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Abstract
This paper proposes two distinct contributions to econometric analysis of large
information sets and structural instabilities. First, it treats a regression model
with time-varying coefficients, stochastic volatility and exogenous predictors, as an
equivalent high-dimensional static regression problem with thousands of covariates.
Inference in this specification proceeds using Bayesian hierarchical priors that shrink
the high-dimensional vector of coefficients either towards zero or time-invariance.
Second, it introduces the frameworks of factor graphs and message passing as a means
of designing efficient Bayesian estimation algorithms. In particular, a Generalized
Approximate Message Passing (GAMP) algorithm is derived that has low algorithmic
complexity and is trivially parallelizable. The result is a comprehensive methodology
that can be used to estimate time-varying parameter regressions with arbitrarily large
number of exogenous predictors. In a forecasting exercise for U.S. price inflation this
methodology is shown to work very well.
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1 Introduction

As a response to the increasing linkages between the macroeconomy and the financial

sector, as well as the expanding interconnectedness of the global economy, empirical

macroeconomic models have increased both in complexity and size. For that reason,

estimation of modern models that inform macroeconomic decisions – such as linear

and nonlinear versions of dynamic stochastic general equilibrium (DSGE) and vector

autoregressive (VAR) models – many times relies on Bayesian inference via powerful

Markov chain Monte Carlo (MCMC) methods.1 However, existing posterior simulation

algorithms cannot scale up to very high-dimensions due to the computational inefficiency

and the larger numerical error associated with repeated sampling via Monte Carlo; see

Angelino et al. (2016) for a thorough review of such computational issues from a machine

learning and high-dimensional data perspective. In that respect, while Bayesian inference is

a natural probabilistic framework for learning about parameters by utilizing all information

in the data likelihood and prior, computational restrictions might make it less suitable for

supporting real-time decision-making in very high dimensions.

This paper introduces to the econometric literature the framework of factor graphs

(Kschischang et al., 2001) for the purpose of designing computationally efficient, and easy

to maintain, Bayesian estimation algorithms. The focus is not only on “faster” posterior

inference broadly interpreted, but on designing algorithms that have such low complexity

that are future-proof and can be used in high-dimensional econometric problems with

possibly thousands or millions of coefficients. While a graph, in general, is a structure

that allows the representation of objects that are related in some sense2, a factor graph

representation of a high-dimensional vector of model parameters, in particular, depicts how

1See Herbst and Schorfheide (2015) and Koop and Korobilis (2010) for detailed discussion of Bayesian
computation in DSGE and VAR models, respectively.

2The most popular use of graphs in economics is to represent networks of agents, banks, social networks
etc; see Jackson (2008).
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each of its scalar elements is connected with each other based on the functional form of their

joint posterior distribution. As a result, the factor graph representation provides a visual

tool for the decomposition of a high-dimensional joint posterior distribution into smaller,

tractable parts. By doing so, factor graphs can be used to design parallel versions of MCMC

algorithms, as well as efficient iterative algorithms called message passing algorithms – the

latter being the concept of interest in this paper.3

Having the factor graph as the starting point, interest lies in an estimation strategy

called the sum-product algorithm which is not well known in mainstream statistics, despite

the fact that it is computationally powerful (Wand, 2017, p. 137-138). The sum-product

algorithm is a general rule in factor graphs that allows to iteratively approximate marginal

(posterior) distributions. When applied to a parametric problem with arbitrary likelihood

and prior functions, the so-called Generalized Approximate Message Passing (GAMP)

algorithm introduces further Gaussian and quadratic approximations to the possibly

complicated expressions derived by the sum-product iterative algorithm. Proposed

by Rangan (2011), GAMP is an extension of the popular Approximate Message

Passing (AMP) algorithm of Donoho et al. (2009). The GAMP algorithm has

desirable properties, namely, high-dimensional scalability, parallelizability, and effortless

maintenance. Therefore, the first task of this paper is to analyze the concept of message

passing algorithms in general; simplify the jargon stemming from signal processing,

computing science, and similar literatures that have introduced such algorithms; and show

how GAMP, in particular, can lead to efficient posterior inference in very high-dimensions.

At the same time, a second important task is to provide compelling evidence that the

proposed algorithm is relevant for modeling macroeconomic variables. For that reason, I

3Message passing algorithms are dynamic programming methods designed for efficiently performing
large computations by distributing calculations among a number of simpler processors. Readers working
with High-Performance Clusters (HPC) might be familiar with the related concept of message passing
interface (MPI) which is a standardized means for exchanging data/commands between multiple processors
in a computer cluster.
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utilize a regression model setting with time-varying coefficients, stochastic volatility, and

exogenous predictors. Regression models featuring time-varying parameters (TVPs) have

been popular in economics at least since the seminal work of Cooley and Prescott (1976).

More recently, there has been a systematic effort to introduce efficient MCMC algorithms

for flexible estimation and shrinkage in Bayesian TVP models; see Belmonte et al. (2014),

Chan et al. (2012), Giordani and Kohn (2008), Groen et al. (2013), Kalli and Griffin

(2014), Koop and Potter (2007), Kowal et al. (2018), Nakajima and West (2013), Ročková

and McAlinn (2018) and Stock and Watson (2007) among others. These are examples of

carefully designed MCMC algorithms that result in flexible joint modeling of structural

instabilities and parameter shrinkage, but that may not be scalable to very high dimensions

due to their reliance on repeated sampling via Monte Carlo.

As a consequence, a novel empirical contribution introduced in this paper is to estimate

a time-varying parameter regression model by using an observationally equivalent high-

dimensional static regression form, and to address computational concerns by using

message passing inference. With T observations and p predictors, the TVP model can

be written as a static regression with the same T observations but (T + 1)p covariates –

where the product (T + 1)p can easily be in the order of tens of thousands in standard

macroeconomic applications. This static representation of the time-varying parameter

model is anything but new, however, its estimation in the past has been exclusively

tackled by specifying an additional hierarchical random walk (or some times stationary

autoregressive) model for all time-varying parameters. This hierarchical form allows

for inference using state-space methods and at the same time it can be interpreted as

an informative shrinkage prior that makes estimation of this high-dimensional problem

feasible. Instead I propose to completely drop this “random-walk prior” and the resulting

state-space representation, and estimate the time-varying parameter model as a high-

dimensional static regression with the assistance of a flexible Bayesian hierarchical
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shrinkage prior inspired by Tipping (2001). That way, by casting the TVP regression

model into equivalent static form, standard shrinkage principles can be used in order to

determine by how much coefficients evolve over time, or whether their value is zero and

they are completely irrelevant. Most importantly, the use of the low-complexity GAMP

algorithm ensures that the static form of the TVP regression with (T + 1)p covariates can

be estimated quickly. The benefits of this algorithm and modeling strategy are illustrated

using a forecasting exercise for monthly U.S. inflation that extends Stock and Watson

(1999) to the TVP setting. The static form of the TVP regression estimated with GAMP

is contrasted with powerful but slow MCMC algorithms for TVP models, such as Chan

et al. (2012) and Kalli and Griffin (2014). The proposed approach, by incorporating a

larger number of predictors and by shrinking coefficients flexibly, does perform significantly

better compared to competitors in out-of-sample forecasting.

In the next section I introduce the general framework of factor graphs on random

variables (parameters) and with the help of a toy example I show how this framework

allows for efficient calculation of marginal distributions. Next, in Section 3 I introduce

the TVP regression setting, rewrite the likelihood in static regression form and specify a

shrinkage “sparse Bayesian learning” (SBL) prior. Under the given functional forms for the

likelihood and prior, I proceed to derive a GAMP algorithm for this particular problem. In

Section 4 the benefits of the proposed high-dimensional modeling approach are evaluated

in a forecasting exercise for U.S. price inflation. Section 5 concludes the paper.

2 Factor graphs and the sum-product algorithm

A factor graph represents the way a global function of several variables can be decomposed

into a product of simpler functions (“factors”). Consider a generic example with discrete

random variables x = (x1, x2, x3) and a joint mass function p that we can decompose, say,
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as

p (x1, x2, x3) = fa (x1) fb (x1, x2) fc (x2, x3) fd (x3) , (1)

where fa, fb, fc, fd are the factors that have known functional forms.4 This simple example

can be depicted using the factor graph of Figure 1, where circles denote the place of random

variables in the graph and filled boxes denote the factors/functions.5

fb (x1,x2) fc (x2,x3)

x1 x2 x3

fa (x1) fd (x3)

Figure 1: Simple factor graph representation of the decomposition of joint function
p (x1, x2, x3).

Consider now calculation of the marginal distribution of xi. This is a computationally

demanding task due to the fact that it involves integration (summation, in the discrete

variable case) over all variables other than xi

p (xi) =
∑
x\xi

p (x1, x2, x3) , (2)

where x\xi denotes the set x with the element xi removed. As an example, if the variables

in x have two states (e.g. they are binary variables), then the above sum would only

require 23 operations. However, for high number of states and/or variables computational

requirements proliferate substantially. Nevertheless, if p(x1, x2, x3) is replaced with the

4In the next section, the discrete random variables x are replaced by continuous model parameters,
and the factors/functions are conditional or marginal probability distributions over these parameters.

5In graph theory, symbols like the boxes and the circles in this example are called nodes or vertices.
Nodes that depend to each other are connected with a solid line, and each connected pair of nodes is
called an “edge”.
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expression in (1) it can be seen that not each variable is coupled to every other one, and

this feature can be exploited in order to simplify the summation. For example, in the case

of variable x1, Figure 1 depicts that it is directly connected to x2 and the factors fa(x1)

and fd(x1, x2), but it is only indirectly connected to x3 and the remaining factors. Put

differently, we can simplify (2) via identity (1) as follows

p (x1) =
∑
x2

∑
x3

fa (x1) fb (x1, x2) fc (x2, x3) fd (x3) (3)

= fa (x1)
∑
x2

fb (x1, x2)
∑
x3

fc (x2, x3) fd (x3) . (4)

The second line of the equation above implies less algorithmic operations compared to the

expression in the first line.

It should be clear at this point that the role of the factor graph representation is to

allow to pin down the full path of influence that each variable xi exerts on other variables.

As a consequence, by having this path of influence, only the required factors fj can be

used when calculating marginal distributions, which increases computational efficiency.

This is where the concept of message passing formalizes such an efficient procedure for

computing marginals. Each variable node passes messages to the next variable, where

these messages are real-valued functions showing the influence that this variable exerts on

all other variables. In the remainder of this Section message passing inference is introduced

and the sum-product algorithm is derived, such that simplifications similar to the ones in

equations (3)-(4) are formalized mathematically. Subsequently, in Section 3 the results of

this toy example with three discrete random variables (parameters) can be generalized to

a high-dimensional regression setting with possibly millions of parameters. More detailed

introductions to these concepts can be found in popular machine learning textbooks, such

as Barber (2012) and Bishop (2006). A recent introduction of message passing inference

in factor graphs from a statistician’s perspective is provided in Wand (2017).
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Denote with µxi→fj the message sent from variable xi to function fj, and with µfj→xi the

message sent from factor node fj to variable node xi, where i = 1, 2, 3 and j = a, b, c, d in

our simple example with three variables and four factors. The message sent from variable

xi to factor node fj is equal to the product of all messages arriving to node xi except from

the message coming from the target node fj:

µxi→fj =
∏

k∈N(xi),k 6=j

µfk→xi , (5)

where N(xi) is the set of neighboring (factor) nodes to xi. Similarly, the message sent

from factor node fj to variable node xi is given by the sum over the product of the factor

function fj itself and all the incoming messages, except the messages from the target

variable node xi:

µfj→xi =
∑
x\xi

fj (x)
∏

l∈N(xi),l 6=i

µxl→fj . (6)

Due to the form of the equation above, algorithms that are designed to iterate between (5)

and (6) are called sum-product algorithms; see also respective equations for the regression

model in the next section.

In the special case where xi is an external node (as is the case with x1 and x3 in this

example) it holds that µxi→fj = 1. Similarly, if fj is an external factor node (see fa(x1) and

fd(x3) in Figure 1) it holds that µfj→xi = fj (xi). Equations (5)-(6) define the iterations of

the so-called sum-product algorithm (also called Belief Propagation; see Pearl, 1982), that

allows calculation of marginal distributions (also called “beliefs” in computing science and
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the Bayesian networks literature). Upon convergence, it can be shown6 that

p (xi) ∝
∏

m∈N(xi)

µfm→xi , (7)

that is, the marginal distribution of variable xi is simply the product of all messages

received only from factor nodes that are connected to xi.

