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Abstract

Least Squares estimators are notoriously known to generate sub-optimal exercise

decisions when determining the optimal stopping time. The consequence is that the

price of the option is underestimated. We show how variance reduction methods

can be implemented to obtain more accurate option prices. We also extend the

Longsta¤ and Schwartz (2001) method to price American options under stochastic

volatility. These are two important contributions that are particularly relevant for

practitioners. Finally, we extend the Glasserman and Yu (2004b) methodology to

price Asian options and basket options.
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I Introduction

Monte Carlo method to price American options seems to be an active research area.

The reason is mainly due to its �exibility to price path dependent options and to

solve high dimensional problems.

It is now standard combining Monte Carlo methods and regression methods to

price derivatives with American features. For example, Longsta¤ and Schwartz

(2001) suggest using Least Squares approximation to approximate the option price

on the continuation region and Monte Carlo methods to compute the option value

(LS). Proofs of convergence of Monte Carlo estimators are derived under various

assumptions. Therefore a small sample analysis is necessary. For example the proof

in Longsta¤ and Schwartz (2001) paper is based on various general assumptions.

Clement et al (2002) show that the option price converges, in the limit, to the

true price. However the theoretical proof in Clement et al (2002) has also some

limitations since it is based on a sequential rather than joint limit.

Glasserman et al (2004a) consider the limitations in Clement et al (2002) and

prove convergence of the LS estimator as the number of paths and the number

of polynomials functions increase together. A further assumption of martingales

polynomials is required in this case.

Glasserman et al (2004b) (GY) implement a weighted Monte Carlo Estimator

(WME) to price American derivatives and show that their estimator produces less

disperse estimates of the option price. However, no �nite-sample proof of conver-

gence of the proposed estimator is provided in that study. Furthermore, the proof

of Theorem 1 is based on a two period framework.

Applications of Monte Carlo estimators to price �nancial derivatives generally

require using variance reduction techniques. One common feature to some of the

studies cited above is that they only consider antithetic variates. As we shall see,

particularly when pricing American style derivatives using one method rather than

another makes the di¤erence when determining the early exercise value.

In this paper we analyze the �nite sample approximation of the LS (2001) and

GY (2004b) estimators by extending empirical studies such as Stentoft (2004)1.
1Note that, although we also evaluate competitive models (i.e. Longsta¤-Schwartz, 2001 and
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As shown in Glasserman and Yu (2004a) the choice of the basis function used in

the regression is very important since (uniform) convergence of the option price to

the true price can only be guaranteed if polynomials span the �true optimum�. To

address this issue, we consider di¤erent basis functions and suggest possible �optimal

polynomials�for speci�c applications. We then discuss ways to implement variance

reduction techniques in this context and study the contribution of these methods to

variance reduction and bias2. Finally, this study proposes a very simple and �exible

approach, that extends the LS Monte Carlo estimator, to price American options

under stochastic volatility. This is an important novel contribution. We show that

our method produces very accurate option prices.

II The Least Squares Monte Carlo Methods

We consider a probability space (
; F; P ) and its discrete �ltration (Fi)i=0;:::;n, with

n being an integer representing the number of time points considered. De�ne with

X0; X1; :::; Xn an Rd valued Markov chain representing the state variable recording

all the relevant information on the price of an underlying asset. Assume that Vi(x),

x 2 Rd, is the value of an option if exercised at time i under the state x. Using a
dynamic programming framework the value of the option is given by:

(1) Vi(x) = sup
�2�

E[�� (X� )jXi = x]

(2) Vn(x) = �(x)

with

(3) Vi(x) = maxf�i(x); E[Vi+1(Xi+1)jXi = x]g
Glasserman and Yu, 2004b), this is not the primary objective of the paper. In fact, any sort of

comparison to make statistical (economic) sense should report a very large number of results that

span the space of models that need Monte Carlo simulations. Clearly this is not our primary goal.

Instead we put emphasis on extending variance reductions techniques. In fact, although some of

the methodologies presented in this paper have also been considered in Rasmussen (2005) and

Broadie and Cao (2008), we believe there is scope for further investigation.
2Abadir and Paruolo (2008) propose original modi�cations of anthitetic variates and control

variates for dynamic models.
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where the expectation above is taken under the risk neutral measure.

