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Abstract

A large literature in behavioral economics has emphasized in the last decades the
role of individual differences in social preferences (such as trust and altruism) in in-
fluencing behavior in strategic environments. Here we emphasize the role of attention
and working memory, and show that social interactions among heterogeneous groups
are mediated by differences in cognitive skills. Our design uses a repeated prisoner’s
dilemma; we compare rates of cooperation in groups of subjects separated according
to their IQ, with those in integrated groups, where subjects of different IQ are pooled
together.

In integrated groups we observe higher aggregated cooperation rates and profits
than in separated groups. There are gains in earnings among lower IQ subjects who
learn how to cooperate faster than when they play separately, and smaller losses for
higher IQ subjects. We also see that higher IQ subjects become less lenient when they
are matched with lower IQ subjects than when they play separately.

This pattern is an instance of a general phenomenon, which we demonstrate in an
evolutionary game theory model, in which higher IQ among subjects induces –possibly
thanks to better working memory– a lower frequency of errors in strategy implemen-
tation. We show that players indeed choose less-lenient strategies in environments in
which subjects have higher error rates. Estimations of errors and strategies from the
experimental data are consistent with the hypothesis and model’s predictions.
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1 Introduction

How do people with different cognitive skills strategically interact in a non-competitive envi-

ronment? Intelligence is an important characteristic affecting strategic behaviour (e.g. Jones,

2008; Gill and Prowse, 2016; Alaoui and Penta, 2015). Accordingly, in repeated games of

cooperation the level of intelligence of players is a crucial factor. Proto et al. (2019) find that

when subjects are allocated into two groups on the basis of their intelligence, only the higher

intelligence groups converge to full cooperation in complex, non-zero-sum games such as the

repeated Prisoner’s Dilemma. However, such separation of individuals into distinct classes

of intelligence seldom occurs in everyday life. Thus, the questions how groups interact, and

how people of different types within that group influence one another, remain open.

To provide insights into these issues, we conduct an experiment using a game that allows

us to see how people cooperate when they are repeatedly interacting with people of the

same or different levels of cognitive skills. In our laboratory experiment, we find strong

evidence that players of lower IQ cooperate more and profit more, and more quickly, when

integrated with players of high IQ. Cooperation rates in such integrated groups substantially

increase among less-intelligent players (with IQs in the 76-106 range), and slightly decrease

among more-intelligent players (those with IQs in the 102-127 range). Cooperation rates and

payouts are slightly lower in integrated groups than in the high-IQ-only groups. However, the

results show higher aggregated levels of cooperation and payoffs for the groups of integrated

levels of intelligence. We identify a critical difference in the frequency of strategies in the

integrated-intelligence setting, than in those with solely higher-IQ players: Players shift

toward less-lenient strategies.

We argue that this is an instance of a general phenomenon: if the fraction of players with

limited cognitive skills increases, and, thus, the average probability of errors also increases,

players will adopt stricter strategies. To understand this complex mechanism of learning

and teaching, we analyze a model that treats differences among players or among groups as

differences in the working memory. A lower working memory entails a larger probability of

error in implementing a strategy. We focus here not on the errors in the choice of action, but

on errors in the management of the strategy (errors in transition). We model the strategy as

an automaton in which the essential part of the management of the strategy is to correctly

choose the next state in the automaton, given the current state and the observed action

profile. We assume that a lower working-memory ability produces more frequent errors in

this management. We study the effect on the frequency of strategies in the population at the

evolutionary equilibria of two different benchmark models (the proportional imitation model

and the best response model; Gilboa and Matsui, 1991; Schlag, 1998). The cognitive skills
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distribution determines the error rates which in turn determine the strategy. High error rates

lead subjects to shift towards the Always Defect strategy. This is the least-lenient strategy,

and it leads to the least efficient outcome.

Strictly following the hypothesis of the model, we estimate the error rates and the equi-

librium strategy. We find a pattern consistent with the predictions of the model: in envi-

ronments where subjects commit more errors, players employ stricter strategies.

A large literature in behavioral economics has emphasized in the last decades the role

of individual differences in attitudes toward others. These theories suggest that social pref-

erences, such as trust and altruism (facets of agreeableness one of the Big Five personality

traits) as determining behavior in strategic environments (see e.g. Fehr and Schmidt, 2006,

for a survey). Here we explore a completely different mechanism based on cognitive abilities;

to the best of our knowledge, our model is the first to analyze the relationship between error

rates and strategic choices. Individual cognitive skills, specifically working memory deter-

mine error rates. Bordalo et al. (2017) emphasize the centrality of working memory even in

simple economic choices in a recent contribution.

Experimental evidence (e.g. Dal Bó, 2005; Dreber et al., 2008; Duffy and Ochs, 2009;

Dal Bó and Fréchette, 2011; Blonski et al., 2011) shows that people tend to choose efficient

strategies leading to cooperation under repeated interactions, when gains from cooperation

are sufficiently large. Fudenberg et al. (2012) analyze the effect of exogenously induced

uncertainty in the implementation of different strategies in games of cooperation under re-

peated interactions; they show that players factor in this noise, and become more lenient

and forgiving. In Fudenberg et al. (2012) the subjects know that their action can be imple-

mented with an exogenously induced error, which represents a key difference with respect to

our setting. There is experimental evidence (e.g. Camerer et al., 2002; Hyndman et al., 2012;

Cason et al., 2013) that players in laboratory settings teach others how to play efficiently.

In our setting, however, there is no active teaching. Individuals update their beliefs by ob-

serving partners’ choices, which affect their behavior in the next interaction. Some recent

findings (e.g. Vostroknutov et al., 2018) indicate that lower intelligence is associated with

more reliance on social learning through imitation. In these works, individuals are generally

aware of their intelligence difference; by contrast, in our design, these differences cannot be

observed directly.

The paper is organized as follows: Section 2 presents the experimental design. Section

3 shows the experimental evidence. Section 4 describes the main results of a model of

evolutionary game theory. Section 5 analyzes this model in detail. Section 6 estimates the

main parameters and variables of the model using our experimental data, and demonstrates

support for the model’s main predictions. Section 7 discusses the assumptions of the model.
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Section 8 concludes. The appendix contains technical analysis of the model, estimation

details, robustness checks, further experimental design details, and descriptive statistics.

2 Experiment

Our design involves a two-part experiment administered over two different days separated

by one day in between. Participants are allocated into two groups according to cognitive

ability, which is measured during the first part. They are then asked to return to a specific

session to play several repetitions of a repeated game. Each repeated game is played with

a new randomly determined partner. We have two treatments: the first treatment (called

IQ-separated treatment, or separated for short) separates subjects into two groups, one with

high and one with lower cognitive ability. The second treatment (called integrated treatment)

pools together subjects into groups that do not differ one from the other in the distribution

of cognitive ability. Subjects were not informed about the basis upon which the grouping

was made.1

2.1 Experimental design

Day One

On the first day of the experiment, subjects complete a Raven Advanced Progressive Matrices

(APM) test consisting of a of sequence of 36 questions. They have a maximum of 30 minutes

for the entire test. For each item a 3×3 matrix of images is displayed on the subjects’ screen;

the image in the bottom right corner is missing. The subjects are then asked to complete

the pattern by selecting one out of eight possible choices presented on the screen. Before

beginning the test, the subjects are shown an example of an example of a matrix with the

correct answer provided below for 30 seconds. The 36 questions are presented in order of

progressive difficulty (as sequenced in Set II of the APM). Participants are allowed to switch

back and forth through the 36 questions during the 30 minutes, and they are allowed to

change their answers.

The Raven test is a non-verbal test commonly used to measure reasoning ability and gen-

eral intelligence. Matrices from Set II of the APM are appropriate for adults and adolescents

of higher-than-average intelligence. The test is able to elicit stable and sizeable differences

in performances among individuals similar to the ones in our subject pool. This test was

1During the de-briefing stage, we asked the subjects if they understood the basis upon which the grouping
was made. Only one subject mentioned intelligence as the possible determining characteristic.
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among others implemented in Gill and Prowse (2016) and Proto et al. (2019) that find it to

be relevant in determining behaviour in cooperative or coordinating games.

Psychometric and experimental economics research seldom offers subjects rewards for

completing IQ tests such as the Raven. However, some research (e.g. Larson et al., 1994)

has found that offering a monetary reward leads to a slight increase of scores among people

of higher-than-average intelligence. We aimed to measure intelligence in a way that would

keep potential confounding with motivation at a minimum. Thus, we decided to reward our

subjects with 1 euro for the correct answer to three randomly chosen matrices among the

total 36. During the session we never mention that this is a test of intelligence or cognitive

abilities.

Following the administration of the Raven test, subjects complete an incentivized Holt-

Laury task (Holt and Laury, 2002) to measure risk attitudes. Participants also complete

a standard personality traits questionnaire, the Big Five Inventory (BFI), which includes

44 questions (with answers coded on a Likert scale).2 Participants also answer a series

of questions on demographic characteristics, subjective well-being, and previous experience

with a Raven’s test. We inform the subjects that they will not receive any monetary payment

for this section. The supplementary material includes all instructions given on the first day.3

Day Two

Subjects return to the lab for the second day part. We allocate subjects into two experimental

sessions depending on the treatment. In the IQ-separated treatment, we divide subjects into

two groups. Those with above-median Raven scores participate in what we refer to as high-

IQ sessions; the remaining subjects participate in what we refer to as low-IQ sessions.4,5

In the IQ-integrated treatment, we create groups of similar Raven scores across pairs of

sessions. To allocate subjects in second-day sessions, we rank them by their Raven scores

and separated by median. We then alternate allocating subjects of either intelligence level

in different sessions.6 Specifically, the two top Raven scorers of day one were allocated in

different sessions, subsequently the third and fourth were put in different sessions and so on.

2We use the version that was developed by John et al. (1991), and was recently investigated by John
et al. (2008).

3This is available online at https://drive.google.com/open?id=

13wL3CwP1nqZ3b84om81OfzAFyJ0z-1Py
4The attrition rate was small. Table A.1 provides the details.
5In cases in which there were subjects with equal scores at the cutoff, two tie rules were used based on

whether they reported previous experience of the Raven task and high school grades. Participants who had
done the task before (and were tied with others who had not) were allocated to the low-IQ session, while if
there were still ties, subjects with higher high school grades were put in the high-IQ session.

6Again, the attrition rate was small. Table A.2 provides the details.
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This way we ensure to integrate both intelligence levels in each of the integrated treatment

day two sessions.

Subjects are asked to play an induced infinitely repeated Prisoner’s Dilemma (PD) game.

Table 1 reports the stage game implemented. We induce infinite repetition of the stage game

using a random continuation rule: after each round whether to finish the repeated game or to

have an additional round depends on the realization of a random number. The continuation

probability is δ = 0.75. We use a pre-drawn realization of the random numbers; this ensures

that all sessions across both treatments face the same experience in terms of length of play

at each decision point. We define key terms as follows: a supergame refers to each repeated

game played; period refers to the round within a specific supergame; and, finally, round refers

to an overall count of number of times the stage game has been played across supergames

during the session. The length of play of the repeated game during the second day is either

45 minutes or until the completion of the 151st round, depending on which comes first.

The game parameters are identical to the ones used by Dal Bó and Fréchette (2011)

and Proto et al. (2019). The payoffs and continuation probability chosen entail an infinitely

repeated Prisoner’s Dilemma game in which the cooperation equilibrium is both subgame

perfect and risk dominant.7

The matching of partners takes place within each session under an anonymous and ran-

dom re-matching protocol. Participants play as partners for as long as the random continu-

ation rule determines that the particular partnership is to continue. Once each match ends,

the subjects are again randomly and anonymously matched, and start playing the game

again according to the continuation probability. Each decision round for the game is com-

plete when every subject has made their decision. After all subjects make their decisions, a

screen appears that reminds them of their own decision, indicates their partner’s decision,

and reports the units they earned for that particular round. The group size of different

sessions varies depending on the numbers recruited in each week.8 The subjects are paid the

full sum of points they earn through all rounds of the game. Payoffs reported in Table 1 are

in terms of experimental units; each experimental unit corresponds to 0.003 Euros.

Upon completing the PD game, the subjects are asked to complete a short questionnaire

about any knowledge they have of the PD game, some questions about their attitudes towards

cooperative behaviour and some strategy-eliciting questions.

7See Dal Bó and Fréchette (2011), p. 415 for more details
8The bottom panels of tables A.1 and A.2 in the appendix list the sample size of each session across

both treatments.
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Implementation

The recruitment was conducted through the Alfred-Weber-Institute (AWI) Experimental

Lab subject pool based on the Hroot recruitment software (Bock et al., 2014). All sessions

took place at the AWI Experimental Lab in the Economics Department of the University of

Heidelberg. A total of 214 subjects participated in the experimental sessions. They earned

on average around 23 Euros, including 4 Euros for participating. The experiment used Z-Tree

(Fischbacher, 2007).

We conducted eight sessions for the IQ-separated treatment; four high-IQ and four low-IQ

sessions. There were 108 participants, with 54 in the high-IQ and 54 in the low-IQ sessions.

For the integrated treatment we conducted 8 sessions with a total of 106 participants. Tables

A.1 and A.2 in the appendix report the dates of the sessions and the number of subjects per

session. Online supplementary material includes the recruitment letter.9

3 Experimental Evidence

3.1 Cooperation rates and payoffs

We start by comparing cooperation rates and payoffs across the two treatments for the two

intelligence groups. Figure 1 shows that subjects increasingly choose cooperation as their

first period choice across all treatments. Subjects in the high-IQ sessions converge faster

to almost total cooperation rates, while in the low-IQ sessions the pattern emerges more

slowly; subjects in this group converge to a cooperation rate smaller than 100 per cent (left

panel). This result essentially replicates the findings in Proto et al. (2019) by using a different

subject pool in a different country. Subjects in the integrated session have higher cooperation

rates than in the low-IQ sessions, and lower cooperation rates than in the high-IQ sessions

(right panel).10 Table 2 shows that in the first 20 supergames (roughly the first half of a

session), subjects earn about 2.5 units more, and cooperate about 10% more frequently in

the high-IQ sessions than in the integrated sessions. By contrast, they earn about 5.6 units

less cooperate about 22% less frequently in low-IQ sessions than in the integrated sessions.

After the 20th supergame, there is no longer a significant difference between high-IQ and

integrated sessions. This suggests that the less intelligent players learn to play as efficiently

as the more intelligent players in the second part of the session in the integrated treatment.

Meanwhile in the low-IQ sessions the difference in both payoffs and cooperation remains

constant. In accordance with the findings in Proto et al. (2019), Table 3 shows that IQ is

9See note 3.
10In Figure A.2 of the appendix we present the cooperation rates by session.
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not significant in determining cooperation in the first round in either of the two treatments.

This suggests that the difference in cooperation between individuals of different cognitive

skills is only due to a learning effect during the session.11

Figure 2 shows that the average payoff per interaction is consistently higher in the in-

tegrated sessions than in the high-IQ and low-IQ separated sessions, indicating that in the

integrated treatment subjects play on average more efficiently than in the separated treat-

ments.12

We summarize the findings in this section as follows: Cooperation rates and aggregate

payoffs are higher when high- and low-IQ subjects play in integrated, rather than separate

groups

3.2 Learning

Table 4 shows that – in the first 20 supergames– subjects in the high-IQ sessions increasingly

open with cooperation faster than in the integrated treatment. By contrast, cooperation

increases slower in the low-IQ session than in the integrated sessions (columns 1 and 2).

Subjects in the low-IQ sessions tend to catch-up with the others in the in the second part of

each session (column 3 and 4). This provides evidence that the less intelligent players learn

to play more cooperative strategies more quickly when they mix with the more- intelligent

players than when they play with players of similar intelligent levels.

