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1 Introduction

Many real-world problems can be modelled as bipartite matching problems, which mostly comprise a set of par-
ticipants, set of offers, and the preference list of participants over offers or vice versa. In this setting, the goal is
to find an optimal allocation of participants to offers. However, due to the number of participants that appear
in practical scenarios, it is not feasible to make manual allocation or use brute-force techniques; hence the need
to design and implement efficient matching algorithms. Matching students to courses/projects, applicants to
job posts and medical residents to hospitals are some example applications.

Problems arising in this setting could be one-sided or two-sided. For instance, suppose a University department
want to allocate students to projects based on their (the students) ranked preference, with a bound on the
number of students that can be assigned to a project. This scenario is an application of many-to-one bipartite
matching problems with one-sided preference. Henceforth, we will refer to the problem of allocating students
to projects as the Student-Project Allocation Problem (SPA) [1].

In some variants of (SPA), comprising set of students, projects and lecturers, lecturers are also permitted to
rank students they are willing to supervise in order of preference, and there is always constraints on the number
of students a lecturer can supervise. This reduces to a bipartite matching problem with two-sided preference.
A generalization of (SPA) occurs when lecturers (students) cannot provide a strict ranking of all their preferred
students (projects), as the case may be. For instance, lecturers might be happier to rank their favourite stu-
dents, and then group together the remainder at the tail of their list. We shall refer to this instance as the
Student-Project Allocation Problem with Ties (SPAT) [1]. Stability of matching in this model, where no (student,
lecturer) pair would prefer to be assigned together than remain in their current assignment, is very important.

The (SPA) model and its variants can be generalised to other scenarios different from Student-Project Allo-
cation, for example, allocation of applicants to posts at large organisations with several departments. Although
a considerable amount of research has been done over the years to tackle matching problems of this kind, many
open problems are yet to be solved. Some of these problems and their important applications in large-scale cen-
tralized matching schemes motivate this research proposal. This proposal will briefly discuss existing literature
on variants of (SPA), describe my previous work and motivation for research. It will also outline various open
problems that have been identified in (SPAT) and similar cases, and discuss a research approach to tackle some
of them.

2 Literature review

The problem of allocating students to projects considering preferences and capacity constraints was described
as the Student-Project Allocation problem (SPA) in [2]. Here, we discuss existing work that has been done in
variants of the (SPA) model.
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Given an instance of (SPA) with lecturers preference over students (SPA-S), Manlove et al. [2] presented two
optimal linear-time algorithms that could be employed to construct a stable matching of students to projects,
with respect to the preference information, optimality and capacity constraints. The stable matching produced
by the first algorithm is student-oriented (that is, students have the best-possible projects) while the one pro-
duced by the second algorithm is lecturer-oriented (that is, lecturers have the best-possible students).

For an instance of (SPA) with lecturers preference over projects (SPA-P), the stable matchings can have dif-
ferent sizes. It was proved in [4] that the problem of finding a maximum cardinality stable matching under
this setting is NP-hard, and a 2−approximation algorithm was presented. O’Malley [11] later proved that this
problem is approximable within 3

2 [1] . He presented a linear-time algorithm to construct a strongly stable
matching, if one exist, or report that none exist.

A setting where lecturers preference lists admit student-project pair (SPA-(S,P)) is a generalization of (SPA-S)

and (SPA-P). Manlove et al. [2] suggested the study, and Abu El-Atta and Moussa [12] formally defined the
problem [1]. In their paper [12], they extended the student-oriented algorithm for (SPA-S) to the (SPA-(S,P))

setting. They proved that for every instance of (SPA-(S,P)), we can construct a stable matching. In addition,
such a matching can be found in O(m) time, where m is the total length of the students’ preference lists.

3 Previous work and motivation for research

During the research phase of my Masters program, I reviewed a known theoretical procedure that guarantees
the decomposition of the edge set of an arbitrary bipartite graph G(X,Y,E) into three disjoint sets: E0, the
set of edges that appear in no maximum matching; Ew, the set of edges that appear in at least one maximum
matching, but not all; and E1, the set of edges that appear in all maximum matching. In this project, I de-
signed an algorithm that runs in time O(n + m). It improves upon that presented by Costa [18], which runs
in time O(nm), where n is the number of vertices and m the number of edges. In addition, I implemented
the Hopcroft-Karp algorithm [19] to find a maximum matching in bipartite graphs, and I submitted it on the
Python Package Index https://pypi.python.org/pypi/hopcroftkarp/1.2.4.. Judging from the number of
downloads and feedbacks, I believe many researchers have found it useful.