Consider for example calculation of p (x2). Starting from the left of the graph, the

messages emitted to node x2 are:

µfa→x1 = fa (x1) , (8)

µx1→fb = µfa→x1 = fa (x1) , (9)

µfb→x2 =
∑
x1

fb (x1x2)µx1→fb , (10)

where the first identity holds because fa (x1) is an external factor node, the second identity

is a result of equation (5), and the third identity is a result of (6). Similarly, the messages

that arrive to x2 stating from the right of the graph are

µfd,x3 = fd (x3) , (11)

µx3→fc = µfc→x3 = fd (x3) , (12)

µfc→x2 =
∑
x3

fc (x2, x3)µx3→fc , (13)

where again the first identity results from the fact that fd (x3, x4) is an external factor

node, the second results from equation (5) and the third from equation (6). Therefore, the

6It is beyond the scope of this paper to derive and prove the algorithm, and the reader is referred to
the excellent machine learning books of Barber (2012) and Bishop (2006).
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marginal distribution of x2 is now

p (x2) ∝ µfb→x2 × µfc→x2 . (14)

Using similar arguments we can derive p (x1) and p (x3).

In this particular example, the formula derived in (14) might seem redundant as for

a wide class of distributions p (•), one can simply calculate the marginal distribution

of x2 using numerical integration. However, in high dimensions with many random

variables, the sum-product rule can provide us with scalable and parallel posterior inference

algorithms that can be several times faster compared to conventional algorithms that

iterate sequentially (e.g. Gibbs sampler). It can be shown that the sum-product (Belief

Propagation) algorithm is a special case of the more general expectation propagation

algorithms that have been very popular in Bayesian machine learning; see Vehtari et al.

(2018). Finally, note at this point that there is no mention about how to approximate

the summations in (6), which will not necessarily be tractable. Given the sum-product

formula, there are several algorithms that would allow for the approximation of the required

messages which are functions of the factors fj. For example, Wand (2017) develops message

passing inference inspired by the variational Bayes method. In the next section I adopt a

recently developed algorithm (Generalized Approximate Message Passing) that performs

Normal approximations to the functions implied by the sum-product iterations.
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3 Econometric Methodology

3.1 Time-varying parameter regression

The starting point is the following time-varying parameter (TVP) regression with

stochastic volatility of the form

yt = xtβt + εt, (15)

subject to an initial condition for βt at t = 0 (denoted as β0), where yt is the tth observation

on the variable of interest, t = 1, ..., T , xt is a 1×p vector of predictors (possibly including

lags of yt), βt is a p× 1 vector of coefficients, and εt ∼ N (0, σ2
t ) with σ2

t the time-varying

variance parameter. It is desirable to estimate the initial condition in this model, rather

than assume it is knonw. For that reason, following Frühwirth-Schnatter and Wagner

(2010), this model can be written using an equivalent non-centered parametrization that

allows to split the parameter βt into a part that is constant (which is equivalent to its

initial condition β0), and an “add-on” time-varying part with initial condition fixed to

zero. The equivalent specification is

yt = xtβ̃ + xtβ̃t + εt, (16)

where now β̃t has initial condition zero and it holds that βt = β̃ + β̃t. As shown in

Belmonte et al. (2014) this parametrization allows to use shrinkage priors to determine

whether a variable has constant coefficient (by only shrinking the time-varying part), or it

is completely irrelevant for modeling y (by shrinking both the constant and time-varying

parts to zero). More details of this approach are provided in the Online Appendix, Section

D.1.
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The TVP regression can be written in the following equivalent static regression form

y = Xβ + ε, (17)

where y = [y1, ..., yT ]′ and ε = [ε1, ..., εT ]′ are column vectors stacking the observations yt

and εt respectively, β =
[
β̃′, β̃′1, ..., β̃

′
T

]′
is a (T + 1)p× 1 vector, and

X =



x1 x1 01×p ... 01×p 01×p

x2 01×p x2 ... 01×p 01×p

...
...

. . . . . . . . .
...

xT−1 01×p 01×p ... xT−1 01×p

xT 01×p 01×p ... 01×p xT


, (18)

is a T × (T + 1)p matrix. It is evident that the first p columns of X specify a constant

parameter regression and its remaining columns add “time-dummies” to that regression.

The Gram matrix (X′X) is of rank T and the q = (T+1)p, in total, regression coefficients in

(17) cannot be estimated with OLS. For that reason, following a long-standing tradition

in engineering, economists tend to assume that βt (similarly for β̃t in the non-centered

parametrization) typically follows a random walk of the form βt = βt−1 + ηt, where

ηt ∼ N (0, Q) for some p × p symmetric, positive-definite covariance matrix Q. This

random walk regression for βt allows to write the full time-varying parameter regression

model in familiar state-space form, and also provides the additional information needed

to estimate βt using data y and X. By doing so, estimation typically relies on Markov

chain Monte Carlo methods by means of a simulation smoother; see Primiceri (2005) for

a representative example. From a Bayesian point of view this additional information can

be viewed as a conditional hierarchical prior of the form p (βt|βt−1) ∼ N (βt−1, Q) that

provides appropriate level of shrinkage. Put differently, equation (17) alone can be seen
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as an ill-posed problem where OLS does not have a unique solution and regularization is

imperative for estimation.

In this paper I adopt this shrinkage view of the time-varying parameter regression

model and propose an alternative inference strategy. That is, inference is done without

reference to the useful but rather informative and subjective conditional hierarchical prior

for βt given βt−1 outlined above. Instead, the time-varying parameters are recovered

by estimating directly equation (17) using data-based hierarchical shrinkage priors. In

particular, I follow Tipping (2001) and define the following independent hierarchical prior

for each element βi of the vector β, i = 1, 2, ..., (T + 1)p,

p (βi|αi) = N
(
0, α−1i

)
, (19)

p (αi) = Gamma (a, b) . (20)

This conditionally Normal prior for βi and Gamma prior for the precision parameter αi

is a scale mixture of Normal representation of a Student-t prior. Tipping (2001) calls

this heavy-tailed prior a sparse Bayesian learning (SBL) prior, and I adopt this name

henceforth; see also Korobilis (2013) for a detailed explanation why such hierarchical

priors have good shrinkage properties. I follow Tipping (2001) and present all empirical

results using the uniform hyperpriors (over a logarithmic scale) a = b = 1× 10−10.

Two additional comments are in order regarding this time-varying parameter

regression. First, the number of columns of X is q = (T + 1)p, therefore, the number

of coefficients grows rapidly. For example, with 700 monthly observations and only 100

predictors, we end up with 70,100 regression coefficients. As a consequence, it is imperative

to choose a fast estimation algorithm that approximates the parameter posterior, and this

is where the scalability of message passing algorithms comes into play. Second, there is

no mention yet of inference on σ2
t , as this issue is covered later in this section after the
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GAMP inference algorithm is outlined. In a nutshell, estimation of stochastic volatility

σ2
t also follows the same shrinkage principles defined for βt. That is, it is shown that we

can write estimation of σ2
t as a high-dimensional regression problem, without having to

assume any kind of first-order Markov dependence to σ2
t−1.

3.2 A factor graph representation of Bayesian regression

At this point we have all the necessary ingredients in order to cast the static form of the

time-varying parameter regression in equation (17) into a factor graph form.7 Consider

first an independent (but not necessarily i.i.d) prior for β, denoted p (β) =
∏q

i=1 p (βi),

and the resulting posterior from Bayes Theorem

p (β|y) ∝ p (y|β) p (β) (21)

=
T∏
t=1

p (yt|β)

q∏
i=1

p (βi) . (22)

The exact marginal posterior of βi, i = 1, ..., q is of the form

p (βi|y) =

∫
p (β|y) dβj 6=i, (23)

∝
∫
p (y|β) p (β) dβj 6=i, (24)

= p (βi)

∫
p (y|β)

q∏
j=1,j 6=i

p (βj) dβj 6=i, (25)

where dβj 6=i denotes integration over the whole set of q − 1 parameters βj for j 6= i.

Therefore, the formula above requires integration over a (q − 1)-dimensional integral, a

numerical problem that can become computationally infeasible for a high-dimensional

7For the sake of brevity, notation for prior, posterior and likelihood distributions is generic, that is,
there is no reference to their exact functional forms. Exact details and parametric formulas can be found
in the Online Appendix, Section B.
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vector β.

We can now call the framework of factor graphs in order to factorize efficiently the

marginal posteriors of β. The factor graph representation of the regression model is

depicted in Figure 2. Based on this figure, the marginal posterior of βi, presented in

equation (25), can be defined as the product of incoming messages at node βi in the graph

p (βi|y) = µp(βi)→βi

T∏
t=1

µp(yt|β)→βi . (26)

Similar to equation (8) in the example of Section 2, the message µp(βi)→βi is an external

factor node and for that reason it is equal to the prior p (βi). Generalizing the example

sum-product rule derived in equations (5) - (6) of the previous section, we can write the

messages from p(yt|β) ∀t to βi using the following expression

µp(yt|β)→βi =

∫
p (yt|β)

p∏
j=1,j 6=i

µβj→p(yt|β)dβj 6=i. (27)

In the decomposition above, the message from node βj to function (factor) p (yt|β) is the

product of all incoming messages to node βi, excluding the message coming from p (yt|β)

itself

µβj→p(yt|β) = p (βj)
T∏

s=1,s 6=t

µp(ys|β)→βj . (28)

We can see in equations (27)-(28) that in order to obtain the message µp(yt|β)→βi we need

µβj→p(yt|β) and vice-versa. Therefore, one can simply update both equations iteratively
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p (β1)
β1

p (y1|β)
y1

p (β2)
β2

p (y2|β)
y2

p (β3)
β3

... ... ... ...

p (yT |β)

yT

p (βq)
βq

Figure 2: Factor graph representation for the high-dimensional regression model.

using the following iterative sum-product scheme

µ
(r+1)
p(yt|β)→βi =

∫
p (yt|β)

q∏
j=1,j 6=i

µ
(r)
βj→p(yt|β)dβj 6=i, (29)

µ
(r+1)
βj→p(yt|β) = p (βj)

T∏
s=1,s6=t

µ
(r)
p(ys|β)→βj , (30)

where the superscript (r) denotes the rth iteration of the algorithm. In graphs with a

tree structure, one iteration of the algorithm above will always recover the exact marginal

posteriors for the parameters βi. In a factor graph with loops there are no guarantees that

the sum-product rule will converge to a good fixed point. However, the sum-product rule

can still achieve a good approximation and this is the reason why it is used extensively in

applications of coding theory, machine vision, and compressive sensing that have a loopy

graph representation (Mooij and Kappen, 2007). Translating these facts into familiar
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jargon for the static regression in equation (17), algorithmic convergence is achieved if the

correlation of right-hand side predictors is not excessively high. If this is not the case,

the joint posterior of the coefficients β might also be highly correlated, which would make

inference solely based on the marginal posteriors p(βi) less accurate. In our benchmark

time-varying parameter regression in (17), correlation is by default not excessively high due

to the fact that the Gram matrix X′X has a certain block-diagonal structure that allows for

a general sparse correlation pattern – even if within a given block correlation may be high.

In the empirical application, predictor variables are mainly principal components or lags

thereof, such that correlation within each block is also low. Finally, note that the specific

time-decomposition of the likelihood function does not accommodate autoregressive and

general time-series models, where the likelihood at time t may be written conditional on

past observations. In the empirical application it is found that, despite this approximation,

autoregressive coefficients are recovered accurately.8

3.3 Generalized Approximate Message Passing

While the core of any message passing algorithm is fully described by the sum-product

iterations, deriving the exact functional form of the messages in equations (29) and

(30) under the regression likelihood and the Student-t hierarchical prior implies that

cumbersome integrations might be necessary. The GAMP algorithm introduces certain

Gaussian approximations to the sum-product iterations. Unlike Laplace approximations,

that is, Gaussian approximations to parameter posteriors that many times can be poor,

the GAMP approximation is fully based on asymptotic results that make it more reliable

8A simulation exercise in the Online Appendix, Section C.3, generating artificial data from an AR(4)
model, also verifies that the proposed GAMP algorithm performs well even if the likelihood function is not
i.i.d. Another important assumption that affects performance of GAMP is that X is mean-zero Gaussian;
see the discussion in Al-Shoukairi et al. (2018) and references therein. In a time series context this means
that GAMP will have better convergence when right hand-side predictors are strictly stationary, although
the use of weakly stationary predictors is not excluded.
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as the number of predictors grows large. First, when q → ∞ a central limit theorem

(CLT) postulates that the messages
∏q

j=1,j 6=i µβj→p(yt|β) can be approximated by a Gaussian

distribution with respect to the uniform norm.9 This result means that messages in (27)

can be represented to be proportional to a Gaussian distribution. A second approximation

involves taking the Taylor-series expansion of terms in the messages, so that the first two

moments (mean and variance) of p (βi|y) can be obtained analytically up to the omission of

O (1/q) terms. Exact derivation of these approximations involves many tedious steps and

transformations, and the reader is referred to the Online Appendix for more details. What

is important to stress at this point is that both the CLT and Taylor-series approximations

vanish as q →∞ with q/T → δ for some constant δ; see Rangan (2011) and Rangan et al.