Why do higher levels of cooperation emerge earlier in the session with a larger number

of high-IQ players? One driver appears to be subjects’ beliefs, which changes on the basis

of the experience with previous partners’ opening plays. As columns 2 and 4 of Table 4

show, the coefficients of the partners’ past cooperation in the first periods are positive and

significant. In other words, subjects whose partners opened with cooperation in previous

supergames are more likely to open with cooperation in subsequent games.

3.3 Choice of strategies in the different environments

There is widespread evidence that subjects overwhelmingly play memory one strategies in

the repeated Prisoner’s Dilemma game (e.g. Dal Bó and Fréchette, 2018; Proto et al., 2019).

Accordingly, the choices in every round of a supergame are determined by the past outcome

(hence by both a players own and a partners choice in the previous period of the supergame).

Let then chi,t represent the subjects’ choice (one for cooperate and 0 for defect), Partn.Chi,t

11Interestingly, risk aversion is the only significant determinant of cooperation at the beginning of each
session.

12Table A.3 in the appendix also underscores this trend, with total earnings and average payoff per round
significantly higher in the integrated sessions than in the separated sessions.
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represent partner’s choice and pi,t represent the probability of chi,t = 1 (conditioned on the

set of independent variables), we then have the following model:

pi,t = Λ(αi + β[Chi,t−1;Partn.Chi,t−1] + εi,t); (1)

where [Chi,t−1;Partn.Chi,t−1] is a 3-dimensional vector of dummy variables representing the

different outcomes, where (1,0,0) represents Chi,t−1 = 0;Partn.Chi,t−1 = 1, (0,1,0) repre-

sents Chi,t−1 = 1;Partn.Chi,t−1 = 0 and (0,0,1) represents Chi,t−1 = 0;Partn.Chi,t−1 = 0;

with mutual cooperation, Chi,t−1 = 1;Partn.Chi,t−1 = 1, being the baseline category. αi are

the time-invariant individual fixed-effects (taking into account time-invariant characteristics

of both individuals and sessions); εi,t is the error term. We estimate Model 1 separately for

the first 20 and the second 20 supergames by using a logit estimator.

In Table 5, we present the estimates of Model 1 for the first and the second block of

supergames. Results are reported in odds ratios and taking the outcome (C,C)t−1 as base-

line. In panel A, we note that, conditional on deviation from mutual cooperation (i.e. after

(D,D)t−1 (D,C)t−1 (C,D)t−1), the odds of cooperating at time t by high-IQ are higher when

subjects play with other high-IQ players than when they play in the integrated treatment.

This difference is, if anything, even larger in the second part of the session (as seen in panel

B of Table 5).13 This suggests that high-IQ players revert to cooperation less frequently;

hence, they adopt less-lenient strategies when playing in the integrated sessions than in the

separated sessions. Table 6 shows results of a direct test on whether high-IQ players are

more forgiving when they interact amongst each other than when they are in the integrated

treatment. We note that the high-IQ players are significantly less likely to cooperate when-

ever the other subject unilaterally defects. By contrast, the low-IQ subjects do not seem

to play significantly differently – regardless of the setting, whether playing with with other

low-IQ or in the integrated treatment after an unilateral defection. Hence, we summarize

this section as follows: High-IQ players are significantly less likely to cooperate after a uni-

lateral deviation of the partner when playing in the integrated treatment with partners in

average of lower IQ levels than when playing in the separated treatment with partners who

have similarly high IQ levels

This preliminary evidence shows that subjects learn to cooperate, and their choice of

strategies depends on their own cognitive skills as well as distribution of the cognitive skills

within the group. The high-IQ players seem to be more forgiving when they play with other

high-IQ players than when they play with lower-IQ players. Therefore, a complex mechanism

is in place and the following model allows to analyze this in detail.

13For example, considering the coefficients of (D,C)t−1 in both panels: we notice that 0.03468−0.01485 >
0.01039− 0.01450 .
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4 Errors and Strategy Evolution: Summary

We model differences among players and groups as differences in working memory. A lower

working memory entails a larger probability of error in implementing a strategy. We focus

here not on the errors in choice of action, but on errors in the management of the strategy.

We define this as error in transition, (see Section 5 for more details), and model the strategy

as an automaton. The essential part of managing a strategy is to correctly choose the next

state in the automaton, given the current state and the observed action profile. We assume

that a lower working memory ability will result in more frequent errors in this management.

We study the effect on the frequency of strategies in the population at the evolutionary

equilibria of two different benchmark models: the proportional imitation model (Schlag,

1998) and the best response model (Gilboa and Matsui, 1991). We assume that subjects

only play one of the following three strategies: Always Defect, Tit-for-Tat and Grim Trigger

strategies. This assumption relies on Dal Bó and Fréchette (2019), who show that subjects

mostly adopt these strategies. To lighten notation, in the current and next section we denote

these strategies as {A,G, T}, where A stands for Always Defect strategy, G for Grim Trigger

and T for Tit-for-Tat.14

The main results of the analysis (developed in detail in Section 5) are the following:

First, the limit behavior of the fraction of strategies is determinate (that is, the steady

states are locally unique), if, and only if, there are errors. When players have perfect working

memory, and there are no errors, either of action or of transition, the equilibria of the strategy

choice game, as well as the steady states of the learning process and the evolutionary model

are not locally unique (with the exception of the (A,A) equilibrium, which is locally unique

for all values of the parameters). Instead, when errors occur, even of arbitrarily small size,

then there are three locally unique, and locally stable steady states corresponding to the

pure strategy equilibria of the game in which players choose strategies in the repeated game.

With small errors, there are overall seven steady states, three stable, one unstable, and three

saddle points.

Second, thanks to the previous result, when errors are positive (however small) we can

define basins of attraction for each of the strategies. This provides a theoretical basis to

predict relative frequency of strategies as a function of the error rate. The size of these

basins changes in a natural way with the size of the errors. As ε becomes larger (that is, as

more error prone the group of players is), the basin of attraction of stricter strategies become

larger: that is, the size of the basin of the A strategy becomes larger than that of G and T

14Dal Bó and Fréchette (2011) and Proto et al. (2019) find evidence that the frequency of use of these
strategies by their participants ranges between 66% and 90%.
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integrated, and that of G becomes larger than that of T .

Third, which strategies survive in the long run depends on the discount δ; in all cases,

for low rates of errors all strategies may survive depending on the initial condition. For high

rates of error, only A survives. For intermediate rates, the two surviving strategies are A

and G for low δ, and A and T for high δ (see Conclusion 5.13 of Section 5 for details). As δ

tends to 1, keeping error rates fixed, the opposite happens: the basin of attraction of the G

and T strategies becomes larger; and when strategies are limited to {G, T}, the basin of T

increases to cover the entire interval.

The results described so far are independent of the specific model of evolution we adopt.

In the following we compare the evolutionary dynamics with two different models, Propor-

tional Imitation or Best Response. We find that they are qualitatively similar. In Section G

of the appendix we develop a model of learning in a population of players with heterogeneous

beliefs, who hold and update beliefs as in the model underlying our data analysis. We show

that the resulting dynamics are close to those described by the best response dynamics.

4.1 A Simple Illustration

Figure 3 provides a first intuitive understanding of the way in which the error rate affects

the basins of attraction of the three strategies. The figure reports the phase portrait of the

vector field for the Best Response dynamics, at different error rates, ranging from 0 (no error,

top left panel) to 0.25 (bottom right panel). The top right panel shows the case with a very

small error rate (0.0001). The two top panels of the figure illustrate the sudden change of

the dynamic as soon as the error becomes positive but very small. Payoffs in the stage game

are set as in our experimental design in Table 1. The discount factor (or equivalently, the

continuation probability) is the same (0.75) as in our experimental design.

The triangle in each panel of the figure is the two-dimensional projection of the simplex.

Each point in the triangle represents points (pG, pT ) such that pG + pT ≤ 1. Thus, the

frequency of the strategy (A,G, T ) is equal to (1 − pG − pT, pG, pT ). The lines in the

triangular regions represent the isoclines: an isocline is set of points at which the time

derivatives of a variable is equal to zero.15 The red line indicates the set of points at which
dpT
dt

= 0, the blue dpG
dt

= 0. These lines separated the triangular region into three subsets, each

containing the point corresponding to a pure strategy. In each of these regions the fraction

of the attracting strategy increases over time, the fraction of the other two decreases. The

interior of each of these three subsets consists entirely of points that are attracted to the

15More precisely, since we later define the Best Response dynamics as a differential inclusion, the set
of points at which zero is in the set of derivatives. In the discretization used to produce Figure (3), the
distinction between differential inclusion and differential equation is irrelevant.
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pure strategy that is contained in the boundary of the subset. For example, the basin of

attraction of A is the smaller region (also triangular) at the bottom left.

The fact that the boundaries of the regions are straight-lines follows from the special

nature of the Best Response dynamics. This figure can be compared with Figure A.9, which

reports the same results for the Replicator Dynamic (or Proportional Imitation).

Several points that appear clearly in Figure 3 are worth pointing out. First, for all error

rates, each of the three strategies has a basin of attraction in the interior of the triangular

region. In other words, all strategies survive in the range of the error rate we are considering

in this example. Second, the size of the region attracted to A increases monotonically with

the error rate. Finally, if we consider the complementary region of points that are not

attracted to A, but to G or T , we note that the relative fraction that goes to G (the strategy

which is second in order of strictness) is increasing as the error rate is increasing. Note that

as a result, whereas at the lowest error rate (top left) the T region is the largest, at the

highest (bottom left) it is the smallest. In summary, as the error rate increases, stricter

strategies become more frequent.

4.2 Why stricter strategies thrive with larger errors

The intuitive reason for the results is the following: When no error is possible, the strate-

gies G and T produce the same outcome when matched with A, and the same outcome

when matched with each other. So with no error both equilibria and dynamic behavior are

indeterminate.

When errors are possible, the first crucial fact is that the A strategy is for every error

probability the unique best response to itself (see Lemma 5.5). Hence, no matter what the

error is, the profile (A,A) remains a Nash equilibrium and a locally stable steady state. If

some strategy is eliminated, it will not be A. The second crucial fact is that at ε = 1/2 under

some condition on payoffs (which is satisfied by the payoffs in the experimental design we

adopt) the (A,A) is the unique Nash (see Lemma 5.6 for details). These two facts together

with the continuity of the value function in ε (see Lemma 5.3) imply that the set of strategies

that survive in a learning-selection model change from the entire set to the strict strategy

A. What is left to study is what happens during the transition.

When a small error is rate is made possible, the value for (say) player 1 of using G when

matched with G (call it V (GG)) and the similarly defined values V (TG), V (GT ), V (TT )

are no longer equal. Small changes of the values are sufficient to break the indeterminacy,

and in fact we will see that locally unique, locally stable equilibria emerge.

Two forces are now in place. To clarify them we consider as example how the share of
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the frequency (the relative size of the basin of attraction) between G and T changes. As

previously mentioned, in the model with no errors there is no meaning for basin of attraction

of G and T . For infinitesimally small errors, the value of the steady state that separateds the

unit interval into the two regions of attraction is determined by the ratio of the derivatives

of the gains in values for the strategy profiles (see Section 5). However the gains (coming

from small changes in error) for T are larger than those for G, hence the basin of attraction

of T is larger for small errors. This is the first force, that pins down the relative fraction of

the two strategies, and establishes (in the limit) the benchmark for the “almost no error”

model. However, there is a second force: as the error becomes larger, the difference in gains

becomes smaller, and thus the fraction of T declines. If we consider the limit case of a 50-50

probability of error, one can see that the only surviving strategy is the strictest strategy, A.

4.3 The Role of the Discount Factor

The effect of the discount factor on the basin of attraction follows naturally from the effects

of δ on payoffs. Let us consider first the case of large δ, close to 1. Consider players starting

from mutual cooperation. A small transition error can lead a player to defect. In this case

the long run loss induced by a small error in the transition of the G strategy is large: with

Grim Trigger, the state can go back to a cooperative state only by another mistake. Instead,

the effects of such an error with Tit-for-Tat are not as durable. Hence T increases fitness,

and its basin of attraction is larger.

The increase in the error rate (modelled by an error probability ε) reduces the comparative

advantage of the lenient strategy. In the limit case of an equal probability of error and correct

choice, the difference between the two strategies disappears. Thus, as the error probability

increases, the basin of attraction of Tit-for-Tat decreases as compared to that of Grim Trigger

(the stricter strategy). For a graphical illustration of the role of the discount factor, compare

Figure 3 (where δ = 0.75) with Figure A.8 (where δ = 0.6); in both cases payoffs are the

same as in our experimental design.

4.4 Evolution and Learning

The intuitive arguments we have provided so far to explain the reason for our main result –

that a higher probability of error leads to a wider use of strict strategies – are independent of

the specific evolutionary model adopted. The reason for this is that what dictates the relative

fitness of strategies is ultimately their relative profitability. So, the effect of the frequency of

errors is mediated by its effect on the payoff structure. We use two different models to argue

this point: one is the replicator dynamics, or (if we want to emphasize the social learning
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model behind the specific functional form of the change in frequency), the Proportional

Imitation Dynamics model (PID); the other is the Best Response Dynamics model (BRD).

We describe both models in Section 5 below. Section G of the appendix describes the best

response dynamics in detail, and simulate the resulting evolution of cooperation among

individuals belonging to different intelligence groups and treatments; here we follow Dal Bó

and Fréchette (2011). The results of the simulation approximate quite well the dynamics

of cooperation observed in our data (Figure A.12 in the Appendix). The estimation also

emphasizes some interesting differences in the beliefs updating according to IQ and the

composition of the group.

5 Errors and Strategy Evolution: Technical Details

In this section we present a more detailed exposition of the model of strategy evolution when

players can make errors. Readers who are satisfied with the summary presented in Section

4 can omit reading this section with no substantial loss.

Subjects can make two types of errors when implementing their strategies. Firstly, errors

in the complex process of observing the action of the others, recalling the rules of the game

and their plan of action, and deciding what to do in the future. We represent this here

(through modelling subjects’ plans as choice of automata) by a choice of the next period

state in their automaton. In line with this modeling, we can consider the possibility that

they also make an error in their choice of action when they are at a state in the automaton.

We focus in this section on the simple case of transition errors only. In Section F of the

appendix we consider the general case in which both errors in action choice and in transition

are possible. The reduction to transition error considerably simplifies the exposition, and the

results in Section F show that this case contains all the essential features. Our data analysis

testing the model estimates the complete model with both types of errors. The estimation

method is presented in Section H of the appendix. In Section G of the appendix we present

a model of population learning that allows us to establish a link with social learning models

of the type used in Dal Bó and Fréchette (2011).

In the study of the model we investigate the effect of error rates on the frequency of

strategies. It is useful to have in mind the order of magnitude of error rates that is actually

observed in our data. A summary estimate of the frequency of error rates is provided in

Section 6.1. In Figures A.4 and A.5 we report the average error rates in transition and

action. The dispersion of transition error rates across individuals is reported in Figures A.6

(for the early supergames) and A.7. The range of error rates, in the experimental groups we

consider, is for almost all participants within the range of 0 to 0.3. The mean is between
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0.2 and 0.01, but Figure 3 shows that in earlier supergames the mean can be much higher,

around 0.15 to 0.25. Overall, it seems reasonable to focus our attention conservatively (to

consider all possible relevant cases) to the range 0 to 0.25.