At expiry date if the option is exercised the option holder will receive the payo¤

�(X) (see Equation 2). Prior the expiry date the option value is given by the

maximum between the payo¤ provided by the option if immediately exercised and

the continuation value (see Equation 3). As it stands Equation (3) is of little use as it

is not directly applicable. In fact, the conditional expectation is hard to compute in

this speci�c case. However, if we assume that the option value is a square integrable

function, then Vi(:) will be a function spanning the Hilbert space and one can

approximate the conditional expectation in (3) by the orthogonal projection on

the space generated by a �nite number of basis functions �ik, i = 1; 2; :::; n and

k = 0; 1; :::; K, such that

(4) Vn = �n(x)

(5) Vi(x) = maxf�i(x); E[(Vi+1(Xi+1)jXi = x]g

One can now compute the conditional expectation by a simple regression approach:

(6) Vi+1(Xi+1) �
KX
k=0

cik�ik(Xi) + "i+1

Thus, we replace the di¢ cult problem of solving (1)-(3), with a simple regression

requiring the estimation of K + 1 coe¢ cients in (6).

De�nition 1 In Equation 6 we have included the error term "i . As pointed out in

Grasserman and Yu (2004b), this approximation will be exact if De�nition 2 below

holds.

De�nition 2 If E("i+1jXi) = 0 and E[�i(Xi)�i(Xi)
0
] is non-singular, then V �i �!

Vi for all i = 0; 1; :::; n , where V �i is the estimated option price using the LS regres-

sion above.

Proof of convergence of this estimator is provided in LS (2001), but it applies to

the simplest possible case of only one exercise time and one state variable. Clement
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et al (2002) consider a multi period framework under the assumption that the num-

ber of basis functions is �xed. This means that the regression used is correct,

therefore no sample bias is considered. GY (2004a) generalize the proof in Clement

et al (2002) and show that the option price, using regression methods, converges

to the true price as the number of basis functions and the number of Monte Carlo

replications (M), (K;M)�!1. But martingales basis must be used in this case.

All the theoretical results mentioned above are very important, particularly from

a theoretical point of view. However, for practical applications of these methodolo-

gies we are more concerned with their performance in �nite sample.

In Equation (6) the conditional expectation is approximated using current basis

functions (that is �i(Xi) ). However one would expect the option price at time

i + 1 to be more closely correlated with the basis function �i+1(Xi+1) rather than

�i(Xi). GY (2004b) develop a method based on Monte Carlo simulations where the

conditional expectation is approximated by �i+1(Xi+1) rather than �i(Xi). They

show that their Monte Carlo scheme has a regression representation given by:

(7) V �i+1(Xi+1) �
KX
k=0

$ik�i+1;k(Xi+1) + "i+1

The application of this methodology requires de�ning martingale basis, E(�i+1(Xi+1)jXi) =

�i(Xi) for all i. GY (2004b) call this method regression later, since it involves using

functions �i+1(Xi+1): On the other hand, they call the LS (2001) method regression

now since it uses functions �i(Xi): Although Theorem 1 in GY (2004b) provides

a justi�cation for using regression later as opposed to regression now, its proof is

based on a single period framework. Furthermore, GY (2004b) neither provide an

empirical application nor suggest ways of obtaining martingale basis.

To start discussing one of the objectives of this paper (i.e. using variance reduc-

tion techniques), we start with a simple example and estimate early exercises values

for American put options by crude Monte Carlo methods and using the control

variate method described in section VI.3 Table 1 shows the empirical results

We have used Equations (4)-(6) to compute the price of the option and consid-

ered three in-the-money put options with strike $45, initial price $40, maturity seven
3We use the Longsta¤ and Schwartz (2001) method.
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Table 1: Monte Carlo

months, risk free rate of interest 4.88%p.a. and volatilities 20%, 30% and 40% re-

spectively. The last column shows the di¤erence, in percentages, between estimates

of the early exercise value by crude Monte Carlo, Monte Carlo with control variate,

and Binomial methods. Variance reduction techniques reduce the bias by an order

of 1.6% on average. This is likely to have a substantial impact on the estimate of

the put option price and consequently on the price of large books of options.