(2016) for more details. This is an example of the “blessing of Big Data” – rather than

the “curse of dimensionality” embedded in many traditional estimation algorithms – as

the GAMP algorithm fully facilitates the large q asymptotics.

Deriving the GAMP algorithm involves several steps and lengthy proofs which are

left for the Online Appendix. The final product of all the approximations to the two

sum-product update equations (29) - (30), is a simple iterative algorithm that provides

an approximation to the mean and variance of p (βi|y). The algorithm iterates through

computationally trivial scalar multiplications and additions that result in worst case

algorithmic complexity of O(Tq). That is, estimation of the marginal parameter posterior

distribution does not involve costly operations such as high-dimensional integration or

inversion of large matrices. This feature implies that the algorithm can handle regressions

with an excessively large number of predictors with the same ease it can handle smaller

9This is a result of the Berry-Esseen central limit theorem which states that a sum of random variables
converge to a Gaussian density; see a proof of this theorem in Donoho et al. (2011). Given that the sum-
product equations involve products of random variables, rather than sums, derivations of GAMP based
on this central limit theorem typically proceed by taking logarithms of equations (26)-(28). The marginal
posterior p (βi|y) is then recovered by performing an exponential transformation of the log messages, and
by normalizing so that the posterior integrates to one; see the Online Appendix, Section A, for details.
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regression models. Convergence is achieved when the difference between estimates of the

posterior mean of β between two consecutive iterations is below a pre-specified tolerance

level. Other parameters can be updated by combining the GAMP algorithm with EM

updates.10 This feature is explained in the Online Appendix, where it is shown how to

update the hyperparameter αi introduced in the hierarchical prior of equation (20).

A sketch of the algorithm is provided in Algorithm 1. This is a simplified version

that focuses on estimation of β by assuming that the regression variance and prior

hyperparameters are all known and fixed. Following the analysis in Section 2, the algorithm

can be split into two steps: i) evaluating all messages that leave each variable node βj

(output), and ii) evaluating all messages that arrive at each variable node βj (input). The

final product is estimates of the posterior mean and variance of βj which are denoted as

β̂i and τ̂βi , respectively. At the core of the calculation of the posterior mean and variance

are the scalar functions gin and gout. Derivation of the exact form of these two functions

depends on the form of the prior distribution and the likelihood. Online Appendix, Section

B, provides a detailed algorithm in the case of the regression likelihood in equation (17)

and the prior in (19)-(20). In any case, Rangan (2011) shows that regardless of the form

of the nonlinear scalar functions gin and gout, the worst-case complexity of the GAMP

algorithm is not affected and is always O(Tq).

10See Al-Shoukairi et al. (2018) and Zou et al. (2016) for examples of how to derive EM updates for
prior hyperparameters.
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Algorithm 1 Generalized Approximate Message Passsing (GAMP) with known variance
and prior hyperparameters

1: Initialize β̂
(0)
i = 0 and τ̂

β,(0)
i = 100 ∀i = 1, ..., q, and set ŝ

(0)
t = 0 ∀t = 1, ..., T .

2: r = 1
3: while ‖β̂(r) − β̂(r−1)‖ → 0 do
4: 1) Output Messages Step:
5: for t = 1 to T do
6: ĉ

(r)
t =

∑q
i=1 Xt,iβ̂

(r−1)
i − ŝ(r−1)t τ̂

c,(r)
t

7: τ̂
c,(r)
t =

∑q
i=1 X

2
t,iτ̂

β,(r−1)
i

8: ŝ
(r)
t = gout

(
ĉ
(r)
t , τ̂

c,(r)
t , yt

)
9: τ̂

s,(r)
t = − ∂

∂ĉ
gout

(
ĉ
(r)
t , τ̂

c,(r)
t , yt

)
10: end for
11: 2) Input Messages Step:
12: for i = 1 to q do
13: d̂

(r)
i = β̂

(r−1)
i + τ̂

d,(r)
i

∑T
t=1Xt,iŝ

(r)
t

14: τ̂
d,(r)
i =

(∑T
t=1X

2
t,iτ̂

s,(r)
t

)−1
15: β̂

(r)
i = gin

(
d̂
(r)
i , τ̂

d,(r)
i

)
16: τ̂

β,(r)
i = τ̂

d,(r)
i

∂

∂d̂
gin

(
d̂
(r)
i , τ̂

d,(r)
i

)
17: end for
18: r = r + 1
19: end while
20: Obtain mean and variance of β as β̂ =

(
β̂
(r)
1 , ..., β̂

(r)
q

)
and τβ =

(
τ̂
β,(r)
1 , ..., τ̂

β,(r)
q

)

The algorithm above assumes a known regression variance, e.g. normalized to be one.

Of empirical interest is the derivation of an update rule for the variance parameter when

this is both unknown and time varying. Here I propose a novel, computationally trivial

estimator of the variance that builds on approximations used in the Bayesian stochastic

volatility estimator of Kim et al. (1998). First, we write the regression model in (17) in

the following form

y = Xβ + Σv, (31)

where Σ is a T × T diagonal matrix with the time-varying standard deviations σt on its

main diagonal. Subsequently, conditional on knowing β by means of some estimate β̂, we
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can re-write the above model as

log

[(
y − Xβ̂

)2]
= log

(
diag (Σ)2

)
+ log(v2),⇒ (32)

ỹ = σ̃2 + ṽ, (33)

where diag (Σ)2 is a T × 1 vector with elements σ2
t ∀t ∈ [1, T ], and variables with a •̃

denote quantities in log-squares. In particular, the distribution of ṽ is log−χ2 with one

degree of freedom. Following Kim et al. (1998) we can approximate this with a mixture of

seven Normal distributions with means µi, variances Vi and component weights πi, where

i = 1, ..., 7 and
∑

i πi = 1.11 Then equation (33) can be replaced with the following set of

seven equations

ỹ = σ̃2 + ui, i = 1, ..., 7, (34)

where ui ∼ N (µi, Vi). An estimator of the T × 1 vector of log-volatilities is of the form

Ei (σ̃
2) = ỹ − µi, and the final volatility estimate at time t is

σ̂2
t = exp

(
7∑
i=1

πi (ỹt − µi) /7

)
. (35)

Similar expressions can also be derived for the posterior variance of σ2
t if desired, for

example, when computing the posterior predictive density via simulation. It turns out that

the resulting estimate of volatility is similar to the standard stochastic volatility estimator

of Kim et al. (1998), but it is much less persistent due to the lack of dependence of σ2
t

on σ2
t−1. More evidence on the excellent properties of this simple estimator of stochastic

volatility is provided in the Online Appendix, Section D.1.

Finally, Online Appendix, Section C, provides detailed Monte Carlo evidence on the

11The exact values of µi, Vi, πi for all seven components is provided in the Online Appendix, Section
B.
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usefulness of the proposed econometric specification and algorithm. By simulating artificial

data from models with various patterns of time-variation in parameters, it is assessed how

good the specification in equation (17), with the assistance of the sparse Bayesian learning

prior, is at recovering the true time-varying parameters. At the same time, a second

simulation exercise shows the ability of the GAMP algorithm with shrinkage prior to

perform high-dimensional shrinkage even in cases with more predictors than observations.

A final simulation exercise discusses the stability of the GAMP algorithm in models with

correlated predictors, and assesses numerically the case where the likelihood function is not

i.i.d. While the results of the simulated data exercises suggest that the proposed algorithm

provides a reasonable balance between computational speed and estimation accuracy, the

next section establishes that the proposed algorithm is also very useful in a forecasting

application using real macroeconomic data.

4 Empirical illustration: Forecasting inflation

This section describes the set-up and results of a comprehensive forecasting exercise that

demonstrates the merits of the modeling approach outlined in the previous section. Most

applications of time-varying parameter regressions focus in particular on inflation. Of

course, this class of models is flexible enough to provide useful forecasts of any other

variable of interest; see Bauwens et al. (2015) for assessing structural breaks in several

monthly and quarterly macroeconomic time series. Nevertheless, there is ample evidence

that structural breaks in inflation are so evident and complex, such that TVP models are

particularly useful for forecasting this variable; see Chan et al. (2012), Groen et al. (2013),

Koop and Korobilis (2012), Pettenuzzo and Timmermann (2017) and Stock and Watson

(2007) among many others.

The data collected for this exercise are 115 macroeconomic variables from Federal
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Reserve Economic Data (FRED) of St. Louis Federal Reserve Bank website. The data

originally span the period 1959M1 to 2016M6, but the effective sample is smaller after

taking stationarity transformations and lags. The stationarity transformations follow

standard norms in this literature (see Stock and Watson, 1999) and exact details are

provided in the Online Appendix, Section A.

The empirical application builds on the seminal work of Stock and Watson (1999) for

forecasting inflation. These authors specify the following benchmark forecasting model

πht+h − πt = φ0 + ztθ(L) + ∆πtγ(L) + et+h, (36)

where πht = (1200/h)log (Pt/Pt−h) is the h-period inflation in the price level Pt. As Stock

and Watson (1999; Section 2) explain in detail the assumption here is that inflation is I(1)

while the exogenous variables in zt are I(0). Two modifications of this basic forecasting

model are in order. First, as Stock and Watson (1999, 2002) also suggest, the high-

dimensional variables zt are replaced by factors ft estimated using principal components.

Second, the forecasting equation is enhanced with time-varying parameters and stochastic

volatility. The final forecasting model used in this paper is of the form

πht+h − πt = φt,0 + ftθt(L) + ∆πtγt(L) + et+h, (37)

where et ∼ N (0, σ2
t ) and ft is a lower-dimensional vector of factors.

The forecasting exercise is run for two measures of inflation, namely the consumer price

index for all items (CPIAUCSL) and the personal consumption expenditures price index

(PCEPI). The forecast horizons evaluated are h = 1, 3, 6, 12 which correspond to one-

month, one-quarter, one-semester and one-year ahead forecasts, respectively. Following

Bauwens et al. (2015) evaluation of forecasts is based on the mean square forecast error
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(MSFE) for point forecasts, and on the logarithm of the average predictive likelihoods

(log APL) for comparing whole forecast densities. Exactly 50% of the sample is used for

evaluation of out-of-sample forecasts, leading to a period of 343−h months where MSFEs

and log APLs are calculated. Note that while estimation entails the spread πht+h − πt, all

forecast evaluations in this Section (see also alternative model in equation (38)) pertain

to πht+h.

When applying the proposed GAMP estimation methodology, equation (37) is

estimated using two own lags of the dependent variable, the first 20 principal component

estimates of the factors ft (updated recursively using only information up to time t) and

two lags of these factors (that is, their values in periods t and t− 1). As explained in the

main text, this TVP model can be estimated using GAMP by casting it into the form (15)

by setting yt = πht+h−πt, xt = [1, ft,∆πt], βt = (φt,0, θt(L)′, γt(L)′)′ and et+h = εt. Written

in this static form and using all available observations, the proposed empirical model has

nearly 30000 regression coefficients and another 700 volatility parameters to estimate. The

only input that the GAMP algorithm requires is choice of two scalar prior hyperparameters.

For the sparse Bayesian learning prior of equations (19) - (20) these hyperparameters are

set, as explained in Section 3, to the uniform values a = b = 1× 10−10. This approach to

estimating the TVP regression of (37) using GAMP is abbreviated as TVP-GAMP in

the results presented next.

The benchmark time-varying regression approach estimated with the GAMP algorithm

is contrasted against a range of popular algorithms for inference in models with many

predictors and/or stochastic variation in coefficients. The list of competing specifications

and estimation algorithms is the following:

� KP-AR: This is a structural breaks AR(2) model based on Koop and Potter (2007).

It only features an intercept and two lags of inflation.
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� GK-AR: This is a structural breaks AR(2) model based on Giordani and Kohn

(2008). It only features an intercept and two lags of inflation.

� TVP-AR: This is a typical TVP-AR(2) model with stochastic volatility, estimated

with MCMC methods, similar to Pettenuzzo and Timmerman (2017). It only

features an intercept and two lags of inflation.

� UCSV: The unobserved components stochastic volatility model of Stock and Watson

(2007) is a special case of a TVP regression with no predictors - it is a local level

state-space model featuring stochastic volatility in the state equation.