I recently designed and implemented an algorithm to assign students to courses for presentation at the African
Institute for Mathematical Sciences, Ghana. There were 18 available courses, 48 students and each student
ranked three of their most preferred courses according to order of preference. The goal was to maximize the
number of students matched to their first choice, then second choice, and third choice. Also, to ensure that the
presentations were well spread out across the fields, no more than three students can be assigned to one particular
course. An instance I of the problem consist of a set S = {s1, s2, . . . , s48} of students, set C = {c1, c2, . . . , c18}
of courses, subset of courses P (si) = {cα1

, cα2
, cα3
} that student si finds acceptable, and capacity 3 for each

ck’s. The algorithm is described in pseudocode form in Algorithm 1.

After invoking the algorithm on I, the matching obtained allocated 30, 8 and 6 students to their first, sec-
ond and third choice respectively, while 4 students were unassigned. These students were offered the available
courses to select from. One one hand, the algorithm satisfied the goal of the problem - assign students to their
top ranked courses according to how their response was received, and if the course is oversubscribed, assign
them their next preferred course. On the other hand, it could be further improved, to produce a student-optimal
and maximum matching.

I have a strong background in Mathematics, a keen interest in Computer Programming and I am enthusi-
astic about research. I am passionate about combining my intellectual ability and skills set to investigate
theoretical approaches that will aid the design, analysis and implementation of efficient algorithms which could
be applied in practical scenarios to find solutions to real-world matching problems.
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Algorithm 1 Algorithm to allocate students to courses

Input: Instance I of student-course allocation
Output: student-optimal matching M in I
1: M ← ∅
2: A← ∅ # students that could not be assigned
3: for si ∈ S do
4: j = 1
5: while j 6= 4 do
6: if cαj is under-subscribed then
7: M ←M ∪ {(si, cαj)}
8: break # pick the next student on the list
9: else j ← j + 1

10: end if
11: end while
12: if si cannot be assigned then
13: add si to A
14: end if
15: end for
16: return M

4 Formal definition of (SPAT) model

As mentioned earlier, a natural generalization of (SPA) arises when participants are allowed to express ties in
their ranked preference list. We refer to this problem as Student-Project Allocation problem with Ties (SPAT).
An instance of (SPAT) comprises a set of students S = {s1, s2, . . . , sn1}, a set of projects P = {p1, p2, . . . , pn2}
and a set of lecturers L = {l1, l2, . . . , ln3}, each lecturer lj having a capacity dj ∈ Z+, indicating the number
of students he is willing to supervise, and each project pk having a capacity ck ∈ Z+ indicating the maximum
number of students that could be assigned to it. Each student (lecturer) has a preference list consisting of a
subset of the projects (students) he finds acceptable, listed in order of preference.

Ties in the Preference Lists: The students (lecturers) preference lists may contain one or more ties, each
consisting of two or more projects (students) of equal preference. When ties appear in preference lists, we can
define three levels of stability (as in the classical Hospitals/Residents Problem with Ties (HRT) [5] [6]), namely
weak, strong and super-stability.

Weak, Strong and Super-Stability: Let M be a matching of an instance of (SPAT). Given a pair (si, pk) ∈
S × P (that is, si finds pk acceptable), we define the following notations:

• si ∼ pk implies si is either unassigned in M or strictly prefers pk to M(si).

• pk ∼ si implies lj (the lecturer who offers pk) is either undersubscribed in M or strictly prefers si to at
least one member of M(pk).

• si � pk implies si either is unassigned in M or strictly prefers pk to M(si) or is indifferent between them.

• pk � si implies lj is either undersubscribed in M or strictly prefers si to at least one member of M(pk)
or is indifferent between them.

s1: (p1 p2) l1 offers p1 and p2 : (s1 s2)
s2: (p1 p3) l2 offers p3 and p4 : s3 (s2 s4)
s3: p3
s4: (p3 p4)

Table 1: An instance of (SPAT) with dj = 2 and ck = 1.

