M) ≤ (1− p) τ ′a (Mε) + (1− p) ε,
τ̂a (M) ≤ pτ̂a (M) + (1− p) τ ′a (Mε) + (1− p) ε,
τ̂a (M) ≤ pτ̂a (Mε) + (1− p) τ ′a (Mε) + (1− p) ε.

This implies: d∆(A) (τa, τ̂a) ≤ (1− p) ε and

d∆(A) (τa, τ̂a) ≤ (1− p) d∆(A) (τ ′a, τ̂a)

(ii) For a Borel set M s.t. x ∈M , for every ε, we have δx (Mε) = 1 and

τa (M) ≤ δx (Mε) + ε.

For a Borel set M that does not intersect S, for every ε, we have τa (M) = 0
and

τa (M) ≤ δx (Mε) + ε.

Consider now a Borel set M that does not contain x and that intersects S. For
every ε > d, we have that x ∈Mε (consider a y in S ∩M) and δx (Mε) = 1 and

τa (M) ≤ δx (Mε) + ε.

(iii) Consider ε > sup ess
λ

d∆(A) (τλ, ν). For f−almost every λ, we have: for
every M

τλ (M) ≤ ν (Mε) + ε.

Summing over λ gives:∫
τλ (M) f (dλ) ≤

∫
(ν (Mε) + ε) f (dλ) = ν (Mε) + ε,

as (ν (Mε) + ε) does not depend on λ and
∫
f (dλ) = 1. �

Proof of Proposition 2.
There is a neighborhood N ⊂ ∆ (A) of τ∗a such that for µ−almost every u

in UA,
∀m ∈ N, dA (B (u,m) , B (u, τ∗a )) ≤ Kd∆(A) (m, τ∗a ) . (2)
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Now for each τ ∈ Tp (with τ = pτ∗ + (1− p) τ ′), we must have that

∀M ⊂ A, τa (M) = pτ∗a (M) + (1− p) τ ′a (M) ,

It straightforwardly follows from Lemma 1(i) that

d∆(A) (τa, τ
∗
a ) ≤ (1− p) d∆(A) (τ ′a, τ

∗
a ) . (3)

As the Prohorov metric is always bounded by 1, we have d∆(A) (τ ′a, τ
∗
a ) ≤ 1 and

d∆(A) (τa, τ
∗
a ) ≤ 1 − p. Then, for p large enough, the following property holds:

the inequality (2) holds for the marginal τa of any distribution τ in Tp. From
now on, we consider p such that this property holds. Define the set An (u) ⊂ A
of actions that are best responses of u to a distribution of actions τa that is the
marginal on A of some τ ∈ Sn−1

p . φ
(
Sn−1
p

)
contains the distributions τ ∈ T

such that, for µ-almost every u, τ (An (u) |u) = 1. For µ-almost every u, for
every a in An (u), a writes B(u, τa) for some τ in Sn−1

p . Inequality (2) writes:

dA(a,B(u, τ∗a )) ≤ Kd∆(A)(τa, τ
∗
a ).

As τ ∈ Sn−1
p = φ

(
Sn−2
p

)
∩ Tp, τ = pτ∗ + (1− p) τ ′ for some τ ′ ∈ φ

(
Sn−2
p

)
.

Inequality (3) implies

dA(a,B(u, τ∗a )) ≤ K (1− p) d∆(A)(τ
′
a, τ
∗
a ).

Denote RnA (u) = supa∈An(u) dA(a,B(u, τ∗a )) (this is the radius of the smallest
ball containing An (u) and centered on τ∗A). We have

RnA (u) ≤ K (1− p) d∆(A)(τ
′
a, τ
∗
a ).

Denote RnA = sup essu∈UA RnA (u) for every n. We have

RnA ≤ K (1− p) d∆(A)(τ
′
a, τ
∗
a ). (4)

Consider now that by definition, for every M , τ∗a (M) =
∫
τ∗ (M |u)µ (du). By

admissibility of τ∗, for µ−almost every u, the conditional distribution τ∗ (.|u)
is a Dirac measure δB(τ∗a ,u) on the equilibrium action of u (denoted B (τ∗a , u)).
By Lemma 1(ii), for every Dirac measure centered on x ∈ A,

d∆(A)(τ
′
a, δx) ≤ sup

y∈S
dA (x, y) , (5)

where S is the support of τ ′a (the smallest closed set such that τ
′
a (S) = 1).

