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Abstract

We assume a fixed number of symmetric firms, competition in prices, constant
returns to scale and frictionless consumer choices. Consumers differ in their prefer-
ences and profitability (e.g., due to heterogeneous risk aversion and loss probabilities),
which creates adverse selection. Firms can offer multiple contracts to screen individ-
uals, in equilibrium and in any deviation. We show that equilibrium profits vanish
if each consumer has a unique optimizing bundle at equilibrium prices or, more gen-
erally, if there exists a linear ordering over of contracts that dictates the preferences
of firms whenever consumers are indifferent between multiple optimal contracts. For
instance, equilibrium profits vanish if the marginal rate of substitution of quality for
price is sharper for profit than for utility. In particular, profit also vanishes if utility
equals the sum of (negative) profit, and a surplus (eg, due to risk aversion). We pro-
vide examples of economies where there exists an equilibrium with strictly positive
profit and show that these examples are robust (hold for an open set of economies).
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1 Introduction

This article considers economies with a fixed number of symmetric firms, competition in
prices, constant returns to scale and frictionless consumer choices. More specifically, we
consider screening markets (for instance, insurance) where firms offer multiple products,
consumers have heterogeneous preferences over products and asymmetric information
about their cost. This asymmetric information can cause adverse selection, as in Rothschild
and Stiglitz (1976). Several articles studying these environments focus on equilibria where
profits are zero. In this article, we derive conditions which imply vanishing equilibrium
profits in screening markets, and thus justify restriction attention to those equilibria. We
also provide examples of screening markets where equilibria with positive profits exist,
and show that these examples are not knife-edge cases.

If free entry of firms is assumed, standard arguments imply that equilibrium profits
are zero (e.g., Varian (2010, p. 433)). This argument was used in the context of screen-
ing markets by Rothschild and Stiglitz (1976, p. 634), Fang and Wu (2018) and others to
justify focusing on equilibrium where firms breaking even. However, there are also sev-
eral frameworks where the number of firms is fixed and equilibrium profits are zero (this
was called the Bertrand paradox by Tirole (1988, p. 10)). Conversely, there also exist envi-
ronments where equilibrium profits are positive despite price competition and frictionless
consumer choices. These include decreasing returns to scale, learning, imperfect informa-
tion about rival’s costs, etc, as we discuss further in Section 2. To our knowledge, there is
no known general condition which ensures zero equilibrium profits in screening markets.

This article considers markets where firms offer multiple products and consumers dif-
fer in their preferences over these products. Consumers also have asymmetric information
regarding the costs they would impose on firms following the purchase of each product.
For instance, at a given price, unhealthy individuals are particularly costly to insurers
when they buy high-coverage insurance plans. Firms must offer a given product at the
same price to all consumers (due to regulation or informational asymmetries). This asym-
metry of information can create adverse selection.

In most models of selection markets, in equilibrium, some types of consumers are indif-
ferent between multiple optimal products. For instance, in Rothschild and Stiglitz (1976),
the high-cost type is indifferent between the full-insurance and partial-insurance contracts.
However, even if consumers are indifferent between several optimal products, firms need
not be indifferent about which product is chosen by each consumer type. We show that the
nature of this preferences of firms over contracts is key to determine whether equilibrium
profits can be positive.

For example, suppose that two firms ship items to consumers but are obliged to charge
the same price to all consumers. Consumers are indifferent between buying from either
firm, but each firm would prefer to sell to those consumers who live close-by to that firm.
In this case, equilibrium profits can be strictly positive. If a firm were to undercut these
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equilibrium prices, it would attract all buyers. Some of those buyers are the costly to
serve, thus making the deviation unprofitable. That is, deviations are unprofitable due
to adverse self-selection of individuals into a product where they are unprofitable. This
result can help explain positive markups in industries where the classic conditions for
price competition are in place.

Our main result (Theorem 1) is that zero equilibrium profits are guaranteed if contracts
offered in equilibrium can be “vertically differentiated” from the point of view of the firms.
That is, contracts can be linearly ranked such that, whenever any consumer has several op-
timal choices, the firms prefer that he chooses the higher ranked option. This condition
arises naturally in the framework of insurance markets like Rothschild and Stiglitz (1976),
where the contracts are ordered in equilibrium by their level of coverage, and firms prefer
that consumers buy the contract with higher coverage in cases of indifference. Theorem
3 shows that this ordering of contracts occurs in any equilibrium if the marginal rate of
substitution of quality for price is sharper for profit than for utility. This ordering also
holds in any equilibrium if consumer utility is the sum of (minus) profit and a surplus (for
instance, due to strictly positive risk aversion). In these cases, any equilibrium has van-
ishing profit. Notice that, in the example with positive profits above, there does not exist
such an ordering that is valid for all individuals: each firm prefers close-by consumers to
buy, but far-away consumers not to buy.

We further show that our examples of economies with positive equilibrium profit are
not knife-edge cases (do not only occur in a negligible set of economies). The conditions
that guarantee positive equilibrium profits (Lemma (6)) are non-degenerate, and hold in
an open subset of economies (in a sense we make precise below, Theorem 4). We also
show that, whenever positive profits do arise, a key ingredient is the presence of ’cycles’
of consumers who are indifferent over two or more contracts. If such a cycle exists, in
equilibrium, there are pairs of consumers indifferent between the contract purchased by
himself and his ’neighbour’, yet firms would prefer consumers not switch to the neigh-
bor’s contract, and the ’string’ of such pairs of consumers form a cycle (Theorem 1).

Our results show that an a priori focus only on equilibria with zero profits can be
misleading, since equilibria with positive profits may exist. Also, in some settings (such
insurance markets), our results shows that any equilibrium must feature zero profit. In
these settings, our results justify focusing on equilibria where firms break even and can be
used to characterize these equilibria.

The paper is organized as follows. Section 2 contains a short literature review. Section
3 motivates the analysis with simple examples of screening markets where equilibrium
features positive profits. Section 4 describes the model setup. Section 5 presents the re-
sults pertaining to zero profits. Section 6 discusses sources of positive profits and local
equilibrium. All proofs, as well as some additional examples and details, are contained in
the Appendix.
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2 Literature Review

The Bertrand (1883) model of competition features firms choosing prices, undifferentiated
products, constant returns to scale (constant marginal cost) and perfect information. In
equilibrium, prices are equal to marginal cost and profits are zero. The “Bertrand paradox”
refers to the fact that profits vanish even when there are only two firms competing.

Edgeworth (1925) pointed out that the Bertrand paradox requires constant returns
and does not occur if firms have capacity constraints (a form of decreasing returns). A
similar result is described by Levitan and Shubik (1972) and generalized by Kreps and
Scheinkman (1983) to more general cost functions and asymmetric firms. Hotelling (1929)
considers price competition in differentiated products, where equilibria with positive prof-
its arise due to product differentiation which creates market power. Dos Santos Ferreira
and Dufourt (2007) show that positive equilibrium profit is possible under free entry and
decreasing average cost. Hurkens and Vulkan (2003) show that free entry does not result
in zero profits when there is an (arbitrarily small) cost to learning demand. Alós-Ferrer,
Ania and Schenk-Hoppé (2000) present an evolutionary model of Bertrand competition
where, in the long run, firms make positive profits. Kaplan and Wettstein (2000) show
that, with constant returns but unbounded revenue, it is possible to have mixed strategy
equilibria with positive profits. Baye and Morgan (1999) show that, if monopoly profits are
unbounded, then any feasible pay-off pair can be achieved in a Bertrand mixed strategy
equilibrium. In Spulber (1995), if rivals’ costs are unknown, firms price above marginal
cost and have positive expected profit.

The articles listed in the paragraph above above do not consider, as we do, markets
where individuals differ in their cost, i.e., screening markets. In contrast, we assume price
competition, undifferentiated products, symmetric firms, constant returns to scale, and
frictionless consumer choices, but also allow individuals to differ in their preferences and
in the cost that they impose on firms by buying each of the firm’s products. It is this
heterogeneity in cost which creates the possibility of positive equilibrium profits. In turn,
this motivates our results which describe classes of competitive economies where positive
profits in equilibrium can be ruled out.1

Several articles have argued that positive profits are possible in screening markets (as
we do). To the best of our knowledge, those results rest on the crucial assumption that
each firm offers a single contract (which we do not assume). Wambach (2000) allows indi-
viduals to differ in both risk and initial wealth, and Villeneuve (2003) allows for privately
known heterogeneity in risk aversion. In Smart (2000), individuals are heterogeneous in
risk aversion and positive equilibrium profits are sustained by entry costs. Kubitza (2019)
obtains positive equilibrium profits in an insurance setting with multi-dimensional types

1It is intuitive that, for instance, adding market power to a model of insurance would re-introduce the
possibility of positive equilibrium profits. However, in this article we focus on competitive markets and
examine whether asymmetric information might result in positive equilibrium profit.
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and single crossing, but also ignores multi-contract deviations. In contrast to these articles,
we will allow firms to deviate by offering arbitrary menus of products. Moreover, we will
consider settings that are significantly more general than the settings considered above.

In a closely related article, Snow (2009) shows that the positive profit equilibria in
insurance markets does not exist if each firm is allowed to offer multiple contracts (as we
do). Our main result (Theorem 1) applies to insurance markets but also to more general
screening markets, and can therefore be seen as a significant generalization of Snow (2009).
Moreover, this article also provides examples of economies where adverse selection does
create the possibility of positive equilibrium profits in (non-insurance) screening markets
where firms offer multiple contracts.

3 Motivating Examples

3.1 One Good

The following example, while much simpler than the settings we consider below, illus-
trates the possibility of positive equilibrium profits due to selection. Two firms offer a
single product and compete in prices, p. Consumer types ω ∈ {ωH, ωL} capture the cost
of serving each consumer. For low-cost consumers (ωL = 0), shipping costs are zero. For
high-cost consumers (ωH = 10), shipping cost per consumer is 10. A given firm must
charge the same price to all buyers (due to regulation or asymmetric information) and
cannot reject willing buyers. Firm profits per customer are given by

v(ω, p) = p − ω.

Consumers choose an option x ∈ X = {0, 1}, where x = 1 means buying the product,
while x = 0 means not buying. If a consumer chooses to buy, she also chooses which firm
to buy from. Utility is

u(ω, x, p) = x(1 − p)

For either type, buying at a price of p yields utility u = 1 − p. Not buying yields zero. The
mass of each type is given by λ(ω). For simplicity, let λ(ωH) = λ(ωL) = 1/2. Also for
simplicity, production costs are zero. Firms simultaneously post prices, then consumers
decide whether to buy and from which firm.

There exists a Nash equilibrium where both firms charge price p = 1, and only types
ωL buy, randomizing across firms. In this equilibrium, each firm makes a positive profit
of π = 1/2. There is no profitable deviation. A firm that raises its price loses all customers
and obtains profit π = 0. If a firm undercuts to any p′ < 1, he would attract all buyers
(high and low-cost), resulting in a profit of π = pj − 5 < −4.

This example is not a “knife-edge” case. In any (sufficiently small) perturbation of the
profits or utility functions, there exists an equilibrium with positive profit, as we discuss
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further in Section 6.2.

3.2 Two Goods

Our second example better illustrates the generality of our setup, since firms offer multiple
products. We now take as an example the health insurance industry. Consumer types are
ω ∈ {ωA, ωB}. The mass of each type is λ(ωA) = λ(ωB) = 1/2. There are N ∈ N

firms, each offering two products, x ∈ {A, B}. We assume that the market is covered, so
consumers buy one product or the other.2 Let (ω, x) denote type ω purchasing contract x.

Fix α ∈ R. The utility of type ω purchasing x at a price p is

u(ω, x, p) =


2(α − p) if (ωB, A)

α − p if (ωB, B)
6(α − p) if (ωA, A)

4(α − p) if (ωA, B)

If both products are sold at the same price, it is more profitable for firms if types ωA buy
A and if ωB to buy B. For instance, types ωA might refer to patients with heart conditions,
while ωB refers to patients with cancer. Then, plans A, B might refer to hospitals which
have a low cost of treating heart conditions and cancer, respectively. The products are
otherwise symmetrical (in particular, patients will receive the same quality of care in either
hospital). Firm payoffs are

v(ω, x, p) =

{
p + 1 if (ωA, A) or (ωB, B)
p − 2 if (ωA, B) or (ωB, A)

(3.1)

The following is an equilibrium. Each firm sells each product at the same price, p = α.
At the symmetric price p = α, every individual is indifferent between the two contracts.
Each type chooses the contract where it is most cheaply served (types ωA choose A and
types ωB choose B). Individuals randomize across firms. Equilibrium profit is π = 1

N > 0.
There are no profitable deviations. Indeed, firms are allowed to deviate in the price of

both contracts. If a firm raises both prices, he loses all consumers. Lowering both prices
can increase market share but must be done carefully (and, in this case, it cannot be done in
a way which preserves positive profits). Let pA, pB denotes the prices of contracts A, B at
the deviation. Lowering pB alone would attract types ωA to buy B, which is unprofitable,
so a drop in pB must be accompanied by a drop in pA that ensures ωA still prefers A.
However, a large drop in pA would attract types ωB to buy A, which is also unprofitable.