Setup

The stage game is a repeated Prisoner’s Dilemma game with payoff in every period given by:

C2 D2

C1 c, c s, t
D1 t, s d, d

where

t > c, d > s, t+ s ≤ 2c. (2)

These conditions are satisfied by the payoffs in our experimental design, with a strict inequal-

ity for the last. We focus on the set of the most commonly used repeated game strategies.

We consider in the following an automaton representation of these three strategies for each

player (not for the pair of players), with states DA for A, CG and DG for G, and CT and DT

for T . An automaton M is a tuple (X, x0, f, P ) where X is the set of states of the automaton,

x0 the initial state, f is a function X → Ai, where Ai is the set of actions of player i. When

we refer to an automaton we may omit the index of the player who is using that automaton,

relying on the symmetry of the game. Finally, P defines the transition probability where

P (·;x, (a1, a2)) ∈ ∆(X) (3)

We adopt the notation in terms of transition probability rather than functions (in spite of the

fact that transitions are deterministic) to allow a smooth transition to the case, considered

later, in which we introduce errors.

In the analysis that follows, when we introduce errors in transition, we will consider the

automata GC and GD as having the same transition and same action choice function as G,

but having C and D as initial state. So GD will be different from A because the state of the

automaton GD may transit back to C by mistake, whereas the state of A can never transit

to a state where C is chosen. TC and TD are defined similarly.
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5.1 Equilibrium and Evolutionary Dynamics with No Errors

We consider the normal form game where the strategy set for each player is the set

M ≡ {A,G, T} (4)

Players choose simultaneously an element in M , and the payoff is the one induced in the

repeated game by the pair of strategies or automata, reported here:

A G T
A d, d (1− δ)t+ δd, (1− δ)s+ δd (1− δ)t+ δd, (1− δ)s+ δd
G (1− δ)s+ δd, (1− δ)t+ δd c, c c, c
T (1− δ)s+ δd, (1− δ)t+ δd c, c c, c

We call this normal form game induced by the choice of strategies the strategy choice

(SC) game. This game is special, in that the two “actions” G and T are interchangeable.

The analysis of the game with three actions can be reduced to the analysis of the reduced

game with two actions {A,GT} with payoffs:

A GT
A d, d (1− δ)t+ δd, (1− δ)s+ δd

GT (1− δ)s+ δd, (1− δ)t+ δd c, c

We denote by µR the strategies in the reduced game.

By assumption (2), d > (1 − δ)s + δd. When c < (1 − δ)t + δd then A is a dominant

strategy, so there is a unique equilibrium of the reduced game (and thus of the original

strategy choice game) at (A,A). Multiple equilibria are possible when δ is larger than the

critical value

δ∗ ≡ t− c
t− d

. (5)

We consider in the following only the case in which

δ > δ∗ (6)

in this case there are three equilibria, with the mixed strategy equilibrium assigning a prob-

ability to A given by:

µR(A, δ)∗ ≡ µ∗ =
c− (1− δ)t− δd

c− (1− δ)t− (1− δ)s− δd+ (1− δ)d
(7)

Proposition 5.1. When (6) holds, the reduced game has two equilibria in pure strategies

(A,A) and (GT,GT )) and a mixed strategy equilibrium, with µR(A, δ)∗ the probability of
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A. For any such equilibrium there is a corresponding continuum of equilibria in the strategy

choice game, where the probability µR(GT, δ)∗ is assigned arbitrarily to the strategies G and

T .

Corresponding to these equilibria there is a set of steady states in the evolutionary dy-

namics we consider now. We let µ ∈ ∆(M) denote a mixed strategy and also a frequency of

choice of strategy in the population (Sandholm (2007), Weibull (1997)). When we consider

the evolution over time of the frequency, we let µ(t, ·) denote the vale of the frequency in

the population at t. We denote the payoff to a player adopting m when the frequency in the

population is µ as U(m,µ), and for any τ ∈ ∆(M),

U(τ, µ) ≡
∑
m∈M

τ(m)U(m,µ)

The time evolution of the frequency under proportional imitation is

∀m ∈M,
dµ(t,m)

dt
= µ(t,m) (U(m,µ)− U(µ, µ)) (8)

The best response correspondence is defined as taking values in mixed strategies:

BR(µ) ≡ {τ ∈ ∆(M) : ∀m ∈M,U(τ, µ) ≥ U(m,µ)} (9)

The time evolution of the frequency under best response dynamics is described by the

differential inclusion:

∀m ∈M :
dµ(t,m)

dt
∈ BR(µ(t, ·))(m)− µ(t,m). (10)

To clarify the notation, we note that µ(t, ·) is a probability measure, BR is the best response

correspondence applied to µ, and BR(µ(t, ·))(m) is the probability assigned by the best

response to m; so BR(µ(t, ·))(m) is a set. We indicate mixed strategies or frequencies in the

following as a vector (µ(A), µ(G), µ(T )).

The justification of (8) is standard (Sandholm (2007)). A justification of the equation (10)

within a population model is provided in appendix G.1.1. In this version of the model, players

in a large population know exactly, at every point in time, the frequency of strategies in the

population. However, by assumption, only some of them have the opportunity to revise their

current strategy. When they do, they adopt the best response to the current distribution.

The best response dynamics is one step closer to a model of rational learning, so it is a useful

intermediate step to build our intuition. This dynamics differs from the rational learning

model because it requires that all players have the same belief and the belief is correct. In

18



addition, as see in Proposition 5.2, the qualitative behavior of the strategy frequency is close

to that predicted by the proportional imitation model; so the study of the best response

dynamics shows the robustness of the results to changes in the detail of the dynamic model.

The dynamic behavior under proportional imitation has a natural long run behavior:

when the proportion of players choosing A is large enough, only A survives in the long run;

conversely when the initial fraction of A is sufficiently low, only cooperative strategies (G

and T ) survive. In this second case, however, the long run relative weight of G and T is

entirely determined by the initial conditions, and a small change in the initial conditions

alters the long run behavior. More precisely:

Proposition 5.2. Under both proportional imitation and best response dynamics the follow-

ing hold:

1. the set of steady states consists of the singleton (1, 0, 0); the interval

{(µ∗, µ∗p, µ∗(1− p)) : p ∈ [0, 1]} (11)

and the interval

{(0, p, (1− p)) : p ∈ [0, 1]}; (12)

2. the path with initial condition µ(0, A) > µ∗ converge to the steady state (1, 0, 0); the

paths with initial conditions where µ(0, A) < µ∗ converge to a steady state in the set

(12) above;

3. The steady states in (11) are all unstable.

In the proportional imitation dynamic, paths with initial condition (µ(0, A), µ(0, G), µ(0, T ))

are straight-lines where for every time t:

µ(t, G)

µ(t, T )
=
µ(0, G)

µ(0, T )
.

Thus a path with initial condition µ(0, A) < µ∗ converges to the steady state(
0,

µ(0, G)

µ(0, G) + µ(0, T )
,

µ(0, T )

µ(0, G) + µ(0, T )

)
In conclusion, evolutionary dynamics in the case we are considering (automata with

no memory error) cannot select among possible relative frequencies of G and T , and thus

cannot address the issue of whether a more lenient strategy (such as T ) is more or less

frequent in the long run than the stricter strategy G. The long-run relative frequency is
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whatever frequency happened to be there in the initial condition. We will show in the

analysis below that the frequency is precisely determined in the long run when an error

of arbitrarily small size is possible. Figure (5) below illustrates the dynamic behavior of

the proportional imitation model when no errors occur. The dynamics are drawn on the

projection of the simplex representing the frequency of the three strategies A, G and T on

the triangular region (µ(G), µ(T )), so that the vertex denoted by the letters correspond to

the pure strategy denoted by that letter. The vertex A indicates the only locally unique,

locally stable equilibrium, with basin of attraction the entire triangular region below the

shorter segment (labelled U) in the interior of the triangular region. Any point on the line

joining G and T is an equilibrium of the strategy choice game and a steady state. Similarly

all the points on U are unstable states.

The dynamic behavior with Best Response dynamics is very similar (see the first panel

of Figure 3), but in such a degenerate case (in which the payoffs for the strategies G and T

are the same) there is a large multiplicity of solutions of the differential inclusion, and the

dynamic is very sensitive to the tie-breaking rule.

5.2 Value Function with Transition Errors

We now consider the case that is relevant for our experimental data. Subject can choose

a strategy, which we have described as an automaton (a set of rules they have to follow),

but they have to implement the transition relying on their memory of the relevant bits

of information: the current state, the action profile, the transition rule. In implementing

the rule they may transit to the wrong state. We allow them to forget some element that

determines the next state, (e.g. they may forget what the other did, or what the state was),

but they do not forget what automaton they were using. In our case, the set of states for

each automaton consists of two elements, so the error can only take the form of choosing the

other, wrong, state. The probability of this error is ε > 0. The link with our experimental

data is provided by this parameter, which describes an individual characteristic: the higher

the intelligence, the lower the ε.

To compute the payoff from the choice of the strategy when transition errors are possible

we need to extend the state space to explicitly include the automata that are produced by

errors, distinguishing two automata on the basis of their internal state. These sets appeared

only implicitly in our previous analysis. The extended strategy set, S, is:

S ≡ {A,Gc, Gd, Tc, Td} (13)

where Gc is the G (Grim Trigger) automaton with c as initial state, (d for Gd). There is a
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unique action determined by an automaton s ∈ S, and will be denoted by a(s).

The payoff from a pair of choices of initial automata made by the two players is determined

by a simple recursive equation on functions defined on the product space Ω:

Ω ≡ S × S (14)

with generic element ω = (s1, s2).

Note that with this notation we can write the transition for the automaton G in state

C to the same automaton in state D as the transition from Gc to Gd. So we can define the

transition on the set S (keeping the notation P ) with P (s′; s, a1, a2) denoting the probability

of transiting to s′ if the current state is s and the action profile is (a1, a2).16

We now turn to the definition of the transition function with errors. We let Q be the set

of stochastic matrices on Ω. First, we let the transition with no errors to be denoted by Q,

where

∀ω = (s1, s2), ω′ = (r1, r2), if a(ω) ≡ (a1(s1), a2(s2)),

Q(ω′;ω) ≡ P (r1; s1, a(ω))P (r2; s2, a(ω)) (15)

We then define the error transition as the stochastic matrix E : S → ∆(S) sending each

automaton of a type to the same type automaton, but choosing each state with equal prob-

ability of fifty per cent.17 We denote by qi(ω) the state in S for player i to which player i

transits given the current pair ω. Finally, we let Qε ∈ Q to be:

Qε((r
1, r2), (s1, s2)) = (1− ε)2 if ∀i : ri = qi(s1, s2)

= ε(1− ε) if for exactly one i : ri = qi(s1, s2)

= ε2 if ∀i : ri 6= qi(s1, s2)

If we let the payoff in the stage game at action profile a ≡ (a1, a2) by R(a) then we can

16More precisely, we can write this transition for player 1’s automaton:

1. ∀a ∈ A1 ×A2 : P (A;A, a) = 1

2. P (Gc;Gc, (C
1, C2) = 1,∀(a1,a2)6=(C1,C2)P (Gd;Gc, (a

1, a2)) = 1

3. ∀a1 ∈ A1 and t ∈ {Tc, Td}: P (Tc; t, (a
1, C2)) = 1;P (Td; t, (a1, D2)) = 1

17More precisely,

1. ∀a,∀X ∈ {G,T},∀i ∈ {c, d} : E(Xc;Xi, a) = E(Xd;Xi, a) = 1/2

2. ∀a : E(A;A, a) = 1.
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define a payoff function u : Ω→ R as

u(ω) = u(s1, s2) = R(a1(s1), a2(s2)) (16)

5.3 Value Function

Players choose an element in the set {A,G, T}, but the value function is defined for all

elements in the set of pairs of extended states, Ω. The payoff to a player for each such ω ∈ Ω

is given by the value function V : Ω→ R.

Lemma 5.3. The function (ε, δ) −→ V (·; ε, δ) is analytic, and hence continuous and differ-

entiable.

Proof. The function V is the unique solution of the functional equation:

V = (1− δ)u+ δQεV (17)

We may V (ω; δ, ε, u) when we want to emphasize the dependence of V on these parame-

ters. The inverse matrix (I − δQε)
−1 exists and therefore:

V (·; δ, ε, u) = (I − δQε)
−1(1− δ)u

=
+∞∑
k=0

(δQε)
k(1− δ)u

The derivative of V with respect to the error parameter is

dV

dε
= −(I − δQε)

−1δ
dQε

dε
(I − δQε)

−1(1− δ)u

= −(I − δQε)
−1δ

dQε

dε
V

The analysis of the function V is considerably simplified if we observe that Ω is partitioned

into invariant sets under the transition Qε, as we do in the next section.

It is clear that some subsets of the set Ω are invariant under the transition Pε. For

example the set ΩAG ≡ {(A,Gc), (A,Gd)} is invariant. The other eight sets are denoted in

22



a similar, natural, way. Overall we have a partition of Ω into

P(Ω) ≡ {ΩAG,ΩAA,ΩAT ,ΩGA,ΩGG,ΩGT ,ΩTA,ΩTG,ΩTT}. (18)

each of which is invariant. Note that the cardinality of every element in this partition is

either 2 or 4. Correspondingly, the vector V is partitioned into component Vi : i ∈ P(Ω),

and each satisfies equation (17) with (u,Qε) replaced by (ui, Qε,i); these equations can be

solved and analyzed independently.

Lemma 5.4. The value function equation can be decomposed into nine independent equa-

tions, one for each of the invariant sets of the set Ω.

1. V (AA) = d

2. V (AG) = V (AT ) = t(1− δ(1− ε)) + dδ(1− ε)

3. V (GA) = V (TA) = s(1− δ(1− ε)) + dδ(1− ε)

Proof. The value of V (AA) follows from the fact that the singleton {AA} is invariant. The

values of V (AG) and V (AT ) follow as in the proof of lemma (5.5) below.

The next lemma tells us that no matter what the probability of error, the profile (A,A)

in the strategy choice game is an equilibrium:

Lemma 5.5. For all ε > 0, (A,A) is a strict Nash equilibrium of the strategy choice game,

hence a locally stable equilibrium of the PI and BR dynamics.

Proof. The transition matrix restricted to the set ΩAG is

GcA GdA
GcA ε 1− ε
GdA ε 1− ε

Using equation (17), we can solve for V (GcA) and find:

V (GcA) = (1− δ(1− ε))u(GcA) + δ(1− ε)u(GdA)

= (1− δ(1− ε))s+ δ(1− ε)d

Therefore for all ε > 0,

V (GcA) < d = V (AA). (19)
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Since the transition matrix restricted to ΩAT is the same as the one we reported for ΩAG,

we conclude:

V (TcA) < V (AA). (20)

5.3.1 Uniform Errors

Using the invariant sets allows us to compute the payoff on the case of uniform error, that

is when ε = 1/2. This case gives us a boundary condition for the study of the dynamic

behavior. In particular the analysis will tell us when it is impossible that (G,G) is an

equilibrium profile in the strategy choice game.18

Lemma 5.6. When ε = 1/2 the payoff in the strategy choice game (with M ×M action set)

is:

A G T
A d, d mt,ms mt,ms

G ms,mt mc,mc mc,mc

T ms,mt mc,mc mc,mc

where

ms ≡ (1− δ)s+ δ
s+ d

2
,mt ≡ (1− δ)t+ δ

t+ d

2
, (21)

mc ≡ (1− δ)c+ δ

(
c+ s+ t+ d

4

)
.

Thus at ε = 1/2 the game has a unique Nash equilibrium, (A,A).