� TVD: The time-varying dimension (TVD) model of Chan et al. (2012) features an

intercept, two lags of inflation, and the first three principal components estimates of

the factors. The number of factors is restricted to three for computational reasons.

Also for computational reasons one cannot do time-varying selection among all

possible 2p models constructed with p predictors, therefore, I follow Chan et al.

(2012) and do dynamic selection of either models with one variable at a time, or the

full model with all variables.

� TVS: The time-varying shrinkage (TVS) algorithm of Kalli and Griffin (2014)

features an intercept, two lags and the first three principal components estimates

of the factors (also restricted to three factors for computational reasons).

� TVP-BMA: Introducing a Bayesian model averaging prior in the TVP regression

is fairly trivial as Groen et al. (2013) have shown. We can use with this algorithm

up to 10 principal component estimates of the factors, an intercept and two lags of

inflation.

� BMA: This is a constant parameter version of the forecasting regression specification

that features the stochastic search variable selection (SSVS) of George and
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McCulloch (1993). Even though this prior can be also used for variable selection,

here it is used in a Bayesian model averaging (BMA) setting. For this algorithm we

use the same number of predictors as in TVP-GAMP, namely an intercept, two own

lags of inflation, and two lags of the first 20 principal components. However, this

model is the only one in the comparison that doesn’t have time-varying parameters.

All these models collapse to being special cases of the benchmark equation (37), despite the

fact that different specifications might imply various additional assumptions about how the

coefficients might evolve over time (whereas TVP-GAMP does not rely on such additional

assumptions). All models except for the UCSV have in common an intercept and the two

own lags of inflation.12 For those algorithms that rely on shrinkage priors (TVP-GAMP,

TVD, TVS, TVP-BMA, and BMA) the intercept and the two lags of inflation are never

allowed to shrink by using a noninformative prior on them. Therefore, whenever shrinkage

(static or dynamic) is implemented this only applies to the exogenous information in the

factors. Exact details of the econometric specifications and prior settings associated with

the competing models is provided in the Online Appendix, Section E.

A final note is on computation. All of the competing models listed above are based

on estimation using MCMC and in particular the Gibbs sampler. Most of these models

were originally developed by their respective authors for forecasting inflation. This is due

to the fact that time-varying parameter regressions have consistently been found to be

superior for this series. However, even though one would normally expect more breaks

12In order to understand better whether forecast gains can be achieved from specifying a model with
many predictors, or with flexible time-variation, or both, I only calculate direct multi-step forecasts from all
competing models. That way all algorithms are used to estimate different versions of the same regression
with yt+h on the left hand side (for each h) and information dated t or earlier on the left hand side.
However, iterated forecasts can be computed from models with no exogenous predictors (e.g. TVP-AR
or UCSV). Direct forecasts are better when the model is misspecified, while iterated forecasting models
in general result in more efficient econometric estimates and sharper predictive densities. Examination of
h = 12 month ahead iterated forecasts from the KP-AR, GK-AR, TVP-AR and UCSV models reveals
that these are, most times, slightly inferior to respective direct forecasts in terms of MSFE, but they can
be in some cases up to 15% better in terms of average log predictive likelihoods. Iterated forecasting
results are not presented here, but they are available from the author.
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to be present in higher frequency monthly inflation, all of these papers estimate their

models using quarterly data. This is done for computational reasons. Due to the fact

that here these models are estimated for monthly data, I follow Bauwens et al. (2015)

and base inference only on 5000 samples from the posterior after a burn-in period of

1000 draws, that is, a total of 6000 MCMC iterations. Convergence criteria suggest that

such low number of iterations is sufficient for forecasting, even though it might not be

satisfactory for other econometric exercises. Despite the low number of MCMC iterations,

computation is quite cumbersome taking several hours for some models. In contrast, it

takes only minutes to run the full recursive exercise using the TVP-GAMP model that

features both time-varying parameters and the full set of available predictors. The GAMP

algorithm not only involves simple scalar computations, but also converges fairly quickly

after 10 to 100 iterations. Once convergence is achieved, the first two posterior moments

are readily available for further inference, rather than having to store thousands of samples

from the posterior of a high-dimensional parameter vector.

The results from this forecasting exercise are presented in Tables 1 and 2, and are very

encouraging for the proposed TVP-GAMP method. Table 1 shows MSFEs relative to an

AR(2) benchmark (with an intercept), such that numbers lower than one signify better

performance of a competing model relative to that benchmark AR(2) specification. It

can be seen that under the specified regression model, point forecasts from TVP-GAMP

dominate alternatives by a substantial amount, both for CPI and PCE inflation. The

forecast gains are increasing with the horizon. Table 2 shows the logarithm of the average

predictive likelihood (log APL), and this metric is quoted as a spread from the log APL of

the simple AR(2) specification. Positive values signify better performance relative to the

benchmark AR(2). Using this metric, TVP-GAMP is either the top performing model or

among the top, for the four forecast horizons and the two measures of inflation.
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Table 1: Point forecast performance: MSFEs relative to AR(2) benchmark.

CPI PCE deflator
h = 1 h = 3 h = 6 h = 12 h = 1 h = 3 h = 6 h = 12

KP-AR 0.952 0.998 0.978 0.904 1.030 1.027 1.042 0.973
GK-AR 0.997 1.007 1.002 0.993 1.005 1.006 0.999 0.997
TVP-AR 1.009∗ 1.047∗∗∗ 1.258∗∗∗ 1.224∗∗∗ 1.053∗∗∗ 1.119∗∗∗ 1.141∗∗∗ 1.123∗∗∗

UCSV 1.032∗∗ 1.063∗∗∗ 1.286∗∗ 1.312 1.060∗∗ 1.077∗∗ 1.234∗ 1.159∗∗∗

TVD 1.014 0.988 0.942 0.919 1.091 1.108 1.156 1.029
TVS 1.146∗∗ 1.547 1.555 1.155 1.084∗ 1.413 2.150 1.208∗

BMA 0.965∗∗∗ 0.952∗∗∗ 0.883∗∗∗ 0.859∗∗∗ 0.993 0.971 0.94∗∗ 0.929∗∗∗

TVP-BMA 1.089 0.981 1.099 0.825 1.268 1.198 1.490 1.091
TVP-GAMP 0.988∗ 0.870∗∗∗ 0.749∗∗∗ 0.714∗∗∗ 1.020 0.965 0.915∗∗∗ 0.866∗∗∗

Model acronyms are as follows: KP-AR: Koop and Potter (2007) structural breaks AR(p) model;
GK-AR: Giordani and Kohn (2008) structural breaks AR(p) model; TVP-AR: Pettenuzzo and
Timmermann (2017) time-varying parameter AR(p) model; UCSV: Stock and Watson (2007)
unobserved components stochastic volatility; TVD: Chan et al. (2012) time-varying dimension
regression TVS: Kalli and Griffin (2014) time-varying sparsity regression BMA: George and
McCulloch (1993) stochastic search variable selection regresison TVP-BMA: Groen et al.
(2012) time-varying Bayesian model averaging model TVP-GAMP: Shrinkage representation
of time-varying parameter regression, with generalized approximate message passing estimation

Next to MSFE values the results of the Diebold-Mariano statistic are presented, with ∗ significance

at the 10% level; ∗∗ significance at the 5% level; ∗∗∗ significance at the 1% level.

Table 2: Density forecast performance: log APLs relative to AR(2) benchmark.
CPI PCE deflator

h = 1 h = 3 h = 6 h = 12 h = 1 h = 3 h = 6 h = 12
KP-AR 0.090 0.081 0.002 -0.036 0.011 0.074 -0.057 -0.035
GK-AR -0.025 -0.029 0.004 0.037 0.034 0.138 0.056 0.052
TVP-AR 0.118 0.111 0.181 0.067 0.036 0.007 -0.036 -0.029
UCSV 0.161 0.239 0.224 0.144 0.048 0.245 -0.067 0.059
TVD -0.103 -0.005 -0.339 -0.380 -0.097 0.062 -0.885 -0.262
TVS 0.018 -0.163 -0.660 -0.367 -0.001 0.003 -0.427 -0.246
BMA 0.030 -0.067 0.042 0.084 -0.056 -0.002 -0.062 0.030
TVP-BMA 0.121 0.313 0.413 0.399 -0.026 0.227 0.205 0.219
TVP-GAMP -0.204 0.258 0.320 0.321 0.061 0.260 0.045 0.191

See notes in Table 1 for details of model acronyms.

It is notable that these results contradict the previous claims that time-variation in
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parameters is important for inflation. The three models with the largest number of

predictors, namely BMA and TVP-GAMP, and to a lesser degree TVP-BMA, seem to

be improving a lot over time-varying parameter models with no predictors. The results

seem to suggest that information in predictors is more important than the specification

of time variation in regression parameters. This observation is not undermined by the

fact that point forecasts from TVP-BMA are not significant, and that density forecasts

from BMA are quite poor relative to TVP-BMA and TVP-GAMP. First, TVP-BMA is

overparametrized13 its point forecast performance is not as good as the more conservative

(in terms of time-variation in parameters, not available number of predictors) BMA and

TVP-GAMP specifications. Second, when considering density forecasts, BMA is definitely

misspecified since it does not allow for stochastic volatility, and it naturally doesn’t perform

as well as TVP-BMA and TVP-GAMP that allow for changing variance. Therefore, these

findings suggest that TVP-GAMP is overall the best model and that its specification is

flexible enough to capture both structural change and utilize information in a large set

of predictors at the same time. Most importantly, the SBL prior allows to strike a good

balance between these two modeling characteristics by removing irrelevant predictors as

well as regularizing time variation.

These results are in stark contrast to existing results for TVP models presented in the

papers cited above (see e.g. footnotes in Table 1). The culprit is simply the assumption

that inflation is I(1) that Stock and Watson (1999) introduce in their seminal paper, and

that it is adopted in equation (37). Once the random walk dynamics are removed from

inflation (i.e. inflation gap becomes the dependent variable), the role of time-varying

parameters in forecasting becomes less important and the most significant feature is the

information included in exogenous predictors. It would be interesting then, as a robustness

13Shrinkage in TVP-BMA is only across predictors, but this model does not restrict the amount of
time-variation in parameters.
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check, to specify the forecasting regression for inflation using the following form

πht+h = φt,0 + ftθt(L) + πtµt(L) + et+h. (38)

This equation is more in line with the forecasting model estimated in papers such as Chan

et al. (2012), Groen et al. (2013), or Pettenuzzo and Timmermann (2017).

Table 3 shows results based on this alternative specification of equation (38) for CPI

inflation only. The left part of the table presents MSFE results, while the right panel

presents log APLs. In this case it is evident that the various variants of TVP models

considered improve tremendously over the benchmark. As a matter of fact, models such

as the KP-AR, TVP-AR and UCSV also improve a lot relative to the constant parameter

BMA. Looking at point forecasts and the associated MSFE results, we can observe many

differences among TVP models, especially as the forecast horizon increases. For example,

the structural breaks KP-AR specification has the lowest relative MSFE for h = 12

among all models, but the also structural breaks GK-AR specification is among the worst

performing (but still much better than the simple AR model). TVD and TVS estimated

with the monthly data are not only cumbersome, but also do not perform as well as TVP

models with no predictors. In contrast, the TVP-BMA algorithm is performing quite

well, even though it still doesn’t beat TVP models with no predictors. In this alternative

forecasting regression, TVP-GAMP is not the top forecasting model but its performance

is still quite good. If it wasn’t for the exceptional performance of the KP-AR model,

TVP-GAMP would have been a top model for h = 1, 3, 6.

When looking at density forecast evaluation the results might not comply with the

results for the point forecasts. Still good performing models are the KP-AR and the

TVP-AR, but now the BMA and TVP-GAMP beat models such as the UCSV. With such

diverse set of flexible models it is hard to pin down which exact features help in point and
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density forecasts. Nevertheless, for the forecasting regression (38) it seems that the way

time variation in parameters is specified is more important than information in exogenous

predictors. Further numerical evidence on the relative forecast performance of some of the

competing models, is provided in Online Appendix, Section D.2.

Table 3: Point and density forecast performance using alternative definition of the CPI
forecasting regression

MSFE log APL
h = 1 h = 3 h = 6 h = 12 h = 1 h = 3 h = 6 h = 12

KP-AR 0.901 0.706 0.756 0.544 0.042 0.321 0.154 0.128
GK-AR 0.963 0.929 0.900 0.882 0.071 0.168 0.014 0.125
TVP-AR 0.852 0.917 0.800 0.587 0.210 0.353 0.422 0.114
UCSV 0.911 0.898 0.817 0.638 0.114 0.163 0.118 0.154
TVD 0.902 0.851 0.863 0.873 -0.041 0.150 0.022 0.021
TVS 0.960 0.929 0.891 0.905 0.033 0.134 0.033 0.037
BMA 0.995 1.109 1.233 0.914 0.118 0.273 0.151 0.187
TVP-BMA 0.926 0.903 0.805 0.650 0.092 0.088 0.087 0.126
TVP-GAMP 0.944 0.876 0.819 0.768 0.190 0.276 0.264 0.136

See notes in Table 1 for details of model acronyms.