To show that this is an equilibrium, first notice the following ratio of price sensitivities,

2This could be due to a mandate as in the United States Affordable Care Act. Alternatively, one could add
a constant to all utilities to ensure all individuals buy one of the products in the relevant range of prices.
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for each type, across contracts:

∂u(ωB,B,p)
∂p

∂u(ωB,A,p)
∂p

=
1
2

,
∂u(ωA,A,p)

∂p
∂u(ωA,B,p)

∂p

=
3
2

.

Suppose a firm lowers pB to some pB = α − δ, for some δ > 0. The accompanying drop
in pA must not attract types ωB to buy A. Given the ratio of price sensitivities above, the
firm must choose pA ≥ α − 1

2 δ. Moreover, the drop in pB cannot attract types ωA to buy
B. Given the ratio of price sensitivities above, pB cannot fall by more than ( 1

2 ×
3
2 )δ = 3

4 δ,
so the firm must choose pB ≥ α − 3

4 δ, which contradicts that pB can be lowered by δ > 0.
This 2-product example is illustrated in Figure 1. In Appendix A we present an example
with an arbitrary number of products.

This example is not a “knife-edge” case. In any (sufficiently small) perturbation of the
profits or utility functions, there exists an equilibrium with positive profit, as we discuss
further in Section 6.2.

𝑝" =
𝛼 −

𝛿

𝑝'
= 𝛼

−
1
2
𝛿

𝑝"
= 𝛼

−
3
4
𝛿

𝑝
𝛼

𝑢𝑡𝑖𝑙𝑖𝑡𝑦

(𝜔', 𝐴)

(𝜔', 𝐵)

(𝜔", 𝐴)

(𝜔", 𝐵)

Figure 1: The graphic shows the level of utility, for different prices p, of each
combination (ω, x). Equilibrium has pA = pB = α and (ωA, A), (ωB, B). Full lines show

utility at the contracts chosen in equilibrium. Dotted lines show utility when each
type chooses the non-equilibrium contract. A deviation to pB = α − δ requires

pA ≥ α − 1
2 δ which, in turn, requires requires pB ≥ 3

4 δ.

9



4 Model Setup

4.1 Utility and Profit

Let X be the set of alternatives available to individuals. A typical option is denoted x ∈ X.
We assume X is a locally compact Polish space3 which may or may not include an outside
option, denoted x = 0.4 A typical type is denoted ω ∈ Ω. Let Ω also be a locally compact
Polish space capturing the types of individuals. Types distribute via a measure λ on Ω,
with λ(Ω) = 1.

The utility that a consumer of type ω ∈ Ω gains from obtaining item x ∈ X at price p ∈
R+ is u(ω, x, p), assumed to be continuous and strictly decreasing in price. Individuals
can choose only a single alternative from a single firm (or, possibly, not to purchase at all
if 0 ∈ X).

There are N symmetric firms indexed by j ∈ {1, ..., N}, each setting a price for each
contract x ∈ X. With abuse of notation, let N also denote the set of all firms. All products
are potentially available from all firms.5

The profit to a firm from providing contract x to type ω at price p is v(ω, x, p), assumed
continuous and weakly increasing in p. If 0 ∈ X, then v(·, 0, 0) ≡ 0. That is, the outside
option costs nothing to supply and yields no revenue. Further technical assumptions are
given in Section 4.1.

The timing of the game is as follows. First, firms chooses prices simultaneously. Then,
consumers observe prices and choose to purchase one product from one firm (or, possibly,
not buy if 0 ∈ X).

Let pj
x be the price charged by firm j for contract x. A price vector containing the price

of each item is denoted p = (px)x∈X ∈ RX
+; if 0 ∈ X, then p(0) = 0. The notation p < q

means p(x) < q(x) for x ̸= 0. We assume prices are non-negative but the paper could
easily be modified to allow for negative prices.6

A consumer profile is a mapping σ = (σN , σX) : Ω → N × X, specifying which firm
and contract each consumer buys. A consumer profile σ = (σN , σX) : Ω → N × X is
required to be λ-measurable. The profit of firm k under consumer profile σ when he sets
price pk is:

πk(σ, pk) =
∫
{ω|σN(ω)=k}

v
(
ω, σX(ω), pk(σX(ω))

)
· λ(dω)

3A Polish space is a complete, separable metric space.
4There need not be an outside option. For instance, the healthcare exchanges under the United States

Affordable Care Act Exchanges, do not have a zero cost outside option since individuals are required to buy
some insurance contract.

5We believe that the assumption of a finite number of firms is innocuous, and that a suitably re-stated
version of our results would hold for the case of infinite firms. Indeed, we are not aware of any model of
selection markets that models perfect competition by means of a continuum of firms.

6All the results in the paper would hold if we allowed for negative prices, but we show that they hold
when prices (including prices at deviations) are constrained to be positive. Allowing for negative prices
would make some of the arguments simpler: if prices can be negative, undercutting prices exist more easily.
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The technical Assumption 3 below ensures that profit is always finite.
The setup described above effectively allows for mixed strategies on the part of the

consumers to be introduced by replacing the space (Ω, λ) of consumers with a space (Ω ×
[0, 1], λ × m), where m is the Lebesgue measure. Hence, each consumer is replaced with a
continuum of herself, allowing the consumer to effectively mix. This modeling technique
is standard, going back to Aumann (1964).

We do not impose compactness on Ω, X. For instance, Levy and Veiga (2019) model
competitive insurance markets with unbounded risk, hence unbounded Ω. In that setting,
equilibrium existence may require an open contract space X. Hence, we should not impose
a priori compactness on Ω, X.

4.2 Technical Assumptions

We now introduce the model’s main technical assumptions. These assumptions are in-
nocuous and satisfied in all models of selection markets that we are aware of. For instance,
Assumptions 2 and 3 hold whenever v(·, ·, ·) is bounded.

Assumption 1. The utility function u : Ω × X × R+ → R is jointly measurable, is strictly
decreasing in price, and for each fixed ω, u(ω, ·, ·) is continuous and strictly decreasing in price.
The profit function v : Ω × X × R+ → R is jointly measurable, is weakly increasing in price, and
for each fixed ω, v(ω, ·, ·) is continuous.

Assumption 2. For each fixed p0 ≥ 0,∫
Ω

sup
x∈X

|v(ω, x, p0)| · λ(dω) < ∞ (4.1)

Assumption 3. For each lower semi-continuous price function p = (px)x∈X and each incentive
compatible consumer profile σ = (σN , σX),∫

Ω
|v(ω, σX(ω), p(σX(ω)))| · λ(dω) < ∞ (4.2)

i.e., total firm profit is integrable.

The following is not an assumption on primitives although, due to its importance, we
list it alongside the technical assumptions.

Assumption 4. Price vectors p : X → R+ are assumed to be lower semi-continuous. That is, for
each x0 ∈ X, we have lim infx→x0 p(x) ≥ p(x0)and, if 0 ∈ X, p(0) = 0.7

Assumption 4 serves to guarantee that, for each vector of prices p and each type ω, the
mapping x → u(ω, x, p(x)) attains a maximum on any compact set, as u is decreasing in
price.8

7Equivalently, we require that, for each α ∈ R, the set {x ∈ X | p(x) > α} is open.
8Lower semi-continuity is an innocuous technical assumption. Had we had Borel prices p and consumer
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4.3 Consumer Optimization and Equilibrium

A consumer profile σ = (σN , σX) is incentive compatible w.r.t. a profile of prices p1, . . . , pN

(where pj = (pj
x)x∈X) if

u(ω, σX(ω), pσ(ω)) ≥ u(ω, y, pj
y), ∀ω ∈ Ω, ∀y ∈ X, ∀j ∈ N

where pσ(ω) is the price paid by type ω for the product and firm that this type chooses
under σ.

We follow the literature in considering Nash equilibria in pure strategies.9 Formally,
a price vector p = (px)x∈X and an incentive compatible consumer profile σ w.r.t. p is an
equilibrium if it yields each firm maximal profit against any deviation for some incentive
compatible reaction. That is, if for each firm k and each deviation q = (qx)x∈X of firm k,
there is an incentive compatible consumer profile τ w.r.t (q, p−k) s.t. πk(τ, q) ≤ πk(σ, p),
where p−k denotes the collection of price vectors charged by firms other than k. Notice
that we allow for deviations in the prices of all contracts, whereas Wambach (2000); Smart
(2000); Villeneuve (2003); Kubitza (2019) allow only deviations in a single price.1011

5 Zero Profits

We now present our main results: conditions under which profit vanishes in any equilib-
rium. We first present a condition that, while more general, refers to equilibrium objects.
In Section 5.2, we describe conditions on primitives that ensure vanishing profit.

5.1 Zero Profits Conditions

Recall that, by a continuous ordering ⪯ on X, we mean that the set {(x, y) | x ⪯ y} is
closed in X × X.

profile (defined ahead) σ = (σN , σX), fixing a firm j and letting µ denote the measure induced on X by λ and
σX of those consumers purchasing from firm j, Lusin’s theorem guarantees that we can take a compact set
K ⊆ X with measure as close to µ(X) as we please on which p is continuous. Defining q to coincide with
p on K and be very large outside of K, q would be l.s.c. and the resulting profit for firm j under q - after
those consumers who had been purchasing outside of K adjust their choices - would be arbitrarily close to the
profits of firm j under p.

9Technically, standard Nash equilibrium would have required the consumer profiles to be a function of
both type and the price profile of the firm, specifying what each consumer should choose after each possible
price profile. To avoid such overly cumbersome objects, we take as Nash equilibrium, on the consumers part,
to be just the realization of such a function on the path of play, i.e., the realized consumer choices when facing
the selected prices.

10In the proofs, we will several times implicitly use the fact that, if at some prices for each consumer there
is an optimal contact, then there is an incentive compatible consumer profile. This jump makes use of a
measurable selection theorem like Aumann’s theorem, see e.g., Theorem 5.2 of Himmelberg (1975).

11We note that there is a technical point that equilibrium or local equilibrium prices require that every
consumer has a utility maximizing contract at those prices.
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Theorem 1. Let p = (px)x∈X > 0 be a price vector with well-defined profit, and let p, σ be an
equilibrium. Suppose there is a continuous (weak) linear ordering ⪯ on it, such that

u(ω, x, px) = u(ω, y, py) = max
z

u(ω, z, pz) and x ⪯ y

→ v(ω, x, px) ≤ v(ω, y, py), for λ-a.e. ω ∈ Ω, ∀x, y ∈ X (5.1)

(If 0 ∈ X, 0 is required to be ⪯-minimal.) Then profits to all firms are zero in any equilibrium.

Theorem 1 can be stated verbally as follows. Suppose that, when a consumer is indif-
ferent between alternatives which are among the best choices for him, firms weakly prefer
the alternative ranked higher under the ordering ⪯ (if there is an outside option 0, ⪯ ranks
it last). If such an ordering exists, then firms make zero profit in any equilibrium. We em-
phasize that the same ranking ⪯ must apply to all consumers (and all firms, since firms
are symmetric). An example of Theorem 1 (via Theorem 3 below) is given in Section 5.3
in the context of insurance markets. Note the importance of the order of the quantifiers in
(5.1) when there are uncountably many alternatives.

Proof. We provide here a sketch of the proof, and include the details in the Appendix.
First, we consider the case where X, Θ are finite (Theorem 6 in the Appendix). If there
were positive profits in equilibrium, one firm could slightly undercut prices, in a specific
way we describe below, to capture the whole market. We construct a deviation which
would not cause consumers to buy contracts which give lower profits to the firm, using
the ordering ⪯. In particular, if a consumer buys a different contract in the deviation than
in the equilibrium, it will be a ⪯-higher ranked contract. The firm begins by lowering
the price of the ⪯-maximal contract. This attracts from other firms any consumer who
was buying this top option (if there were any) as well as possibly some who were buying
other options. Since these latter consumers are ’moving up’ the ⪯ ranking, the deviating
firm does not lose as a result of this transition. The firm then lowers the price of the ⪯-
second-maximal contract besides the top one, but only slightly, so as not to cause anyone
purchasing the ⪯-maximal contract to change their choice. This allows the deviating firm
to capture from other firms those consumers purchasing the ⪯-second-maximal contract
(and possibly others who ’move up’ the ⪯ ranking). And so forth, for every contract. This
deviation is illustrated in Figure 2. For any number of firms in the market N, there exists
a small enough change in the prices for which the increase in market share more than
compensates for the lower prices, resulting in a profitable deviation from the candidate
equilibrium.

Theorem 1 extends this result to general contract (X) and type (Ω) spaces. The gen-
eralization consists of two steps. First, we generalize Theorem 6 to allow the space of
types Ω and contracts X to each be a compact continuum, but the latter consists of finitely
many ‘small connected clusters’ of contracts. The proof of this step is similar to that of
Theorem 6, with some alterations. Secondly, we make a reduction to the case described in
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the first step. Here, we make repeated use of Lusin’s theorem to restrict types and con-
tracts to spaces on which all relevant functions are continuous. We also make repeated
use of the inner-regularity of λ to guarantee a compact type space. Both such applications
only involve disregarding sets of types of arbitrarily small measure, and hence if a prof-
itable deviation exists in a potential positive-profit equilibria after such modifications (by
the first step), a profitable deviation exists in the original economy with general X, Ω as
well.