Then, we have:
d∆(A)(τ

′
a, δB(τ∗a ,u)) ≤ Rn−2

A (u)

As τ∗a =
∫
δB(τ∗a ,u)µ (du), by Lemma 1(iii),

d∆(A)(τ
′
a, τ
∗
a ) ≤ sup ess

u∈UA
d∆(A)(τ

′
a, δB(τ∗a ,u)) ≤ sup

u∈UA
ess Rn−2

A (u) = Rn−2
A .
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From Inequality (4), we have

RnA ≤ K (1− p)Rn−2
A .

Hence, for p large enough, K (1− p) < 1 and the sequence of RnA tends to 0,
which implies that Snp tends to {τ∗}. We have shown p−stability for p < 1 large
enough. �
Proof of Proposition 4.
The p − BR map is BRā,p (a) = β (pā+ (1− p) a) if β (pā+ (1− p) a) ∈

[−1, 1], and it is BRā,p (a) = −1 or 1 if β (pā+ (1− p) a) is smaller than −1 or
larger than 1. The sequence BRnā,p ([−1, 1]) (where BRnā,p denotes the n − th
iterate of BRā,p) converges to a limit set BR∞ā,p ([−1, 1]) that is the set S∞ā,p.
We compute the limit set S∞ā,p in any possible case and check when ā ∈ S∞ā,p.
The p−BR map is converging iff |β| (1− p) < 1 (and the limit is βpā

1−β(1−p) ).

In this case, S∞ā,p =
{

βpā
1−β(1−p)

}
and a /∈ S∞ā,p: a is not a p−consensus outcome

for a value p > 1− 1
|β| . In the sequel, we assume p ≤ 1− 1

|β| (i.e., 1 ≤ |β| (1− p)).
Under this assumption, the p−BR map is not converging to a single point. We
study the behavior of the sequence BRnā,p ([−1, 1]) in the 2 cases β ≥ 1

1−p and
β ≤ − 1

1−p .

If β ≥ 1
1−p , then we distinguish between 3 cases:

• If ā > β(1−p)−1
βp (BRā,p (−1) > −1), then 1 is the unique fixed point,

BRā,p (a) ≥ a for every a. Any sequence BRnā,p (a) converges to 1. Hence,
S∞ā,p = {1}.

• If ā < 1−β(1−p)
βp (BRā,p (1) < 1), then −1 is the unique fixed point,

BRā,p (a) ≤ a for every a. Any sequence BRnā,p (a) converges to −1.
Hence, S∞ā,p = {−1}.

• If β(1−p)−1
βp ≥ ā ≥ 1−β(1−p)

βp (BRā,p (−1) = −1 and BRā,p (1) = 1), then

BRā,p admits 3 fixed points (equal to −1, βpā
1−β(1−p) and 1). For a ≤

βpā
1−β(1−p) , any sequence BRā,p (a) converges to −1. For a ≥ βpā

1−β(1−p) , any
sequence BRā,p (a) converges to 1. Hence, S∞ā,p = [−1, 1].
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The cases BRā,p (−1) > −1 (black) and BRā,p (1) < 1 (green)
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The case BRā,p (−1) = −1 and BRā,p (1) = 1

Therefore, ā ∈ S∞ā,p iff
β(1−p)−1

βp ≥ ā ≥ 1−β(1−p)
βp . These 2 inequalities rewrite:

p ≤ 1

1 + ā

(
1− 1

β

)
and p ≤ 1

1− ā

(
1− 1

β

)
.

This shows the result in the case β ≥ 1
1−p .