Proof. For any element i ∈ P(Ω) (this set is defined in (18)), we have that the transition

restricted to the point in i is:

Q(1/2),i =
1

#i
Ui (22)

where Ui is a square matrix of 1’s of dimension #i (the cardinality of i). We denote Mix ≡
1

#i

∑#i
k=1 xk. The value function equation restricted to states in i is:

Vi = (1− δ)ui + δMiVi (23)

18We consider here the case in which no transition error is possible when no transition has occurred yet,
that is at the first round of the game. In the case where an automaton is chosen and an error in the choice
of the initial state is made (which may be considered as a transition error) the conclusion of lemma (5.6) is
even easier to prove.
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Equation (23) implies

MiVi = Miui (24)

Now (23) and (24) give the formula for the value in terms of the payoffs:

Vi = (1− δ)ui + δMiui (25)

The rest follows from simple algebra.

For the last statement, from our assumption (2) on the stage game payoffs we conclude

that mt > mc. We already know from lemma (5.5) that d > ms holds for any δ. Thus A is

a dominant action.

5.3.2 Small Errors

We know that for “large” errors (ε = 1/2) the strategy choice game has a unique equilibrium,

defection in every round irrespective of history for both players ((A,A)). The dynamic

behavior for small ε on the sides µ(T ) = 0 and µ(G) = 0 is similar to that of the no error

model, with a unique steady state that changes continuously in ε around ε = 0. Instead,

in the portion of the interior of the simplex where A is not the attractor, and on the line

µ(A) = 0 the behavior is radically different, because the only stable states are either T or G.

Consequently, in this case we have well defined basins of attraction for the two strategies G

and T and we can compare the two basins for the lenient strategy T and the strict strategy

G.

In our analysis, “Small ε” means smaller than a critical value that we introduce now.

Note that this critical value might not be numerically small. We let:

ε ≡ sup{ε : V (GG) > max{V (TG)), V (AG)} (26)

&V (TT ) > max{V (AT )), V (GT )}}

Lemma 5.7. For any payoff of the stage game, ε > 0. If it is finite, then the value is

achieved. There are payoffs satisfying the standing assumption on stage game payoffs (2) for

which ε is finite.
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Proof. Note that at ε = 0,

V (GG) = V (TG)

= c

> V (AG)

= t(1− δ) + dδ

where the strict inequality follows from our assumption (6). Thus we conclude that ε > 0

from lemma (5.3). The second claim also follows from lemma (5.3). The last claim follows

from lemma (5.6), which gives as simple sufficient condition for ε to be finite.

In particular ε is finite for the stage game with payoffs as in our experimental design.

Lemma 5.8. We consider either the proportional imitation or the best response model. For

0 < ε < ε:

1. the sides of the simplex are invariant;

2. on the side µ(G) = 0 (and, respectively, µ(T ) = 0) there is a unique steady state cor-

responding to the mixed strategy equilibrium of the game when strategies are restricted

to {A, T} for both players (and respectively to {A,G});

3. there is a unique steady state on the side µ(A) = 0, and this is determined in the limit

ε→ 0 by the ratio:

µ(G)∗ =
Vε(TT )− Vε(GT )

Vε(TT )− Vε(GT ) + Vε(GG)− Vε(TG)
(27)

where Vε is the derivative with respect to ε.

Proof. For point (3), note first that for ε > 0 then the steady state is determined by a

frequency of the strategy G, µ(G)∗ such that

µ(G)∗ =
V (TT )− V (GT )

V (TT )− V (GT ) + V (GG)− V (TG)
(28)

As ε→ 0 both numerator and denominator in the right hand side of (28) tend to zero. Now

the conclusion follows from l’Hôpital rule.

With small errors, there are seven steady states. The three corresponding to the pure

strategy profiles are locally stable. The basin of attractions of the strategies, (indicated as
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BA(G), Basin of attraction of G, and so on), are delimited by the curved lines describing

the manifolds departing from the unique steady state in the interior of the triangular region

and the sides. The other four steady states are unstable.

5.4 Errors and frequency of strategies

We now turn to the main question we posed, namely the relationship between the probability

of error (modeled by the ε parameter) and the frequency of strict and lenient strategies. We

consider the natural strictness order:

A � G � T (29)

We denote the steady states (when they exist) on the sides of the simplex {A, T}, {A,G}
and {G, T}, as sAT , sAG and sGT respectively. For illustration we refer to Figures 5 and

3. These are real numbers in the unit interval, equal to the size of the basin of attraction

of the stricter strategy in the subset. When we want to emphasize the dependence of the

parameters, we write sij(ε, δ, u).

Some very elementary but useful concepts are needed here. Consider a symmetric game

with action set {A,B} where each action is a best response to itself, that is, the gains

G(A) ≡ u(A,A)− u(B,A) and G(B) ≡ u(B,B)− u(A,B) satisfy G(A) > 0 and G(B) > 0.

This game has two pure strategy Nash equilibria and a mixed strategy one; the mixed

strategy equilibrium has

µ(A) =
G(B)

G(A) +G(B)
. (30)

In this simple two-actions game the basin of attraction of A is the set {(p, 1− p) : 1 ≥ p >

µ(A)}, so the size of the basin of attraction (SBA) of A is:

SBA(A) =
G(A)

G(A) +G(B)
. (31)

that is, as intuitive: the size of the basin of attraction of a strategy is proportional to the

relative gain of one action over the gain of the other.

5.5 Proportional Imitation Dynamics

An increase in the values of sAT , sAG corresponds to an increase in the basin of attraction of

A at the expense of those of G and T ; an increase in the value of sGT leaves the relative share

of A unchanged, but it increases that of G at the expense of T . The following proposition

summarizes what we know for the two extreme values of ε = 0 and ε = 1/2:
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Proposition 5.9. Under proportional imitation,

sAG(0, δ, u) = sAT (0, δ, u) =
(1− δ)d− (1− δ)s

c− (1− δ)t− (1− δ)s− δd+ (1− δ)d
(32)

sAG(1/2, δ, u) = sAT (1/2, δ, u) = sGT (1/2, δ, u) = 1 (33)

So at ε = 0 the basin of A is the triangular region below the straight-line segment joining

sAG and sAT . As ε reaches the value 1/2 the entire simplex (except the side between G and

T ) converges to A. The strategy A may become the only strategy surviving for values of the

error probability smaller than 1/2, as we next demonstrate.

5.6 Payoffs in the Experiment

We now analyze the basin of attraction for the specific numerical values of the payoffs used

in the experiment. In Section D of the Appendix we report numerical values of the payoff

matrix with errors and figures portraying the basin of attraction. To see how the size of the

basin of attraction changes when the stage game payoffs are those we used in the experiment

(c = 48, s = 12, t = 50, d = 25), we can use the lemmas (5.3) and (5.4) to compute the

value function and analyze equilibria and dynamic behavior.

We refer to Figure 4, which describes the change for different values of ε (moving along

the x-axis in each panel) and δ.

The first conclusion is:

Conclusion 5.10. With sufficiently high continuation probability and small error, the basin

of attraction of defection (A) is arbitrarily small.

The values sAG and sAT are monotonically increasing in ε, the value sGT is increasing for

most of the range.

Note that for all values of δ the last value to reach the upper range of one is sAT . The

intermediate value of δ = 0.82 marks the boundary of an interesting division of the set of

δ’s.

Conclusion 5.11. For any value of the continuation probability, as the error becomes larger,

the basin of attraction of lenient strategies (G and T ) vanishes. Within the more lenient

strategies, the relative weight of T declines compared to that of G as the error probability

increases.

For lower values (δ < δ̂) the basin of attraction of T disappears entirely as sGT collapses

into the vertex T . That is, with interactions repeating with lower continuation probability
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(lower δ’s) but high probability of errors the strategy T does not survive. For higher values

(δ > 0.82) both G and T survive, but lose frequency at the expense of A. In conclusion,

Conclusion 5.12. The lenient strategy T can survive only with low errors or with high

probability of continuation.

Figures (6) illustrates the dynamics of the proportional imitation for values above and

below the threshold, and payoffs equal to those used in the experiment. By “first transition”

we refer here to the first disappearance of a steady state on the sides of the simplex. We

denote δ̂ the value of δ at which sGT and sAT disappear at the same value of ε; with the

payoffs used in the experimental design, δ̂ = 0.82.

Conclusion 5.13. There is a δ̂ such that

1. if δ > δ̂ then as ε increases the interior of the simplex is split first into three regions

(with attractors A, G and T respectively); then two regions (with attractors A and T )

and finally only one region (with attractors A);

2. if δ < δ̂ basins of attraction are the same for small and high ε; in the intermediate

region the attractors are A and G.

With small errors, an appropriately modified Poincare-Hopf index can be calculated. The

index of the three stable pure strategies is 1 in all cases; the others (the two mixed strategies

on the sides {A, T} and {A,G}), with an overall index 1. Note that the pure strategy profile

(T, T ) is a steady state of the proportional imitation, and a Nash equilibrium of the game

restricted to {A, T} but it is not a Nash equilibrium of the complete game.

Also with higher errors all the steady states are isolated, and thus an appropriately

modified Poincare-Hopf index can be calculated. The index of the two stable pure strategies

(A and T ) are 1; the mixed strategy in the interior of the simplex has index 1. The index of

the two steady states on the sides (sAT and sGT ) is −1. The index of G is 0.

5.7 Best Response Dynamics

We now consider the dynamic evolution when the evolution follows the best response dynam-

ics. To understand the difference between this and the proportional imitation dynamics, it

is useful to keep in mind that there may be steady states on the boundary of the simplex for

the PID that are not Nash equilibria of the entire game. To be precise, let NE({A,G, T}) be

the set of Nash equilibria of the strategy choice game and, for any two-strategy subset {r, s}
of the set {A,G, T}, let N({r, s}) the Nash equilibria of the reduced game where players can
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only choose from {r, s}. It may occur that a steady state of the PID at the boundary is not

a Nash, although it may be a Nash equilibrium of the game restricted to the strategies that

have positive probability at that steady state.

For example, in the game induced by ε = 0.35 (δ = 0.9) (values are reported in Table

A.16) the strategy T is weakly dominated by G and V (GT ) > V (TT ) so the steady state

sAT of the PID is not Nash. The same is true for pure strategies: for example, the strategy

G is a steady state in the game induced by ε = 0.3 (δ = 0.9) in Table A.16, the pure strategy

G is a steady state of the PID, but is not a Nash equilibrium of the complete game, because

V (AG) > V (GG).

Proposition 5.14. With best response dynamics,

1. for ε < ε, all three strategies have a basin of attraction; the intersection of the bound-

aries of the regions with the sides of the simplex are the same as in the proportional

imitation dynamics

2. The conclusions (5.10), (5.11), (5.12) and (5.13) hold in the case of BRD as well;

in particular, for ε > ε only two strategies survive in the long run (that is, they have

a basin of attraction): they are {A,G} for low delta (δ < δ̂), and {A, T} for high δ

(δ > δ̂).

Note that the lines marking the boundary of the basins of attraction in theBRD and PID

may be different (those in BRD are straight lines) but the end points are common, hence

qualitatively the basins are similar. The best response dynamic allows us to identify clearly

the basin of attraction of the three strategies by simple inspection of the phase portrait.

This is done in Figure 3 that we have already discussed in our introductory discussion in

Section 4 and we refer the reader to that section.

6 Errors and strategic choices in our data

In the two previous sections we saw that, as error rates increase, subjects play stricter

strategies more often. If we assume that error probability (in particular the probability

of transition error associated with working memory) is negatively correlated with cognitive

abilities, we should observe stricter strategies among the subjects in the low-IQ separated

treatment if compared to the integrated treatment, and in the integrated treatment when

compared to the high-IQ separated treatment. In this section we show that our experimental

data fit the assumption and the implied predictions of the model.
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In Section H of the appendix we describe in detail the algorithm we use to identify errors

and the strategies played (from the three strategies we restrict in the model). Table A.20

in the appendix shows that the individual error in transition rate is significantly higher in

the low-IQ group in the separated treatment and in the integrated treatment, compared to

the high-IQ group in the separated treatment. The error in transition rate is also negatively

correlated with individual IQs. The correlation between errors in action and IQ seem less

clear, as we would expect according to the hypothesis that errors in transition are working

memory errors.

6.1 Error Rates and Strategy Frequency

In Table 7 we present a summary of the results of these estimations: the frequency of the

strategies played in the different treatments and within groups in the integrated treatment,

the error in transition and error in action rates. The lower the proportion of high-IQ subjects

in the treatment, the higher the error frequencies (as determined by estimating the error

rates ε and η in the model). As predicted in our model the strategies become stricter in

environments with higher error rates. The frequency of A is higher in the low-IQ group, in

separated treatments, than in the integrated treatments and it is the lowest in the high-IQ

separated treatments. The same is true for the ratios A/T and A/G.

The ratio G/T does not seem to follow the same pattern of strictly increasing with the

errors: in fact it changes very little across the three treatments. Note that for the range

of errors we are considering (i.e. less than or equal to 0.01) the relative proportions of the

basins of attraction between Grim Trigger and Tit-for-Tat do not change much in the model.

This can be already observed from the two top panels of Figure 3 comparing the size of the

two basins of attractions of the two strategies. From Figure 4 – which directly shows the

ratios of the size the basins of attraction of the strict strategies– it is clear that the ratio of

the basin of G over the basin of T is non monotonic when errors are small.

Figures A.4 and A.5 in the appendix report the average error rates in transition and

action. Information on the dispersion of error rates across individuals is provided in Figures

A.6 (for the early supergames) and A.7. The range of the error rates in the four groups for

the most part is within the range of zero to 0.30.

7 Learning Error Avoidance

The model described in sections 4 and 5 assumes that the probabilities of both errors, ε and

η, are fixed during each entire session. In our data, the error rates decrease as the subjects
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gain experience (as suggested by the regression reported in Table A.20 in the appendix).

In Table 8 we analyze the first and the last 10 supergames of each treatment separately.

Both ε and η decrease in the last part of all treatments compared to the first part. We

can observe between periods a similar pattern to the one we observe across treatments: the

frequency of A and the ratios A/T and A/G decrease with the errors. Similarly as before,

the ratio G/T does not follow this pattern, but –as we have previously argued– this can be

explained by Figure 4, where we can observe that the ratio of the basins of G and T is not

monotonic especially within the range of errors we are considering (i.e. between 0.007 and

0.005). Section 7.1 discusses the implications of the fact that errors are declining. Finally,

note that we observe the same pattern in terms of strategies by using the estimation method

of Dal Bó and Fréchette (2011), presented in Table A.21 of the appendix.

The estimation of errors and strategies in the section above shows that our data follow

the predictions of the model, but also reveal additional complexity in the evolution and

the structure of the errors. We will now argue that this complexity does not change the

qualitative prediction of the model.

Table 8 shows that, for each group, the error rates towards the end of the session are

lower than in the beginning; so, during the session, participants learn to play the game.

Figure A.3 in the appendix shows this pattern in greater detail. Both transition and action

error rates decline for everyone. They all converge to nearly zero. In the low-IQ separated

treatment the convergence is slower than in the integrated treatment which in turn it is

slower than in the high-IQ separated treatment. Together, these results suggest a process

of “learning by doing”, in which all subjects adapt to their respective environments. The

errors are relatively low at the beginning of the low IQ separated treatment. This is probably

due to the fact that in the first ten supergames the share of subjects choosing the Always

Defect strategy is quite high (see Table 8); the errors in transition are, by definition, not

possible while playing the Always Defect strategy, and committing an error in action under

this strategy is less likely.

7.1 Evolution with Learning Error Avoidance

In our model, for simplicity, we assume that the probabilities of errors, η and ε, are fixed.