Figure 2: Example of a profitable deviation used in the proof of Theorem 1. Here, we
consider an economy with finitely X, Ω. In this example, we show only 4 contracts

(x1, ..., x4). We have drawn indifference curves as if intermediate contracts did exist. In
red are contracts and prices at a candidate equilibrium with positive profit, and the

indifference curve of the consumer choosing each contract. In blue are the deviation
contracts and prices, and the corresponding indifference curves.

In the examples of Section 3, such a linear ordering does not exist. In the first example
(Subsection 3.1), in equilibrium, consumers are indifferent between buying and not buy-
ing, but firms prefer that low-cost consumers buy but high-cost consumers do not. There
does not exist, for firms, a linear ordering of contracts that is valid for all types of buy-
ers. In the second example (Subsection 3.2), in equilibrium, consumers are indifferent but
firms obtain higher profit if ωA types buy A rather than B, and vice-versa for ωB types.

A few remarks are in order. First, Theorem 1 allows for an economy to possess some
equilibria with zero profit and others with positive profit. However, in Section 5.2, we
discuss classes of economies for which all equilibria satisfy Theorem 1, and hence all equi-
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libria make zero profits. Second, Theorem 1 does not guarantee equilibrium existence. It
states only that any equilibrium satisfying (5.1) must feature vanishing profit. Third, the
result allows for cross-subsidization (some contracts may earn negative profits and some
positive, if they sum to zero).

In all screening models that we are aware of, most consumer types are indifferent be-
tween multiple (typically two) contracts in equilibrium. For instance, in Rothschild and
Stiglitz (1976), high-cost individuals are indifferent between full insurance and partial in-
surance. This is also the case in screening models like Mussa and Rosen (1978). Our next
result shows that, if this is not the case, equilibrium profits are also guaranteed to vanish.

Theorem 2. Let p = (px)x∈X > 0 be a price vector, and let p, σ be an equilibrium. Suppose for
a.e. consumer ω, σX(ω) is the unique bundle which maximizes type ω’s utility at prices p. Then
profits to all firms are zero in any equilibrium.

Proof. One may take ⪯ to be any continuous ordering on X (e.g., x ⪰ y for all x, y ∈ X)
and the condition given in Theorem 1 will hold.

5.2 Zero-Profit Conditions on Primitives

A drawback of Theorem 1 is that it does not impose conditions directly on model prim-
itives. We now present conditions on the profit and utility functions that guarantee zero
profits. Notice that, among other assumptions, in this section we take the alternative space
X to be one-dimensional.

Theorem 3. Suppose the alternatives space is an interval (bounded or unbounded) X ⊆ R+,
utilities and profits are continuously differentiable in price and alternatives, with

∂uω

∂p
< 0 <

∂vω

∂p
,

∂uω

∂x
> 0 >

∂vω

∂x
(5.2)

and furthermore

−
∂uω
∂x

∂uω
∂p

> −
∂vω
∂x

∂vω
∂p

(5.3)

for a.e.-ω ∈ Ω, throughout (x, p) ∈ int(X)× [0, ∞).12 Then in any equilibrium, profits to all
firms are zero.

Proof. By Theorem 1, it suffices to show that, for those ω which satisfy the given inequal-
ities, whenever (x1, p1), (x2, p2) are such that uω(x1, p1) = uω(x2, p2) and x2 > x1, then
vω(x2, p2) ≥ vω(x1, p1). A formal proof is given in the appendix, but the intuition is: fix-
ing ω and denoting the indifference curves of uω, vω through (x1, p1) by ϕ, ψ, we have
ϕ(x1) = ψ(x1), and by the implicit function theorem and (5.3), we have ϕ′(·) > ψ′(·) in

12int(X) denotes the interior of X. As we see later in the case of insurance markets, we may wish to allow
equality to hold on the boundary of X.
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Figure 3: Illustration of the Proof of Theorem 3. The iso-utility and iso-profit curves
intersect at the contract (x1, p1).

a neighborhood of any point x at which ϕ(x) = ψ(x). Together, these imply the desired
result. We illustrate the proof in Figure 3.

The intuition for Theorem 3 is that utility increases with x more steeply than does
profit. This is a feature of many markets. For instance, in an insurance setting, these
conditions hold if individuals are strictly risk averse so that utility increases with x more
than profit does. This is also the intuition for Corollary 1 below. When the condition
holds, whenever individuals are indifferent between two optimal contracts, firms neces-
sarily prefer that individuals choose the contract with higher x.

In many markets, there are natural parameterizations that satisfy the conditions of The-
orem 3. For instance, in insurance markets, it is natural to assume that individual utilities
(or certainty equivalents) are the sum of (minus) the expected net cost to the insurer (de-
noted Cω below) and a surplus (denoted Sω) that arises, for instance, due to risk aversion.
In this case, any equilibrium has zero profit, as shown in Corollary 1.

Corollary 1. Suppose the alternatives space is an interval X ⊆ R+, and utilities and profits can
be written

uω(x, p) = Cω(x, p) + Sω(x, p), vω(x, p) = −Cω(x, p),

where Cω, Sω are continuously differentiable with

∂Cω

∂x
> 0,

∂Sω

∂x
> 0,

∂Sω

∂p
≤ 0,

∂Cω

∂p
< 0.
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Finally, suppose that

−∂Cω

∂p
∂Sω

∂x
> −∂Cω

∂x
∂Sω

∂p

for a.e.-ω ∈ Ω, throughout (x, p) ∈ int(X)× [0, ∞). Then in any equilibrium, profits to all firms
are zero.

Proof. The conditions imply (5.2) holds. We show that (5.3) holds as well. Fix ω, and
for simplicity denote Cx, Cp, Sx, Sp instead of ∂Cω

∂x , ∂Cω
∂p , ∂Sω

∂x , ∂Sω
∂p . The assumptions imply

(−Cp)Sx > Cx(−Sp). We add Cx(−Cp) to both sides of the inequality. Some additional
algebra yields

Cx + Sx

(−Cp) + (−Sp)
>

Cx

(−Cp)
,

which is equivalent to (5.3).

Notice that we only require the weak inequality ∂Sω
∂p ≤ 0. This will be relevant in

Section 5.3, where we present a model of insurance markets in which ∂Sω
∂p = 0 and ∂Sω

∂x > 0,
so Corollary 1 holds. The condition given in Corollary 1 roughly corresponds to constant
surplus curves increasing more sharply than constant cost curves.

The conditions required by Corollary 1 are related (but not equivalent) to Assumption 4
in Fang and Wu (2018), which amounts to assuming that individuals obtain higher surplus
from more generous insurance, at fair prices. This is captured, in our setting, by ∂Sω

∂x > 0.

5.3 Application to Insurance Markets

Theorem 1 applies to a broad range of insurance markets, from Rothschild and Stiglitz
(1976) to more recent models with multi-dimensional types such as Levy and Veiga (2016);
Kubitza (2019); Wambach (2000). In these models, Theorem 1 holds independently of the
equilibrium prices, so every equilibrium has zero profit.13

To illustrate, consider the following explicit model of insurance. For simplicity, all
individuals have initial wealth W. A individual’s type is defined by their riskiness, a
measurable function ξ : Ω → [0, 1], which denotes the probability of losing Z from initial
wealth W for each type ω. Let µω = ξωZ denote the expected loss of type ω. Rothschild
and Stiglitz (1976) considered environments with two types, so |Ω| = 2, but we allow for
any number of types.

Assume all consumers have the same strictly increasing and strictly concave utility
of money U(·). Let the space of alternatives be X = [0, 1], so that x ∈ X is the level of
insurance coverage (x = 0 corresponds to 0% and x = 1 to 100% coverage). Expected
utility is

13Veiga and Weyl (2016) consider a model of insurance with multi-dimensional types, but firms choose a
single price-quality pair from a continuum, so that model does not fit our framework.
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u(ω, x, p) = ξω · U(W − (1 − x)Z − p) + (1 − ξω)U(W − p)

The expected cost to the insurer of selling coverage x to type ω is µω · x.14 Profit is

v(ω, x, p) = p − µω · x.

To show that Theorem 3 holds, notice that

−
∂v(ω,x,p)

∂x
∂v(ω,x,p)

∂p

= µω ≤ −
∂u(ω,x,p)

∂x
∂u(ω,x,p)

∂p

, ∀p ∈ R+, x ∈ [0, 1], with equality iff x = 1 (5.4)

See Figure 4 for an illustration of the proof of Condition (5.4). Therefore, profits vanish in
this setting.

Figure 4 provides an illustration of Condition (5.4). The figure shows the unique pure-
strategies Nash equilibrium in the Rothschild and Stiglitz (1976) model with two types.
In this equilibrium, the high (riskier) types µH are indifferent between the two contracts,
but all high types choose the contract with higher converge (otherwise the profits would
be negative). In this equilibrium, the profit of each firm is 0 (in fact, the profit of each
contract is 0). We have also included the break-even (zero profit) lines for each type. The
blue lines consists of the coverage and price pairs that, if bought by the high type, yield
zero profit, with slope µH. The red line consists of the contract and price pairs that if
bought by the low type yield zero profit, with slope µL. For each type, the marginal rate of
substitution between coverage and price is sharper than the slope of the break-even line,
thereby providing a graphical proof of condition (5.4).

To illustrate the usefulness of Corollary 1, we consider the commonly used CARA-
Gaussian framework (Levy and Veiga (2016), Veiga and Weyl (2016)). An individual with
type ω and wealth c obtains utility Uω(c) = −e−aω ·c, where the coefficient of constant
absolute risk aversion is aω. Initial wealth is wω and individuals are subject to wealth
shocks −Zω, where Zω ∼ N (µω, σ2

ω), with µω > 0. A contract x ∈ [0, 1] implies that a
share x of the individual’s shock is absorbed by the insurer, so the individual is exposed to
a change in wealth of − (1 − x) Zω. Price is p. Notice that utility depends directly on type
ω, and the loss distribution is non-binary. Individual certain equivalents for a contract
(x, p) are a monotonic transformation of

uω(x, p) = µω · x − (1 − x)2

2
ν2

ω − p

where we denote νω = aωσ2
ω > 0. Furthermore, we denote Cω = µω · x − p and Sω =

− (1−x)2

2 ν2
ω. Then utility is uω(x, p) = Cω + Sω and profit is vω(x, p) = −Cω. Since

14Notice that utilities satisfies single-crossing (Spence (1978)) since ∂u
∂ξω∂x > 0 since U′(·) > 0.
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Figure 4: The two contracts constitute a separating equilibrium as long as the
break-even line for the economy, p = x · E[µ], does not intersect the indifference curve

of µL, as in the case pictured.

∂Cω

∂x
= µω > 0,

∂Sω

∂x
= νω(1 − x) > 0,

∂Sω

∂p
= 0,

∂Cω

∂p
= −1 < 0,

we have
∂Cω

∂p
∂Sω

∂x
< 0 =

∂Cω

∂x
∂Sω

∂p
,

so the conditions of Corollary 1 holds: all equilibria have zero profits.

6 Positive Profits and Local Equilibria

6.1 Positive Profit Equilibria: Properties

We have shown, in Section 3, examples of economies with positive equilibrium profits;
further examples appear in Section A. The following result illustrates a key aspect of those
economies. Recall Theorem 1: if p are equilibrium prices yielding strictly positive profit,
the alternatives in X cannot be ordered in such a way that, when two or more types are in-
different among optimal choices, all firms prefer that all such types purchase the “higher”
contract at prices p. Proposition 1 below shows that, if there is an equilibrium with pos-
itive profit, then there exists a “cycle” of pairs contracts such that, for each pair, there is
an individual indifferent between the two contracts and the firms prefer him to choose
the “upper” contract. Importantly, the linear ordering of contracts required by Theorem 1,
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prevents the existence of such cycles.

Proposition 1. Suppose Ω, X are finite, and p are equilibrium prices yielding positive profit. Then,
there is an integer K ∈ N, contracts x1, . . . , xK ∈ X, and types ω1, . . . , , ωK ∈ Ω such that, for
each j = 1, . . . , K, we have λ(ωj) > 0,

xj−1, xj ∈ argmax(u(ωj, ·, p)).

and
v(ωj, xj−1, pxj−1) ≤ v(ωj, xj, pxj) (6.1)

with strict inequality for at least one j = 1, . . . , K. Here, u(ωj, ·, p) is understood to be the map
x → u(ωj, x, px), and subscript arithmetic is modular in {1, . . . , K} (i.e., x0 = xK),

Proof. WLOG assume λ gives positive mass to all of the finitely many types in Ω. For
simplicity we deal here with the case that for each ω ∈ Ω, the mapping x → v(ω, x, px) is
injective. In this case, we show (6.1) holds strictly for all j = 1, . . . , K. The general case is
proved in the Appendix. Define the directed graph15 G on X by:

G = {(x, y) | ∃ω ∈ Ω, [x, y ∈ argmax(u(ω, ·, p)) ∧ v(ω, x, px) < v(ω, y, py)]}

Since equilibrium yields positive profit, the assumption of Theorem 1 does not hold, and
in particular G cannot be completed to a strict linear ordering (indeed, if it could be com-
pleted to ≺, ≺ would satisfy the conditions of Theorem 1 due to our injectiveness as-
sumption on v).16 From Cormen et al. (2001, Section 22.4), if a directed graph cannot be
completed to a linear ordering, then it must possess a cycle, i.e., there must be K ∈ N and
x1, . . . , xK ∈ Ω with x1 G x2 G . . . xK G x1, which gives the conclusion.