Unlike the previous two tables that present results for both CPI and PCE, this table only shows

results for CPI, where its left panel focuses on MSFEs and its right panel on log APLs. However,

as in the previous two tables, MSFEs and log APLs are relative to an AR(2) benchmark. MSFE

entries lower than one mean that the estimation method of the respective row does better than the

benchmark. Log APL entries higher than zero mean that the estimation method of the respective

row does better than the benchmark.

5 Conclusions

This paper evaluates a new methodology for performing Bayesian inference in high-

dimensional regression models. The proposed Generalized Approximate Message Passing

(GAMP) is a fast algorithm for approximating iteratively the first two moments of the

marginal posterior distribution of a high-dimensional vector of coefficients. It is established

how effortlessly the GAMP algorithm can be extended with interesting modeling features
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such as hierarchical shrinkage priors, time-varying coefficients and stochastic volatility,

and many predictors. The benefit of the proposed approach is demonstrated using an

inflation forecasting exercise that leads to the recursive estimation of regression models

with thousands of covariates. Due to the low algorithmic complexity, GAMP could be

generalized to much higher dimensions with millions of predictors/covariates, as it is also

trivially parallelizable.

The current study opens up new avenues for research. First, the proposed framework

for modeling time-vayring parameters using hierarchical shrinkage priors can be extended

in interesting ways. For example, shrinkage estimators/priors that apply on group of

coefficients (such as the Group Lasso) can be used in this setting so that coefficients are

shrunk either in groups of predictors for a given time period or in groups of consecutive time

periods for a given predictor. This is because in the TVP setting the vector of regression

coefficients β has elements that correspond both to predictor j, j = 1, ..., p, but also to

time period t, t = 1, ..., T . One can think of other shrinkage priors in order to perform

a more structured approach to uncovering patterns of time-variation in parameters, such

as various pooling priors used in the panel data literature. Finally, the paper proposes

the framework of factor graphs for designing efficient algorithms. Many macroeconomic

problems currently do not typically involve extensive use of Big Data sets, however, they

involve multivariate models with possibly thousands of coefficients, such as VAR, factor,

and DSGE models. Bayesian estimation of these models is quite cumbersome, many times

relying on linear or nonlinear state-space methods. As empirical macroeconomic models

become larger and more complex, factor graph inference could help economists come up

with novel efficient algorithms and unveil new features in macroeconomic data.
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Online Appendix to “High-dimensional macroeconomic

forecasting using message passing algorithms”

Dimitris Korobilis

A Data Appendix

All series were downloaded from Michael McCracken’s FRED-MD database (https :

//research.stlouisfed.org/econ/mccracken/fred − databases/) and cover the period

1959M1 to 2016M6. All series are seasonally adjusted and all variables are transformed to

be approximately stationary. In particular, if wi,t is the original un-transformed series in

levels, when the series is used as a predictor the transformation codes (column T of the

table) are: 1 - no transformation (levels), xi,t = wi,t; 2 - first difference, xi,t = wi,t −wi,t−1

; 3- second difference, xi,t = ∆wi,t − ∆wi,t−1 4 - logarithm, xi,t = logwi,t; 5 - first

difference of logarithm, xi,t = logwi,t − logwi,t−1; 6 - second difference of logarithm,

xi,t = ∆ logwi,t −∆ logwi,t−1.

Table A1: Monthly U.S. macro data set (based on FREDMD)

No Mnemonic T Long description

1 RPI 5 Real Personal Income

2 W875RX1 5 RPI ex. Transfers

3 DPCERA3M086SBEA 5 Real PCE

4 CMRMTSPLx 5 Real M&T Sales

1



Table A1 (continued)

5 RETAILx 5 Retail and Food Services Sales

6 INDPRO 5 IP Index

7 IPFPNSS 5 IP: Final Products and Supplies

8 IPFINAL 5 IP: Final Products

9 IPCONGD 5 IP: Consumer Goods

10 IPDCONGD 5 IP: Durable Consumer Goods

11 IPNCONGD 5 IP: Nondurable Consumer Goods

12 IPBUSEQ 5 IP: Business Equipment

13 IPMAT 5 IP: Materials

14 IPDMAT 5 IP: Durable Materials

15 IPNMAT 5 IP: Nondurable Materials

16 IPMANSICS 5 IP: Manufacturing

17 IPB51222S 5 IP: Residential Utilities

18 IPFUELS 5 IP: Fuels

19 CUMFNS 2 Capacity Utilization: Manufacturing

20 HWI 2 Help-Wanted Index for U.S.

21 HWIURATIO 2 Help Wanted to Unemployed ratio

22 CLF16OV 5 Civilian Labor Force

23 CE16OV 5 Civilian Employment

24 UNRATE 2 Civilian Unemployment Rate

25 UEMPMEAN 2 Average Duration of Unemployment

26 UEMPLT5 5 Civilians Unemployed ≤ 5 Weeks

27 UEMP5TO14 5 Civilians Unemployed 5-14 Weeks

28 UEMP15OV 5 Civilians Unemployed > 15 Weeks

29 UEMP15T26 5 Civilians Unemployed 15-26 Weeks

2



Table A1 (continued)

30 UEMP27OV 5 Civilians Unemployed > 27 Weeks

31 CLAIMSx 5 Initial Claims

32 PAYEMS 5 All Employees: Total nonfarm

33 USGOOD 5 All Employees: Goods-Producing

34 CES1021000001 5 All Employees: Mining and Logging

35 USCONS 5 All Employees: Construction

36 MANEMP 5 All Employees: Manufacturing

37 DMANEMP 5 All Employees: Durable goods

38 NDMANEMP 5 All Employees: Nondurable goods

39 SRVPRD 5 All Employees: Service Industries

40 USTPU 5 All Employees: TT&U

41 USWTRADE 5 All Employees: Wholesale Trade

42 USTRADE 5 All Employees: Retail Trade

43 USFIRE 5 All Employees: Financial Activities

44 USGOVT 5 All Employees: Government

45 CES0600000007 1 Hours: Goods-Producing

46 AWOTMAN 2 Overtime Hours: Manufacturing

47 AWHMAN 1 Hours: Manufacturing

48 HOUST 4 Starts: Total

49 HOUSTNE 4 Starts: Northeast

50 HOUSTMW 4 Starts: Midwest

51 HOUSTS 4 Starts: South

52 HOUSTW 4 Starts: West

53 AMDMNOx 5 Orders: Durable Goods

54 AMDMUOx 5 Unfilled Orders: Durable Goods

3



Table A1 (continued)

55 BUSINVx 5 Total Business Inventories

56 ISRATIOx 2 Inventories to Sales Ratio

57 M1SL 6 M1 Money Stock

58 M2SL 6 M2 Money Stock

59 M2REAL 5 Real M2 Money Stock

60 BUSLOANS 6 Commercial and Industrial Loans

61 REALLN 6 Real Estate Loans

62 NONREVSL 6 Total Nonrevolving Credit

63 CONSPI 2 Credit to PI ratio

64 S&P 500 5 S&P 500

65 S&P: indust 5 S&P Industrial

66 S&P div yield 2 S&P Divident yield

67 S&P PE ratio 5 S&P Price/Earnings ratio

68 FEDFUNDS 2 Effective Federal Funds Rate

69 CP3Mx 2 3-Month AA Comm. Paper Rate

70 TB3MS 2 3-Month T-bill

71 TB6MS 2 6-Month T-bill

72 GS1 2 1-Year T-bond

73 GS5 2 5-Year T-bond

74 GS10 2 10-Year T-bond

75 AAA 2 Aaa Corporate Bond Yield

76 BAA 2 Baa Corporate Bond Yield

77 COMPAPFFx 1 CP - FFR spread

78 TB3SMFFM 1 3 Mo. - FFR spread

79 TB6SMFFM 1 6 Mo. - FFR spread
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Table A1 (continued)

80 T1YFFM 1 1 yr. - FFR spread

81 T5YFFM 1 5 yr. - FFR spread

82 T10YFFM 1 10 yr. - FFR spread

83 AAAFFM 1 Aaa - FFR spread

84 BAAFFM 1 Baa - FFR spread

85 EXSZUSx 5 Switzerland / U.S. FX Rate

86 EXJPUSx 5 Japan / U.S. FX Rate

87 EXUSUKx 5 U.S. / U.K. FX Rate

88 EXCAUSx 5 Canada / U.S. FX Rate

89 WPSFD49207 6 PPI: Final demand less energy

90 WPSFD49502 6 PPI: Personal cons

91 WPSID61 6 PPI: Processed goods

92 WPSID62 6 PPI: Unprocessed goods

93 OILPRICEx 6 Crude Oil Prices: WTI

94 PPICMM 6 PPI: Commodities

95 CPIAUCSL 6 CPI: All Items

96 CPIAPPSL 6 CPI: Apparel

97 CPITRNSL 6 CPI: Transportation

98 CPIMEDSL 6 CPI: Medical Care

99 CUSR0000SAC 6 CPI: Commodities

100 CUUR0000SAD 6 CPI: Durables

101 CUSR0000SAS 6 CPI: Services

102 CPIULFSL 6 CPI: All Items Less Food

103 CUUR0000SA0L2 6 CPI: All items less shelter

104 CUSR0000SA0L5 6 CPI: All items less medical care
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Table A1 (continued)

105 PCEPI 6 PCE: Chain-type Price Index

106 DDURRG3M086SBEA 6 PCE: Durable goods

107 DNDGRG3M086SBEA 6 PCE: Nondurable goods

108 DSERRG3M086SBEA 6 PCE: Services

109 CES0600000008 6 Ave. Hourly Earnings: Goods

110 CES2000000008 6 Ave. Hourly Earnings: Construction

111 CES3000000008 6 Ave. Hourly Earnings: Manufacturing

112 MZMSL 6 MZM Money Stock

113 DTCOLNVHFNM 6 Consumer Motor Vehicle Loans

114 DTCTHFNM 6 Total Consumer Loans and Leases

115 INVEST 6 Securities in Bank Credit
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B Technical Appendix

B.1 Generic Derivation of Generalized Approximate Message

Passing Algorithm

The basic signal extraction problem in engineering (but using traditional regression

notation) involves observations y, a known “transform matrix” x and the “signal” β.

For the purpose of making the algorithm usable in traditional regression problems, we also

assume an “additive white Gaussian noise” (AWGN), as the disturbance term is called in

signal processing. That is, we assume the following model

y = xβ + ε, (B.1)

where y is T × 1, x is T × q, β is q × 1 and ε ∼ N(0, σ × IT ) is also T × 1. The TVP

regression problem falls into this general form, but with x replaced with X, which is defined

in the main text. In order to be consistent with Rangan (2011) and I denote the likelihood

function as p (y|z) where z = xβ. Rangan (2011) has proposed two variants of GAMP, one

for maximum a-posteriori (MAP) estimation of the signal β and one for minimum mean

square error (MMSE) estimation. Both have different properties, but the focus of this

paper is on MMSE estimation due to its modularity and usability in regression problems

familiar to macroeconomists. The derivation of the algorithm is based on the factor graph

in the main text. In the following the function µa→b will denote a message from a to b,

and ma→b its logarithm.