A view of their decline as exogenous processes of learning by doing will not qualitatively

change the model’s conclusions. Therefore, to get a complete picture of the evolution of

strategy frequencies when we apply the analysis to our experimental data, one has to adjust

the conclusions to the more general case in which the error rates change over time. The

analysis in sections 4 and 5 provides a general guidance.
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Consider the entire range of error rates that we observe in our data. The average change

is in the range of 0.03 to 0 (see Figures A.4 and A.5). Consider first the region in the simplex

obtained as intersection of the basins of attraction for a strategy– for example, say Always

Defect, A, over the error rates in that range. Then do the same for the two other strategies.

When we take the collection of these subsets of the simplex, we obtain all together a (likely

strict) subset of the simplex. On this subset we can make precise predictions: when the

initial condition is in one of these sub-regions (say the one for A), then the time path of

frequencies will converge to A even if the error rates change. When an initial condition is

not in any of the sub-regions obtained in this way, then the analysis depends on the two

speeds of adjustment, one of the strategy frequency and the other of the error rates. In

summary, the long run behavior is ultimately determined by the limit values of the error

rates, which in our data are very low. However, starting with a higher error rate, the set

of initial conditions on the fraction of strategies that eventually converge to A will become

larger, because of the initial movement in direction of A.

Figure 7 reports the evolution of frequency of strategies over time in the different treat-

ments: high-IQ separated, low-IQ separated and integrated. The frequency of A declines in

all treatments. The total frequency of Grim Trigger, G, and Tit-for-Tat, T , converges to

almost 100 per cent in the high IQ-separated treatment, and in the integrated treatment.

The fraction of A in the low IQ-separated treatment seems to stabilize to around a level of

0.20 in the long run. However in the low-IQ group, A is on a higher level (around 0.40) after

five supergames. As we argued in the preceding paragraph, the initial and transitory levels

of error frequency can affect the long-run trajectory. In fact, an initial high level of error

can bring the fraction of strategies in the early part of the session in a region close to high

values of A, and, thus, in the basin of attraction of A. The ensuing decline of error rates

may not be able to reverse this initial shift in the direction of the defect strategy

8 Conclusions

In spite of the many forces in society that tend to segregate individuals according to similar

characteristics, a large part of social interaction occurs among individuals who are very

different from one another in many respects – including in terms of their levels of intelligence.

Once it is clear that higher cognitive skills tend to result in higher rates of cooperation, a

natural question arises: What are the outcomes of strategic interactions among people of

heterogeneous levels of intelligence? Our research offers three main results:

The first is that cooperation rates in heterogeneous groups are closer to the higher co-

operation rates that occur within groups composed exclusively by those of high intelligence
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– although the payoff for higher-IQ players is lower than would be the case when playing

with their high-IQ peers. The aggregate payoff is higher when heterogeneous groups play

together than when they play separately, but the interaction in heterogeneous pools is more

advantageous to players of lower intelligence.

The second result is that the higher cooperation rates of players of lower intelligence in

integrated groups are due to the influence of the choices of the more intelligent players, who

are more consistent in implementation of strategies.

The third and final result concerns the observed shift, in groups of lower intelligence and

higher error rates, in the direction of harsher strategies. We argue that this is an instance of

a general phenomenon which can be explained by models of social learning. To analyze the

relation between error rates and distribution of strategies we proposed an evolutionary game

theory model where a population of players play a sequence of repeated games. Studying the

long run distribution of strategies and size of their basins of attraction, we show that players

choose more lenient strategies in environments where subjects commit few mistakes, and

instead shift to stricter strategies when the error rates increase. The analysis of the data,

testing the model, supports the main assumption (that error rates are negatively correlated

with intelligence) and the main predictions on how the distribution of strategies depends on

the error rate.

These results provide useful guidance for policies generating social interactions among

groups that are heterogeneous in income or education levels, such as, for example, the in-

teractions fostered by Moving to Opportunity (MTO) policies. In particular, we show that

social interactions are likely to be mediated by differences in cognitive skills. Hence, our

design can be considered a controlled MTO policy experiment, in which we can compare

rates of cooperation and differences in strategies in groups separated according to cognitive

skills with those rates that emerge in groups with different levels of cognitive skills.

Important extensions of these results should examine (in experiments and in theory)

whether and how these results also emerge in general games (not just in the repeated Pris-

oner’s Dilemma), and for more comprehensive sets of repeated game strategies. In repeated

Prisoner’s Dilemma games, the association between smaller error rates and more-lenient

strategies follows from the way in which the value function, which associates payoffs to

strategies, changes with the error rate. For example, Tit for Tat and Grim Trigger give the

same payoff (and so are equivalent) in an evolutionary model with no errors. For a similar

reason these two strategies are equivalent in a rational learning model with no active ex-

perimentation. This conclusion changes dramatically even for very small errors, because the

loss of payoff for Grim Trigger is higher than the loss for Tit-for-Tat; hence, the result is

that the basin of attraction of Tit-for-Tat is larger. With stage games in the repeated game
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different from the Prisoner’s Dilemma the value function associating payoffs to errors is easy

to determine. But how this affects the relative fitness properties, and, thus, the predicted

frequency of different strategies in evolutionary models, is an open problem. The same is

true for models of rational learning with experimentation and errors. This seems to be an

important question if we want to understand how game theoretic predictions extend to a

world in which players make mistakes, perhaps with a frequency associated with cognitive

skill levels. Further important insights could be gained by conducting a direct test of the

evolutionary or rational model. This could be accomplished with an experimental design

providing appropriate measurement and control of the belief process. Such a study would

require belief elicitation from participants during the session, either by direct observation

(for example, by using eye-tracking measurements) or by surveys. Also, initial conditions on

beliefs could be manipulated, to insure some control over the initial condition on beliefs. This

could be accomplished, for instance, by providing subjects at the beginning of the session

with some information on the behavior of participants in a previous session, and checking

with belief elicitation as to whether and how much this manipulation has been effective.

This is topic for current and future research.

35



9 Figures and Tables

Figure 1: Period 1 Cooperation for each supergame in all the Separated and Integrated
sessions. Average cooperation over each supergame and session. High and low IQ separated sessions are
the the black and grey lines respectively in the left panel. Integrated treatment sessions correspond to the
middle grey lines in the right panel.
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Figure 2: Average payoffs per interaction in the Separated and Integrated sessions. The average
is computed over observations in successive blocks of five supergames, of all Separated and Integrated sessions,
aggregated separately. Bands represent 95% confidence intervals.
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Figure 3: Basin of attraction of A, G and T , with transition error and Best Re-
sponse dynamics. The probability of error in transition is as displayed at the top of each
panel, and is ranging from 0 to 0.25. Payoff and discount factor (δ = 0.75) are as in our
experimental design.
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Figure 4: Size of basin of attraction of strict strategies. Top to bottom panel: values
of δ equal to 0.75, 0.82, 0.9 respectively.
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Figure 5: Proportional Imitation dynamics with no error. All points on the segment
joining sAG and sAT (denoted by U) are unstable steady states. All points in the segment
joining G and T are stable steady states. All lines joining A with points on the latter segment
are invariant. Only few are illustrated here.
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Figure 6: Flow after the first transition: Low δ. Here ε > ε, but the two values are
close. Also δ < δ̂, hence the steady state sGT disappears first. There are only two sub-regions
of the interior of the projection of the simplex, with attractors A and G.
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Figure 7: Frequency of Strategies over Time.
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Table 1: Prisoner’s Dilemma. C: Cooperate, D: Defect.

C D

C 48,48 12,50

D 50,12 25,25

Table 2: Effect of high IQ and low IQ session on choice of cooperation and payoffs.
The dependent variables are average cooperation and average payoff across all interactions
(OLS estimator). The baseline are the integrated sessions. Robust standard errors clustered
at the session levels in brackets; ∗ p− value < 0.1, ∗∗ p− value < 0.05, ∗∗∗ p− value < 0.01

Supergame ≤ 20 Supergame > 20
Cooperate Payoff Cooperate Payoff

b/se b/se b/se b/se
High IQ Session 0.0990** 2.5238** 0.0691 1.7259

(0.0354) (0.9217) (0.0542) (1.4115)
Low IQ Session –0.2180*** –5.5977*** –0.2152*** –5.7067***

(0.0524) (1.3339) (0.0612) (1.5712)
# Subjects –0.0112 –0.3063 –0.0062 –0.1812

(0.0071) (0.1815) (0.0107) (0.2766)

r2 0.203 0.407 0.152 0.320
N 214 214 214 214
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Table 3: Effects of IQ and other characteristics on the cooperative choice in
round 1 of each session. The dependent variable is the choice of cooperation in round
1 (Logit estimator. Note that coefficients are expressed in odds ratios). Robust
standard errors clustered at the session level; p − values in brackets; ∗ p − value < 0.1, ∗∗

p− value < 0.05, ∗∗∗ p− value < 0.01.

Round 1 Round 1 Round 1 Round 1
Cooperate Cooperate Cooperate Cooperate

b/p b/p b/p b/p
choice
IQ 1.00889 1.00942

(0.6444) (0.6396)
High IQ Group 1.76893 1.80835

(0.1401) (0.1358)
Extraversion 0.87817 0.91292

(0.5544) (0.6628)
Agreeableness 0.66879* 0.67223*

(0.0681) (0.0851)
Conscientiousness 1.21574 1.22401

(0.4599) (0.4356)
Neuroticism 0.75337 0.76481

(0.3709) (0.4035)
Openness 1.32202 1.32145

(0.4504) (0.4562)
Risk Aversion 0.79190*** 0.79326***

(0.0063) (0.0095)
Age 0.99517 0.99802

(0.9051) (0.9605)
Female 1.04458 0.99468

(0.8941) (0.9872)
Integrated Treatment 1.17291 1.16746

(0.6737) (0.6560)
Size Session 1.03245 1.02862

(0.6398) (0.6375)

N 214 214 214 214

44



Table 4: Effects of separated treatment on the evolution of cooperative choice
in the first periods of supergames The dependent variable is the choice of cooperation
in the first periods of all repeated games. The baseline are the integrated sessions (Logit
with individual fixed effects estimator). Note that in the second part of each session many
subjects made the same choices throughout, and for this reason their observations needed to
be excluded from the estimations of the model in columns 3 and 4. Similar regressions with
random effects (which does not need variability of choices at the individual levels avoiding this
loss of observations) would deliver similar results. Std errors in brackets; ∗ p− value < 0.1,
∗∗ p− value < 0.05, ∗∗∗ p− value < 0.01.

Superg. ≤ 20 Superg. > 20
Cooperate Cooperate Cooperate Cooperate

b/se b/se b/se b/se
choice
High IQ Sessions*Supergame 0.14861*** 0.15670*** –0.03499 0.01662

(0.0502) (0.0521) (0.0666) (0.0679)
Low IQ Sessions*Supergame –0.06502** –0.04342 0.08965** 0.09945**

(0.0277) (0.0285) (0.0428) (0.0456)
Supergame 0.12697*** 0.09194*** –0.00911 –0.05359

(0.0249) (0.0257) (0.0298) (0.0372)
1st Per. Partners’ Coop. at s-1 0.22917 1.16616***

(0.1713) (0.3479)
1st Per. Part. Coop. Rates until s-1 3.13168*** 5.96293

(0.5400) (6.1902)
Partner Coop Rates until t-1 –0.24866 12.10323**

(0.3303) (5.0114)
Average lenght Supergame 0.69441*** 0.78908*** 1.74103** 1.79204**

(0.1199) (0.1312) (0.8026) (0.8556)

N 2280 2280 654 654
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Table 5: Outcomes at period t−1 as determinants of cooperative choice at period
t. The dependent variable is the cooperative choice at time t; the baseline outcome is
mutual cooperation at t− 1, (C,C)t−1. Panel A relates to the first 20 supergames, panel B
to the last 22 supergames (Logit with individual fixed effect estimator. Coefficients are
expressed in odds ratios); p− values in brackets; ∗ p− value < 0.1, ∗∗ p− value < 0.05,
∗∗∗ p− value < 0.01.

Panel A: #Supergame ≤ 20
Low IQ High IQ Low IQ High IQ

Separated Separated Integrated Integrated
b/p b/p b/p b/p

choice
(C,D)t−1 0.00860*** 0.01038*** 0.00885*** 0.00533***

(0.0000) (0.0000) (0.0000) (0.0000)
(D,C)t−1 0.01069*** 0.01485*** 0.00731*** 0.01039***

(0.0000) (0.0000) (0.0000) (0.0000)
(D,D)t−1 0.00353*** 0.00339*** 0.00397*** 0.00172***

(0.0000) (0.0000) (0.0000) (0.0000)

N 2499 2448 2499 2448

Panel B: #Supergame > 20
Low IQ High IQ Low IQ High IQ

Separated Separated Integrated Integrated
b/p b/p b/p b/p

choice
(C,D)t−1 0.00301*** 0.00527*** 0.00426*** 0.00153***

(0.0000) (0.0000) (0.0000) (0.0000)
(D,C)t−1 0.00402*** 0.03468*** 0.00270*** 0.01450***

(0.0000) (0.0000) (0.0000) (0.0000)
(D,D)t−1 0.00121*** 0.00318*** 0.00157*** 0.00044***

(0.0000) (0.0000) (0.0000) (0.0000)

N 1718 1201 1771 1379
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Table 6: Outcomes at period t − 1 as determinants of cooperative choices at
period t. The dependent variable is the cooperative choice at time t; the baseline outcome
is mutual cooperation at t − 1, that is (C,C) at t − 1. Integrated is a dummy for the
integrated treatments (Logit with individual random effect estimator). Robust standard
errors clustered at the session levels in brackets ∗ p − value < 0.1, ∗∗ p − value < 0.05, ∗∗∗

p− value < 0.01.

High IQ Low IQ
All All

b/se b/se
choice
Integrated*(C,C)t−1 0.30868 0.39098

(0.5137) (0.3606)
Integrated*(D,D)t−1 –0.55593 0.32614

(0.3414) (0.4283)
Integrated*(D,C)t−1 –0.21615 –0.03074

(0.2557) (0.3078)
Integrated*(C,D)t−1 –0.52167** 0.38201

(0.2580) (0.3406)
(D,D)t−1 –6.56678*** –6.41848***

(0.4456) (0.4022)
(D,C)t−1 –4.69152*** –5.21715***

(0.4560) (0.2068)
(C,D)t−1 –5.15376*** –5.27280***

(0.2549) (0.3545)

N 10343 10003

Table 7: Individual strategies and errors in the different treatments.

Treatment IQ Separated Integrated

IQ Session/Group High Low All High Low
Strategy
A 0.073 0.331 0.130 0.100 0.160
G 0.461 0.325 0.433 0.448 0.419
T 0.465 0.343 0.437 0.452 0.422

Ratio G/T 0.991 0.947 0.992 0.991 0.993
Ratio A/T 0.158 0.965 0.297 0.221 0.379
Ratio A/G 0.159 1.019 0.299 0.223 0.381

Error in transition (ε) 0.005 0.011 0.007 0.007 0.008
Error in action rates (η) 0.010 0.020 0.010 0.009 0.012
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Table 8: Individual strategies and errors in the different treatments.