III Valuing American Put Options

Thus, it is important to implement Monte Carlo methods using variance reduction

techniques since it reduces the bias in the estimation of the early exercise value and

we can compute a more accurate option price. Variance reduction techniques may

help to reduce the probability of generating sub-optimal exercise decisions. In this

section we �rst apply the LS (2001) and GY (2004b) methods to price American put

options and then implement the same methodologies using di¤erent basis functions
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and di¤erent variance reduction techniques. As pointed out the choice of the basis

functions is very important since (uniform) convergence can only be guaranteed if

the polynomial used is an �optimal polynomial�.

We start with a simple application which is in line with previous works (see for

example Longsta¤ and Schwartz, 2001 and Stentoft, 2004) where we use standard

antithetic variance. Prices reported are averages of 50 trials. We report standard

errors and root mean square errors as a measure of the small sample bias and bias in

the estimation of the conditional expectation in (6). As a benchmark, we consider

a Binomial method with 10,000 time steps. Table 2 shows the empirical results.

To implement the GY (2004b) estimator we specify the following martingale basis

under geometric Brownian motion and exponential polynomial:

(8) �ik(Xi) = (Xi)
k exp�(kr + k(k � 1)�2=2)(ti � t0)

On the other hand we could not �nd a valid martingale speci�cation for polynomials

when Laguerre basis were used. Finally, following GY (2004a) Hermite polynomials

(Hk) are martingales after the transformation in (9)

(9) �ik(Xi) = t
k=2Hk
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We use in this case Equation (7) instead of Equation (6) to estimate the condi-

tional expectation. The �rst column in the Table 2 shows the methodologies used

(i.e. Glasserman and Yu, 2004b and Longsta¤and Schwartz, 2001). The second col-

umn shows volatilities and time to expiry of the options. The strike is assumed to be

$45 and the initial stock price $40. Therefore we only consider in the money options.

The risk free rate of interest is assumed to be 4.88% p.a. Fifty time steps are con-

sidered in combination with 100,000 Monte Carlo replications. We use two di¤erent

polynomial basis, namely exponential and Laguerre of order two, three and four.

Following Brodie and Kaya (2004) the RMSE is de�ned as4 (bias2 + variance)1=2.

The results in the Table 2 suggest that, in general, Laguerre polynomials are appro-

4Refer to Broadie and Kaya (2004) for details
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priate. Small RMSEs and standard errors support this conclusion. RMSEs con�rm

what has been found in other empirical studies. That is, the convergence of these

estimators is not uniform, and increasing the number of basis does not necessarily

reduce the bias.

IV Regression Methods and Moment Matching

One important issue when pricing derivatives by simulation is that we can con�-

dently price the option if, in the �rst place, we have correctly simulated the dynamics

of the underlying asset. Moment matching helps achieving this goal. This particular

variance reduction technique has never been considered in the type of applications as

the ones in this paper. Therefore, it is of some interest, especially for practitioners,

to see if it is suitable for these applications.

We follow Boyle et al (1997) and consider an Rd valued Markov chain sequence of

simulated paths X0; X1; :::; XM (with M being the number of Monte Carlo simula-

tions) and assume that we know the expectation E(X) = exp(�rt)X0. The sample

mean process of the sequence can be written as:

(10) X(t) =
1

M

MX
j=1

Xj

In �nite sample we know that E[X(t)] 6= X(t). However we can adjust the simulated
paths such that the sample mean is equal to E[X(t)]

(11) eXj(t) = Xj(t) + E[X(t)]�X(t)

where eXis the new simulated path after the transformation.
Consequently, we have that E[( eX(t)] = E[(X(t)] and the mean of the simulated

sample path matches the population mean exactly. Apart from matching the �rst

moment of the process, we can also match higher order moments such as the variance

for example. In this case we can re-write the process in (11) as
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(12) fXj(t) = [Xj(t)�X(t)]
�X
sX

+ E[X(t)]

where �X and sX are, respectively, the population and the sample variance.