The starting point are the iterations of sum-product / loopy Belief Propagation derived
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in the main text, which can be written in logarithmic form1 as

m
(r+1)
p(yt|zt)→βi = log

(∫
p (yt|zt)

q∏
j=1,j 6=i

µ
(r)
βj→p(yt|zt)dβj 6=i

)
= logEzt [p (yt|zt)] , (B.2)

m
(r+1)
βi→p(yt|zt) = log (p (βi)) +

T∑
s=1,s6=t

m
(r)
p(ys|β)→βi , (B.3)

where Ezt [p (yt|zt)] is the expectation of p (yt|zt) over zt (assuming the βj are distributed

independently according to µβj→p(yt|zt)). Under this scheme, the marginal posterior of βi

can be approximated with

p (βi|y) ∝ exp [mi] , (B.4)

where mi is defined as

mi ≡ log (p (βi)) +
T∑
t=1

mp(yt|zt)→βi . (B.5)

There are several algorithms for approximating the iterations of the sum-product loopy

Belief Propagation, for instance, Wand (2017) shows the benefits of Mean Field Variational

Bayes (MFVB) methods in semiparametric regression that can apply to a wide class of

hierarchical regression models. All GAMP does at this point is to introduce Gaussian

approximations to the BP iterations. In order to pin down all the necessary proofs we

need the following result replicated from Rangan (2011)

Lemma B.1 Consider a random variable U with a conditional probability density function

of the form

p (u|v) ≡ 1

Z (v)
exp (φ(0) + uv) , (B.6)

1For notational simplicity and clarity I am ignoring any normalizing constants that enter the logarithmic
expressions additively. Note that for the same reason I am ignoring any hyperparameters that p (β) might
rely on, as is the case with the hierarchical shrinkage prior used in this paper.
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where Z (v) is a normalization constant (called the partition function). Then

∂

∂v
lnZ (v) = E (U |V = v) , (B.7)

∂2

∂2v
lnZ (v) =

∂

∂v
E (U |V = v) (B.8)

= var (U |V = v) . (B.9)

Proof: The relations are standard properties of exponential families. �

Additionally, let

β̂i ≡ E (βi|mi) , (B.10)

τ̂βi ≡ var (βi|mi) , (B.11)

β̂i→t ≡ E
(
βi|mβj→p(yt|zt)

)
, (B.12)

τ̂βi→t ≡ var
(
βi|mβj→p(yt|zt)

)
, (B.13)

where E (x|f) denotes the expectation of random variable x conditional on the function

(density) f , and mi and mβj→p(yt|zt) are defined in eqs. (B.5) and (B.3), respectively.

Part 1: Messages from factor nodes to variable nodes

Fist we approximate the messages emitted by the function (“output”) nodes, found in

equation (B.2). Notice that this equation is equivalently interpreted as the (logarithm

of the) expectation of p (yt|zt) with respect to zt being distributed as
∏q

j=1,j 6=i µβj→p(yt|zt).

9



Given that p (yt|zt) is the regression likelihood, we can write

mp(yt|zt)→βi ∝ logEzt [p (yt|zt)] (B.14)

= logEzt

(
−1

2

(yt − zt)2

σ2

)
(B.15)

= logEzt

−1

2

(
yt − xt,iβi −

∑
j 6=i xt,jβj

)2
σ2

 , (B.16)

where zt = xtβ =
∑q

j=1 xt,jβj = xt,iβi +
∑

j 6=i xt,jβj. Based on the Barry-Esseen central

limit theorem, zt conditional on βi can be approximated by a Normal distribution with

mean and variance

E (zt|βi) = xt,iβi +
∑
j 6=i

xt,jE
(
βi|mβj→p(yt|zt)

)
, (B.17)

var (zt|βi) = x2t,ivar(βi) +
∑
j 6=i

x2t,jvar
(
βi|mβj→p(yt|zt)

)
, (B.18)

where the variance of βi in equation (B.18) above is zero simply because we condition on

βi. Given the definitions in (B.12) and (B.13) we can then write

zt|βi ∼ N

(
xt,iβi +

∑
j 6=i

xt,jβ̂i→t,
∑
j 6=i

x2t,j τ̂
β
i→t

)
, (B.19)

and the output message of the BP iteration is of the form

mp(yt|zt)→βi ∝ logEzt [p (yt|zt)] (B.20)

≈ log

∫
p (yt|zt)N

(
xt,iβi +

∑
j 6=i

xt,jβ̂j→t,
∑
j 6=i

x2t,j τ̂
β
j→t

)
dzt. (B.21)
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In order to proceed further we will use the following definitions:

ĉt→i =
∑

j 6=i xt,jβ̂j→t, τ̂ ct→i =
∑
j 6=i

x2t,j τ̂
β
j→t, (B.22)

ĉt =
∑q

i=1 xt,iβ̂i→t, τ̂ ct =

q∑
i=1

x2t,iτ̂
β
i→t, (B.23)

H (ĉ, τ̂ c, y) ≡ logE (p(y|z)) , gout (ĉ, τ̂ c, y) =
∂

∂ĉ
H (ĉ, τ̂ c, y) , (B.24)

ŝt = gout (ĉt, τ̂
c
t , y) , τ st =

∂

∂ĉ
gout (ĉt, τ̂

c
t , y) . (B.25)

Using these definitions we can now rewrite the message mp(yt|zt)→βi as

mp(yt|zt)→βi = H (ĉt→i + xi,tβi, τ̂ , y) (B.26)

= H
(
ĉt + xi,t

(
βi − β̂i

)
, τ̂ , y

)
. (B.27)

A second order approximation of equation (B.27) gives

mp(yt|zt)→βi ≈ ŝtxi,t

(
βi − β̂i

)
− 1

2
τ̂ s
(
xi,t

(
βi − β̂i

))2
. (B.28)

Therefore this new approximation implies that calculation of mp(yt|zt)→βi relies on

knowledge of ŝ and τ̂ s, that is, knowledge of the function gout and its derivative. After

some algebra it can be shown (Rangan, 2011) that

gout (ĉ, τ̂ c, y) =
1

τ c
(ẑ − ĉ) , (B.29)

∂

∂ĉ
gout (ĉ, τ̂ c, y) =

1

τ̂ c

(
1

τ̂ c
τ̂ z − 1

)
, (B.30)

where ẑ = E (z|ĉ, τ̂ c) ≡
∫
zp(y|z)N(z|ĉ,τ̂c)dz∫
p(y|z)N(z|ĉ,τ̂c)dz and τ̂ z = var (z|ĉ, τ̂ c) ≡ ∂

∂ĉ
ẑ.
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Part 2: Messages from variable nodes to factor nodes

We now need to consider the messages m
(r+1)
βj→p(yt|zt) and expand equation (B.3). Based on

the second order Taylor expansion in equation (B.28), we can now write

mβi→p(yt|zt) = log (p (βi)) +

T∑
s=1,s6=t

mp(ys|β)→βi
(B.31)

≈ log (p (βi)) +

T∑
s=1,s6=t

[
ŝsxi,s

(
βi − β̂i

)
− 1

2
τ̂ss

(
xi,s

(
βi − β̂i

))2]
. (B.32)

Define next the quantities

d̂i→t = τ̂ di→t
∑T

s=1,s6=t

(
ŝsxi,s + τ̂ ssx

2
i,sβ̂i

)
, τ̂ di→t =

[
T∑

s=1,s6=t

τ̂ ssx
2
i,s

]−1
, (B.33)

d̂i = β̂i + τ̂ di
∑T

t=1 xi,tŝt, τ̂ di =

[
T∑
t=1

τ̂ st x
2
i,t

]−1
, (B.34)

d̂i→t = d̂i − τ̂ di xi,tŝt, τ̂ di→t ≈ τ̂ di . (B.35)

(B.36)

We can write equation (B.32) as

mβi→p(yt|zt) = log (p (βi))−
1

2τ̂ di→t

(
d̂i→t − βi

)2
(B.37)

= log (p (βi))−
1

2τ̂ di

(
d̂i − τ̂ di xi,tŝt − βi

)2
. (B.38)

Therefore the input scalar function gin and its derivative are of the form

gin

(
d̂i, τ̂

d
i

)
= E

(
βi|d̂i, τ̂ di

)
, (B.39)

∂

∂d̂i
gin

(
d̂i, τ̂

d
i

)
=

1

τ̂ di
var

(
βi|d̂i, τ̂ di

)
. (B.40)
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Exact functional forms obviously depend on the form of the prior. After outlining this

generic, and rather tedious proof of GAMP, in the next Section I provide exact numerical

details for the case of the model and prior presented in the main text.

B.2 GAMP algorithm for time-varying parameter regression

with sparse Bayesian learning prior

Consider the regression model

yt = xtβ + εt,

where εt ∼ N (0, σ2
t ) , yt is scalar, xt is 1 × q vector, and consider the prior distribution

β ∼ Np (0, V ). In the main paper the matrix of predictors was Xt and it had a certain

block-diagonal structure, but the algorithm below holds for any non-sparse or non-block-

diagonal matrix xt. The prior is of the form

p (βi|αi) ∼ N (0, αi) , (B.41)

p
(
α−1i
)
∼ Gamma (a, b) . (B.42)

As also shown in Zou et al. (2016), the core GAMP algorithm presented in the main

text can now be augmented to accommodate EM-like updates for the hyperparameters

αi. Optimizing with respect to α in iteration (r + 1) means finding the maximum of the

following Q-function

α(r+1) = arg max
α

Q
(
α|α(r)

)
≡ Eα(r)

[
log p

(
α|y, β(r)

)]
. (B.43)
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Taking the derivative of the Q-function w.r.t. αi and setting it to zero gives the usual

formula found also in variational Bayes and Gibbs-sampler updates of α

α
(r+1)
i =

2a− 1

2b+
(
β̂
(r)
i

)2 , (B.44)

where β̂
(r)
i is some estimate of βi in the previous iteration (r).

The algorithm below is an extension of the original Generalized Approximate Message

Passing (GAMP) algorithm of Rangan et al. (2016) that incorporates a step for updating

stochastic volatility and an EM-like step for updating the prior hyperparameters of the

sparse Bayesian learning prior. Inside this algorithm I denote with x̂(r) and τ̂x,(r) the

estimates of the mean and variance of quantity x, respectively, at the r-th iteration of

the algorithm. For presentational simplicity in the algorithm below the expressions for

the means of various parameters are presented before the expressions for their variances,

even though in practice variances have to be calculated first in order for means to be

subsequently calculated. Finally note that, as explained in the main text, the values of µi,

Vi, πi for each of the seven components of the mixture approximation are those given in

Table B1.

Table B1: Seven-component mixture approximation to a logχ2 distribution with one
degree of freedom

component πi µi Vi
1 0.00730 -10.12999 5.79596
2 0.10556 -3.97281 2.61369
3 0.00002 -8.56686 5.17950
4 0.04395 2.77786 0.16735
5 0.34001 0.61942 0.64009
6 0.24566 1.79518 0.34023
7 0.25750 -1.08819 1.26261
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Algorithm B1 Full Generalized Approximate Message Passsing (GAMP) with stochastic
volatility and sparse Bayesian learning prior

1: Initialize β̂
(0)
i = 0 and α̂

(0)
i = (100)−1 ∀i = 1, ..., q, and set (σ2

t )
(r)

= 1 and ŝ
(0)
t = 0

∀t = 1, ..., T .
2: r = 1
3: while ‖β̂(r) − β̂(r−1)‖ → 0 do
4: 1) GAMP for estimation of β
5: for t = 1 to T do
6: ĉ

(r)
t =

∑q
i=1 xt,iβ̂

(r−1)
i − ŝ(r−1)t τ̂

c,(r)
t

7: τ̂
c,(r)
t =

∑q
i=1 x

2
t,iτ̂

β,(r−1)
i

8: ẑ
(r)
t = τ̂

z,(r)
t

(
yt

(σ2
t )

(r−1) +
ĉ
(r)
t

τ̂
c,(r)
t

)
9: τ̂

z,(r)
t =

τ̂
c,(r)
t (σ2

t )
(r−1)

τ̂
c,(r)
t +(σ2

t )
(r−1)

10: ŝ
(r)
t =

(
ẑ
(r)
t −ĉ

(r)
t

)
τ̂
c,(r)
t

11: τ̂
s,(r)
t =

(
1− τ̂

z,(r)
t

τ̂
c,(r)
t

)
τ̂
c,(r)
t

12: end for
13: for i = 1 to q do

14: d̂
(r)
i = β̂

(r−1)
i +

∑T
t=1 xt,iŝ

(r)
t

τ̂
d,(r)
i

15: τ̂
d,(r)
i =

∑T
t=1 x

2
t,iτ̂

s,(r)
t

16: β̂
(r)
i =

d̂
(r)
i τ̂

d,(r)
i

τ̂
β,(r)
i

This is E(βi|y)

17: τ̂
β,(r)
i =

(
α
(r−1)
i + τ̂

d,(r)
i

)
This is var(βi|y)

18: end for
19:

20: 2) Update prior hyperameter α
21: for i = 1 to q do
22: α

(r)
i = 2a−1

2b+
(
β̂
(r)
i

)2 This is E(αi|y)

23: end for
24:

25: 3) Update volatility σ2
t

26: ỹt = log

((
yt − xtβ̂(r)

)2
+ 1× 10−10

)
27: (σ2

t )
(r)

= exp
(∑7

i=1 πi (ỹt − µi) /7
)

This is E(σ2
t |y)

28:

29: r = r + 1
30: end while
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C Simulation study

This Section presents the results of three simulation exercises using artificial data. The

first exercise focuses on the ability of the proposed econometric specification in (17),

in combination with the SBL prior in (19)-(20), to recover the dynamics of stochastic

regression parameters under various scenarios about the true nature of the underlying

time-variation. For that reason, this exercise focuses on a regression with a single time-

varying intercept (i.e. time-varying trend or local-level model). By doing so, we can focus

on the aspect of time-variation by switching off the additional estimation challenges implied

by the presence of many predictors, and at the same time use established benchmarks for

comparison (MCMC methods for TVP models).