In the case β ≤ − 1
1−p , we have p ∈

[
0, 1 + 1

β

]
and BRā,p is piecewise linear

and decreasing (its slope is either 0 or β (1− p) < −1). We first consider the
case ā ≥ 0. A preliminary remark is:

• BRā,p (−1) = 1 iff p ≤ 1
1+ā

(
1 + 1

β

)
• BRā,p (−1) = −1 iff p ≥ 1

1+ā

(
1− 1

β

)
• BRā,p (1) = −1 because p ≤

(
1 + 1

β

)
≤ 1

1−ā

(
1 + 1

β

)
holds true in this

case
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We have:

1. If p ≤ 1
1+ā

(
1 + 1

β

)
, then BRā,p (−1) = 1 and BRā,p (1) = −1. Straight-

forwardly, BRā,p ([−1, 1]) = [−1, 1] and S∞ā,p = [−1, 1].

2. If 1
1+ā

(
1 + 1

β

)
< p < 1

1+ā

(
1− 1

β

)
, then −1 < BRā,p (−1) < 1 and

BRā,p (1) = −1. Furthermore, BRā,p (a) = −1 iff a ≥ − 1−βpā
β(1−p) .

3. If 1
1+ā

(
1− 1

β

)
≤ p ≤ 1 + 1

β , then BRā,p (−1) = −1 and the map BRā,p
is constant, equal to −1. Straightforwardly, S∞ā,p = {−1}.

In Case 2, S∞ā,p is computed using routine arguments relying onBR
2
ā,p. BR

2
ā,p

is increasing and piecewise linear. Since β2 (1− p)2
> 1, BR2

ā,p is constant in

the neighborhood of −1 (equal to BR2
ā,p (−1)), increasing with slope β2 (1− p)2

for intermediate values of a, and then constant in the neighborhood of 1 (equal
to BR2

ā,p (1)).
Since BRā,p is decreasing, it has a unique fixed point afp = βpā

1−β(1−p) .
This fixed point afp is in (−1, 1): afp is not on a constant part of BRā,p,
the slope of BRā,p at afp is then β (1− p) and the slope of BR2

ā,p at afp is

β2 (1− p)2. Hence, BR2
ā,p has 3 fixed points: BR

2
ā,p (−1), afp and BR2

ā,p (1),
with BR2

ā,p (−1) and afp being negative.
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A typical example of BR2
ā,p with 3 fixed points

A standard argument implies then that the sequence of the iteratesBRnā,p ([−1, 1])

tends to
[
BR2

ā,p (−1) , BR2
ā,p (1)

]
. Hence, the set S∞ā,p is

[
BR2

ā,p (−1) , BR2
ā,p (1)

]
(with BR2

ā,p (1) = BRā,p (−1)). Since ā ≥ 0, ā ∈ S∞ā,p iff ā ≤ BRā,p (−1). This
condition writes:

p ≤ 1

1 + ā

(
1 +

ā

β

)
.

We now consider the case ā ≤ 0. A preliminary remark is:
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• BRā,p (−1) = 1 because p ≤
(

1 + 1
β

)
≤ 1

1+ā

(
1 + 1

β

)
holds true in this

case

• BRā,p (1) = −1 iff p ≤ 1
1−ā

(
1 + 1

β

)
• BRā,p (1) = 1 iff p ≥ 1

1−ā

(
1− 1

β

)
We have:

1. If p ≤ 1
1−ā

(
1 + 1

β

)
, then BRā,p (−1) = 1 and BRā,p (1) = −1. Straight-

forwardly, BRā,p ([−1, 1]) = [−1, 1] and S∞ā,p = [−1, 1].

2. If 1
1−ā

(
1 + 1

β

)
< p < 1

1−ā

(
1− 1

β

)
, then BRā,p (−1) = 1 and −1 <

BRā,p (1) < 1. Furthermore, BRā,p (a) = 1 iff a ≤ 1−βpā
β(1−p) .

3. If 1
1−ā

(
1− 1

β

)
≤ p ≤ 1 + 1

β , then BRā,p (1) = 1 and the map BRā,p is

constant, equal to 1. Straightforwardly, S∞ā,p = {1}.

In case 2, S∞ā,p is computed using the same arguments as above. BR2
ā,p

is increasing and piecewise linear, it has 3 fixed points: BR2
ā,p (−1), afp and

BR2
ā,p (1), with afp andBR2

ā,p (1) being positive. S∞ā,p is
[
BR2

ā,p (−1) , BR2
ā,p (1)

]
(with BR2

ā,p (−1) = BRā,p (1)). Since ā ≤ 0, ā ∈ S∞ā,p iff ā ≥ BRā,p (1). This
condition writes:

p ≤ 1

1− ā

(
1− ā

β

)
.