One important drawback of the process in (12) is that sample paths are correlated

and therefore it is unlikely that the initial and the simulated processes will have

the same distribution. The correlation also makes estimates of standard errors

meaningless. To overcome these drawbacks, in the empirical application, we extend

this variance reduction technique as showed in Glasserman (2004) and implement

the additive process in (12) to the standard Brownian motion process W (t), in the

following way:

fWj(t) = [Wj(t)�W (t)]=
sWp
t

where W (t) is the mean of W , and sW is the standard error.

To preserve independence between sample paths, we also re-scale the increments

of the process W (t) as follows:

fWj(ti) =
nX
i=1

p
ti � ti�1

Zij � Zj
sj

where Zij are standard normal variables, Zj is the mean of Z, and s2j =
1

M�1
PM

j=1(Zij�
Zj)

2.

V Empirical Results

We only consider one of the options presented in Table 25. We consider a put

option with seven months to expiry, volatility 40%, initial stock price $40. The rate

of interest is 4.88%p.a. We set the number of steps equal to 50 in all the experiments

and compute standard errors and root mean squares errors for sample size of 16, 70,

300, 1000 based on 2000 simulations. Values are reported in log term.
5More cases were analysed but not reported to save space. Results are more or less una¤ected.

These simulations are available upon request.
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Figure 1: Standard errors versus sample size in pricing an American Put option

with strike $45 and initial stock price $40.

In Figure 1 we compare standard errors versus sample size for GY (2004b) and

LS (2001) methods using antithetic variates (A) and moment matching (MM). Anti-

thetic variates outperform moment matching in this case. This becomes particularly

relevant as the sample increases. Interestingly standard errors for GY (2004b) and

LS (2004) methods are narrower when moment matching is used (i.e. almost indis-

tinguishable).

Root mean squares errors versus sample size are reported in Figure 2. Antithetic

variates outperforms moment matching as the sample size increases. Thus, in this

case, standard antithetic variates seem to do better than moment matching. In the

next section we shall present an alternative approach based on control variates.
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Figure 2: Root mean squares error versus sample size in pricing an American Put

option with strike $45 and initial stock price $40.

VI Regression Methods and Control Variates

The method of control variates is one of the most popular variance reduction tech-

niques and has many analogies with moment matching. Applications of this method-

ology in �nance for pricing, (Rubinstein, et al, 1985), or model calibration (Glasser-

man and Yu, 2005) are very common. In this section we implement the Longsta¤

and Schwartz (2001) and Glasserman and Yu (2004b) methodologies using control

variates.

Suppose that, given a stopping time � 2 �(t; T ) and the state variable Xi, we

want to estimate the price of an option that, as in (1), can be obtained by solving

the following conditional expectation:

(13) Vi(x) = sup
�2�

E[�(X� )jXi = x]
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for the set of all possible stopping times � .

Consider the functions �ik(x) and impose that

De�nition 3 For i = 1; :::; n� 1; �ik(x) is in L2(�(Xi)); �idenotes the orthogonal

projection from L2(
) onto the vector space generated by f�1(x); �2(x); :::; �K(x)g

De�ne the sample estimator of the option using M independent paths:

(14) �eVi = 1

M

MX
j=1

X:j = Vi

Glasserman and Yu (2004a) show that under certain conditions the sample esti-

mator of the option will converge almost surely to the option price. De�ne now the

estimator of the option using control variates as follows:

(15) � bZi = �eVi + �i[�Yi � Ei(Y )]
where � is a previsible process in F with EF [(�)]2 <1 and Y is a random variable

for which we can compute the conditional expectation.

The sample estimator in (14) can be written as:

(16) �eVi = 1

M

MX
j=1

( bZj:)

(17) � bZi = �eVi + �i[�Yi � Ei(Y )]
limi!1 �E[�Y� � Ei(Y ))] = 0
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Therefore the following result follows

(18) Ei( bZ) = Vi
From (15) it follows that V ar[Zi(�i)], particularly we have V ar( bZi) � V ar(eVi)

if

(19) ��i = �
Cov[ bZiYi]
V ar[Yi]

Therefore e¢ ciency can be gained by minimizing �i in (19). One way of doing so is

to use a simple Least Squares approach, that, we already use to compute estimates of

the conditional expectation. The estimation of �i will introduce some bias. However,

this will vanish as we increase the number of replications. As pointed out in Boyle,

Broadie and Glasserman (1997), the estimator of �i does not need not be very

precise to achieve a reduction of variance when only one control is used. It becomes

important when multiple controls are introduced. In our empirical application we

�x �i = 1.