Proposition 1 serves to show where positive profits come from. It also serves to show
how one may construct economies with positive profit equilibria (although the presence
of such cycles is not sufficient to guarantee positive profits). Appendices A and C.2.

6.2 Positive Profit Equilibria: Genericity

Building on Proposition 1, we now show that positive equilibrium profits are not a knife-
edge case (i.e., occur in a negligible set of economies). We isolate five properties that hold
in the economies of Section 3 and their generalization in Appendix A, and also in all suf-
ficiently similar economies (in a sense we make precise below). One such condition is the
existence of cycles, as described in Proposition 1. For any sufficiently small perturbation
of these economies, we show that there exists an equilibrium with positive profit.

15By a directed graph, we mean an irreflexive relation on X.
16Without the injectiveness assumption, problems may arise if there are types ω1, ω2, indifferent between

x, y at prices p, but v(ω1, x, px) < v(ω1, y, py) while v(ω2, x, px) = v(ω2, y, py).
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We define an economy E as a tuple E = [Ω, X, λ(·), u(·), v(·)], consisting of the type
and contract space, the distribution of types, utility and profit functions. In this section, we
assume that Ω, X are both finite. We will consider perturbations of an economy where the
utility u(·) and profit v(·) functions, as well as λ, are subject to a small perturbation. Call
a tuple x1, . . . , xK ∈ X, ω1, . . . , , ωK ∈ Ω as described in Corollary 1 a cycle of length K if
there is no strict subset y1, . . . , yL of the x1, . . . , xK such that for some types θ1, . . . , , θL ∈ Ω,
the tuple y1, . . . , yL, θ1, . . . , , θL satisfies the conclusion of Corollary 1.

Theorem 4. In the space of continuously differentiable utility functions and continuous profit
functions on Ω × X × R+, for each integer K ∈ N, the set of economies for which there exist
positive prices with cycles of length K is non-empty and open. In particular, the set of economies
possessing an equilibrium with strictly positive profits contains a non-empty open set.

Proof. See Appendix C.5.

Theorem 4 uses the regular Euclidean topology on RΩ (for the distributions of types),
topology of uniform convergence on compact sets (for profit functions), and uniform con-
vergence on compact sets of functions and derivatives (for utility functions). See precise
definitions in Appendix C.1 (in particular Remark 1 there).

To prove Theorem 4, we first identify several properties of the examples of Section
3 and Appendix A (the latter having cycles of arbitrary length) which drive the positive
profits (in addition the cycles). These conditions make undercutting unprofitable, and are
presented in Lemma 6. We then show that the properties given in Lemma 6 hold for small
perturbations. The main difficulty in proving that Theorem 4 follows from Lemma 6 is
in verifying how the vector of prices which satisfies the existence of cycles changes if the
economy is slightly perturbed. A small perturbation of the utilities and their derivatives,
of the profit functions, and of the prices will preserve the other properties of Lemma 6.
To demonstrate that the required prices yielding a cycle change only slightly when the
functions change, we use a form of the implicit mapping theorem.

A few remarks are in order. First, notice that multidimensional type are not necessary
for an economy to have positive profits in equilibrium, as in the examples of Section 3.
Second, we depart from the existing literature by allowing firms to deviate by offering
a menu of contracts, instead of a single contract. This is in contrast to Wambach (2000)
and Kubitza (2019), where multidimensional types are required and firms can offer only
a single contract in a deviation. However, we do not allow for firms to offer mechanisms
as in Maskin and Tirole (1990, 1992). Such mechanisms could, for instance, account for a
renegotiation stage after an initial purchase by consumers. In this case, it is possible that
zero profits can be restored, as we discuss further in the conclusion.
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6.3 Local Equilibria

We now briefly show that the results above hold also under a weaker equilibrium concept:
local equilibrium. The deviation exploited in the proof of Theorem 1 is a local deviation,
so the arguments apply intuitively also to local equilibria. Moreover, local arguments are
commonly used to discuss equilibria and deviations in screening markets (e.g., Rothschild
and Stiglitz (1976) use local arguments to show the non-existence of pooling equilibria).
Local arguments also commonly used to show the existence of zero profits in equilibrium
by considering deviations where one firm undercuts price to just below other firms’ prices.

A price vector p = (px)x∈X and an incentive compatible consumer profile σ w.r.t. p is
a local equilibrium if it yields each firm maximal profit against any local deviation for some
incentive compatible reaction. That is, if there exists δ > 0 such that for each firm k and
each deviation q = (qx)x∈X of firm k satisfying ∀x ∈ X, |qx − px| < δ, there is an incentive
compatible consumer profile τ w.r.t (q, p−k) s.t. πk(τ, q) ≤ πk(σ, p). Every equilibrium is
a local equilibrium.

Theorem 5. Theorems 1, 2, 3, 4 hold for local equilibria as well.

That is, these theorems hold if the term ‘equilibrium/a’ is replaced with the term ‘local
equilibrium/a’ in their statements. Theorem 4 holds for local equilibria because every
equilibrium is a local equilibrium. Theorem 1 (and therefore Theorems 3 and 2) hold
for local equilibria since its proofs show that, if profits were non-zero, a profitable local
deviation would exist.

7 Conclusion

Studies of screening markets typically assume price competition, constant returns to scale
and frictionless choices on the part of consumers, as we do. A number of recent articles
define equilibrium using, as their point of departure, the condition that each firm (and,
sometimes, each contract) breaks even.

This article shows that focusing only on zero profit equilibria can be misleading. We
show that it is possible for equilibria with positive profits to emerge in screening mar-
kets. These equilibria are sustained by the presence of adverse selection: undercutting
by firms attracts high-cost individuals which makes deviations unprofitable. We provide
a simple condition which guarantees that firms break even. The condition allows us to
establish conditions on primitives guaranteeing zero profits. We deduce in particular that
if a.e. consumer possesses a unique optimizing contract in equilibrium, then firms break
even. Equilibrium profits also vanish if the marginal rate of substitution of quality for
price is sharper for profit than for utility. Moreover, positive profits implies the existence
of ’cycles’, as described in Proposition 1. Finally, positive profit do not occur only for a
negligible set of economies.
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There remain several avenues for future work. First, Theorem 4 shows genericity for
the case of finite types and contracts. A generalization of this theorem for the case of
general linear orderings is left for future research. Second, our analysis focuses on Nash
equilibria. A pure-strategies Nash equilibria often does not exist in screening markets
(see Farinha Luz (2017) for a discussion of mixed strategies by firms). Several alternative
equilibrium concepts have been explored in the literature (Wilson (1977), Riley (1979),
Mimra and Wambach (2018), Dosis (2018), Azevedo and Gottlieb (2017)). A generalization
of the analysis in this article to these other equilibrium concepts is outside the scope of
the present article and left for future research. Third, we have allowed firms to compete in
menus, but not in mechanism as in Maskin and Tirole (1990, 1992). Adding a renegotiation
stage to the game may result in zero equilibrium profits in a wider range of settings than
we have considered.
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Appendix

A Positive Profits with Many Goods

We now generalize the examples of Section 3 to an arbitrary number of products. We
assume N ∈ N firms. The type space is Ω = (ωk)

K
k=1 × Θ, for some set Θ, with a set of K

alternatives X = (Xk)
K
k=1. (Θ can be thought of the ’mass’ of each type. It can be taken to

be [0, 1] WLOG). Let λ be a measure on Ω s.t. λ({ωk} × Θ) = 1
K for each k = 1, . . . , K.

The utilities of the types satisfy

u((ωj, θ), Xl , p)


= α − p if j = l
= β(α − p) if l = j − 1
< β(α − p) otherwise

where α > 0, β > 1, and where the arithmetic on the indices is modular (so ωK+1 = ω1,
etc). (Below we will write u(ωj, Xl , p), i.e., we will drop reference to θ ∈ Θ.) Effectively,
an individual of type ωj chooses between products j and j − 1.

Firms are symmetric, with payoffs given (again, dropping reference to θ ∈ Θ) by

v(ωj, l, p) =

{
p if j = l
p − γ if j ̸= l

.

Individuals of type ωj are, from the perspective of the firms, more cheaply served in prod-
uct j than in any other. Importantly, we assume that the cost of mismatches is sufficiently
large: γ > Kα.

Suppose that the price of each good is pl = α and the consumer choice profile is
σX(ωk, θ) = Xk for each k = 1, . . . , K, θ ∈ Θ. This consumer profile is incentive compatible
given the prices pl = α. We contend that these prices and consumer profile constitute an
equilibrium. Notice that at least one firm’s profits is positive (any firm with a positive
mass of clients).

To show that this is an equilibrium, we first claim that, if q ≤ α, with q(x) < α for some
x ∈ X, then in any incentive compatible consumer profile τ, there is some k = 1, . . . , K
s.t. q(xk−1) < α and τX(ωk, θ) ̸= Xk for a.e. θ ∈ Θ. Let k0 be s.t. q(Xk0) < α; denote
δ1 = α − q(Xk0) > 0. If τX(ωk0+1, θ) ̸= Xk0+1 for a.e. θ ∈ Θ, we are done; k = k0 + 1 is the
desired k. Otherwise, τX(ωk0+1, θ) = Xk0+1 with λ-positive measure, then it must be that
u(ωk0+1, Xk0+1, q(Xk0+1)) ≥ u(ωk0+1, Xk0 , q(Xk0)), i.e.,

δ2 := α − q(Xk0+1) ≥ β(α − q(Xk0)) = βδ1

as otherwise all ωk0+1 would prefer to switch to Xk0 . Either τX(ωk0+2, θ) ̸= Xk0+2 for all
θ ∈ Θ, or we continue in the same way, eventually either finding a desired k, or - by way

27



of contradiction - constructing a chain going over all alternatives until we come back to
the one we began with, s.t. denoting δj = α − q(Xk0+j−1), we have δj+1 ≥ βδj for each
j = 1, . . . , K (recall, subscript arithmetic is modular). Hence δ1 = δK+1 ≥ βKδ1 > δ1, a
contradiction.

Now, suppose a firm j∗ attempts a profitable deviation by offer some p ̸= α. We have
that q ≥ α cannot result in an increase in profit, so suppose q has a strictly lower price
for some good other than α; by the claim, there is some k = 1, . . . , K s.t. q(xk−1) < α and
τX(ωk, θ) ̸= Xk for all θ ∈ Θ. In particular, since ωk weakly preferred Xk−1 at prices α over
any other option, and q(Xk−1) < α, ωk-types must now be purchasing entirely from the
deviating firm j∗. Firm j∗ will make profit at most α from attracting all consumers, but will
lose γ

K from attracting those of type ωk. Since γ > Kα, this deviation is not profitable.

B Zero Profits: Proofs

B.1 Proof of Theorem 1 for Finite Model

The following is Theorem 1 for a finite model (in which case, continuity of an ordering is
meaningless, and one can simply require the main condition over all types, not just a.e.
type.)

Theorem 6. Let p = (px)x∈X > 0 be a price vector, and let (p, σ) be an equilibrium. Suppose
there is a (weak) linear ordering ⪯ on X such that

u(ω, x, px) = u(ω, y, py) = max
z

u(ω, z, pz) and x ⪯ y

→ v(ω, x, px) ≤ v(ω, y, py), ∀ω ∈ Ω, ∀x, y ∈ X (B.1)

(If 0 ∈ X, require 0 ⪯ x, ∀x ∈ X.) Then the profit for all firms in this equilibrium is 0.

As stated in the main text, the intuition for the proof is that, if there exists a candi-
date equilibrium with positive profit and the required ordering on contracts, there exists
a profitable deviation. In this deviation, each contract’s price is lowered in an appropri-
ate way so that the deviating firm captures the entire market. Although serving clients at
lower prices, we show that there always exists a small enough deviation where the gain
in market share more than compensates for these lower prices. This deviation is a local
deviation, so we focus on a local equilibrium in what follows.

First, in a local equilibrium (p, σ) all firms have non-negative profit. A firm making
strictly negative profit would deviate to some prices q = (qx)x∈X with qx > px for all
x ∈ X, which would yield zero profit as all consumers would buy elsewhere.

Suppose that, in local equilibrium, firm k0 has positive profit π∗ := πk0 > 0. Fix
another firm j0. Define a new consumer profile η : Ω → {j0} × X ⊆ N × X by

η(ω) = (j0, x), if for some k, σ(ω) = (k, x) (B.2)
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i.e., consumers buy the same alternative under η as under σ, but from firm j0.
The profit of firm j0 under η satisfies

π j0(η, p) = ∑
x∈X

∫
{ω|η(ω)=(j0,x)}

v(ω, x, px)dλ(ω)

= ∑
x∈X

∑
k∈N

∫
{ω|σ(ω)=(k,x)}

v(ω, x, px)dλ(ω) = ∑
k∈N

πk(σ, p) = ∑
k∈N

πk > π j0

Fix 0 < ε < ∑k ̸=j0 πk. Enumerate X = {x1, . . . , xK} with x1 ⪯ · · · ⪯ xK. (If 0 ∈ X, let
x1 = 0.) Let δ0 > 0, and let ∆ > 0 be s.t.