Supergames First 10 Last 10

Treatment IQ Separated Integrated IQ Separated Integrated
IQ Session/Group High Low All High Low All
Strategy
A 0.170 0.445 0.248 0.038 0.297 0.080
G 0.409 0.261 0.370 0.479 0.350 0.458
T 0.421 0.294 0.382 0.483 0.353 0.461

Ratio A/T 0.405 1.512 0.648 0.078 0.841 0.174
Ratio A/G 0.416 1.702 0.669 0.078 0.850 0.175
Ratio G/T 0.972 0.889 0.968 0.991 0.990 0.993

Error in transition rates (ε) 0.008 0.015 0.013 0.005 0.004 0.005
Error in action rates (η) 0.018 0.028 0.021 0.008 0.010 0.006
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Appendices

A Details on Design and Implementation

Table A.9 summarises the statistics about the Raven scores for each session in the IQ-

separated treatment and Table A.10 for the Integrated treatment. In the IQ-separated

treatment, the cutoff Raven score was 24 and 25. In sessions 7 and 8 the cutoff was 23 because

the participants in these sessions scored lower on average than the rest of the participants

in all the other sessions. Top-left panel of Figure A.1 presents the overall distribution of IQ

scores across both treatments. The bottom row of Figure A.1 presents the distribution of

the IQ scores across low- and high-IQ sessions for the IQ-separated sessions, while top-right

panel presents the distribution of the IQ scores for the Integrated treatment sessions. Tables

A.11 until A.13 present a description of the main data in the low- and high-IQ sessions in

the IQ-separated treatment and the Integrated treatment sessions. Table A.14 shows the

correlations among individual characteristics.

Table A.3 compares participant characteristics across the two treatments. Only the

proportion of German participants is found to be significantly different across the two treat-

ments, but as is obvious from tables A.4 and A.5 this is not significantly different across

intelligence groups. Overall subjects are similiar across the two treatments. In Table A.4

participant characteristics across intelligence groups in the IQ-separated treatment are con-

trasted where only differences in the IQ scores are statistically different. Finally, Table A.5

contrasts participant characteristics across intelligence groups across both treatments. As

in Table A.4 the only statistically significant difference is for IQ. Extraversion is found to

be significantly different across intelligence groups but that cannot be reasonably seen as a

driver of the results.

A timeline of the experiment is detailed below and all the instructions and any other

pertinent documents are available online in the supplementary material.19

A.1 Timeline of the Experiment

Day One

1. Participants were assigned a number indicating session number and specific ID number.

The specific ID number corresponded to a computer terminal in the lab. For example,

the participant on computer number 13 in session 4 received the number: 4.13.

19See note 3.
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2. Participants sat at their corresponding computer terminals, which were in individual

cubicles.

3. Instructions about the Raven task were read together with an explanation on how the

task would be paid.

4. The Raven test was administered (36 matrices with a total of 30 minutes allowed).

Three randomly chosen matrices out of 36 tables were paid at the rate of 1 Euro per

correct answer.

5. The Holt-Laury task was explained verbally.

6. The Holt-Laury choice task was completed by the participants (10 lottery choices).

One randomly chosen lottery out of 10 played out and paid

7. The questionnaire was presented and filled out by the participants.

Between Day One and Two

1. Allocation to second day sessions made. An email was sent out to all participants

listing their allocation according to the number they received before starting Day One.

Day Two

1. Participants arrived and were given a new ID corresponding to the ID they received in

Day One. The new ID indicated their new computer terminal number at which they

were sat.

2. The game that would be played was explained using en example screen on each par-

ticipant’s screen, as was the way the matching between partners, the continuation

probability and how the payment would be made.

3. The infinitely repeated game was played. Each experimental unit earned corresponded

to 0.003 Euro.

4. A de-briefing questionnaire was administered.

5. Calculation of payment was made and subjects were paid accordingly.
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B Session Dates, Sizes and Characteristics

Tables A.1 and A.2 below illustrate the dates and timings of each session across both treat-

ments.

Table A.1: Dates and details for IQ-separated

Day 1: Group Allocation
Date Time Subjects

1 23/04/2018 10:00 17
2 23/04/2018 11:00 19

Total 36
3 07/05/2018 14:45 15
4 07/05/2018 16:00 11

Total 26
5 12/06/2018 09:45 14
6 12/06/2018 11:30 19

Total 33
7 20/11/2018 14:00 17
8 20/11/2018 15:15 19

Total 36

Day 2: Cooperation Task
Date Time Subjects Group

Session 1 25/04/2018 10:00 16 High IQ
Session 2 25/04/2018 11:30 14 Low IQ

Total Returned 30
Session 3 09/05/2018 14:00 10 High IQ
Session 4 09/05/2018 15:30 10 Low IQ

Total Returned 20
Session 5 14/06/2018 10:00 12 High IQ
Session 6 14/06/2018 11:30 14 Low IQ

Total Returned 26
Session 7 22/11/2018 14:00 16 High IQ
Session 8 22/11/2018 15:30 16 Low IQ

Total Returned 32

Total Participants 108
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Table A.2: Dates and details for Integrated

Day 1: Group Allocation
Date Time Subjects

1 30/04/2018 09:45 7
2 30/04/2018 11:00 13

Total 20
3 15/05/2018 10:00 6
4 15/05/2018 11:30 16

Total 22
5 18/06/2018 14:45 17
6 18/06/2018 16:00 9

Total 26
7 10/07/2018 09:45 7
8 10/07/2018 11:00 13

Total 20
9 02/10/2018 09:45 7
10 02/10/2018 11:00 11

Total 18
11 15/10/2018 09:45 6
12 15/10/2018 11:00 6

Total 12

Day 2: Cooperation Task
Date Time Subjects

Session 1 02/05/2018 10:00 14
Session 2 17/05/2018 14:00 10
Session 3 17/05/2018 15:30 12
Session 4 20/06/2018 14:00 12
Session 5 20/06/2018 15:30 12
Session 6 12/07/2018 10:00 18
Session 7 04/10/2018 11:30 16
Session 8 17/10/2018 11:30 12

Total Participants 106
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Table A.3: Comparing Variables across the IQ-Separated and the Integrated Ses-
sions

Variable Separated Integrated Differences Std. Dev. N
IQ 103.4069 103.1394 .2674614 1.349413 214

Age 23.84259 23.06604 .7765549 .6392821 214
Female .4907407 .5 -.0092593 .0686773 214
Openness 3.767593 3.678302 .0892907 .0730968 214
Conscientiousness 3.358025 3.431866 -.0738411 .0883303 214
Extraversion 3.228009 3.371462 -.143453 .1024118 214
Agreeableness 3.591564 3.612159 -.0205955 .0850711 214
Neuroticism 3.016204 2.879717 .1364867 .0995567 214
Risk Aversion 5.536082 5.382979 .1531038 .251421 191
German .6481481 .754717 -.1065688 .0624657** 214

Total Profit 5167.87 5957.415 -789.5447 141.8649*** 214
Rounds Played 126.8519 139.8302 -12.97834 2.591088*** 214
Payoff per Round 40.19059 41.89426 -1.703675 .6099137*** 214

Total Profit (Equal SGs Played) 3858.296 4021.849 -163.5528 57.84501** 214
Payoff per Round (Equal SGs Played) 40.19059 41.89426 -1.703675 .6025522** 214

Note: ∗ p− value < 0.1, ∗∗ p− value < 0.05, ∗∗∗ p− value < 0.01
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Table A.4: Comparing Variables across IQ-separated Sessions

Variable Low IQ High IQ Differences Std. Dev. N
IQ 95.94193 110.8718 -14.92987 1.232502*** 108

Age 24.14815 23.53704 .6111111 1.142875 108
Female .462963 .5185185 -.0555556 .0969619 108
Openness 3.824074 3.711111 .112963 .0975451 108
Conscientiousness 3.376543 3.339506 .037037 .1160422 108
Extraversion 3.386574 3.069444 .3171296 .1456155** 108
Agreeableness 3.609054 3.574074 .0349794 .1201571 108
Neuroticism 2.949074 3.083333 -.1342593 .1357823 108
Risk Aversion 5.652174 5.431373 .2208014 .394149 97
German .6111111 .6851852 -.0740741 .0924877 108

Final Profit 4481.481 5854.259 -1372.778 184.8242*** 108
Rounds Played 122.4815 131.2222 -8.740741 4.266736** 108
Payoff per Round 36.68508 44.50096 -7.815882 .5747042*** 108

Total Profit (Equal SGs Played) 3480.667 4235.926 -755.2593 55.6599*** 108
Payoff per Round (Equal SGs Played) 36.25694 44.12423 -7.867284 .5797906*** 108

Note: ∗ p− value < 0.1, ∗∗ p− value < 0.05, ∗∗∗ p− value < 0.01
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Table A.5: Comparing Variables across IQ-separated Groups Across both Treat-
ment Sessions

Variable Low IQ High IQ Differences Std. Dev. N
IQ 95.68959 110.8592 -15.1696 .8576931*** 214

Age 23.83178 23.08411 .7476636 .6394164 214
Female .4672897 .5233645 -.0560748 .0685692 214
Openness 3.741122 3.705607 .035514 .0733099 214
Conscientiousness 3.425753 3.363448 .0623053 .0883684 214
Extraversion 3.398364 3.199766 .1985981 .1019719** 214
Agreeableness 3.613707 3.589823 .0238837 .0850633 214
Neuroticism 2.925234 2.971963 -.046729 .0999411 214
Risk Aversion 5.451613 5.469388 -.0177749 .2517194 191
German .7102804 .6915888 .0186916 .0628772 214

Final Profit 5177.28 5940.626 -763.3458 142.5326*** 214
Rounds Played 131.0748 135.486 -4.411215 2.723199* 214
Payoff per Round 39.30087 43.82866 -4.527786 .5416761*** 214

Total Profit (Equal SGs Played) 3729.673 4148.944 -419.271 51.40749*** 214
Payoff per Round (Equal SGs Played) 38.85076 43.21817 -4.367407 .5354947*** 214

Note: ∗ p− value < 0.1, ∗∗ p− value < 0.05, ∗∗∗ p− value < 0.01
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Figure A.1: Distribution of IQ Scores. Top-left panel shows IQ distribution for all
participants across both treatments, top-right shows IQ distribution in Integrated treatment
and bottom panels show IQ distribution in low- and high-IQ sessions from IQ-separated
treatment.
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Table A.6: Countries of Origin of Participants

Country Number Percentage

Albania 2 0.93
Belarus 1 0.47
Bulgaria 2 0.93
Canada 1 0.47
China 9 4.21
Denmark 1 0.47
Egypt 3 1.40
France 1 0.47
Germany 150 70.09
Hungary 1 0.47
India 3 1.40
Indonesia 1 0.47
Italy 4 1.87
Japan 1 0.47
Kazhakhstan 1 0.47
Kosovo 1 0.47
Moldova 2 0.93
Peru 1 0.47
Poland 1 0.47
Romania 1 0.47
Russia 7 3.27
Serbia 1 0.47
Spain 3 1.40
Switzerland 2 0.93
Syria 1 0.47
Taiwan 1 0.47
Turkey 4 1.87
UK 1 0.47
USA 2 0.93
Ukraine 4 1.87
Vietnam 1 0.47

Total 214 100.00
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Table A.7: SGs and Rounds Played by Session in IQ-Separated

Session SGs Rounds

1 37 123
2 29 96
3 42 151
4 42 151
5 40 146
6 29 96
7 34 116
8 42 151

Table A.8: SGs and Rounds Played by Session in Integrated

Session SGs Rounds

1 42 151
2 42 151
3 42 151
4 37 123
5 42 151
6 42 151
7 36 119
8 37 123

Table A.9: Raven Scores by Sessions in IQ-separated Treatment

Variable Mean Std. Dev. Min. Max. N
High IQ - Session 1 28.063 2.886 25 35 16
Low IQ - Session 2 20.214 3.725 11 24 14
High IQ - Session 3 28 2.539 25 33 10
Low IQ - Session 4 22 2.539 18 25 10
High IQ - Session 5 27.917 3.147 24 34 12
Low IQ - Session 6 19.357 3.671 11 23 14
High IQ - Session 7 25.875 2.029 23 31 16
Low IQ - Session 8 20.5 2.394 15 23 16
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Table A.10: Raven Scores by Sessions in Integrated Treatment

Variable Mean Std. Dev. Min. Max. N
Session 1 23.214 5.754 11 31 14
Session 2 22 6.532 8 31 10
Session 3 22.833 4.859 13 31 12
Session 4 25.333 3.339 20 32 12
Session 5 24.917 2.466 20 29 12
Session 6 24.833 4.19 16 32 18
Session 7 23.375 4.674 16 30 16
Session 8 23 4.533 16 34 12

Table A.11: IQ-separated: Low IQ Sessions, Main Variables

Variable Mean Std. Dev. Min. Max. N
Choice 0.561 0.496 0 1 6614
Partner Choice 0.561 0.496 0 1 6614
Age 23.983 7.876 17 65 6614
Female 0.454 0.498 0 1 6614
Round 64.824 40.281 1 151 6614
Openness 3.85 0.518 2.5 5 6614
Conscientiousness 3.37 0.559 2.333 4.667 6614
Extraversion 3.408 0.683 1.875 4.75 6614
Agreableness 3.585 0.680 1.667 4.889 6614
Neuroticism 2.969 0.696 1.125 5 6614
Raven 20.552 3.04 11 25 6614
Risk Aversion 5.639 2.016 0 10 6614
Final Profit 4695.723 1037.735 3168 6337 6614
Profit x Period 36.685 3.179 28.669 42.875 54
Total Periods 122.481 27.739 96 151 54
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Table A.12: IQ-separated: High IQ Sessions, Main Variables

Variable Mean Std. Dev. Min. Max. N
Choice 0.875 0.331 0 1 7086
Partner Choice 0.875 0.331 0 1 7086
Age 23.518 3.28 18 33 7086
Female 0.523 0.5 0 1 7086
Round 66.91 39.264 1 151 7086
Openness 3.723 0.497 2.6 4.8 7086
Conscientiousness 3.322 0.64 1.444 4.556 7086
Extraversion 3.073 0.816 1.25 4.625 7086
Agreableness 3.578 0.563 2 5 7086
Neuroticism 3.081 0.707 1.375 4.375 7086
Raven 27.44 2.745 23 35 7086
Risk Aversion 5.386 1.63 2 9 7086
Final Profit 5941.262 864.996 4312 7248 7086
Profit x Period 44.501 2.78 36.382 48 54
Total Periods 131.222 14.615 116 151 54

Table A.13: Integrated, Main Variables

Variable Mean Std. Dev. Min. Max. N
Choice 0.795 0.404 0 1 14822
Partner Choice 0.795 0.404 0 1 14822
Age 23.048 2.906 18 33 14822
Female 0.496 0.5 0 1 14822
Round 71.156 41.578 1 151 14822
Openness 3.683 0.553 2.4 5 14822
Conscientiousness 3.432 0.684 1.556 4.778 14822
Extraversion 3.378 0.73 1.625 4.625 14822
Agreableness 3.614 0.61 2.111 4.889 14822
Neuroticism 2.872 0.743 1.375 4.625 14822
Raven 23.759 4.621 8 34 14822
Risk Aversion 5.407 1.508 2 9 14822
Final Profit 6026.931 851.060 3984 7212 14822
Profit x Period 42.555 3.933 30.417 47.762 106
Total Periods 139.83 14.467 119 151 106
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C Supplementary Data Analysis
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Figure A.2: Average cooperation per supergame in all different sessions. The grey
lines in each panel represent the average cooperation per period among all subjects of the
corresponding low-IQ groups and the black lines represent the average cooperation per su-
pergame among all subjects of the corresponding high-IQ groups. The dashed lines represent
the integrated sessions, the bold lines the separated sessions, and the dotted straight lines
the linear trends.
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Figure A.3: Errors in transition and action, Error rates across different treatments and
groups. The average is computed over observations in successive blocks of five supergames.
The grey solid line represent the low-IQ separated treatment, the black solid lines the high-
IQ separated treatment, the dashed lines the integrated treatment: grey is the low-IQ group,
black is the high-IQ group.
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Figure A.4: Frequency of Transition Errors. Top panel: all supergames; bottom panel:
early supergames (first half).
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Figure A.5: Frequency of Action Errors. Top panel: all supergames; bottom panel:
early supergames (first half).
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Figure A.6: Frequency of Transition Errors: Histogram. Early supergames, common
x and y-scale
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Figure A.7: Frequency of Transition Errors: Histogram. All supergames, common x
and y-scale.
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D Payoff Tables with Transition Errors

We report the value of the matrix V for the values of δ relative to Figure (4), top and bottom

panel, for various values of ε. The entries illustrate the transition along different types of

equilibria and attractors.