M is weakly stable if there is no blocking pair (si, pk) ∈ S × P \M , such that si ∼ pk and pk ∼ si. M is
super-stable if there is no blocking pair (si, pk), such that si � pk and pk � si. M is strongly stable if there is
no blocking pair (si, pk), such that either (i) si ∼ pk and pk � si; or (ii) si � pk and pk ∼ si. For an instance of
SPAT described in Table 1, matchings M1 = {(s1, p1), (s2, p3), (s4, p4)} and M2 = {(s1, p1), (s4, p3)} are weakly
stable because they admit a blocking pair (s3, p3). M3 = {(s1, p1), (s3, p3), (s4, p4)} is a super-stable matching
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because (s2, p1) is a blocking pair. Clearly a super-stable matching is strongly stable and a strongly stable
matching is weakly stable.

5 Proposed research problems

We discuss several interesting problems we may investigate in order of priority, .

1. Attempt to extend the algorithmic procedure described in [1] for obtaining a super-stable matching in
(HRT) to the (SPAT) setting. Construct new efficient algorithms for finding stable matching in variants of
(SPAT), under the strong stability and super-stability, or report that none exist. Implement the (SPAT)

stability-based algorithms, and empirically evaluate the properties of and relationship between the stable
matchings produced, based on their size (cardinality) and profile (number of participants matched with
their first choice, second choice and so on). Using real data and randomly generated data, compare
the results obtained from applying profile-based optimality criteria. Investigate how the nature of the
preference list (including length, size and position of the ties) affect the stable matching produced.

2. For a given instance of (SPAT), it is clear that by breaking preference ties arbitrarily, we can achieve
stable matching of different sizes, under the weak stability criteria [7]. However, the problem of achieving
a maximum matching in this setting is NP-hard. This has been proved for a similar case (the Stable
Marriage Problem with Incomplete Lists) in [17]. Attempt to describe approximation algorithms for this
case, with a performance guarantee better than 3

2 . Consider special cases in which ties in preference lists
are restricted to participants on one side, and there is at most one tie per list (each tie could probably be
of length 2). Construct efficient algorithms to find all weakly stable matchings in (SPAT).

3. We note that coping with the hardness of finding maximum weakly stable matching in (SPAT) is not
restricted to describing approximation algorithms only. Another common technique for solving matching
problems is Integer Programming (IP). Attempt to generate IP models for variants of (SPAT). Consider
some special cases, say, with restrictions on the positions or size of ties. Investigate how the model can
be applied to extensions of (SPAT) with different nature of preference lists, including incomplete lists and
partial orders.

4. After the size and profile of the stable matching for an instance of (SPAT) has been considered, it is
also equally important to achieve a load-balancing matching (that is, ensure the workload of supervising
students is evenly spread out across the lecturing staff). One way to achieve this with respect to lecturers
is to introduce lower quotas. A lower quota on lecturer lj is the minimum number of students that must
be assigned to lj in any feasible solution. In an instance of (SPAT), is a feasible solution guaranteed? Can
we construct new efficient algorithms for finding stable matching in this setting, if one exists. Investigate
other existing ways and explore new ways of achieving load-balancing that will result in a feasible solution.

5. An instance I of (SPA) can also be extended to admit lower quotas on the projects, that is, project pk
cannot run unless at least a particular number of students are assigned to it. Attempting an open problem
in [1], construct a polynomial-time algorithm for finding a stable matching in I or report that none exist,
where no project can be closed. Can we extend this to the (SPAT) model?

6. Considering an instance of (SPA) that restricts lecturers preference and admit ties in students preference
list. Stability in this setting is no longer relevant, optimality properties like Pareto optimality (a matching
to which there is no alternative matching where some participants are better off and no participant worse
off), popularity (a matching M is popular if there is no other matching M∗ such that majority of the
participants prefers M∗ to M than M to M∗), profile (a vector, whose i− th component is the number of
students with their i−th choice) and size of the matching become important factors to consider. Investigate
existing algorithms to solve variants of this problem and construct improved efficient algorithm that finds
the best optimal matching, based on these optimality criteria. Attempt other open problems in this
setting.