∑
ω∈Ω

sup
x∈X

|v(ω, x, px)− v(ω, x, qx)| < ε (B.3)

whenever q ∈ ∏x∈X[px − ∆, px + ∆]. Let pm = minx∈X,x ̸=0 px > 0, the lowest price among
(non-zero) contracts.

We claim that there exists 0 = δ1 < δ2, . . . , δK < min[δ0, ∆, pm] such that

u(ω, xj, pj) < u(ω, xk, pk) → u(ω, xj, pj − δj) < u(ω, xk, pk − δk), ∀ω ∈ Ω, ∀j ̸= k (B.4)

and

u(ω, xj, pj) = u(ω, xk, pk) → u(ω, xj, pj − δj) < u(ω, xk, pk − δk), ∀ω ∈ Ω, ∀j < k (B.5)

(B.4) means that if ω prefers xk over xj at the original prices, he will continue to do at
modified prices; and B.5 means that if ω is indifferent between xj, xk (j > k) at original
prices, he prefers the latter at new prices.

(B.4) can be guaranteed - using u’s continuity - by requiring that δ0 > 0 be small
enough and by requiring δ2, . . . , δK < δ0. To guarantee the other conditions we proceed
inductively: Let 0 < δK < min[δ0, ∆, pm] be arbitrary. Henceforth, for J > 1, given such
δJ+1, . . . , δK which satisfy (B.5) for k, j > J, choose δJ < min[δ0, ∆, , pm] small enough so
that

u(ω, xJ , pJ) < u(ω, xk, pk − δk) → u(ω, xJ , pJ − δJ) < u(ω, xk, pk − δk), ∀ω, ∀k > J

which can also be guaranteed by continuity, and recalling that u is strictly decreasing in
price. Define qk = pk − δk for k = 1, . . . , k, and let τ be a incentive compatible reaction to
q = (qx)x∈X.

Lemma 1. If ω ∈ Ω with η(ω) = xj ̸= τ(ω) = xk for some j, k, then v(ω, xj, pj) ≤
v(ω, xk, pk).

In other words, if when prices change from p to q, a consumer changes their choice, it
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is to a choice which is more profitable (at least under p) for the firms.

Proof. Suppose ω, j, k are such. Since τ(ω) = xk, it must be then that

u(ω, xj, pj − δj) ≤ u(ω, xk, pk − δk)

Our construction implies,

u(ω, xj, pj − δj) ̸= u(ω, xk, pk − δk), ∀j, k

and therefore
u(ω, xj, pj − δj) < u(ω, xk, pk − δk) (B.6)

which by (B.4) and (B.5) implies

u(ω, xj, pj) ≤ u(ω, xk, pk)

But since η(ω) = xj,
u(ω, xj, pj) ≥ u(ω, xk, pk)

and therefore
u(ω, xj, pj) = u(ω, xk, pk) (B.7)

Combining (B.6) with (B.7) and (B.5) shows j < k. Hence, combining this with (B.7) and
the condition (B.1) assumed in Theorem 6 gives the desired conclusion.

To complete the proof, notice that the deviator now owns the market (except possibly
the outside option); at original prices, this would give the deviation profits ∑k πk. Since
prices have been slightly lowered, the profit to the deviator is just below ∑k πk. However,

π j0(τ, q) =
K

∑
j=1

∑
{ω|τ(ω)=xj}

λj · v(ω, xj, pj − δj)

≥
K

∑
j=1

∑
{ω|τ(ω)=xj}

λj · v(ω, xj, pj)− ∑
ω∈Ω

sup
j

|v(ω, xj, pj)− v(ω, xj, pj − δj)|λj

≥
K

∑
j=1

∑
{ω|τ(ω)=xj}

λj · v(ω, xj, pj)− ε

≥
K

∑
j=1

∑
{ω|η(ω)=x}

λj · v(ω, xj, pj)− ε = ∑
k

πk − ε > π j0

where the first equality is by definition, the first inequality from the triangle inequality,
the second inequality by (B.3) since p − ∆ < p − δ < p, the third inequality by Lemma 1,
the last equality by definition, and the final inequality by choice of ε. Hence, we have a
profitable deviation, a contradiction to the assumption that p is a local equilibrium.
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B.2 Proof of Theorem 1 in the General Model

As discussed briefly in Section 5.1,the proof consists of two steps: Firstly, we generalize
the proof of the case of the finite model (Section B.1) to allow the space of types Ω and
contracts X to each be a compact continuum, but consisting of finitely many ‘small con-
nected clusters’ of contracts; this step is Proposition 2. The proof of this step is similar to
that of Theorem 6, with some alterations. Secondly, we make a reduction to the case de-
scribed in the first step; this is Lemma 5. Here, we make repeated use of Lusin’s theorem
to restrict types and contracts to spaces on which all relevant functions are continuous.
We also make repeated use of the inner-regularity of λ to guarantee a compact type space.
Both such applications only involve disregarding sets of types of arbitrarily small mea-
sure, and hence if a profitable deviation exists in a potential positive-profit equilibria after
such modifications (by the first step), a profitable deviation exists in the original economy
as well.

B.2.1 Function Spaces, Compactness, and Regularity

Recall that a Polish space is a complete, superable metric space. Recall that a Borel measure
µ on a metric space X is called inner regular (or tight) if for all Borel B ⊆ X,

µ(B) = sup{µ(K) | K ⊆ B is compact }

It is known that every finite measure on a Polish space is inner regular, e.g., (Parthasarathy,
1976, Thm 3.2).

If Z is a compact metric space, C(Z) denotes the Banach space of real-valued contin-
uous functions on Z, with norm || f ||∞ = maxz∈Z | f (z)|. If Ω is a measurable space and
ϕ : Ω × Z → R is measurable, and continuous in Z, then the mapping Ω → C(Z) given
by ω → ϕ(ω, ·) is measurable (e.g., (Aliprantis and Border, 2007, Thm. 4.55)).

Fix a metric dZ on a compact Z. The Arzela-Ascoli theorem (e.g., (Rudin, 1987, Thm
11.28)) states that a subset K ⊆ C(Z) is compact if and only if it is closed, bounded, and
uniformly equicontinuous; the latter condition means that

∀ε > 0, ∃δ > 0, ∀ f ∈ K, ∀z, w ∈ Z, dZ(z, w) < δ → | f (z)− f (w)| < ε

We also recall Lusin’s theorem, (e.g., (Aliprantis and Border, 2007, Thm. 12.8)): Let
X, Y be Polish space, ε > 0, let µ be a finite Borel measure on X, and let f : X → Y be
Borel. Then there is Z ⊆ X compact with µ(X\Z) < ε s.t. the restriction f |Z : Z → Y is
continuous.
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B.2.2 Preliminaries Lemmas

Lemma B.1. Let Z be a compact space, let [a, b] be an interval, and let g : Z × [a, b] → R be
strictly decreasing (in second variable) and continuous. Let p : Z → [a + δ0, b] for some
δ0 > 0 be continuous. Then the mapping

δ → sup
z∈Z

g(z, p(z)− δ)

is strictly increasing in [0, δ0].

Proof. It suffices to show that supz∈Z g(z, p(z)− δ) > supz∈Z g(z, p(z)). Observe that, for
every z, for 0 < δ < δ0,

g(z, p(z)− δ)− g(z, p(z)) > 0

and therefore, due to the continuity of u and the compactness of Z,

∆ := inf
z∈Z

(g(z, p(z)− δ)− g(z, p(z))) > 0

Hence, letting z∗ be such that

g(z∗, p(z∗)) > sup
z∈Z

g(z, p(z))− ∆
2

Then

sup
z∈Z

g(z, p(z)− δ) ≥ g(z∗, p(z∗)− δ) ≥ g(z∗, p(z∗)) + ∆ > sup
z∈Z

g(z, p(z)) +
∆
2

The following lemmas follow from our continuity and integrability assumptions, and
the dominated convergence theorem.

Lemma B.2. For each ε > 0 and pM ≥ 0, there is ζ > 0 such that if Ω′ ⊆ Ω satisfies
λ(Ω′) < ζ, then ∫

Ω′
sup
x∈X

|v(ω, x, pM)|λ(dω) <
ε

6

Lemma B.3. If p = (px)x∈X is bounded, then for each ε > 0, there is ∆ > 0 such that if
q ∈ D′

0 := ∏x∈X[px − ∆, px + ∆],∫
Ω

sup
x∈X

|v(ω, x, px)− v(ω, x, qx)|dλ(ω) <
ε

6

Lemma B.4. Fix ε > 0, prices p and a consumer profile σ. There is ζ > 0 such that if Ω′ ⊆ Ω
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satisfies λ(Ω′) < ζ, then ∫
Ω′

|v(ω, σX(ω), p(σX(ω)))|dλ(ω) <
ε

6

B.2.3 Preliminary Result

In this section, we prove a variation Theorem 1 under additional assumptions, and in
subsequent sections show that these assumptions can be removed. Fix metric dX on X.
First, we establish sort of a continuity property of (5.1):17

Lemma 2. Assume state and alternative spaces, Ω and X, are compact, and both the utility and
profit functions u(·), v(·) are continuous on Ω × X × R+. Suppose p : X → R+ is continuous,
and ε > 0. Assume the assumptions of Theorem 1, but with (5.1) holding for all Ω (not just λ-a.e.).
Then there is δ◦ > 0, such that for all ω ∈ Ω, all u, v, w, z ∈ X, if

u(ω, u, p(u)) = u(ω, v, p(v)), w ⪯ z, dX(u, w) < δ◦, dX(v, z) < δ◦

then
v(ω, u, p(u)) < v(ω, v, p(v)) +

ε

4

Proof. Suppose not. Then there are sequences δn → 0, (un), (vn), (zn), (wn), (ωn) such that

u(ωn, un, p(un)) = u(ωn, vn, p(vn)), wn ⪯ zn, dX(un, wn) < δn, dX(vn, zn) < δn

and yet
v(ωn, un, p(un)) ≥ v(ωn, vn, p(vn)) +

ε

4

W.l.o.g., since Ω, X are compact, we may assume un → u, vn → v, which implies zn →
u, wn → v; we may also assume ωn → ω. For such ω we deduce, since ⪯ is a continuous
ordering and p is continuous, that

u(ω, u, p(u)) = u(ω, v, p(v)), u ⪯ v

but
v(ω, u, p(u)) ≥ v(ω, v, p(v)) +

ε

4

which contradictions (5.1).

We then obtain the following result.

Proposition 2. Fix ε > 0, δ0 > 0, and prices p = (px)x∈X. Let (π j)N
j=1 denote the profits of the

firms at these prices for some incentive compatible reaction of consumers. Suppose that, in addition
to the assumptions of Theorem 1, the following conditions hold:

17It is in this lemma that we use the fact that ⪯ is a continuous ordering.
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1. (5.1) holds for all Ω (not just λ-a.e.).

2. X and Ω are compact.

3. p is continuous.

4. If 0 ∈ X, then it is an isolated point of X. Denote

pM := max
x∈X

p(x) < ∞, pm := min
x∈X,x ̸=0

p(x)

Assume pm > 0.

5. Both the utility and profit functions u(·), v(·) are continuous on Ω × X ×R+. (As a result,
the families (uω(·, ·))ω∈Ω and (vω(·, ·))ω∈Ω are compact in C(X × [0, pM]).) Fix δ∗ > 0
such that

If dX(x, y) < δ∗ and |p − q| < δ∗ then |vω(x, p)− vω(y, q)| < ε

6
(B.8)

and we can choose δ∗ ≤ δo, with δo being as in Lemma 2.

6. The alternatives space can be partitioned finitely X = ∪K
j=1Xj, with each Xj compact and

radius ≤ δ∗, and such that for each j and each y, z ∈ Xj, |p(y)− p(z)| < δ∗.

Then there is a continuous deviation q with p − δ0 ≤ q < p which, if taken by a firm, gives profit
at least ∑N

j=1 π j − ε (for any incentive compatible reaction).

Essentially, the proof involves re-doing the proof of Theorem 6, where the sets X1, . . . , Xk

partitioning X replace the individual alternatives.