Lastly, we summarize the results for any ā ∈ IR. Note that Cases 3 (both
when ā ≥ 0 and ā ≤ 0) exist iff 1 + 2

|ā| ≤ −β. If 1 + 2
|ā| > −β, then the upper

bound for Cases 2 is 1 + 1
β . Hence, ā ∈ S

∞
ā,p = [−1, 1] when p ≤ 1

1+|ā|

(
1 + 1

β

)
;

ā ∈ S∞ā,p =
[
BR2

ā,p (−1) , BR2
ā,p (1)

]
when

1

1 + |ā|

(
1 +

1

β

)
< p ≤ min

(
1

1 + |ā|

(
1− 1

β

)
,

1

1 + |ā|

(
1 +
|ā|
β

)
, 1 +

1

β

)
.

For larger values of p ≤ 1+ 1
β , S

∞
ā,p is restricted to one value or ā /∈ S∞ā,p. Hence,

ā is a p−consensus outcome with

p = min

(
1

1 + |ā|

(
1 +
|ā|
β

)
, 1 +

1

β

)
.

The minimum is 1+ 1
β iff |ā| ≤ −

1
β . This shows the result in the case β ≤ −

1
1−p .

�
Computations underpinning correlate equilibria in Sec-

tion 3.1
Given that p = 1 + 1

β , β < −1 and −1/β ≥ ā > 0, computations show
âU < 1 for ε small enough (note that βā + ā − ā′ < −ā′ < 1) and âU > ā
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follows from ā′ < (1−ε)β
1−βε ā. Hence, âU is the optimal action for an "uninformed"

agent. Computations show âI > −1 (since qā + (1− q) ā′ < ā ≤ − 1
β ) and

âI < ā′ follows from the lower bound on q. Hence, âI is the optimal action for
an "informed" agent. Lastly, α and α′ satisfy the equilibrium conditions. The
conditions âU ∈ (ā, 1) and âI ∈ (−1, ā′) imply α, α′ ∈ (0, 1). �
A heterogenous prior distribution can be defined.

In the second subcase ā > −1/β, p = 1
1+ā

(
1 + ā

β

)
, for any small enough

ε > 0, we define the correlated equilibrium as follows. The 2 outcomes are ā and
some other outcome ā′. There are 2 types of agents: Either an agent holds the
"uninformed" belief (ā with probability p− ε and ā′ with probability 1− p+ ε)
and plays an action âU (defined below), or an agent holds the "almost informed"
belief (ā with probability q > p and ā′ with probability 1 − q) and plays the
action −1. When the outcome is ā, a proportion α of agents (defined below)
holds the "uninformed" belief and the remaining proportion holds the "almost
informed" belief. When the outcome is ā′, the proportion of agents holding the
"uninformed" belief is α′ (defined below).

We now write the conditions ensuring that this distribution of actions and
beliefs is a correlated equilibrium. The optimal action âU of an "uninformed"
satisfies

âU = β ((p− ε) ā+ (1− p+ ε) ā′) ∈ (−1, 1) ,

and the optimal action of an "almost informed" is −1 if

−1 ≥ β (qā+ (1− q) ā′) .

When the outcome is ā, given the distribution of beliefs in the population, the
equilibrium condition is

ā = α (−1) + (1− α) âU ,

and, when the outcome is ā′, the equilibrium condition is

ā′ = α′ (−1) + (1− α′) âU .

An equilibrium is obtained for (α, α′, q, ā′, âU ) satisfying

ā′ ∈
(
−1,

1− β (p− ε)
β (1− p+ ε)

ā

)
⊆ (−1, 0) ,

q ∈
(
−

1
β + ā′

ā− ā′ , 1
)

and

âU = β ((p− ε) ā+ (1− p+ ε) ā′) ∈ (ā, 1)

α =
âU − ā
âU + 1

∈ (0, 1) ,

α′ =
âU − ā′
âU + 1

∈ (0, 1) .