In Table (A.15), with δ = 0.75, as ε crosses the first threshold between 0.25 and 0.3,

action T becomes dominated by G, so sGT disappears. Figure (6) illustrates the dynamics

in this situation. After the second threshold, V (A,G) > V (G,G) and thus sAG disappears.

After the last, A becomes dominant.

Table A.15: V matrix, δ = 0.75, ε = 0.25, 0.30, 0.35, 0.40.

A G T
A 25.0000 35.9375 35.9375
G 19.3125 37.6125 39.1168
T 19.3125 37.2846 39.1962

A G T
A 25.0000 36.8750 36.8750
G 18.8250 37.3221 38.6771
T 18.8250 37.0298 38.6384

A G T
A 25.0000 37.8125 37.8125
G 18.3375 37.1935 38.3034
T 18.3375 36.9510 38.1969

A G T
A 25.0000 38.7500 38.7500
G 17.8500 37.1718 37.9620
T 17.8500 36.9941 37.8411
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In Table (A.16), after the first threshold, V (A,G) > V (G,G) and thus sAG disappears

first. After the second threshold, G dominates T and thus sGT disappears at this point.

Table A.16: V matrix, δ = 0.9, ε = 0.25, 0.30, 0.35, 0.40.

A G T
A 25.0000 33.1250 33.1250
G 20.7750 33.5591 35.7744
T 20.7750 33.1806 36.1957

A G T
A 25.0000 34.2500 34.2500
G 20.1900 33.7727 35.7489
T 20.1900 33.4154 35.8681

A G T
A 25.0000 35.3750 35.3750
G 19.6050 34.0813 35.6889
T 19.6050 33.7695 35.6246

A G T
A 25.0000 36.5000 36.5000
G 19.0200 34.4359 35.5754
T 19.0200 34.1972 35.4377
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Figure A.8: Basin of attraction of A, G and T , with transition error and Best
Response dynamics. The probability of error in transition is as displayed at the top of
each panel, and is ranging from 0 to 0.25. Payoffs are as in our experimental design; discount
factor is δ = 0.6.

A-21



E Vector Field with Replicator Dynamics

Figure A.9: Basin of attraction of A, G and T , with transition error and Propor-
tional Imitation dynamics. The probability of error in transition is as displayed at the
top of each panel, and is ranging from 1 per cent to 25 per cent. Payoff and discount factor
(δ = 0.75) are as in our experimental design.
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F Errors in Action and Transition

In this section we analyze the more complete (and more complex) model in which errors of

both types (in action choice and in transition) are possible.

The main innovation with respect to the analysis in the main text is the introduction

of the error in action transition matrix. We denote (just as ε was the probability of an

independent error in the transition to the new state of the automaton) by η the probability

of an error in the choice of the action at a state in the automaton. The set of action profiles

is as usual A ≡ A1×A2. Let Pr(a;ω, η) denote the probability of choice of the action profile

a by the two players when the current state is ω and the probability of an error in action

choice is η. The action choice with errors at a state is a stochastic matrix Aη : Ω→ ∆(Ω×A)

defined by

Aη(ω)(ω′, a) ≡ δω(ω′)Pr(a;ω, η) (A-1)

Note that the ω coordinate in the image space of A is only required as a placeholder. This

role turns out to be essential in the next step, the definition of Qε,η in equation (A-2). To

illustrate the definition of Aη consider for example:

Aη(Gc, Gd)(Gc, Gd, C
1, D1) = (1− η)2

The transition with errors Tε : Ω × A → ∆(Ω) is defined by taking Tε(ω, a)(ω′) as the

probability that the next period state is ω′ given that the current state is ω and current

action profile is a. Overall the stochastic matrix Qε,η ∈ S(Ω,Ω) is the composition of the

two transitions:

Qε,η(ω
′;ω) ≡

∑
a∈A

Aη(ω)(ω, a)Tε(ω, a)(ω′) (A-2)

We denote by uη(a) the one period payoff when the intended action profile is a but errors

in action choice are possible and occur independently for the two players with probability η.

To illustrate, if the intended action profile is (C1, D2) then uη(C
1, D2) = (1 − η)2s + η(1 −

η)(d+ c) + η2t. We also let Vε,η(ω) the value function at the state ω

Vε,η = (1− δ)uη + δQε,ηVε,η (A-3)

F.1 The Nash Equilibrium Set

The analysis of the properties of the value function presented in the main text holds with

little adjustments in the current case where errors in actions and transition are possible. The

following lemma holds:
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Lemma F.1. The function (ε, η, δ) −→ V (·; ε, η, δ) is analytic, hence continuous and differ-

entiable.

The decomposition of the state space described in the main text into invariant sets holds

in the current case as well. Similarly, with easy computations, one gets:

Lemma F.2. The value function equation can be decomposed into nine independent equa-

tions, one for each of the invariant sets of the set Ω.

1. Vε,η(AA) = uη(DD)

2. Vε,η(GA) = (1− δ(1− ε))uηu(CD) + δ(1− ε)uη(DD)

3. Vε,η(AG) = (1− δ(1− ε))uηu(DC) + δ(1− ε)uη(DD)

Note that

uη(DD) = (1− η)2d+ η(1− η)(s+ t) + η2c

uη(CD) = (1− η)2s+ η(1− η)(d+ c) + η2t

uη(DC) = (1− η)2t+ η(1− η)(d+ c) + η2s

In the case of the two errors the best response to A is A for the interesting values of the

parameter η:

Lemma F.3. For all ε > 0 and η < 1/2, (A,A) is a strict Nash equilibrium of the strategy

choice game, hence a locally stable equilibrium of the PI and BR dynamics.

Proof. An easy computation gives:

Vε,η(AA)− Vε,η(GA) = (1− 2η)(1− η)(d+ t− s− c).

Hence, also in the case of the two errors A survives for all values of the parameters.

F.2 Basin of Attraction and Error Rates

From our analysis it is clear that the behavior of the basin of attraction as function of the

two error rates will broadly follow a behavior similar to that already observed in the case of

A-24



the simple error in transition, examined in the main text. Figures (A.10) and (A.11) report

the sizes of the basin as function of the two error rates. These are the three dimensional

versions of the Figure (4).

One can consider also the exact analogue of Figure (4), but for the error in action choice,

by setting the transition probability to zero. This makes clear that the basin of attractions of

the strict strategies in the sides of the simplex (analyzing the size of the basin when players

are playing only {G, T}, {A, T} and {A, T}) is strictly increasing in the probability of the

error in action choice.

An important difference between the effect of error in transition and error in action is

the following. Even with no error in action a large enough error probability in transition will

reduce the strategy surviving to A: this is clear considering the projection on the zero error

in action plane. Instead, with no error in transition only the

In the case of the subset {A, T}, at zero transition error the effect of the error in action

is still strictly increasing, but of limited size: at δ = 0.75 the largest size of the basin of

attraction of A is approximately 25 per cent; at δ = 0.9 the maximum is smaller than 10 per

cent.
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Figure A.10: Size of basin of attraction of strict strategies with two types of error.
Probability of error in transition and action choice as displayed. δ = 0.75. Top to bottom
panel: values of the basin of attraction in the indicated subsets of strategies (basin of G in
GT , A in AG, A in AT , respectively).
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Figure A.11: Size of basin of attraction of strict strategies with two types of error.
Probability of error in transition and action choice as displayed; δ = 0.9. Top to bottom
panel: values of the basin of attraction in the indicated subsets of strategies (basin of G in
GT , A in AG, A in AT , respectively).

A-27



G Learning Model

G.1 A Population Model

We consider a model in which a population of players; each player is indexed by an index

i ∈ [0, 1], and has at every point in time a strategy profile he adopts, call it si(t). Such

assignment of strategy to each player induces a probability distribution on strategies, where

we call as in the main text µ(s, t) the frequency of the strategy s (that is, the fraction of the

i players who have adopted s at t). Players know the distribution µ and can compute the

best response, but for some reason they cannot adopt the best response when they like.

G.1.1 Best Response

We apply this setup to provide a justification of the Best Response dynamic (see for example

Sandholm (2007)), that we described in the main text as:

∀s ∈ S :
dµ(s, t)

dt
∈ λ (BR(µ(·, t))(s)− µ(s, t)) . (A-4)

we have added a minor modification, a λ ∈ R+; the reason will become clear in a moment.

In the time interval dt (dt small) a fraction λdt of the population can revise their strategy;

the complement 1 − λdt cannot. Those who can, adopt the best response to the current

µ(·, t); each player does so taking the current µ as given, and ignoring (correctly, since he is

negligible) his effect on the frequency of strategies. If we denote by BR the set of optimal

mixed strategies, for every m we have

µ(s, t+ dt) ∈ (1− λdt)µ(s, t) + λdtBR(µ(·, t))(s) (A-5)

which in the limit gives the differential inclusion (A-4).

We now apply the population model to a learning model.

G.2 The learning model

Each player has a belief on the distribution of strategies in the population. The belief has the

same form for all players, and is a Dirichelet distribution of the three dimensional simplex,

∆({A,G, T}); player i has a concentration parameter αi ∈ N3; so the density of the belief of

that player is:

D(µ, αi) =
1

B(αi)
µ(A)α

i
A−1µ(G)α

i
G−1µ(T )α

i
T−1 (A-6)

where B is the beta function.
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The assignment of the belief described by αi to each player induces a population distri-

bution over belief of players on the strategy of others, described by a probability distribution

on the countable set N3; with generic term π.

G.2.1 Matching and Playing the Game

At time t, a fraction λdt of the population is randomly selected to play the game. This

sub-population is representative of the total population, so the distribution on N3 in it is

the same as in the total population. For convenience, we will consider in the following the

extension of the measure π to a measure on Z3, set equal to 0 on all three dimensional vectors

of integers that have a negative value in some coordinate; we keep the same symbol:

π ∈ ∆(Z3) (A-7)

G.2.2 Players’ best response

We now consider players in the selected sub-population. Given the distribution on the

strategy of the other selected players, each player computes and chooses with no limitation

a mixed strategy in the set of his best responses, given his belief indexed by α:

BR(α) = argmaxσ∈∆(S)ED(·,α)u(σ, ·). (A-8)

By the property of the Dirichelet distribution with parameter α , the mean of µs, s ∈ S is

ED(·,α)µ(s) =
αs∑
r∈S αr

.

≡M(s;α) (A-9)

When convenient write M(·, α) simply as M(α). The best response set of a player with belief

indexed by α is:

BR(α) = argmaxσ∈∆(S)

∑
s∈S

M(s;α)u(σ, s). (A-10)

When we add over N3 with weights given by π, the best response of each player we get an

element φ(·; π) ∈ ∆(S) which is the true distribution in the population of the strategies. Note

that the function φ depends on the value function of the repeated game at the corresponding

error rate. We will make this dependence explicit later on when we need to study its effects,

but we ignore it for the moment for clarity of notation. 20

20We assume that when the best response of a player with belief α is not a pure strategy, then players
choose according to the uniform distribution over the best response set, so when we aggregate over the
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G.2.3 Discrete Time Evolution of Belief Distribution

We consider first the evolution in discrete time. In each period, all players are randomly

matched with probability corresponding to the frequency.

Proposition G.1. The fraction of each α belief in the model described in Section (G.2)

follows the difference equation:

π(α, k + 1) = Sπ(·, k), k = 0, 1, . . . . (A-12)

where S defined in (A-14).

Proof. Let 1s denote the three dimensional vector equal to 1 at the sth coordinate, and 0

otherwise. Given a π ∈ ∆(N3), a players hold a belief α next period if and only if in the

current period he holds a belief α − 1s and meets an opponent playing s, which happens

with probability φ(s, π). Each player then updates his belief; since priors are Dirichelet, he

changes the αi to the new value:

αi,′s = αis + δs(b
i) (A-13)

where δs is the indicator function. 21 Define:

(Sπ)(α) ≡
∑
s∈S

π(α− 1s)φ(s, π) (A-14)

Recall our discussion before (A-7), so the definition (A-14) is meaningful even when, in

αs = 0. Equation (A-12) follows.

G.2.4 Continuous Time Evolution of Belief Distribution

We now show that the time evolution of the fraction of beliefs in the population follows a

dynamic very similar to the one described by the best response presented in Section (G.1.1),

with the distribution on beliefs π replacing the distribution on strategies µ:

Proposition G.2. The time derivative of the fraction of each α belief in the model described

sub-population of such players we get the expected value of the strategy choice. In detail, we define:

φ(s;π) ≡ π({α : BR(α) = {s}) +
∑
r 6=s

1

2
π({α : BR(α) = {s, r})+ (A-11)

1

3
π({α : BR(α) = ∆(S))

21That is, δs(b
i) = 1 if s = bi and = 0 otherwise.
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in section (G.2) follows the equation:

dπ(α, t)

dt
= λ

(∑
s∈S

π(α− 1s)φ(s, π(·, t))− π(α, t)

)
(A-15)

Proof. The players who are matched to play observe a strategy bi of the opponent with

probability φ(bi; π). Each player in the sub-population updates his belief according to (A-

13). The new population after the time interval dt is a combination of the population of

players that did not play, that is a fraction 1 − λdt, with frequency π(·, t) unchanged; and

the sub-population of selected players, a fraction λdt, with frequency Sπ(·, t). Thus, the

frequency next period is

π(α, t+ dt) = (1− λdt)π(α, t+ dt) + λdtSπ(·, t),

and therefore (A-15) follows.

The analysis of the evolution over time is more difficult to visualize than it is in the simple

two dimensional case of the best response dynamic, but the logic is the same. In particular

consider the best response function φ as depending on the value function V for a given vector

of parameters, (ε, η, δ, u). As the error in action becomes large, the best response assigns

for the same π(·, t) a larger weight to the strategy A, until the frequency converges to the

consensus on A.

G.3 Estimation of beliefs’ updating under best response

We now estimate the evolutions of the beliefs under best response dynamics described above

for each strategy, s, at the beginning of each supergame t, αis,t. For simplicity we limit

ourselves to the case of no errors in the implementation of strategies (transition or action),

where G and T have the same expected utility and for this reason we refer to this strategy

as sophisticated cooperation or SC. Therefore, we assume that subjects in the first repeated

game hold beliefs that other players either use A or a cooperative strategy that we already

defined SC. Let the probability of player i in supergame s to play A be αiA,t/(α
i
A,t + αiSC,t).