Proof. Fix a firm j0, ε, δ0 > 0, and prices p satisfying the conditions. W.l.o.g., λ(Ω) = 1. Let
ζ > 0 such that if B ⊆ Ω satisfies λ(B) < ζ, then∫

B
sup
x∈X

|v(ω, x, pM)|λ(dω) <
ε

6
(B.9)

(Lemma B.2) and let ∆ > 0 be s.t.if q ∈ D′
0 := ∏x∈X[px − ∆, px + ∆],∫

Ω
sup
x∈X

|v(ω, x, px)− v(ω, x, qx)| <
ε

6
(B.10)

(Lemma B.3). Enumerate18 the partition of X by X1, . . . , XK, in such a way that if i < j,
then there is some x ∈ Xi and some y ∈ Xj with x ⪯ y. (If 0 ∈ X, then take X1 = {0}; 0
is ⪯-minimal.) Let 1j denote the indicator function of Xj. Define for convenience, for each

18E.g., choose one point from each component, and number according to the induced order on these points.
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continuous price vector ρ, a mapping U(·, ·, ρ) : Ω × {1, . . . , K} → R by

U(θ, j, ρ) = max
x∈Xj

u(θ, x, ρ(x))

i.e., the highest utility in Xj for consumer θ at prices ρ. Note that the maximum is obtained,
since ρ and U are continuous and each Xj is compact; furthermore, for each θ ∈ Ω, the
mapping ρ → U(θ, j, ρ) on C(X) is continuous by the Berge maximum theorem (e.g.,
(Aliprantis and Border, 2007, Thm. 17.31)).

Hence, the following lemma follows.

Lemma 3. There is δℓ > 0 such that if q′, q′′ are price vectors with q − δℓ < q′, q′′ ≤ q,

λ({ω | ∃j, k, U(ω, j, q′) < U(ω, k, q′) and U(ω, j, q′′) ≥ U(ω, k, q′′)}) < ζ

2
(B.11)

i.e., very few types would ‘flip’ their choices when prices change from q′ and q′′, as long as both are
very close (and below) to p.

Fix such δℓ. We claim that there exists a set Ω0 ⊆ Ω with λ(Ω0) > 1 − ζ, and 0 ≤ δ1 <

δ2, . . . , δK < min[δ0, δℓ, ∆, pm] (with δ1 = 0 iff 0 ∈ X) such that it holds that

U(ω, j, p) < U(ω, k, p) → U(ω, j, p − δ) < U(ω, k, p − δ), ∀ω ∈ Ω0, ∀j ̸= k (B.12)

and

U(ω, j, p) = U(ω, k, p), j < k → U(ω, j, p − δ) < U(ω, k, p − δ), ∀ω ∈ Ω0, ∀j ̸= k (B.13)

where δ = ∑K
j=1 δj · 1j, which we observe is continuous. (These equations parallel (B.4) and

(B.5) from the proof of Theorem 6.)
Indeed, requiring δ2, . . . , δK < δℓ of Lemma 3 guarantees (B.12) if we construct Ω0 to

exclude the set not satisfying (B.11), which is of measure at most ζ
2 . To guarantee the con-

struction satisfies (B.13), repeat the corresponding step in the proof of Theorem 6 (which
can be done, thanks to Lemma B.1), such that at each stage the measure of the types in
violation of (B.13) is of measure < ζ

2K .
Now, define q by q = p − δ. Like in the proof of Theorem 6, let τ be any incentive

compatible consumer profile when j0 chooses prices q and the other firms stick with p.
Observe that τ always chooses firm j0 (except possibly when purchasing 0). The parallel
of Lemma 1 is:

Lemma 4. If ω ∈ Ω0 with ηX(ω) = xη ∈ Xj, τX(ω) = xτ ∈ Xk for some j, k, then
v(ω, xη , p(xη)) ≤ v(ω, xτ, p(xτ)) +

5ε
12 .
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Proof. If j = k, then by assumption,

|v(ω, xη , p(xη))− v(ω, xτ, p(xτ))| ≤
ε

6

so we concentrate on the case j ̸= k. As in the proof of Lemma 1, it is established verbatim
that for such ω, j, k, it must hold that j < k and that

U(ω, j, p) = U(ω, k, p) (B.14)

(This is the parallel of (B.7).) Hence, since

U(ω, j, p) = u(ω, xη , p(xη))

there is z ∈ Xk with
u(ω, xη , p(xη)) = u(ω, z, p(z)) (B.15)

By our assumption, each component is of radius ≤ δ∗ ≤ δo defined in Lemma 2. Also note
(by definition) the existence of u ∈ Xj, v ∈ Xk with u ⪯ v. Putting this together with (B.15)
and with the conclusion of Lemma 2 gives.

v(ω, xη , p(xη)) ≤ v(ω, z, p(z)) +
ε

4
(B.16)

Since z, xτ ∈ Xk, dX(z, xτ) < δ∗ and |p(z)− p(xτ)| < δ∗, by (B.8),

|v(ω, z, p(z))− v(ω, xτ, p(xτ))| <
ε

6
(B.17)

and hence the conclusion follows from (B.16) and (B.17).

xη u xτ v z

Xj Xk

Figure 5: Points in Proof of Lemma 4
u ⪯ v, u(ω, xη , p(xη)) = u(ω, z, p(z)), ηX(ω) = xη , τX(ω) = xτ,
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Now, to complete the proof. Using (B.9), (B.10), and Lemma 4,

π j0(τ, q) =
∫

Ω
v(ω, τ(ω), q(τ(ω))) ≥

∫
Ω0

v(ω, τ(ω), q(τ(ω)))− ε

6

≥
∫

Ω0

v(ω, τ(ω), p(τ(ω)))− ε

6
− ε

6
≥

∫
Ω0

v(ω, η(ω), p(η(ω)))− ε

3
− 5ε

12

≥
∫

Ω
v(ω, η(ω), p(η(ω)))− ε

3
− 5ε

12
− ε

6
> ∑

k
πk − ε

as required.

B.2.4 Completion of Proof

Recall that f |A denotes the restriction of a function f to domain A.

Lemma B.5. Let X be a metric space, Z ⊆ X closed, f : X → R l.s.c., and g : X → R s.t.
f |X\Z = g|X\Z, g ≤ f , and g|Z is l.s.c.. Then g is l.s.c..

Proof. Let α ∈ R and x0 ∈ X with g(x0) > α, we must show that there is open neigh-
borhood U of x0 in which g > α. If x0 /∈ Z,since Z is closed and f |X\Z = g|X\Z, this is
immediate as f is l.s.c.. If x0 ∈ Z, then let U be an open neighborhood of x0 in which f > α

(such exists as f (x0) ≥ g(x0) > α and f is l.s.c.), and let V ⊆ Z be a set relatively open in
Z s.t. x0 ∈ V and g > α in V; w.l.o.g. V ⊆ U. Hence there is an open set x0 ∈ W ⊆ U s.t.
V ∩ Z = W; g > α in W, as required.

The following lemma will allow us to link between the general economy (after we
make a series of reductions) and economies as dealt with in Proposition 2.

Lemma 5. Fix an economy satisfying the assumptions of Sec 4.1, an l.s.c. price function p and
incentive compatible consumer profile σ. Suppose there is a continuous (weak) linear ordering ⪯
on it, such that (5.1) holds.19 Fix ε > 0. Then there is ζ > 0, such that if:

• Z ⊆ X (if 0 ∈ X, assume 0 ∈ Z) is a compact subset.

• Ω0 ⊆ Ω is a subset satisfying

σX(Ω0) ⊆ Z and λ(Ω0) > λ(Ω)− ζ (B.18)

• In the reduced game with types Ω0 and contract space Z, at prices p|Z, some firm can increase
profit by least ∆Π with an l.s.c. deviation q satisfying q < p|Z.

Then that firm can increase profit by at least ∆Π − ε in the original game.

19We actually do not need the full strength of (5.1) for this lemma; only that if 0 ∈ X, for λ-a.e. ω ∈ Ω,
whenever u(ω, 0, 0) = u(ω, x, p(x)) for some x ∈ X, then v(ω, x, p(x)) ≥ 0.
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By “increase profit at least x”, we mean by choosing an l.s.c. price to which there is
at least one incentive compatible reaction of consumers, and in any incentive compatible
reaction, the profit is least x higher than under the pair (p, σ).

Proof. First, let ζ1 > 0 correspond to ε and pM = 0 as in Lemma B.2, and ζ2 > 0 corre-
spond to ε > 0, the prices p and the profile σ as in Lemma B.4, and take ζ = min[ζ1, ζ2];
specifically then if Ω′ ⊆ Ω is s.t. λ(Ω′) < ζ,∫

Ω′
inf
x∈X

v(ω, x, 0)dλ(ω) ≥ − ε

6
and

∫
Ω′

|v(ω, σX(x), p(σX(x)))|dλ(ω) ≤ ε

6
(B.19)

Let Ω0 ⊆ Ω, Z ⊆ X, and deviation q be as in the conditions of the lemma, with firm
k0 increasing profit at least ∆Π. Extend q to all of X by q|X\Z = p|X\Z; q is l.s.c. by
Lemma B.5. Furthermore, since Z was compact one sees that for each consumer there is
an incentive compatible contract. Let τ be a incentive compatible consumer profile w.r.t.
q; for simplicity, assume that if σX(ω) = 0 ∈ X, then τX(ω) ∈ Z; since 0 ∈ Z if 0 ∈
X, the only other option for such an ω purchasing 0 under σ would be switch to some
(x, q(x)) = (x, p(x)) for x /∈ Z with u(ω, 0, 0) = u(ω, x, p(x)), which λ-a.s. could only add
to the profit.

We contend that the restriction τ′ := τ|Ω0 is then a incentive compatible consumer
profile in Ω0 w.r.t. q, making selections in Z and from firm k0. Indeed, let ω ∈ Ω0. Intu-
itively, the options in Z have become more attractive relative to the options outside of Z.
Formally, by assumption σX(ω) ∈ Z, argmaxx∈Xu(ω, x, p(x)) ∩ Z ̸= ∅. Since q|Z < p|Z
and q|X\Z = p|X\Z outside of Z, we have either argmaxx∈Xu(ω, x, q(x)) ⊆ Z (recall 0 ∈ Z
if 0 ∈ X) or τX(ω) = 0, as required.

Finally, by (B.19), if Π′ (resp. Π) denotes the profit of firm k0 after (resp. before) devia-
tion,

Π′ =
∫

Ω
1τN(ω)=k0

· v(ω, τX(ω), q(τX(ω))dλ(ω) ≥
∫

Ω0

1τN(ω)=k0
· v(ω, τX(ω), q(τX(ω))dλ(ω)

+
∫

Ω\Ω0

1τN(ω)=k0
· v(ω, τX(ω), 0)dλ(ω)

≥
∫

Ω0

1τN(ω)=k0
· v(ω, τX(ω), p(τX(ω))dλ(ω)− ε

6

≥
∫

Ω0

1σN(ω)=k0
· v(ω, σX(ω), p(σX(ω))dλ(ω) + ∆Π − ε

6

≥
∫

Ω
1σN(ω)=k0

· v(ω, σX(ω), p(σX(ω))dλ(ω) + ∆Π − ε

3
= Π + ∆Π − ε

3

Now to complete the proof of Theorem 1, suppose some firm j0 had profit π j0 > 0.
W.l.o.g., assume λ(Ω) = 1. Fix 0 < ε < π j0

N+1 , and δ0 > 0. Let ζ > 0 correspond to ε as in
both Lemma 5 and Lemma B.4, and assume ζ ≤ ε.
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We will define Ω0 ⊆ Ω5 ⊆ Ω4 ⊆ Ω3 ⊆ Ω2 ⊆ Ω1 ⊆ Ω, via six reductions: 1) To
bounded prices. 2) To compact alternative space. 3) To compact consumer space and
continuous utility and profit functions. 4) To a smaller alternative space with the structure
required for Proposition 2. 5) To continuous prices. 6) Re-compactifying consumer space.
Then we will apply Proposition 2 to complete the proof.

Henceforth, let µ denote the measure induced on X by λ and σ - formally µ = λ ◦ σ−1
X .

First, let 0 < pm < pM be such that pm ≤ p ◦ σ ≤ pM or p ◦ σ = 0 with probability
> 1 − ζ

6 ; formally, such that if

Ω1 := {ω | p(σX(ω)) ∈ {0} ∪ [pm, pM]}

then
λ(Ω1) > 1 − ζ

6

Denote D = {0} ∪ [pm, pM].
Next, let X̂ ⊆ X be compact such that µ(X̂) > µ(X)− ζ

6 ; denoting Ω2 = σ−1
X (X̂), we

have
λ(Ω2) > λ(Ω1)−

ζ

6

Next, recall from Section B.2.1 that since u, v : Ω2 × X̂ × D → R are jointly Borel
measurable, the induced mappings ϕu, ϕv : Ω2 → C(X̂ × D) are Borel, and hence, Lusin’s
theorem shows that there is a compact subset Ω3 ⊆ Ω2 s.t. the induced mappings ϕv,ϕu

restricted to Ω3 are continuous, and such that

λ(Ω3) > λ(Ω2)−
1
6

ζ

By the Arzela-Ascoli theorem, the families (vθ)θ∈Ω3 , (uθ)θ∈Ω3 are uniformly equicontinu-
ous on X̂ × [0, pM].

Next, let δ∗ be as in Proposition 2; i.e., fix δ∗ > 0 such that if dX(x, y) < δ∗ and |p −
q| < δ∗, such that for all ω ∈ Ω3, |vω(x, p)− vω(y, q)| < ε

6 . Such exists by the previous
reduction to Ω3. Also require δ∗ ≤ δ0. Now, partition X̂ with finitely many Borel sets
Z1, . . . , ZL such that:

• Each Zi is of radius < δ∗.

• For each i, supx∈Xi
p(x)− infx∈Xi p(x) < δ∗.