7. Attempt to define the problem of ties/incomplete lists appearing in an instance of (SPA) with lecturers
preference over (student-project) pairs (SPA-(S,P)). Investigate if it admits a stable matching, under the
three levels of stability mentioned earlier, and other open problems in the (SPA-(S,P)) context.

6 Research approach and milestones

I intend to devote a large part of the research period to theoretical investigation of the proposed problems in
the (SPA) and (SPAT). I plan to approach Problem 1 by analysing the resident-oriented and hospital-oriented
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algorithm presented in [1] and [16] respectively for a given instance of (HRT) to construct a super-stable match-
ing, or report that none exist. The idea is to extend the resident-oriented and hospital-oriented algorithms
to the student-oriented and lecturer-oriented algorithms respectively, in a given instance I of (SPAT) under the
super-stability criteria. In [13], Kavitha et al. presented an efficient algorithm for finding a strongly stable
matching, if one exist, for an instance of the Stable Marriage Problem with Ties and Incomplete Lists (SMTI),
solvable in time O(nm). They also extended their algorithm to the (HRT) context. I intend to explore these
algorithms, investigate if it can be further improved in both context, and finally extend it to the (SPAT) context.
These ideas will be explored with the view of determining if a further modification of existing approaches or a
completely new approach will yield improved efficient algorithms for variants of (SPAT).

As discussed earlier, matchings M1 = {(s1, p1), (s2, p3), (s4, p4)} and M2 = {(s1, p1), (s4, p3)} for an instance
of (SPAT) described in Table 1 are weakly stable and of different sizes. The problem of finding a maximum
cardinality matching, as mentioned in Problem 2, is NP-hard. Hence, the need to describe approximation algo-
rithms with a good performance guarantee. I intend to approach this problem by analysing the approximation
algorithms Király [15] and Paluch [14] independently derived with a performance guarantee of 3

2 to find a weakly
stable matching of maximum size for (SMTI) and (HRT) (with ties occurring on both sides) [1]. It would also
be worth investigating if there is an approximation algorithm with a performance guarantee better than 3

2 , for
finding a weakly stable maximum matching in both context. This will provide a great insight on how these
approximation algorithms could be extended to the (SPAT) setting. If not, knowledge acquired from analysing
them would be useful in describing new approximation algorithms with a performance guarantee less or equal
to 3

2 , for finding a weakly maximum matchings in (SPAT).

Finally, I intend to investigate if there is a reasonable algorithm to find all weakly matchings in (SPAT). An
approach could be to construct two bipartite graphs, one with set of lecturers and students as vertices, and
the edges corresponding to whether a lecturer prefers a student. The other with set of students and projects
as vertices, and the edge corresponding to whether a student prefers a project. After which I will invoke the
procedure of edge decomposition using the Dulmage and Mendelsohn decomposition from my masters research
on these graphs. It would be worth exploring if this approach will yield new and improved results and algorithms.

In view of the amount of support and expertise available within the department, I intend to implement some
of these new efficient algorithms and empirically evaluate them using real data where available or randomly-
generated data, by varying parameters such as the number of participants, the capacity constraints, the length
of the preference lists, the number, position and sizes of the ties. I also intend to test their correctness, perfor-
mance and scalability in terms of time and space. In addition, I will carry out the development and evaluation
of user interfaces for the algorithmic implementation to ensure the solutions provide maximum benefits to the
target users. I will review existing usability measurement frameworks, find one that is appropriate, and analyse
the usability of these developed interfaces, determining how well they satisfy user needs.

I hope to be able to carry out this research work within three years of diligent work. Below is a proposed
time line.

Academic Year Period Task to achieve

First

First half General reading. Attending relevant classes, especially in the area
of algorithms and computational complexity.

Second Half

1. Extension of super-stable matching algorithm for (HRT) to
(SPAT).

2. Efficient algorithm to find strongly stable matching for an
instance of (SPAT), should one exist.

3. c−approximation algorithms for finding maximum weakly sta-
ble matching in (SPAT) and similar context, where c ≤ 3

2 .
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Second

First quarter Efficient algorithm to find all weakly stable matchings in (SPAT).