37



(note that there exist parameters values consistent with these conditions since

−1 < 1−β(p−ε)ā
β(1−p+ε) < 0 and −

1
β+ā′

ā−ā′ < 1).

Proof. Given that p = 1
1+ā

(
1 + ā

β

)
, β < −1 and ā > −1/β, computa-

tions show âU < 1 for ε small enough (note that ā (β − 1) ā′ < ā (1− β) <

(1 + ā) − (β + ā) ā) and âU > ā follows from ā′ < 1−β(p−ε)
β(1−p+ε) ā. Hence, âU is the

optimal action for an "uninformed" agent. The condition on q implies that the
optimal action of the "informed" is −1. Lastly, α and α′ satisfy the equilibrium
conditions. The conditions âU > ā and ā′ < 0 imply α, α′ ∈ (0, 1). �
The last case (β < 0 and ā ≤ 0) is analogous to the above case β < 0 and

ā ≥ 0, using +1 instead of −1 as a 2nd outcome when needed (to check this
point, one just has to multiply every equilibrium condition by −1).�
Proof of Proposition 5
We first give some notation. For every ā in [−1, 1], the best response

BR0,p (ā) is the solution of:

max
a

pu (a, 0) + (1− p)u (a, ā) .

With the notation of the previous section, an element τ in T is such that τu
is a Dirac measure on u. Then, τ is characterized by a distribution on A (that
is τa). With a slight abuse of notation, we identify an element τ in T with its
marginal τa on A.

We check the following simple lemma:
Lemma 2. Consider an interval of actions [a−, a+] (0 ∈ [a−, a+]), an action

that is a best response to some beliefs on [a−, a+] putting at least probability p
on 0 is an action in the interval

[
a′−, a

′
+

]
where

a′− = inf
ā∈[a−,a+]

BR0,p (ā) and a′+ = sup
ā∈[a−,a+]

BR0,p (ā) ,

Proof of the lemma. The best response a of a player to belief on [a−, a+]
putting at least probability p on 0 solves a FOC

pu′a (a, 0) + (1− p)
∫
u′a (a, ā) dP (ā) = 0,

where dP is some Borel measure on [a−, a+]. Notice that the LHS of this FOC
is an integral over the family of functions pu′a (a, 0) + (1− p)u′a (a, ā) (indexed
by ā). Furthermore, BR0,p (ā) is characterized as the solution of

pu′a (a, 0) + (1− p)u′a (a, ā) = 0.

The lemma follows. �
We are now in a position to define the sequence of sets Sn0,p. To this purpose,

denote a0
− = −1 and a0

+ = +1 and, for every n ≥ 1, define iteratively the values
an− and a

n
+ in [−1, 1] by

∀n ≥ 1, an− = inf
ā∈[an−1

− ,an−1
+ ]

BR0,p (ā) and an+ = sup
ā∈[an−1

− ,an−1
+ ]

BR0,p (ā) ,
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(clearly, 0 ∈
[
an−, a

n
+

]
and

[
an−, a

n
+

]
⊂
[
an−1
− , an−1

+

]
for every n).

• Tp (that is S0
0,p) is the set of distributions on

[
a0
−, a

0
+

]
putting at least

probability p on 0

• An action that is a best response to some beliefs in S0
0,p is an action in[

a1
−, a

1
+

]
(from the Lemma above)

• As every player is rational and has beliefs in S0
0,p, the aggregate action is

in
[
a1
−, a

1
+

]
. Hence, φ

(
S0

0,p

)
is the set of distributions on

[
a1
−, a

1
+

]
.

• S1
0,p = φ

(
S0

0,p

)
∩ S0

0,p is the set of distributions on
[
a1
−, a

1
+

]
putting at

least probability p on 0.