VII Empirical Results

Table 3 shows an empirical application of control variate. To implement the estima-

tor we sample the (discounted) price of a similar European option at each possible

stopping time. This, by construction, should de�ne a martingale at that time.

Results are rather encouraging and show that the prices estimated by control

variates are rather precise, both with exponential and Laguerre basis. This result is

in line with Broadie and Cao (2008). However in that study only few options with

the same volatility are considered6.

6Furthermore, we also consider di¤erent basis functions. Finally, it is worth mentioning that

their numerical exercise assessing the Glasserman and Yu methodology is rather limited, while in

this study is far more exhaustive.
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If we compare these results with the ones reported in Table 2, it is evident that

the RMSEs are much smaller in this case. Therefore the error in the estimation of the

conditional expectation (in Equation (6)) is also reduced. Standard errors are also in

general smaller than the ones in Table 2. Consequently the small sample bias is also

reduced. Note that when Laguerre basis are used the LS method shows the expected

uniform convergence. Three basis are su¢ cient to achieve a low RMSE. It is not

always the case that the GY (2004b) method produces the smallest standard errors.

This result may not entirely support Theorem 1 in Glasserman and Yu (2004b)7. To

7The assumption of �nite variance on the basis (see Assumption C1 in Glasserman and Yu,

2004b) may also be another reason. However a more detailed analysis is required here. This issue

was also considered in Broadie and Cao (2008) reaching somehow a di¤erent conclusion. However,

as already mentioned, the small sample investigation of the GY method is rather limited.
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provide more empirical evidence supporting control variates, we measure the impact

of control variate on the estimates of the option price in Table 3 by calculating the

variance reduction factor (VR). The VR has been calculated as the ratio of the

estimate of naive variance and the estimate of control variate variance. We have

considered a sample of 30 options (including the options in Table 3) with volatilities

20-40% and time to expiry up to four months. The VR factor ranges between 0.45

and 5. If we choose the middle range, this result would imply that the variance

of control variates estimators is 1/3 smaller than the variance of the Monte Carlo

estimators. Obviously this is likely to have a substantial impact on the estimates

of the continuation value and on the estimates of the option price. Therefore,

practitioners wishing to use these methodologies to price American "plain vanilla"

put options, should consider the Longsta¤and Schwartz (2001) method implemented

by control variates as showed in the previous section. Also, in line with previous

studies we �nd that Laguerre basis are the ones suitable for these speci�c �nancial

instruments.

VIII Valuing American Asian Options

We consider the previous methodologies when pricing more complex options such

as American Asian options and options written on a maximum of n�assets. It is
with this type of options that Monte Carlo methods become interesting.

As in Longsta¤ and Schwartz (2001) we consider pricing an American Asian op-

tion having also an initial lockout period. In order to use the option prices reported

in Longsta¤ and Schwartz (2001) as benchmark, we consider an American call op-

tion that after an initial lock out period of three months can be exercised at any

time up to maturity T . We assume T = 2 years. The average is the (continuous)

arithmetic average of the underlying stock price calculated over the lock out pe-

riod. We implement the LS (2001) and GY (2004b) methodologies by using control

variates methods. There are no studies applying and implementing the GY (2004b)

methodology in this context. The choice of the control in this case falls, obviously,

on the price of an equivalent geometric option. Therefore, we use the methodology
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described above and the price of a geometric average option as a control. As in

Longsta¤ and Schwartz (2001) the strike price is $100, the risk free rate of interest

6% and volatility 20%. We use di¤erent scenarios for the stock price and assume

200 steps for both stock price and average. Results are reported in Table 4.