The second simulation exercise focuses on the numerical precision of the GAMP

algorithm, and the ability of the SBL prior to shrink a high-dimensional vector of regression

parameters. For that reason, in this second simulation exercise data are generated from a

regression model with many predictors. In this exercise the true and estimated regression

parameters are all constant, in order to control for the large effect that time-variation has

on estimation accuracy and focus only on the aspect of modeling many covariates.

Finally, this Section concludes by assessing whether the approximations introduced

by GAMP are detrimental for time-series inference. In particular, numerical stability of

GAMP in the presence of persistent and highly correlated variables is discussed. A third

Monte Carlo exercise also shows that GAMP is able to estimate accurately coefficients

from an AR(4) model, despite the fact that the GAMP assumptions do not explicitly

account for correlation between yt and its lags yt−1, yt−2 etc (i.e. GAMP is derived under

the assumption that the likelihood function is i.i.d.).
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C.1 Monte Carlo Exercise 1: Estimation of time-variation

In the first simulation exercise artificial data are generated from a simple regression with

only a time-varying intercept (local-level model) and variance fixed to one, which is of the

form

yt = ct + εt, (C.1)

ct = F (zt) + ut, (C.2)

where εt ∼ N(0, 1) and both yt and ct are scalar. The first equation above specifies

the regression of yt on the time-varying intercept ct, and the second equation specifies

the time series dynamics of ct which depend on some function F (•) of variables zt. Due

to the fact that the TVP-GAMP algorithm estimates the time-varying intercept ct in a

generic way (i.e. relying only on shrinkage principles) this simulation study considers

three different functions F (zt) that may drive the time evolution of ct. That is, given

that with real macroeconomic and financial data the econometrician never knows the

true function F (zt) that generated the time-varying intercept, this exercise helps find out

whether estimating equation (C.1) combined with a shrinkage prior on ct is a broad enough

parametric approach that can always capture fairly well the true underlying process of ct.

The three cases of data generating processes (DGPs) are:

DGP 1: Random Poisson jumps. The evolution of ct is of the form

ct = µ+ sign(δt)× µ× kt + ut, ut ∼ N(0, T−
3
4 ), (C.3)

where µ is the unconditional mean of the process, kt ∼ Poisson(λ) is a Poisson

distributed variable, sign(δt) is the sign operator giving values 1 if δt > 0 and −1

if δt < 0, with approximately 50% probability for each event, something that is

17



achieved by randomly sampling δt from U(−1, 1). Therefore, ct is equal to µ when

kt = 0, while it is equal to 2µ if kt = 1 and δt > 0 or equal to 0 if kt = 1 and δt < 0.

The idea here is to allow ct to be constant and equal to µ for most time periods,

but then have randomly expressed negative or positive jumps of varying intensity.

In order to achieve this, I set λ = 0.1 and µ ∼ U(0, 4).

DGP 2: Regression effects. The evolution of ct is that of a regression-like model with

exogenous predictors zt and is of the form

ct = β0 + β1z1t + ...+ β10z10t + ut, ut ∼ N(0, T−
3
4 ), (C.4)

where zi,t ∼ N(0, 1) for i = 1, ..., 10 are the exogenous regressors, and βj ∼ U(−1, 1)

for j = 0, 1, ..., 10 are randomly generated regression coefficients.

DGP 3: Random walk evolution. The evolution of ct has the typical form

ct = ct−1 + ut, ut ∼ N(0, T−
2
4 ), (C.5)

given initial condition c0 ∼ U(−1, 1).

In this simulation study artificial datasets are generated from each of the three

specifications above, comprising equation (C.1) and each of the three parametrizations

above that should replace the generic representation of equation (C.2). The purpose of

using a simple specification with just a time-varying intercept is to allow numerically stable

comparisons between TVP-GAMP and the standard, off-the-shelf MCMC algorithm for

time-varying parameter models used in papers such as Primiceri (2005) and Pettenuzzo

and Timmermann (2017).2 This algorithm relies on the third specification above, that is,

2The empirical section does more in-depth comparisons with recent algorithms for TVP models that
also allow some form of shrinkage. Because these algorithms rely on several subjectively chosen tuning
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it is an estimator of the following model

yt = ct + εt, ε ∼ N(0, σ2
t ), (C.6)

ct = ct−1 + ut, ut ∼ N(0, α−1), (C.7)

log σ2
t = log σ2

t−1 + vt, vt ∼ N(0, ω), (C.8)

where – even though in the data-generating process (DGP) it holds that σ2
t = 1 for

all t = 1, ..., T and q = T−
2
4 – when estimating the model above, volatility is an

unknown parameter that varies with time (as is the case with the TVP-GAMP algorithm).

Therefore, due to the particular parametric form assumed by the MCMC algorithm the

expectation is that this algorithm will fit well data generated from the third DGP which

is also a random walk on ct. However, the specification is flexible enough to approximate

well the other two DGPs.

In particular, as Primiceri (2005, Section 4) explains in detail, and is a well-established

fact in the literature on time-varying parameter models (see the discussion in Amir-Ahmadi

et al., forthcoming), the prior on α−1 in equation (C.7) determines in a direct way the

amount of time-variation in ct: Looser (diffuse) priors on α−1 allow for the possibility

of more time-variation, while tighter priors allow for a slow-moving and more persistent

process.3 For that reason, the prior on α−1, in the MCMC algorithm with random walk

evolution, is inverse Gamma of the form α−1 ∼ iGamma(a, b), and the TVP model is

parameters, they cannot be considered as appropriate “default” benchmarks for a simulation study.
3Given our interpretation in this paper of ct = ct−1 + ut as the conditional hierarchical prior

p(ct|ct−1, α−1) ∼ N(ct−1, α
−1), it turns out that a very diffuse hyperprior on q would essentially “kill-off”

the random walk evolution, or put differently the ut component would dominate over ct−1 on the RHS
of equation (C.7). In this case, the MCMC algorithm would become numerically identical to TVP-
GAMP algorithm since their assumed conditionally Normal priors, p(ct|ct−1, α) ∼ N(ct−1, α

−1) and
p(ct|α) ∼ N(0, α−1) respectively, would tend to become Uniform. Of course in practical situations that
involve high-dimensional parameters and α−1 becomes a large matrix, we cannot allow a diffuse prior on
it for numerical reasons (see again discussion in Primiceri, 2005, Section 4). Nevertheless, in this simple
example with scalar α−1 and fixed measurement variance it is possible numerically to use a loose enough
prior on this parameter in order to build better intuition.
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estimated using two alternative choices of prior hyperparameters: a loose choice which

corresponds to a, b = 0.4 and a tight choice which corresponds to a, b = 1.4 Therefore,

in the following I present results for three estimators: the approximate GAMP estimator

of the TVP model (abbreviated TVP-GAMP), the MCMC estimator with tight prior

on α−1 (called MCMC, tight prior), and the MCMC estimator with loose prior on α−1

(called MCMC, loose prior). Notice at this point that even though we could also try

loose and tight version of the Sparse Bayesian Learning prior of TVP-GAMP, for simplicity

the default hyperparameter choices described in Section 3.1 are used.

Before proceeding to the numerical results of this Monte Carlo exercise, Figures C.1–

C.3 help build intuition about how well the different estimation algorithms approximate

the three data generating processes. The red dashed line in all three panels of Figure C.1

is the generated coefficient ct coming from a single simulation using the setting of DGP 1

(random Poisson jumps) with T = 200. Subsequently, in each of the three panels of this

figure the solid blue lines show the estimates from the respective three algorithms (TVP-

GAMP, and MCMC with tight and loose prior). The TVP-GAMP having a parametric

structure with minimal assumptions on the way ct evolves over time, is able to successfully

shrink this coefficient to its constant value that dominates for most of the 200 observations.

At the same time, the algorithm successfully captures with high accuracy all 12 abrupt

jumps in ct. However, there a few more cases where such jumps are estimated when they

shouldn’t, that is, when the true parameter is constant. Nevertheless, the performance

of the estimated ct from TVP-GAMP is quite reasonable, since only one observation is

available to estimate these jumps, so the estimation problem is quite noisy. Moving to

panel (b) of Figure C.1, it can be seen that the MCMC algorithm that estimates ct using

4In comparison to the choices of Primiceri (2005), who discusses in detail selection of the scale parameter
kq in an inverse Wishart prior (his α−1 parameter was a matrix, not scalar as it is here), the tight choice
roughly corresponds to kq = 0.1 and the loose choice roughly corresponds to kQ = 1000 (note that
MATLAB allows to generate draws for a scalar α−1 from both an inverse Wishart and an inverse Gamma
generator, even though the former is not defined theoretically for scalars).
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a random walk evolution using a tight prior (similar to what Primiceri, 2005, used in his

seminal paper) is not a good choice. It allows for a very smooth evolution that completely

misses the abrupt jumps in the coefficients. In contrast, the exact same algorithm with a

loose prior (panel (c)) does a much better job at capturing the abrupt jumps. However,

this improvement comes at a cost of estimating time variation in ct even in those periods

where the true ct is constant.

Similarly, the dashed red lines in Figure C.2 show the estimated ct from a single,

random run of DGP 2 (regression effects) using T = 200. In this case, both TVP-GAMP

and MCMC with a loose prior (panels (a) and (c) of the Figure) capture quite well the

true ct, although the MCMC algorithm produces some more pronounced peaks (see for

example how the blue line “overshoots” relative to the red line around observation 80).

The MCMC with a tight prior simply underestimates the amount of time variation in ct.

Lastly, Figure C.3 repeats exactly the same exercise using one random run from DGP 3

(random walk) with T = 200. The prior expectation here is that MCMC will do better in

general than TVP-GAMP, since the MCMC algorithm explicitly assumes that ct evolves as

a random walk (which is the exact assumption also in the DGP). However, this statement

is far from true, as the performance of the MCMC algorithm depends greatly on the prior

used. We see in panel (b) that the MCMC with tight prior gives indeed the best estimate

of ct (solid line), since the true ct (dashed line) was generated assuming a modest amount

of time-variation. However, the MCMC with loose prior fails completely to fit the true

ct. In this case, even if the TVP-GAMP doesn’t assume random walk evolution when

estimating ct it is able to produce less estimation error than MCMC with loose prior.
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Figure C.1: Time-varying intercept generated by the first DGP (random Poisson jumps)
for T = 200 observations. The dashed line in each of the three panels shows the true time
path of the generated time-varying intercept parameter, ct, and the solid lines the posterior
mean estimates of this intercept using TVP-GAMP, MCMC with a tight prior and MCMC
with a loose prior.
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Figure C.2: Time-varying intercept generated by the second DGP (regression effects) for
T = 200 observations. The dashed line in each of the three panels shows the true time
path of the generated time-varying intercept parameter, ct, and the solid lines the posterior
mean estimates of this intercept using TVP-GAMP, MCMC with a tight prior and MCMC
with a loose prior.
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Figure C.3: Time-varying intercept generated by the first DGP (random walk evolution)
for T = 200 observations. The dashed line in each of the three panels shows the true time
path of the generated time-varying intercept parameter, ct, and the solid lines the posterior
mean estimates of this intercept using TVP-GAMP, MCMC with a tight prior and MCMC
with a loose prior.
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Therefore, there are three major observations to take away from this graphical analysis:

1. TVP-GAMP does a good job at approximating time-varying parameters in a wide

range of scenarios regarding the exact nature of time-variation.

2. The traditional MCMC algorithm for time-varying parameter models is extremely

flexible as well, but its performance heavily relies on the choice of prior.

3. The TVP-GAMP using the sparse Bayesian learning prior is fully automatic and

needs no tuning. Instead, the MCMC algorithm needs a subjective input of

prior. While papers such as Amir-Ahmadi et al (forthcoming) have worked to

towards solving this issue, in practice numerical instability restrictions do not allow

researchers to specify looser or diffuse priors. As a consequence, most applications

involving TVP models use tight priors that assume that variation in parameters

over time is mildly stronger than what one can obtain by applying OLS recursively.5

This exercise shows that a TVP model with mild/restricted random walk evolution

of parameters, might not be always the ideal solution for capturing nonstandard

patterns of time-variation.