A comment about this argument: the key point here is that p has 2 effects
on the transition between Sn−1

0,p and Sn0,p: the "straight" effect that S
n
0,p is a set

of distributions on a subset X of actions putting at least probability p on one
specific action (the equilibrium), and the other effect (on which the iterative
contraction argument relies), that the support X on the distributions in Sn0,p
shrinks with p (X decreases in p, for a given size of the support of Sn−1

0,p ).
We now iterate the argument:

• If Sn−1
0,p is the set of distributions on

[
an−1
− , an−1

+

]
putting at least prob-

ability p on 0, then an action that is a best response to some beliefs in
Sn−1

0,p is an action in
[
an−, a

n
+

]
(from the Lemma above)

• φ
(
Sn−1

0,p

)
is then the set of distributions on

[
an−, a

n
+

]
• Sn0,p = φ

(
Sn−1

0,p

)
∩ S0

0,p is the set of distributions on
[
an−, a

n
+

]
putting at

least probability p on 0.

By a standard argument, the two sequences an− and a
n
+ converge, and S∞0,p

is the set of distributions on
[
a∞− , a

∞
+

]
putting at least probability p on 0. S∞0,p

reduces to the equilibrium iff a∞− = a∞+ = 0. If S∞0,p does not reduce to the
equilibrium, then every distribution on

[
a∞− , a

∞
+

]
putting at least probability p

on 0 is a p−consensus distribution.
A necessary condition for a∞− = a∞+ = 0 is that BR0,p is locally contracting

at 0, that is: ∣∣BR′0,p (0)
∣∣ < 1.

By the implicit functions theorem, we have:

BR′0,p (ā) = − (1− p)u′′aā (BR0,p (ā) , ā)

pu′′aa (BR0,p (ā) , 0) + (1− p)u′′aa (BR0,p (ā) , ā)
.

Then (given BR0,p (0) = 0)

BR′0,p (0) = − (1− p)u′′aā (0, 0)

u′′aa (0, 0)
,
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and the condition
∣∣BR′0,p (0)

∣∣ < 1 writes:

p > 1−
∣∣∣∣u′′aa (0, 0)

u′′aā (0, 0)

∣∣∣∣ ,
or, equivalently (differentiating the FOC u′a (BR (ā) , ā) = 0 at (0, 0)):

p > 1− 1

|BR′ (0)| . (6)

On the other hand, a suffi cient condition for a∞− = a∞+ = 0 is that BR0,p is
globally contracting:

∀ā ∈ [−1, 1] ,
∣∣BR′0,p (ā)

∣∣ < 1.

If M < 1, then this condition holds true for every value of p and p̂ = 0. We
assume M ≥ 1 from now on. We have (given u′′aa < 0):∣∣BR′0,p (ā)

∣∣ =
(1− p) |u′′aā (BR0,p (ā) , ā)|

p |u′′aa (BR0,p (ā) , 0)|+ (1− p) |u′′aa (BR0,p (ā) , ā)| ,

and
∣∣BR′0,p (ā)

∣∣ < 1 writes:

p

1− p >
(∣∣∣∣u′′aā (BR0,p (ā) , ā)

u′′aa (BR0,p (ā) , ā)

∣∣∣∣− 1

) ∣∣∣∣u′′aa (BR0,p (ā) , ā)

u′′aa (BR0,p (ā) , 0)

∣∣∣∣ .
The RHS of this inequality is smaller than (M − 1)m ≥ 0. It follows that the
suffi cient condition for convergence holds for every p such that p

1−p is above this
upper bound. Hence, the degree p̂ of p−stability satisfies:

p̂

1− p̂ < (M − 1)m,

or, equivalently:

p̂ < 1− 1

1 + (M − 1)m
. (7)

The existence of p̂ is shown in Proposition 2. Inequalities (6) and (7) imply
the first part of the proposition. Propositions 1 and 3 imply the result on
p−consensus distributions. �
Proof of Proposition 8.
As the economy is sequentially regular, using the implicit function theorem,

we obtain the existence of a neighborhood N(π̂2, ε) of π̂2 such that evaluated
at the PFE (π̂1, q̂, π̂2),

dπ2 = −
(∫

∂π2
x̂i2(x̂1, ŷ)di

)−1 ∫
[∂yx̂

i
2dŷ

i + ∂x1
x̂i2dx̂

i
1]di

where dŷi = ∂π1
ŷidπ1 + ∂qŷ

idq + ∂π2
ŷidf i and dx̂i1 = ∂π1

x̂i1dπ1 + ∂qx̂
i
1dq +

∂π2
x̂i1df

i for all i ∈ I and dπ1 = (π1 − p̂1), dq = (q − q̂) and df i =
(
f i − π̂2

)
.
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As the PFE is sequentially regular, J−1
11 =