Second quarter Integer programming formulation for variants of (SPAT).

Third quarter (SPA) approximation algorithms with lower quotas on lecturers
and/or projects in the general case and when ties are allowed in
the preference lists.

Fourth quarter
1. Improved efficient algorithms for an instance of (SPA) that only
permit ties in the students preference lists.

2. Efficient algorithms for finding stable matchings in the (SPA-

(S,P)) context, under the three stability criteria.

Third First Half
1. Implementation and evaluation of some of the algorithms de-
veloped.

2. Modification of existing user interface and empirical study of
the implemented algorithms.

Second half Writing up Ph.D. Thesis.

7 Related Work

As stated in [17], Ronn [[9] [10]] was possibly the first to study stable matching problems with ties in the prefer-
ence lists from an algorithmic point of view. In addition to other things, he proved that the Stable Roommates
problem (the non-bipartite extension of Stable Marriage) becomes NP-complete when ties are permitted.

The classical Hospitals/Residents Problem (HR) is similar to (SPA). The two models are many-to-one match-
ing problems in which participants in both sets are permitted to have preference lists. A common application
of (HR) is the matching of medical residents to hospitals where each resident ranks a set of hospitals and each
hospital ranks a set of residents in order of preference. Generalisations of the HR problem may arise depending
on the application. Two such examples include the Hospital/Residents Problem with Ties (HRT), where ele-
ments in preference lists may have equal rank, and the Hospital/Residents Problem with Couples (HRC) where
couples wish to be matched to hospitals generally close to each other [8].

The House Allocation Problem (HA) is also similar to the variant of (SPA) where preference list is restricted
to one set of participants. As discussed in one of the open problems, stability is no longer relevant in this con-
text as it requires participants in both sets to have preferences. Optimality properties like Pareto optimality,
popularity, profile and cardinality of the matching become important factors to consider. These factors intro-
duce variants of the HA problem with different algorithms being developed to solve them. In [3], an O(

√
nm)

algorithm is described to find a maximum cardinality Pareto optimal matching (where n is the number of agents
and m is the total length of the preference lists). Applications of the (HA) include campus housing allocation,
matching reviewers to conference paper submissions, allocating professors to offices, clients to servers, and so
on.

8 Conclusion

Modifications to the input and required output criteria in existing applications of matching problems has led to
continuous research in the area. New applications have also been identified in various context which have left
matching problems an interesting area of research. From a theoretical and algorithmic perspective, my research
will aim to tackle some open problems that has been identified in variants of (SPAT), perhaps some other
matching problems involving ties and/or incomplete lists. New efficient algorithms for finding stable matchings
in this setting based on various optimality criteria still need to be developed, and we will aim to construct them.
Where it is known that achieving a maximum stable matching is NP-hard, we will aim to describe approximation
algorithms with improved performance. We will also implement these algorithms and test their correctness and
performance with real and randomly generated data. Developing or modifying existing user interfaces for these
algorithms and optimising them to maximize usability will improve on the practical usefulness of the developed
algorithms in large-scale matching schemes where variants of this model appears. To sum up, results from my
research will present several additions to knowledge, advancing theoretical understanding and applications of
matching problems.
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[15] Z. Király. Better and simpler approximation algorithms for the stable marriage problem Algorithmica 60,
pp. 3 – 20, 2011.

[16] R.W. Irving, D.F. Manlove and G. O’Malley. Stable marriage with ties and bounded length preference
lists, Journal of Discrete Algorithms 7, 2, pp. 213 – 219, 2009.

[17] D.F. Manlove, R.W. Irving, K. Iwama, S. Miyazaki and Y. Morita. Hard variants of stable marriage.
Theoretical Computer Science, 276 (1-2):261 – 279, 2002.

[18] M.C. Costa. Persistency in maximum cardinality bipartite matchings. Operations Research Letters, 15:143
– 149, 1994.

[19] J. Hopcroft and R. Karp. An n5/2 algorithm for maximum matchings in bipartite graphs. SIAM Journal
on computing, 2:146 – 160, 1972.

7


	Introduction
	Literature review
	Previous work and motivation for research
	Formal definition of (SPAT) model
	Proposed research problems
	Research approach and milestones
	Related Work
	Conclusion