As in Longsta¤ and Schwartz (2001),we use the �rst eight Laguerre basis8 and

30,000 to 75,000 replications. Furthermore we also consider exponential basis. Using

�nite di¤erence methods LS (2001) report option prices equal to $0.949 ($80), $3.267

($90), $7.889 ($100), $14.538 ($110) and $22.423 ($120)9. In general, our results

support the ones in Tables 3 of Longsta¤ and Schwartz (2001). That is, the LS

(2001) method produces a very accurate option price. If we calculate the early

exercise values in this case and compare them with prices estimates reported in

LS (2001) for the same options but using antithetic variates, we see that, with

Laguerre basis and m = 75; 000, di¤erences in the early exercise values for the

LS (2001) method ranges between 0.007 and 0.050, while in the present study the

range is between 0.001 and 0.042. This is in line with what we pointed out at the

beginning. The choice of variance reduction techniques is important when pricing

option with American features since it reduces the probability of generating sub-

optimal strategies.

8That is, �rst two Laguerre basis on the stock price and average plus cross products including

an intercept.
9Number in the brackets are initial stock prices and the initial average value for the stock price

is assumed to be 90.
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In Table 5, we extend the Glasserman and Yu (2004b) method to price American

Asian options. We use Hermite basis (�KH) to satisfy the Assumption 2, fK�KH
with fK = tK=2. The method seems to underestimate the option price.

However, in general, more work is necessary to implement this methodology since

the choice of a martingale basis might be fundamental. On the other hand it seems

that this fundamental problem has become more, to use Chris Rogers�s words, �an

art than a science.� As pointed out above we shall address this important issue

in a separate study. Therefore, in practical applications, as the one considered in

this section, we suggest using the LS (2001) methodology and control variate in

combination with Laguerre basis functions.

IX Valuing American Basket Options

Finally, we consider an additional high dimensional problem. We consider an Amer-

ican call option written on a maximum of �ve risky assets, paying a proportional

dividend. We assume that each asset return is independent from the other. Once

again, we use the same parameter speci�cations as in Longsta¤ and Schwartz (2001)

and Broadie and Glaserman (1997) so that we can use prices reported in these papers

as benchmark. In this application we simply use antithetic variates.

Broadie and Glasserman (1997) use stochastic mesh to price these type of options

and report con�dence intervals. We consider three di¤erent options with initial stock

prices of 90,100, and 110 respectively. The assets pay a 10% proportional dividend,
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the strike price of the option is 100, the risk free rate of interest is 10%p.a and

volatility 20%. Con�dence intervals in Brodie and Glasserman (1997) are [16.602,

16.710] when the initial asset value is 90; [26.101, 26.211] with initial asset value of

100, and �nally [36.719, 36.842] when the initial value is 110. The option prices in

Longsta¤ and Schwartz (2001) are respectively, 16.657, 26.182, and 36.812 and they

all fall within the Broadie and Glasserman �s con�dence interval.

All the estimated prices in Table 6 fall within Brodies and Glasserman�s con�-

dence intervals. We also extend the GY (2004b) method to price basket options (see

Table 7)10. We use Hermite polynomials to satisfy Assumption 1 in GY (2004b).

We note that option prices estimates fall within the Broadie and Glasserman �s

con�dence interval when 50,000 paths are considered. The martingale basis used in

10Again this is completely new in the literature.
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this case seems to be appropriate. Therefore in practical applications we suggest

using the LS (2001) methodology and Hermite basis. However, in this case, the

Glasserman and Yu method, in combination with Hermite martingales basis, can

also be used.

X Pricing American Derivatives under Stochastic

Volatility

In this section we propose a novel approach, which extends the LS (2001) method

to price options when the volatility is stochastic. This is a novel contribution in this

area since the large majority of studies have only considered deterministic volatil-

ity. In this paper we consider the Heston (1999) stochastic volatility model to

price American options. The Heston model is probably the most popular stochastic

volatility model. The model is very popular because it can be extended to include,

for example, jumps in a rather simple fashion. The variance process in this model

follows a square root di¤usion process

(20) dSt = �Stdt+
p
VtStdW1t

(21) dVt = k(� � Vt)dt+ �
p
VtdW2t

dW1tdW2t = �dt where
p
Vt is the volatility, � the long variance, k represents the

speed of mean reversion, � is the volatility of variance, and � the correlation between

stock returns and the volatility process. Finally W is a Winer process. Using the

above model Heston (1999) derives a closed form solution for European options. For