(
z1 z2

z3 z4

)
exists. From the

market clearing conditions in the spot markets at t = 1, by computation,
it is checked that dπ1 = −z1(

∫
∂π2

x̂i1df
idi) − z2(

∫
∂π2

ŷidf idi) while dq =
−z3(

∫
∂π2

x̂i1df
idi)− z4(

∫
∂π2

ŷidf idi). It follows that setting

Mi =

(∫
∂π2 x̂

i
2di

)−1
 (
∫ (
∂yx

i
2∂p1 ŷ

i + ∂x1 x̂
i
2∂π1 x̂

i
1

)
di)(z1∂π2 x̂

i
1 + z2∂π2 ŷ

i)
+(
∫

(∂yx
i
2∂qŷ

i + ∂x1
x̂i2∂qx̂

i
1)di)(z3∂π2

x̂i1 + z4∂π2
ŷi)

−(∂yx
i
2∂π2

ŷi + ∂x1
x̂i2∂π2

x̂i1)


for each i ∈ I yields the desired conclusion.
Let B(ε̄) = {x ∈ <L2−1

++ : ‖x− π̂2‖ < ε̄}. By choosing N(π̂2, ε) ⊆ B(ε̄) so
that Π0

2 ⊂ B(ε̄), the first-order approximation used in part (i) applies to all
assignments of expectations f : I → Π0

2. It follows that

Πn
2,0 = {π2 ∈ N(π̂2, ε) : dπ2 =

∫
Midf idi, for some f : I → Πn−1

2,0 } ∩Πn−1
2,0

for n = 1, 2, 3, .... Let ṽ : I → Π0
2 be an assignment. For each i ∈ I, define v′i ∈

S(ε̄) by sign v′il = sign ṽil . Suppose there exists ε̄ > 0 such that
∥∥∫ Midvidi

∥∥ <
ε̄, for all assignment of expectations v : I → S(ε̄). Observe that the map v′ :
I → S(ε̄) is an assignment. As ‖.‖ is a monotone vector norm,

∥∥∫ Midṽidi
∥∥ ≤∥∥∫ Midv′idi

∥∥ < ε̄. Let γ(1) = supv:I→Π0
2

‖∫ Midvidi‖
ε̄ . Then, γ(1) < 1 and

Π1
2,0 ∩Π0

2,0 ⊆ B(γ(1)ε̄). For n = 1, 2, ... define γ(n) = supv:I→Πn−1
2,0

‖∫ Midvidi‖
ε̄ .

Observe that Πn
2,0 ∩ Πn−1

2,0 ⊆ B(γ(n)ε̄). Further, as ‖.‖ is a monotone vector
norm, 1 > γ(n − 1) > γ(n). It follows that ∩n≥0Πn

2,0 ⊆ ∩n≥0B(γ(n)ε̄) ⊆
B(γ(0)nε̄) = {π̂2}. As {π̂2} ⊆ Π̃2,0, it follows that Π̃2,0 = {π̂2}.
Next, suppose there exists ε̄ > 0 such that

∥∥∫ Midvidi
∥∥ > ε, for all as-

signment of expectations v : I → S(ε) where ε ≤ ε̄. Then, γ(1) > 1 and
B(γ(1)ε̄) ⊆ Πn

2,0 ∩ Πn−1
2,0 so that B(γ(1)ε̄) ⊆ ∩n≥0Πn

2,0 so that Π̃2,0 6= {π̂2} .
Suppose there exists ε̄ > 0 such that

∥∥∫ Midvidi
∥∥ > ε, for all assignment of

expectations v : I → S(ε), for each ε ≤ ε̄. For π2 ∈ N(π̂2, ε), there exists ε′ > 0
and an assignment of expectations v : I → N(π̂2, ε