• If 0 ∈ X̂, Z1 = {0}.

This is easily seen to be possible by the compactness of X and the fact pm ≤ p ≤ pM. For
each i = 1, . . . , L, let Xi ⊆ Zi be compact such that µ(Xi) > µ(Zi) − ζ

6L ; such exists by
inner regularity. Let X̃ = ∪iXi and Ω4 = σ−1)X(X̃) ∩ Ω3. Then

λ(Ω4) > λ(Ω3)−
ζ

6
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The space Ω4 and sets X1, . . . , XL which partition X̃ satisfies the conditions of Proposi-
tion 2 for the ε, δ0 chosen.

Let X0 ⊆ X̃ be compact such that p|X0 is continuous and such that µ(X0) > µ(X̃)− ζ
6 .

Such exists by another application of Lusin’s theorem. Set Ω5 = σ−1
X (X0) ∩ Ω4. Then,

λ(Ω5) > λ(Ω4)−
ζ

6

Finally, choose Ω0 ⊆ Ω5 compact with

λ(Ω0) > λ(Ω5)−
ζ

6
> 1 − ζ

In the original game, firm each firm j made profit π j. Let π̃ j denote the profit of firm j
in the game restricted to types Ω0 and alternative space X0 := ∪ℓXℓ under the profile σ|Ω0 .
Then since ζ satisfies Lemma B.4 w.r.t ε > 0 and prices p,

π̃ j ≥ π j − ε, j = 1, . . . , K

Recall j0 is such that 0 < (N + 1)ε < πj0 , and fix another firm k0. Hence, by Proposition 2,
there is q|X0 < p|X0 that would give the deviating firm k0 an increase in profit of at least

∆Π ≥ ∑
j ̸=k0

π̃ j − ε ≥ ∑
j ̸=k0

(π j − ε)− ε > π j0 − Nε

Hence, in the original game (since ζ was chosen by Lemma 5) firm k0 can increase his profit
∆Π − ε ≥ π j0 − (N + 1)ε > 0, a contradiction.

B.3 Proof of Theorem 3

By Theorem 1, it suffices to show that for those ω which satisfy the given inequalities,
whenever (x, p), (y, q) are such that uω(x, p) = uω(y, q) and y > x, then vω(y, q) ≥
vω(x, p). Fix such ω, (x, p), (y, q); denote f = uω, g = vω. Denote C = f (x, p)(= f (y, q))
and C′ = g(x, p). Since f , g are continuously differentiable with ∂ f

∂v ̸= 0, ∂g
∂v ̸= 0, the im-

plicit function theorem shows that we may parametrize the curves f ≡ C and g ≡ C′ by
functions ϕ : [x, y] → R and ψ : [x, y] → R, respectively - that is f (u, ϕ(u)) = C and
g(u, ψ(u)) = C′ for all u ∈ [x, y] - for all u ∈ [x, y],20

∂ϕ

∂u
(r) = −

∂ f
∂u
∂ f
∂v

(r, ϕ(r)),
∂ψ

∂u
(r) = −

∂g
∂u
∂g
∂v

(r, ψ(r))

In light of the assumption ∂g
∂v (u, v) > 0, it suffices to show that ϕ(y) > ψ(y). If w ∈ [x, y] is

s.t. ϕ(w) = ψ(w), then by continuous differentiability of f , g, and by the continuity of ϕ, ψ,

20At x, y, the derivatives are one-sided.
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ψ′(r) > ϕ′(r) for all r in a neighborhood of w. (Note that it need not be the case that ϕ′ > ϕ′

everywhere.) By assumption ϕ(x) = ψ(x) = p; since ϕ′ > ψ′ in a (right-)neighborhood
of x, we get ϕ(r) > ψ(r) in such a neighborhood. Suppose by way of contradiction, there
is s ∈ (r, y] for which ϕ(s) = ψ(s), and in particular let s be the smallest such s; such
minimum would exist by continuity of ϕ, ψ. There is δ > 0 s.t. in (s − δ, s), ϕ′(r) > ψ′(r);
we may take δ s.t. r < s − δ. By assumption, ϕ(s − δ) > ψ(s − δ); but since ϕ′(r) > ψ′(r)
in (s − δ, s), also ϕ(s) > ψ(s), a contradiction to ϕ(s) = ψ(s).

C Positive Profits: Proofs

C.1 Topology on Function Spaces

See, e.g., Rudin (1991) for more thorough treatment for topologies on function spaces. We
make use of these in stating and proving Theorem (4), and in proving Theorem (1).

Let C = C(R+) be the space of continuous functions R+ → R, with the topology of
uniform convergence on compact sets; this is a completely metrizable separable topology,
i.e., a Polish space. Explicitly, let K1 ⊆ K2 ⊆ · · ·R+ be a sequence of compact sets with Kj

contained in the interior of Kj+1. Then C is completely metrizable, e.g., by the metric

d( f , g) =
∞

∑
n=1

2−n min[sup
Kn

| f − g|, 1]

(The topology induced is independent of the sequence (Kj) chosen.) Let C↑, C↗, C↓, C↘
denote the subspaces of strictly increasing, weakly increasing, strictly decreasing, and
weakly decreasing functions, respectively. The spaces can be shown to be Polish as well.
Specifically,

C↑ = ∩p>q∈R+{ f ∈ C↑ | f (p) > f (q)}

is Gδ as the countable intersection of open sets, and Gδ sets are Polish, while

C↗ = ∩x≥y∈R+{ f ∈ C↑ | f (x) ≥ f (y)}

is closed as the intersection of closed sets.
Similarly, let C1 = C1(R+) be the space of continuously differentiable functions R+ →

R, with the topology of uniform convergence of both the function and its derivative on
compact sets. The space can similarly be complete metrized, using K1 ⊆ K2 ⊆ · · ·R+ as
above, by, e.g., the metric

d( f , g) =
∞

∑
n=1

2−n min
[

sup
Kn

max[| f − g|, | f ′ − g′|], 1
]

The subspaces C1
↑ , C1

↗, C1
↓ , C1

↘ are similarly defined and Polish.
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Remark 1. The space of functions Theorem 4 refers to is utility functions in C1
↓(R+) and

profit functions in C↗(R+).

A subset Y of a Polish space X is said to be meagre (a.k.a., of the first category) if Y can
be written Y = ∪∞

n=1Yn, where each Yn’s closure has empty interior. A property is said to
hold generically if the set on which it does not hold is meagre.

Remark 2. In Anderson and Zame (2001), two notions with measure-theoretical motiva-
tions are presented to describe genericity in infinite-dimensional spaces (e.g., function
spaces) by attempting to define what a ’small’ (in their terminology, ’shy’) set would. In
this paper, in Theorems 4 and 5, we state that certain properties leading to (local) equilib-
ria with positive profit hold throughout open sets in function space, which as a result in
particular excludes them from being ’shy’, as ’shy’ sets cannot contain open sets.

C.2 Perturbable Economies with Positive Profits

Remark 3. To demonstrate Theorem 4, we identify the key properties of the economies
described in Section 3 and Appendix A, which guarantee the existence of an equilibrium
with positive profit. After establishing the sufficient conditions given in the lemma below,
we show (Appendix C.5) that any economy with fundamentals sufficiently close to an
economy that satisfies these conditions, will also satisfy them.

We emphasize that Lemma 6 is not intended as general conditions under which economies
have equilibria with positive profits. The conditions required by this result are, admit-
tedly, quite demanding. Instead, it is meant as a tool that will allow us to demonstrate that
economies with positive profit equilibria are not “knife-edge” cases.

In the examples we have presented, it is straightforward to verify that the prices con-
stitute positive profit equilibria. More generally, however, the perturbations may result in
functions for which finding equilibrium and studying perturbations may not be tractable.

Lemma 6. Suppose p = (px)x∈X is a price vector such there are types ω1, . . . , ωm and different
contracts x1, . . . , xm ∈ X (if 0 ∈ X, xi ̸= 0 for each i), N firms, and a probability vector (λk)

m
k=1,

for which:

1.
0 < v(ωk, xk, pxk), ∀k = 1, . . . , m (C.1)

2.
argmax(x,px),x∈Xu(ωk, ·) = {(xk, pxk), (xk−1, pxk−1)}, ∀k = 1, . . . , m (C.2)

3. For any prices q ≤ p,21

argmax(x,qx),x∈Xu(ωk, ·) ⊆ {(xk, qxk), (xk−1, qxk−1)}, ∀k = 1, . . . , m (C.3)
21The requirement that this hold for all q ≤ p is quite strict, but emphasise we are not aiming for generality,

but rather identifying conditions which can be shown to hold on an open set of economies.
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4.

m

∑
j=1

v(ωj, xj, pxj)λj <
N

N − 1
λk(v(ωk, xk, 0)− v(ωk, x, px)), ∀k = 1, . . . , m, ∀x ∈ X\{0}

(C.4)
where we interpret ω0 = ωm, x0 = xm.

5. Utility u(·) is differentiable in price and

m

∏
k=1

sup{ ∂u(ωk ,xk ,q)
∂q | q ≤ pxk}

inf{ ∂u(ωk ,xk−1,q)
∂q | q ≤ pxk−1}

< 1 (C.5)

Then, for Ω̃ := {ω1, . . . , ωm} × {1, . . . , N} with distribution λ({ωk, j}) = 1
N λk, and the incen-

tive compatible consumer profile σ(ωk, j) = (xk, j), we have that (p, σ) is an equilibrium of (Ω̃, λ)

with strictly positive profit.

We now provide an intuition for the conditions of Lemma 6. Condition 1 means that
firms are making a positive profit on each type. Condition 2 means that, for type ωk, the
two most preferred contracts are (xk, pxk), (xk−1, pxk−1), and he is indifferent between them
(we interpret k − 1 as m for k = 1). Condition 3 means that, if prices are (weakly) lowered,
the most preferred contracts of type ωk are one or both of the contracts that type preferred
at the original prices.22 Condition 4) means that it is sufficiently costly for firms to provide
to type ωk any option other than xk (the left-hand side of (C.4) is the total profit in the
market.).

Formally, the final assertion of equilibrium is on Ω̃ and utility functions and profit
functions extend from Ω to Ω̃ naturally, u((ω, k), x, p) := u(ω, x, p), v((ω, k), x, p) :=
v(ω, x, p).

The equilibrium described above is one where all consumers of type ωk buy alternative
xk and randomize uniformly across firms. Observe that (C.1) and (C.4) together imply that

v(ωk, xk, pxk) > v(ωk, xk−1, pxk−1), k = 1, . . . , m (C.6)

which, together with (C.2) implies that there cannot be an order ⪯ such that (B.1) is satis-
fied, hence the conditions of Theorem 1 cannot hold. In fact, as we show in Lemma C.1
below, Condition (C.5) guarantees that the prices cannot all be lowered in a way such that
each consumer ωj choose xj, which is the preferred option for the firms between xj−1 and
xj at prices at or close to p.

22An equivalent formulation, since utility is weakly decreasing in price, is

u(ωk, xj, pj) > u(ωk, xi, 0), ∀k = 1, . . . , m, ∀j = k − 1, k. ∀i ̸= k − 1, k
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We can now see how this result relates to the example of Section 3. In the example, we
had utilities linear in price, and

∂u(ωB,U,p)
∂p

∂u(ωB,V,p)
∂p

×
∂u(ωA,V,p)

∂p
∂u(ωA,U,p)

∂p

=
1
2
× 3

2
=

3
4
< 1

Therefore, (C.5) is satisfied. Moreover, (C.2), (C.1) and (C.4) are also satisfied. Condition
(C.3) is vacuously satisfied. Hence, the conditions of Lemma 6 hold. (A similar verification
is carried out for the example in Appendix A.) We can also see how the conditions apply
to Section A, as

∂u(ωj,Xj,p)
∂p

∂u(ωj,Xj−1,p)
∂p

=
1
β
< 1

for each consumer j.

C.3 Proof of Lemma 6

The proof generalizes the examples of Section 3.2 and Section A. The main idea is that the
conditions required by the theorem imply that attempting to undercut would attract some
type to buy a contract which is is very expensive to supply to this type.

Let p = (px)x∈X be a price vector and let types ω1, . . . , ωm and different items x1, . . . , xm ∈
X satisfy the conditions of Lemma 6, with weights λ1, . . . , λm. Let c1, . . . , cm, d1, . . . , dm > 0
with ∏m

j=1
cj
dj
< 1 such that if q = (qx)x∈X satisfies q ≤ p, then

|u(ωk, xk, pk)− u(ωk, xk, qk)| ≤ ck|pk − qk|, ∀k = 1, . . . , m (C.7)

|u(ωk, xk−1, pk−1)− u(ωk, xk−1, qk−1)| ≥ dk|pk−1 − qk−1|, ∀k = 1, . . . , m (C.8)

We note that by (C.4), since v is weakly increasing in price, if q = (qx)x∈X satisfies q ≤ p,

m

∑
j=1

v(ωj, xj, pxj)λj <
N

N − 1
λk(v(ωk, xk, qxk)− v(ωk, xk−1, qxk−1)), ∀k = 1, . . . , m (C.9)

and by (C.3),

argmax(x,qx)u(ωk, ·) ⊆ {(xk, qxk), (xk+1, qxk+1)}, ∀k = 1, . . . , m (C.10)

Let Ω̃ := {ω1, . . . , ωm} × {1, . . . , N} with distribution λ({ωk, j}) = 1
N λk, and let σ be

the incentive compatible consumer profile defined by σ(ωk, j) = (xk, j). We need to show
the (p, σ) is an equilibrium.