In the first supergame, t = 1, subjects have beliefs charaterized by αiA,1 and αiSC,1, from the

second supergame onward, t > 1. Following Dal Bó and Fréchette (2011), we assume that

they update their beliefs as follows:

αik,t+1 = θiα
i
k,t + 1(ajk), (A-16)
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where k is the action (A or SC) and 1(akj ) takes the value 1 if the action of the partner j is

k. The discounting factor of past belief, θi, equals 0 in the so-calleld Cournot Dynamics and

is 1 in the fictitious play. Therefore the closer is θ to 1 the slower will player update their

beliefs. Since we assume that subjects chose a strategy at the beginning of the supergame,

they will play cooperation, C, in period 1 of supergame if they expect that the partner plays

SC, defect, D, otherwise. The expected utility each player obtains for each action, a, is

U i
a,t =

αiA,t
αiA,t + αiSC,t

ua(a
j
A) +

αiSC,t
αiA,t + αiSC,t

ua(a
j
SC) + λisε

s
a,t (A-17)

where ua(a
j
k) is the payoff from taking action a when j takes the action k. The estimation

of the model above generates choices of the first period of each supergame that in average

fits well our data as it is shown in Figure A.12. We now analyze the two parameters we are

interested: θi, measuring the inverse of the speed by which subjects update their beliefs and

λis, measuring the inverse of the capacity of best responding given the beliefs.22

In Table A.19, we show the correlation between IQ and the parameters of interest. IQ

significantly negatively correlated with θi, implying that higher IQ subjects update faster

their beliefs. While do not affect the capacity of best responding, λs. In the top panels of

Figure A.13 we can compare the cumulative distribution of the θi in the different treatments.

θi seem to be smaller for high IQ than for low IQ, confirming that low IQ update they beliefs

slower than high IQ (top left panel). When integrated the differences seem to be drastically

reduced (top right panel). From panel A of Table A.18 , we note that the differences between

high IQ and low IQ in the separated treatment is statistically significant, while the same

difference in the integrated treatment is only weakly significant at the best. The bottom

left panel of Figure A.13 shows that low IQ improve their speed (i.e. θi is lower) when

integrated with the high IQ, while there is no much difference among high IQ subjects in the

different treatments. Panel B of A.18 confirm that the differences among the low IQ in the

integrated and in the separated treatments are statistically significant. We can summarise

this discussion saying Less intelligent learn to update their beliefs faster when they are mixed

with more intelligent, while the way the subjects best respond to their beliefs is not depended

on their IQs. A possible explanation of why lower IQ subjects update their first period beliefs

faster when mixed with the higher IQ might be that in the latter environment they receive

a clearer signal from the other players playing more consistent strategies of cooperation.

22We omit the details on how the model is estimated, they can be found in in the online appendix of
Dal Bó and Fréchette (2011) at page 6-8.
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Figure A.12: Simulated Evolution of Cooperation Implied by the Learning Esti-
mates Solid lines represent experimental data, dashed lines the average simulated data, and
dotted lines the 90 percent interval of simulated data.
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Figure A.13: Distribution of the beliefs’ updating speed within the different groups
and treatments. Distribution of the parameter θi as defined in equation A-16, where 1
correspond to slowest speed (fictitious play) and 0 to the fasted speed (Cournot dynamics)
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Table A.17: IQ and Simulated Parameters

Variable Mean Std. Dev. Min. Max. N
IQ 103.516 10.203 69.338 127.231 182
θi 0.58 0.357 0 1 129
λ0 5.67 11.683 0 93.275 129
λ20 7.28 12.941 0.154 93.275 128
λ40 6.846 12.913 0.141 93.275 128

Table A.18: Differences in the beliefs’ updating speed within the different groups
and treatments. Tests of the differences of the estimated parameter θi as defined in
equation A-16, where 1 correspond to slowest speed (fictitious play) and 0 to the fasted
speed (Cournot dynamics)
∗ p− value < 0.1, ∗∗ p− value < 0.05, ∗∗∗ p− value < 0.01.

Panel A: Tests between IQ groups

Treatment Separated Integrated
θLowIQ - θHighIQ θLowIQ - θHighIQ

t test t −2.9623∗∗∗ −1.3777∗

Mann-Witney z −2.488∗∗ -1.411

Panel B: Tests between treatments

Treatment Separated vs Integrated Separated vs Integrated
θLowIQ θHighIQ

t-test t 1.9647∗∗ −0.3909
Mann-Witney z 1.849∗ −0.350

Table A.19: Correlation between IQ, beliefs updating and capacity of best re-
sponding to own beliefs Correlations between IQ, updating speed, θi, capacity of best
responding to beliefs in supergame s, λs. p− values in brackets

Variables IQ θi λ0 λ20 λ40

IQ 1.000

θi -0.345 1.000
(0.000)

λ0 -0.032 -0.242 1.000
(0.746) (0.006)

λ20 -0.047 -0.196 0.887 1.000
(0.635) (0.026) (0.000)

λ40 0.001 -0.205 0.899 0.988 1.000
(0.992) (0.020) (0.000) (0.000)
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H Estimation of the error rates

Let s denote the strategy in a given set of strategies (to be determined later), ε the probability

of an error in action choice and η the probability of an errors in transition among states of

the automaton.

Take a history of the supergame of length T , h ≡ (a1
1, a

2
1, . . . , a

1
T , a

2
T ). We are interested in

determining the parameter (s, ε, η) ∈ S×[0, 0.5]2 that maximizes the probability of observing

the choices of subject 1 given the history of the others’ actions. The restriction to errors

less than chance is natural. The model we have described in the earlier section provides a

statistical model which we now describe.

H.1 Recursive Computation of Errors

There is a simple recursive algorithm to compute the set of all possible error histories that

explain the observed choices for a given strategy. The algorithm goes through the sequence

of observations, in the order of occurrence, and produces at every step a set of partial records

which are triples (n1, n2, ω) ∈ N2 × Ω, where n1 is the number of errors in action, n2 is the

number of errors in transition, ω is the internal states of the automaton. So the interpretation

of the triple (n1, n2, ω) is:

There exists a sequence of errors with a total of n1 errors in action and n2 errors

in transition explains the observations up to the current observation; according

to this sequence, the current internal state of the automaton representing the

strategy is ω.

We first illustrate this algorithm in the case of the observations (A-18), considering s = G,

with internal states {c, d}.

(C1C2;D1C2;C1C2) (A-18)

1. Consider the first period. For each record we have we do the following:

(a) (Prediction of action and comparison of observation and prediction.)

The initial record is (0, 0, c). This predicts an action C1, which is what we observe,

so the record is unchanged

(b) (Updating of the state given the history) Since the action of the opponent

is C2, the state at the beginning of the second period should be c according to

this partial record (the only one we have), and the action produced C1. At this

final step for period 1 there is only one partial record, (0, 0, c)

A-35



(c) (Go to next.) Go to the next observation.

2. Consider the second period. For each record we have we do the following:

(a) (Prediction of action and comparison of observation and prediction.)

The only record we have predicts an action C1. If we did observe C1 we would

proceed to the step of transiting to the new state After observing D1 instead, the

algorithm produces two records: (1, 0, c) (an error in action and the internal state

unchanged, as it should because both players cooperated in the first period), and

(0, 1, d) (an error in transition and the state changed to d). Note that c and d

in the two partial records respectively refer to what the state was at the end of

period 1. In the case of record (0, 1, d) for example we are considering the following

explanation: upon observing C1C2 at the end of the first period the state should

have transited to (that is, remained at) c; instead it transited to d.

(b) (Updating of the state given the history) Now we perform on each partial

record the updating of the state: given that the observed action profile is D1C2 the

two records (1, 0, c) and (0, 1, d) should change to (1, 0, d) and (0, 1, d) respectively.

(c) (Go to next.) Go to the next observation.

We then proceed with the next observation, and execute the same procedure for each

possible partial record. Each of them may produce a set of possible “offsprings”, and this

occurs if and only if an error (according to the prediction of the partial record) is observed.

If no error is observed, the state should be updated at the strategy requires, depending on

the action profile. Note that whether an action is an error or not depends on the partial

record.

1. (Prediction of action and comparison of observation and prediction.)

(a) The record (1, 0, d) produces two new records, (1, 1, c) and (2, 0, d).

(b) The record (0, 1, d) produces two new records, (1, 1, d) and (0, 2, c).

2. (Updating of the state given the history): This step is now irrelevant, because

we have reached the final period. If this was not the final period, we would have for

the next period:

(a) The two records (1, 1, c) and (2, 0, d) should produce (1, 1, c) and (2, 0, d).

(b) The two records (1, 1, d) and (0, 2, c) should produce (1, 1, d) and (0, 2, c).

and we would continue the process for these
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H.2 General Algorithm

In summary the algorithm for player 1 is:

1. We have a data set (a1b1, a2b2, . . . , atbt, . . . , aT bT ) (denoting a the action of the first

player, b of the second);

2. We consider each possible automaton m in some candidate set M ; here for simplicity

of exposition we consider the case of automata with only two states;

3. For each of these strategies, for the period t we have a set of partial records (nk1, n
k
2, ω

k) :

k = 1, . . . , Kt;

4. For each k record and each period t:

(a) (Prediction-comparison): Given the state ωk in the kth record and the strategy

m, predict the action ãt+1, and check whether at+1 = ãt+1:

i. if at+1 = ãt+1, keep the records and proceed to the updating step below;

ii. if at+1 6= ãt+1, produce two new records:

(nk1 + 1, nk2, ω
k)

corresponding to an error in action, and

(nk1, n
k
2 + 1, (ωk)′)

corresponding to an error in transition; here (ωk)′ is the opposite than state

ωk. Delete the record (nk1, n
k
2, ω

k). Recall that ωk and (ωk)′ and should be

interpreted as our guess at what the state at the beginning of period t + 1

must have been.

(b) (Updating): For each new record, update the state according to the observed

actions (at+1bt+1) and the transition rule of m.

(c) (Go to next.) Go to the next record and then to the next period.

H.2.1 Remark

The algorithm applied to the T strategy produces records that have the sum of errors in action

and transition equal for all records. This fact follows because the transition in the automaton

only depends on the action of the other. By induction consider a record (nk1, n
k
2, ω

k). If the
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observed action is different from the predicted one, then at the next step the algorithm

produces two new records (nk1 + 1, nk2, ω
k) and (nk1, n

k
2 + 1, ωk,′). The difference in state of

the automaton is erased by the subsequent updating that only depends on the action of the

other player, hence it is the same for the two records we are considering. Thus the two new

records have the same sum of errors.

H.3 Simultaneous Errors

In the estimate of the error rates ε and η we want to assume that the two errors are indepen-

dent; so the possibility that two errors occur in the same period is small, εη, but positive.

We note in this subsection that if we are interested in the maximum likelihood estimation,

we can ignore this possibility.

The algorithm we described only considers the possibility of a single error in each period.

We need to examine the possibility that an algorithm which allows two errors in the same

period. Although it produces a strictly larger number of errors in the current period for at

least on type of error, this algorithm might produce a better report in the final stage. The

next proposition shows that this is not the case.

Proposition H.1. For any history and any final report obtained allowing two errors (one

in action and one in transition) there is a report that can be obtained allowing only one error

in each stage that has a weakly smaller number for each action and transition.

Proof. Fix the strategy, and its automaton, that we are considering; and fix a history of the

supergame of length T , h ≡ (a1
1, a

2
1, . . . , a

1
T , a

2
T ). Let

(n1
t , n

2
t , st) ≡ rt

indicate a report at t, after updating the state of the automaton (that is after the Updating

step of section H.2 is concluded). We define a continuation set at report r = (n1, n2, st) and

partial history

ht+1 ≡ (a1
t+1, a

2
t+1, . . . , a

1
T , a

2
T ),

denoted C(r, ht+1), as the set of final reports that can be generated with that history and

initial report by the algorithm which allows a single error in every period. We will refer to

the two algorithms as single error and double error for short. It is clear that the continuation

set only depends on the state in the report, not on the recorded number of errors. So if we

prove that the single error report generates in every t the same set of states with a weakly

smaller (for each type of error) number of errors, then our claim will follow. We indicate by

T the transition function of the strategy we are considering.

A-38



We consider two cases:

1. a1
t+1 6= st. In this case the single error algorithm produces two continuations reports,

(n1, n2, T (st, a
1
t+1, a

2
t+1)) and (n1, n2, T (s′t, a

1
t+1, a

2
t+1)), where the prime indicates the

other state, that is st 6= s′t. So before the updating both states are reached; so the

set of states that are reached after the updating in the single error algorithm contains

the set of states that can be reached with the double error algorithm, with a weakly

smaller error vector.

2. a1
t+1 = st. In this case the single error algorithm produces a single report:

(n1, n2, T (st, a
1
t+1, a

2
t+1)) ≡ rt+1,

whereas the double error algorithm produces a report

(n1 + 1, n2 + 1, T (s′t, a
1
t+1, a

2
t+1)) ≡ r′t+1,

which might not be produced by the single error algorithm, at the cost of one additional

error of each type. There is however no error to explain at t. Suppose that an error

arises at any later period according to the report following rt+1 and the intervening

history, and instead no error arises according to the report that follows from r′t+1 and

the intervening history. That error can be explained in the single error algorithm

adjusting the the report following rt+1 (if needed, because the state is different from

the one producing the observed action) with a single error in transition.

H.4 Estimate of Error rates

We can now proceed to the estimation of the error rates. This step is standard maximum

likelihood estimation over the set (s, ε, η) ∈ S × [0, 0.5]2 of strategies and error rates. The

final reports (if we ignore the state of the automaton, which is irrelevant in the final step)

have the form (n1, n2), the number of each type of error, for a subgame of length T and

for each strategy; so we may write the total allocation of periods to different types of errors

(possibly none) (nZ , nA, nT , nAT ), for no-error, error in action, errors in transition, double

error. Since there are no double errors, and the total sum is T , the log-likelihood of the (ε, η)

pair at (T − nA − nT , nA, nT , 0), assuming independence of the errors, is

(T − nT )log(1− ε) + nT log(ε) + (T − nA)log(1− η) + nAlog(η)

A-39



so the ML estimated parameters are the relative frequencies:

ε̂ =
nT

T
, η̂ =

nA

T
. (A-19)

We then choose the maximum over the strategies. If the maximum likelihood procedure

attributes the same probability to two different strategies, we assume that both can be chosen

with equal probability.23

Table A.20: Determinants of error rates across individuals. Dependent variables
are the error rates standardized. High IQ separated is the baseline treatment indicator in
columns 1 and 3. Tit for tat is the baseline strategy. GLS estimator with random-effect.
Errors are clustered at the individual levels; ∗ p − value < 0.1, ∗∗ p − value < 0.05, ∗∗∗

p− value < 0.01.

Transition Transition Action Action
Error rates Error rates Error rates Error rates

b/se b/se b/se b/se
Low IQ split 0.1987*** 0.0655

(0.0564) (0.0778)
Integrated 0.0795** –0.0252

(0.0325) (0.0510)
IQ –0.0044** –0.0046*

(0.0019) (0.0025)
Always Defect 0.0668 0.0661

(0.1878) (0.1857)
Grim Trigger 0.2908* 0.2644 –0.9384*** –0.9409***

(0.1655) (0.1647) (0.3475) (0.3478)
Supergame –0.0075*** –0.0075*** –0.0051*** –0.0052***

(0.0012) (0.0012) (0.0013) (0.0013)

N 7492 7492 7492 7492

23This is irrelevant in the computation of the individual error rates since when two strategy have the
same likelihood in a supergame the two records will have the same error rates by construction.
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Table A.21: Individual strategies in the different treatments using Dal Bo and
Frechette ML estimation. The details on how this table is estimated are in the online
appendix of Dal Bó and Fréchette (2011).

Supergames First 10 Last 10

Treatment IQ Separated Integrated IQ Separated Integrated
IQ Session/Group High Low All High Low All
Strategy
A 0.100 0.365 0.168 0.037 0.228 0.076
G 0.423 0.310 0.404 0.295 0.340 0.444
T 0.476 0.324 0.427 0.669 0.438 0.480

Proportion A/T 0.210 1.127 0.393 0.055 0.521 0.157
Proportion A/G 0.236 1.177 0.416 0.126 0.671 0.170
Proportion G/T 0.889 0.957 0.946 0.441 0.776 0.925
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