′) such that
∫

Midvidi =
π2. Denote the corresponding set Mπ̂2,v and let Mπ̂2

= ∪v∈VMπ̂2,v. Note
that Mπ̂2

⊆ N(π̂2, ε
′). Hence, for any π2 in N(π̂2, ε), whenever ε is small

enough, Mπ̂2 ⊆ N(p2, ε
′), so that Mπ̂2 = Mπ2 ; moreover, Mπ2 ⊆ Π̃2,0 for each

π2 ∈ N(π̂2, ε
′′), and hence, N(π̂2, ε

′′) ⊆ Π̃2,0 for all ε′′ ≤ ε. By assumption,
Π̃2,0 ⊆ N(π̂2, ε), by continuity in p, there exists p̃ > 0 such that for all p < p̃,
Π̃2,p ⊆ N(π̂2, ε).

To check that the condition that
∥∥∫ Midvidi

∥∥ < ε̄ is invariant to the choice
of the second period numeraire, note that multiplying all prices by the same
positive scalar β > 0 implies that ε̄ on the right hand side of the condition is
now βε̄ while the expression on the left-hand side is equal to∥∥∥∥∥

∫
−β
(∫

∂π2
x̂i2(x̂1, ŷ)di

)−1

[∂yx̂
i
2dŷ

i + ∂x1
x̂i2dx̂

i
1]di

∥∥∥∥∥ = β

∥∥∥∥∫ M ividi

∥∥∥∥
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for all v : I → S(ε̄) which implies that the condition itself remains unchanged.�
Proof of Proposition 9.
For a fixed assignment of expectations v :I→Π0

2, Π0
2 = N(π̂2, ε), for some

sequentially regular PFE (π̂1, q̂, π̂2),∥∥∥∥∫ Mividi

∥∥∥∥ =

∥∥∥∥∥−
(∫

∂π2 x̂
i
2(x̂1, ŷ)di

)−1 ∫
[∂yx̂

i
2dŷ

i + ∂x1 x̂
i
2dx̂

i
1]di

∥∥∥∥∥ .
As market clearing in both periods is common knowledge,

∫
ŷidi = 0 and∫

x̂i1di = w̄1 and therefore,
∫
dŷidi =

∫
dx̂i1di = 0. If both

∂yx̂
i
2(x̂i1, ŷ

i(π̂1, q̂, π̂2))) = ∂yx̂
j
2(x̂i1, ŷ

i(π̂1, q̂, π̂2)))

and
∂x1 x̂

i
2(x̂i1,π̂2, ŷ

i) = ∂x1 x̂
j
2(x̂i1,π̂2, ŷ

i)

for all i, j ∈ I,
∫

[∂yx̂
i
2dŷ

i + ∂x1
x̂i2dx̂

i
1]di = 0, which, in turn, implies that∥∥∫ M ividi

∥∥ = 0 for every v :I→S(ε), and every ε > 0 such that S(ε) ⊂ Π0
2.

Therefore, for n = 1, 2, ..., Πn
2 = {π̂2}. By continuity of ‖.‖, there is an ε̃1 > 0

such that if

max
{∥∥∥∂yx̂i2(x̂i1,π̂2, ŷ

i)− ∂yx̂j2(x̂i1,π̂2, ŷ
i)
∥∥∥ ,∥∥∥∂x1 x̂

i
2(x̂i1,π̂2, ŷ

i)− ∂x1
x̂j2(x̂i1,π̂2, ŷ

i)
∥∥∥} < ε̃1

for all i, j ∈ I, there exists ε > 0 such that S(ε) ⊂ Π0
2 and

∥∥∫ M ividi
∥∥ < ε, for

all v : I → S(ε) and by Proposition 2, Π̃2,0 = Π̃2,p {π̂2}, 0 ≤ p ≤ 1. Next, note
that using the expression for M i derived in Proposition 1, by continuity of ‖.‖,
there is an ε̃2 > 0 such that if max

{∥∥∂π2 ŷ
i
∥∥ ,∥∥∂π2 x̂

i
1

∥∥} < ε̃2, for all i ∈ I, there
exists ε > 0 such that S(ε) ⊂ Π0

2 and
∥∥∫ M ividi

∥∥ < ε, for all v : I → S(ε).
Finally, the set ε̃ = min {ε̃1, ε̃2}. �
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