American options, as in the case of deterministic volatility, there is no closed form

solution. However, stock prices can be simulated using Monte Carlo methods. An

Euler discretization method consists in de�ning a set of times t0 < t1 < ::: < tn, and

using the Euler equation. This will introduce a discretization bias. However, this

bias can be reduced by increasing the number of time steps. This will obviously re-
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duce the e¢ ciency of the method since it increases the computational e¤ort. There-

fore, the choice of the time steps to implement the Euler method is an important

issue. In general, to achieve convergence of the simulated price to the true price,

the number of times steps is set proportional to the square root of the number of

simulations. But the constant of proportionality is rather di¢ cult to determine in

advance. Generally an Euler method applied to the variance process would use (22)

instead of (21)

(22) Vt+1 = V (ti) + k(� � V (ti))[ti+1 � ti] + �
p
V (ti)

p
ti+1 � tiZi+1

where Zi~N(0; 1)

In what follows we discuss a simple way of implementing this scheme. The

main aspect of our simulation approach consists in transforming the model such

that the discounted stock prices are martingales. There are di¤erent reasons for

doing so. Firstly, this modi�cation is necessary in order to preserve the martingale

assumption, imposed upon many theoretical models. Also the constant expectation

property of martingales might be important in order to control for the number of

time steps in the simulation.

As in Heston the free arbitrage PDE that any option must satisfy in the presence

of stochastic volatility is given by

(23)
@O

@t
+
1

2
V 2S2

@2O

@S2
+
1

2
�2
@O

@V 2
+�V S�

@2O

@S@V
�rO+rS @O

@S
+(k[��V ])��(S; V; t)�

p
V
@O

@V
= 0

with the option price function given by O = f(t; St; Vt) and �(S; V; t) being the

market price of risk.

By setting �(S; V; t) = k
p
V , or �(S; V; t)�

p
V = k�V , the above equation can

be re-written as

(24)
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1

2
V 2S2

@2O

@S2
+
1

2
�2
@O

@V 2
+�V S�

@2O

@S@V
�rO+rS @O

@S
+(k[��V ])�k�V @O

@V
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First note that Equation (24) can also be obtained within a risk neutral framework

by means of a change of measure (i.e. moving from the original probability measure

to the equivalent martingale measure). Also note that the term on @O
@V
corresponds to

the drift term in (22). This is therefore the risk neutralized drift term of the process

(22). We propose a further transformation of the drift above. Set � = k�, then the

market price of risk becomes �(S; V; t) = �V , also set k� = k(1+ �), and �� = �=k�,

then the process in (22), after some algebra manipulation, can be re-written as

(25) V (ti+1) = V (ti) + k
�(�� � V (ti))[ti+1 � ti] + �

p
V (ti)

p
ti+1 � tiZi+1

The drift term in (25) is now equivalent to the drift process in (24). In our

empirical application, we have used this modi�ed Euler equation to simulate the

variance process. Finally, we use a re�ection rule to avoid negative values for the

process
p
V . Additionally to the variance process, to simulate the model we also

need to simulate the stock price process. First note that the risk neutral drift on @O
@S

is also the risk neutralized drift term to be used in (20). With this transformation

in mind and the one on the variance process, we have now that the discounted

stock price process is a martingale. To implement the Euler method we apply the

Ito Lemma to the portfolio process above and after some algebra manipulation we

obtain the Euler equation for the stock process shown below

ln(S)(ti+1) = ln(S(ti) + (r � 1
2
V (ti))[ti+1 � ti] +

p
V (ti)

p
ti+1 � tiZi+1

There are several reason for using this approach. In fact, although under our

drift transformation, discounted stock prices are martingales, we cannot be sure that

these are positive martingales. To avoid a negative martingale process we consider

the process above. Finally, the log transformation should further help us to reduce

the discretization error.

XI Empirical Results

We �rst apply the methodology described above to price European options under

stochastic volatility. In this case we can compute option prices in closed form using
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the Heston formula. To check that results are not driven by a speci�c choice of

parameters, we consider a variety of di¤erent parameters and compute the absolute

error with respect to the closed form price. We consider put options with strike equal

to $10, initial stock price $9, the risk free rate of interest is 10%p.a., the long run

mean variance is 0.16, the correlation coe¢ cient 0.1, and the expiry three months.