Let q = (qx)x∈X ̸= p be such a deviation of some firm k0, and let τ be a reaction, which
is consistent in the following sense: a consistent reaction to a deviation q = (qx)x∈X of a firm
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k is an incentive compatible consumer profile τ such that if x ∈ X is such that qx ≥ px and
τ(θ) = (j, x) for some θ ∈ Ω̃ and (j, x) ∈ N × X„ and if x ∈ argmaxX(x → u(θ, x, px)),
then σ(θ) = (j, x). I.e., if the contract x chosen now from some firm post deviation was
also an optimal choice pre-deviation, and its price has not lowered, then it must also have
been chosen before and from the same firm.

We show that πk0(τ, q) ≤ πk0(σ, p). Assume for at least one j, qj ≤ pj; otherwise,
πk0(τ, q) = 0 ≤ πk0(σ, p).

Lemma C.1. If for some j = 1, . . . , m, qj < pj, then there is some i = 1, . . . , m such that for
all z ∈ {1, . . . , N}, τ(ωi, z) = (k0, xi−1).

In other words, if the price of some contract is decreased in the deviation q of firm k0

relative to p, then for some i, consumers of type ωi buy xi−1 from firm k0.

Proof. Suppose for each i = 1, . . . , m it holds for some z ∈ {1, . . . , N}, τ(ωi, z) ̸= (k0, xi−1).
First we claim that for all j, qj < pj. If not, for some j, qj < pj but qj+1 ≥ pj+1, we

would have

u(ωj+1, xj, qj) > u(ωj+1, xj, pj) = u(ωj+1, xj+1, pj+1) ≥ u(ωj+1, xj+1, qj+1)

which would imply τ(ωj, z) = (k0, xj−1) by (C.10), a contradiction.
So we must have qj < pj for all j. Hence, no one purchases under τ from anyone but

k0; since types ωi are not purchasing xi−1, it must hold that u(ωi, xi−1, qi−1) ≤ u(ω, xi, qi).
Hence,

u(ωj+1,xj+1, qj+1) ≥ u(ωj+1, xj, qj) and u(ωj+1, xj+1, pj+1) = u(ωj+1, xj, pj)

→ u(ωj+1, xj+1, qj+1)− u(ωj+1, xj+1, pj+1) ≥ u(ωj+1, xj, qj)− u(ωj+1, xj, pj)

→ cj+1(pj+1 − qj+1) ≥ dj+1(pj − qj) →
pj − qj

pj+1 − qj+1
≥

cj

dj

Hence,

1 >
m

∏
j=1

cj

dj
≥

m

∏
j=1

pj − qj

pj+1 − qj+1
= 1 (C.11)

a contradiction.

Observe that under τ, by (C.10), since v is increasing in prices and pj is the most any
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consumer would pay for xj,

πk0(τ, q) ≤
m

∑
j=1

[
λ
({

(ω, z) | ω = ωj, τ(ω, z) = (k0, xj−1)
})

v(ωj, xj−1, pj−1)

+ λ
({

(ω, z) | ω = ωj, τ(ω, z) = (k0, xj)
})

v(ωj, xj, pj)
]

(C.12)

We consider two cases. First suppose ∀j, qj ≥ pj. Since τ is a consistent reaction (as
defined above) no one switches from another firm to firm k0, and among an consumer
of type ωj - who were all purchasing xj under σ - some may be buying xj and the rest,
by (C.10), will be buying xj−1. By (C.4), v(ωk, xk, pxk) ≥ v(ωk, xk−1, pxk−1), so πk0(σ, p) ≥
πk0(τ, q, p−k0).

In the second case, if for some j, qj < pj, then by Lemma C.1 there some i0 such that
for all z ∈ {1, . . . , N}, τ(ωi0 , z) = (k0, xi0−1). In this case, by use of (C.4) and (C.9), (C.12)
implies

πk0(τ, q) ≤ λi0 · v(ωi0 , xi0−1, qi0−1) + ∑
j ̸=i0

λj · v(ωj, xj, pj)

= λi0 · (v(ωi0 , xi0−1, qi0−1)− v(ωi0 , xi0 , qi0)) + ∑
j

λj · v(ωj, xj, pj)

≤ 1
N ∑

j
λj · v(ωj, xj, pj) = πk0(σ, p)

as required.

C.4 Proof of Proposition 1

Before proving Proposition 1, we prove a preliminary result, we may be of independent
interest: Let E be reflexive and symmetric, and let G be a directed graph, s.t. for any x, y ∈
X, at most one of the following is true: either (x, y) ∈ G ∨ (y, x) ∈ G, or (x, y), (y, x) ∈ E.
(Since E is reflexive, this condition can be written E ∩ G = ∅). We denote a cycle as a
K-tuple of different x1, . . . , xK s.t. for each j = 1, . . . , K, either (xj, xj+1) ∈ G or ∈ E, where
xK+1 := x1. We call a cycle strict if there is at least one j s.t. (xj, xj+1) /∈ E. For a weak
ordering ⪯ on X, x ≺ y denotes x ⪯ y but not y ⪯ x, while x ∼ y denotes x ⪯ y and y ⪯ x.

Lemma 7. There are no strict cycles for the pair G, E iff there exists a weak ordering ⪯ on X s.t.
for every (x, y) ∈ G ∪ E, it holds that (x, y) ∈ G iff x ≺ y (and therefore, since G ∩ E, (x, y) ∈ E
iff x ∼ y).

Proof. The converse is clear. Suppose there are no strict cycles for the pair G, E. Let E0

denote the transitive closure of E, which is therefore an equivalence relation on X. Let X′

denote the collection of equivalence classes of E0, and define a relation G′ on X′ by for
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classes C, D ∈ X′,
(C, D) ∈ G′ ↔ ∃x ∈ C, y ∈ D, (x, y) ∈ G

We claim that G′ is indeed a directed graph (i.e. irreflexive, that is, no ’loops’ of the
form C G′ C for C ∈ X′) and has no cycles, that is, no C1, . . . , CK s.t. C1 G′ C2G′ · · · G′CK G′ C1.
Since a loop is a particular case of the latter with K = 1, we simply show the non-existence
of the latter. By definition of G′, we can find x1, . . . , xK, y1, . . . , yK s.t. x1 E y1 G x2 E y2 G . . . G xK E yK G x1,
resulting in a strict cycle for the pair E, G, a contradiction. Hence, by standard results (e.g.
Cormen et al. (2001, Sec. 22.4)), there is a complete strict linear ordering ⪯′ on X′ s.t.
C ≺′ D iff (C, D) ∈ G′. Define a weak ordering ⪯ on X by x ∼ y iff (x, y) ∈ E′ and x ≺ y
iff [x] ≺ [y], where [·] denotes the E0 equivalence class.

Now, fix (x, y) ∈ G ∪ E. If (x, y) ∈ G, then we have x ≺ y by definition. Conversely, if
x ≺ y, but (x, y) /∈ G, then (x, y) ∈ E, so there are x1, x2, . . . , xM in the same E0 class as x,
and y1, . . . , yL in the same E0 class as y,s.t. x x1 E · · · E xM G yL E · · · E y1 Ey x, contradicting
that the pair G, E has no strict cycles.

We now turn to the proof of Proposition 1; Define the directed graph G on X in the
same way; for brevity, denote Aω = argmax(u(ω, ·, p)):

G = {(x, y) | ∃ω ∈ Ω, [x, y ∈ Aω ∧ v(ω, x, px) < v(ω, y, py)]}

and also denote

E = {(x, y) | (∃ω ∈ Ω, x, y ∈ Aω) ∧ (∀ω ∈ Ω, x, y ∈ Aω → v(ω, x, px) = v(ω, y, py))}

E is reflexive and symmetric, and G is irreflexive. Then, if (x, y) ∈ G or (y, x) ∈ G, we
do not have (x, y) ∈ E. Suppose there does not exists a K-tuple of different x1, . . . , xK s.t.
which constitutes a strict cycle. By the lemma, there exists a weak ordering ⪯ on X s.t. for
every (x, y) ∈ G ∪ E, it holds that (x, y) ∈ G iff x ≺ y. Such a weak ordering, however,
satisfies the conditions of Theorem 1, a contradiction to the assumption in Proposition 1
of positive profits. Hence, there does exist a strict cycle, which is exactly the required
conclusion of the proposition.

C.5 Proof of Theorem 4

First, recall that, || f || = sup | f | and || f ||1 = max[sup | f |, sup | f ′|], the supremum being
taken over the domain of f .

Primarily, we need to show that if the pair of utility and profit functions (u0, v0) is an
economy satisfying the conditions of Lemma 6 for some prices p0 and some distribution
of types λ0, then there exists ξ > 0 such that if (u, v) is an economy (with u continuously
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differentiable) and

||u − u0||1 < ξ, ||v − v0|| < ξ, ||λ − λ0|| < ξ (C.13)

then there are prices p for which (u, v) with λ satisfies the conditions of Lemma 6 as p0

does for (u0, v0).If ξ is small enough and p is close enough to p0, then (C.1), (C.3), (C.4),
and (C.5) will be satisfied. The crux is to show that there exists p close enough to p0 and
which satisfies (C.2).

Proposition C.2. Let U1, . . . , Um be open intervals, and p0
j ∈ Uj for each j. Let f j : Uj → R,

gj : Uj−1 → R be strictly increasing, and differentiable at p0
j with positive derivative, with

(where j − 1 is interpreted as m if j = 1, and j + 1 is interpreted as 1 if j = m):

m

∏
j=1

f ′j (p0
j )

g′j(p0
j−1)

̸= 1 (C.14)

Suppose f j(p0
j ) = gj(p0

j−1) for each j = 1, . . . , m. Fix δ > 0. Then there is ε > 0 s.t. if
f̃ j : Uj → R, g̃j : Uj−1 → R for j = 1, . . . , m, with

| f̃ j(p)− f j(p)| < ε and |g̃j(p′)− gj(p′)| < ε for each p ∈ Uj, p′ ∈ Uj−1 (C.15)

then are p1 ∈ U1, . . . , pm ∈ Um with |pj − p0
j | < δ for each j = 1, . . . , m s.t. f j(pj) = gj(pj−1)

for each j = 1, . . . , m.

The proof of Theorem 4 follows from Proposition C.2, by taking f j, gj : R++ → R,
j = 1, . . . , m, by

f j(p) = u0(ωj, xj, p), gj(p) = u0(ωj, xj−1, p)

since (C.2) for p0 = (pj) can be written

f j(p0
j ) = gj(p0

j−1), ∀j = 1, . . . , m

and (C.14) holds by (C.5). To prove Proposition C.2:

Proposition C.3. Let U ⊆ Rm be open, F : U → Rm, x0 ∈ U s.t. F(x0) = 0 and F is
differentiable at x0 with DF(x0) non-singular. Let δ > 0. Then there is ε > 0 s.t. if
V ⊆ U and G : V → Rm is continuous with ||G − F|V || < ε, then there is y0 ∈ V with
||x0 − y0|| < δ and G(y0) = 0.

Remark 1. Proposition C.3 actually does not require that F be differentiable at x0 with
DF(x0) non-singular, rather only that for every open neighborhood U of x0, F(U) contains
an open neighborhood of 0. The former follows from the latter by standard techniques
(e.g., first part of proof of the Inverse Mapping Theorem in Rudin (1976)).

The proof of Proposition C.3 follows standard techniques, e.g. McLennan (2018); we
include a sketch:
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Proof. Fix δ > 0. As per the remark, we can may assume δ is small enough s.t. if Bδ(x0) ⊆
RN is the closed δ-ball at x0 and Sδ(x0) is the boundary of Bδ(x0), 0 /∈ F(Sδ(x0)). Let
ε > 0 be such that B2ε(0) ∩ F(Sδ) = ∅. If ||F|V − G|| < ε, then denoting H(α, x) =

(1 − α)F(x) + αG(x), 0 /∈ H(α, Sδ(x0)) for any α. A standard application of Brouwer’s
theorem (or the Jordan-Brouwer separation theorem) completes the proof.

This implies Proposition C.2, as if we denote

Fj(p1, . . . , pm) = f j(pj)− gj(pj−1)

then the Jacobian of F at p0 = (p0
1, . . . , pm

1 ) is

det(F(p0)) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

f ′1(p0
1) 0 0 · · · −g′1(p0

m)

−g′2(p0
1) f ′2(p0

2) 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 −g′m(p0

m−1) f ′m(p0
m)

∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)m+1

m

∏
j=1

f ′j (p0
j ) + (−1)m+m

m

∏
j=1

(−g′j(p0
j−1))

= (−1)m+1
( m

∏
j=1

f ′j (p0
j )−

m

∏
j=1

g′j(p0
j−1)

)
̸= 0

where the penultimate equality can be seen be expansion by the first row, and the final
̸= 0 is by (C.14).
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