The basis functions considered are simple exponential basis (the �rst three) for the

stock price, one exponential basis for the variance process and the cross product

of the �rst basis for the stock price and the variance process. Prices have been

computed using 50 times steps and 3000 simulations. Table 8 below reports the

empirical result.

As expected our methodology can generate prices that are rather accurate. Given

the modest number of time steps used in comparison with a standard Euler scheme

approach, it is clear that there is a substantial gain in terms of computational time.

We now further extend the methodology to price American put options. We

use the same speci�cations as above and control variates11. We use the approach

described in Section VI, but the price of the European option is now sampled at

maturity. Table 9 shows the empirical results.

11Its worth mentioning that the control variate method has not been considered in the literature

(at least not on the best of our knowledge) in this area.
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We compare our approach with the Longsta¤ and Schwartz (2001) method-

Monte Carlo (MC)- with 200,000 (antithetic variates) simulations and 500 time

steps. Absolute errors (AE) gives an idea of the size of the error. This seems to be

small for all the parameters we have chosen. Standard errors are also very small.

We have also tested our methodology to price options with longer maturities. In

fact some of the methodologies proposed in the literature fail exactly in this context.

We only report one single case here. We consider an in-the-money put option with

the same model speci�cations as the ones in the table above but one year to expiry

and V = 0:0625; � = 0:45; � = 5: The European option price is $0.623. Using this

price as a control, we compute the American option price absolute (0.0578) and

standard errors (0.00065). Our methodology seems to be also applicable to price

longer maturity options and it shows a reasonable degree of precision.
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XII Conclusion

From an academic and even a practitioner�s point of view, pricing American options

still remains an interesting research area, particularly when Monte Carlo method

is used. This is mainly due to the �exibility of this methodology to accommodate

high dimensional features.

Recently, Longsta¤ and Schwartz (2001) and Glasserman and Yu (2004b) pro-

pose two option pricing estimators based on Monte Carlo simulations. This study

contributes to the existing literature in many di¤erent ways. Firstly, it extends some

recent estimators for American options pricing by implementing variance reduction

techniques and shows that, in this way, one can reduce the probability of choos-

ing sub-optimal exercise decisions and, consequently, reduce the option price bias.

Rogers (2002) formulated the problem in Equation (3) as its dual and showed that

one can use a martingale approach to reduce the probability of choosing sub-optimal

policies when determining the early exercise value. However, that approach requires

designing an optimal martingale and there is no clear cut rule yet on how to achieve

it. In a companion paper we show how designing martingales bounded in the Hilbert

space and pricing options under this measure. Of course our Monte Carlo analysis

might be limited in the sense that it does not allow us to clearly de�ne the best

candidate (i.e. methodology). However, our empirical results may provide a guid-

ance to traders. The methodology described in this study (see Table 3) produces

standard errors and root mean squares errors that, in general, are of the same order

of magnitude. This result implies that no error overcomes the other (i.e. small

sample error and the error induced by using the Least Squares rule to determine the

optimal stopping time). This should make our approach very appealing in empirical

applications. This study also shows how extending the Glasserman and Yu (2004b)

estimator to solve high dimensional problems. This is a novel contribution.

Finally, we propose a novel approach to price options under stochastic volatility.

This represents a major contribution of this paper. The proposed methodology is

�exible and e¢ cient and it is compared with existing methods, providing in all cases

precise option prices.

Overall, we found that option prices estimates using LS (2001) and GY (2004b)
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methodologies are accurate regardless the type of option considered (although for

multidimensional problems the Longsta¤ and Schwartz, 2001 methodology and La-

guerre basis seem to be the best combination). A large part of the sample bias

can be eliminated with an acceptable number of replications (i.e. 100,000). With

the Longsta¤ and Schwartz methodology the empirical results in Table 3 favour

Laguerre polynomials and control variates. The choice of Laguerre basis is in line

with Longsta¤ and Schwartz (2001). Therefore, in practical applications, we rec-

ommend using Laguerre polynomials. In general, a number of basis equal to three,

100,000 replication and control variate seem to be the right combination to achieve

a substantial level of accuracy.
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