The observations made from this initial graphical screening can be confirmed

numerically by calculating the distribution of the absolute deviation (AD) statistics over a

sample of 1000 datasets generated from the three DGPs. These are defined as the absolute

deviations of the estimated ct from each of the three algorithms relative to the true value

of ct generated from each of the three DGPs. These absolute deviations refer to ct ∀t, so a

scalar value is obtained by averaging over all time periods t = 1, ..., T . Lower values of the

AD statistic signify that the respective estimator is much closer to the true value of the

parameter ct. Figure C.4 shows boxplots of the AD statistic over the 1000 iterations using

5This is what Cogley and Sargent (2005) call a “business as usual” prior.
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DGP 1 for three different sample sizes of the generated data, namely T = 30, 200, 500, that

allow us to assess both the small and large sample performance of the estimators. In each

of the panels it is obvious that for the case of the random Poisson jumps, TVP-GAMP

and MCMC with loose prior generate lower error relative to MCMC with the tight prior.

It is also the case that TVP-GAMP is the undisputed best performer relative to MCMC

with loose prior.

The results are qualitatively similar when using the second DGP, as depicted in

Figure C.5. The only difference now is that the MCMC with a tight prior does better

than the MCMC with loose prior, although the boxplots show that the former case

results in much more dispersed distribution of absolute deviation statistics relative to the

latter.6 Finally, Figure C.6 shows that MCMC with tight prior is by far the most accurate

estimation algorithm, since its assumptions about the way ct evolves and the amount of its

time-variation (i.e. prior) perfectly match the assumptions in DGP 3. However, the main

point of this third case is that TVP-GAMP does significantly better than MCMC with

loose prior. This is particularly important because with real data we never know the exact

DGP and our choice of prior may not be optimal given the observed data. Assuming the

collected sample of any time series (GDP, inflation etc) is a realization from an unknown,

“true” DGP, it is important that TVP-GAMP approximates fairly well all three diverse

cases of DGPs examined in this simulation exercise. In contrast, there is a high amount of

estimation risk associated with the traditional MCMC algorithm for TVP models due to

the effect of prior selection. Such issues are not relevant for TVP-GAMP the way specified

in this paper, since the algorithm works well with default noninformative values on the

second layer of its hierarchical sparse Bayesian learning prior.

6Notice that using the single random run plotted in Figure C.2, it looks like the MCMC with loose
prior is far more accurate that the MCMC with tight prior. When replicating this exercise 1000 times and
calculate the AD statistics over all T values of the parameter ct, it is obvious that this result is reversed.
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Figure C.4: Boxplots of absolute deviation (AD) statistics over the 1000 Monte Carlo
samples from DGP1.
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Figure C.5: Boxplots of absolute deviation (AD) statistics over the 1000 Monte Carlo
samples from DGP2.
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Figure C.6: Boxplots of absolute deviation (AD) statistics over the 1000 Monte Carlo
samples from DGP3.

C.2 Monte Carlo Exercise 2: High-dimensional regression and

shrinkage

In this subsection I compare the performance of GAMP using data generated from high-

dimensional, sparse regression models with constant parameters7, and contrast them to

MCMC-based algorithms that can handle such large dimensions. I generate p predictors

with T observations each, from a Normal distribution with correlation corr(xi, xj) = ρ|i−j|

7The constant parameter regression is a special case of the TVP-GAMP algorithm presented in the
main text, since the proposed algorithm relies on writing the TVP regression in static form. However,
because in this Monte Carlo exercise variances are also constant, step 3 in Algorithm B1 (i.e. the step that
updates stochastic volatilities) is replaced with the approximate posterior mode of the Bayesian estimator
of the constant variance σ2(

σ2
)(r+1)

= arg max
σ2

Eβ(r)

[
log p

(
y|x, β(r),

(
σ2
)(r))

p
(
σ2
)]

(C.9)

=
2c2 +

∑T
t=1

(
yt − xtβ̂(r)

)2
T + 2c1 − 2

, (C.10)

using an inverse Gamma prior with scale and rate parameters c1 = 0.01 and c2 = 0.01, respectively.
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for ρ ∈ [0, 1]. I assume that only q columns of the predictors x are important for y, and the

remaining p− q columns are excluded from the regression. That is, the coefficient vector

is of the form β = [β1, ..., βq, 0, 0, ..., 0, 0], where q = bc × pe, 0 < c < 1 and b•e denotes

round-off to the nearest integer. I generate βi for i = 1, ..., q from a continuous U (−4, 4)

distribution.

Various combinations of p, T and ρ cases are considered, in order to assess how sparsity,

correlation, and changing number of samples impact performance:

DGP 1: T = 50, p = 100, 200, 500 and ρ = 0.3. I assume moderate correlation, and the case

of a small sample T that allows us to fully understand how the algorithm works in

the large p - small T limit. I set c = 0.01 meaning only one, two and five predictors

out of p = 100, 200, 500, respectively, are responsible for having generated y.

DGP 2: T = 200, p = 100, 200, 500 and ρ = 0.3. This is like Model 1, but with larger number

of observations, to reflect approximately the T found in quarterly macroeconomic

data. I set c = 0.05 meaning only five, 10 and 25 predictors out of p = 100, 200, 500,

respectively, are responsible for having generated y.

DGP 3: T = 200, p = 100 and ρ = 0.9. In this case I only evaluate the case where T > p so

that orthogonalization of predictors is possible. For such high correlation, the GAMP

algorithm would collapse and the MCMC-based estimation algorithms would also

have a hard time converging. Orthogonalization is implemented by simply taking

the sample covariance of the predictors x, Ω̂ and defining x̃ = xŴ−1 where W

is the Cholesky factor of Ω̂. Note that if p > T then W is rank deficient and

orthogonalization of the original space spanned by the columns of x is not possible.

I also set c = 0.05 in this case implying that only five predictors have generated y

and the remaining 95 predictors have zero coefficients.
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Each of the three Monte Carlo simulations is repeated 500 times. Precision of each

algorithm is measured by means of absolute deviations of estimated coefficients from

the true, generated ones, in all 500 cases. I evaluate the following three algorithms:

1) the constant parameter version of the TVP-GAMP algorithm with Normal Gamma

prior, which I denote as sparse Bayesian learning (abbreviated GAMP (SBL)); 2)

the Bayesian least absolute shrinkage and selection operator (abbreviated MCMC

(LASSO)) estimated using the Gibbs sampler as in Park and Casella (2008); and 3) the

stochastic search variable selection (abbreviated MCMC (SSVS)) algorithm of George

and McCullogh (1993), also based on the Gibbs sampler.

The following Figures C.7–C.9 show boxplots of the absolute deviation statistics for the

three algorithms run over the 500 Monte Carlo iterations for the three DGPs, respectively.

Note first that boxplots of the AD statistics of a naive, unrestricted estimator (OLS applied

using one predictor at a time) is omitted from the three graphs, because these are typically

five to 20 times larger in magnitude (depending on the values of T, p) than the AD values

of the three shrinkage algorithms8. The first general observation is that, even if there are

visual differences among the distribution of AD statistics for the three estimators, these are

typically small if the AD of OLS applied predictor-by-predictor is used as a reference point.

When T is small relative to p, as depicted in Figure C.7 for the case T = 50, GAMP (SBL)

performs very well. On average it gives sharper results compared to MCMC (LASSO) and

MCMC (SSVS), with lower averages and more concentrated distributions of AD statistics.

When T is larger as in Figure C.8 then performance of the three algorithms is comparable

when p ≤ T , i.e. for p = 100, 200. For the case p = 500 the GAMP-based algorithm

performs slightly worse than the two MCMC-based algorithms, but differences can be

8In particular, for the mildly correlated predictors that are generated, the OLS applied predictor-by-
predictor performs comparably well (in terms of ADs) only for the q coefficients that are non-zero. It
is for the case of the zero coefficients where the shrinkage estimators generate substantially lower error
compared to OLS.
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considered small (the average AD of OLS in this case is 0.67, while for the three shrinkage

algorithms the medians of their ADs are less than 0.05). In general, under mild correlation

among predictors, the GAMP-based algorithm performs very well in variable selection and

shrinkage relative to established MCMC-based algorithms.

An interesting case is the one where one wants to do inference with correlated

predictors. Figure C.9 shows what happens in the case T = 200, p = 100. While the

assumption p < T seems quite restrictive for general Big Data applications, the example

in Model 3 is a quite realistic representation of many modern macroeconomic applications.

In this instance as well, the performance of GAMP is excellent and considerably better

than that of the LASSO.
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Figure C.7: Boxplots of absolute deviation (AD) statistics over the 500 Monte Carlo
samples from DGP 1 (T = 50, p = 100, 200, 500, ρ = 0.3).
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Figure C.8: Boxplots of absolute deviation (AD) statistics over the 500 Monte Carlo
samples from DGP 2 (T = 200, p = 100, 200, 500, ρ = 0.3).
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Figure C.9: Boxplots of absolute deviation (AD) statistics over the 500 Monte Carlo
samples from DGP 3 (T = 200, p = 100, ρ = 0.9).
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Having established that GAMP-based shrinkage performs comparably well when the

data generating process is that of a sparse regression model, I proceed with establishing

the vast computational gains from the GAMP approximation. Table C1 demonstrates

a striking feature of GAMP, that is, the fact that runs much faster than both MCMC-

based algorithms used in the simulations above. Entries in this Table are computing times

measured in seconds (using the tic and toc commands in MATLAB). The differences are

vast, since computation using GAMP (SBL) remains below 0.01 seconds, for all choices of

T and p. Therefore, this result should make clear to the reader the potential of GAMP-

based algorithms to scale to thousands or even millions of predictors. In contrast, MCMC

based algorithms have to run for a fixed number of iterations9 and also to run sequentially.

While the GAMP algorithm can be further enhanced by trivially modifying it to run

in multiple CPU cores (the times in Table C1 are NOT based on parallelizing GAMP),

MCMC-based algorithms are not easily parallelizable unless further approximations are

introduced.

Table C1: Computing time (seconds) per Monte Carlo iteration for each of the four
algorithms.

SBL LASSO SSVS

p = 100 < 0.01 4.03 1.81
T = 50 p = 200 < 0.01 12.88 5.29

p = 500 < 0.01 92.99 38.59

p = 100 < 0.01 6.28 1.98
T = 200 p = 200 < 0.01 12.54 5.11

p = 500 < 0.01 54.89 18.29
Notes: The reference machine is a 64 bit Windows 7 PC with Intel

Core 7 4770K CPU, 32GB DDR3 RAM, MATLAB 2016a.

9Note that for the purposes of the Monte Carlo exercise in particular, I run both MCMC-based
estimators using only 2000 iterations after discarding an initial 1000 burn-in iterations. This low number
ensures satisfactory numerical precision, but in practical situations one would want to run thousand times
more MCMC iterations. Thus, the high computing times of LASSO and SSVS are actually favorable due
to the limited number of iterations.
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C.3 Monte Carlo Exercise 3: (Auto) correlation, and numerical

stability of GAMP

Up to this point, the assumption was that the GAMP algorithm will always converge.

However, the nature of the GAMP approximations have two implications: 1) models

with likelihood of the form p(yt|yt−1, x, θ), i.e. regression models with both exogenous

predictors and own lags, are not accounted for in the GAMP approximation; and 2) when

the correlation of exogenous predictors is very high, the approximation to the marginal

posterior becomes poor. Both cases would result in numerical instability of the original

GAMP algorithm, and in this case convergence is not guaranteed.

The second case is somewhat addressed in the previous Monte Carlo exercise, although

not fully. That is, for mild correlation in a large number of predictors – even in the case

of more predictors than observations – the algorithm has very high numerical accuracy

and converges quickly. When correlation was quite high between predictors (0.9) the third

case of the previous exercise addressed this issue by orthogonalizing first the predictors.

Orthogonalization of predictors guarantees that the GAMP algorithm will converge.

However, if this is not possible (e.g. when the number of predictors is larger than the

number of observations), there are still ways to guarantee that the GAMP algorithm will

converge. A large literature exists that extends GAMP in order to guarantee convergence

and the reader is referred to Al-Shoukairi et al. (2018) and references therein. In a nutshell,

an adaptive dumping can be introduced that guarantees that the algorithm will converge,

even though convergence might not be to the global optimum of the parameter values. In

the specific case of the GAMP algorithm with sparse Bayesian learning prior, Al-Shoukairi

et al. (2018) show that their proposed algorithm (which shares lots of common components

with the algorithm used in this paper), will converge both in terms of parameter estimation

as well as optimal shrinkage fixed points; the reader is referred to this paper for detailed
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discussion.

In contrast, the first implication discussed above – that is the fact that likelihoods with

autoregressive components can only be approximated by the GAMP algorithm – needs

further examination since the vast majority of economic and financial time series have a

strong autoregressive structure. For that reason a third Monte Carlo exercise examines

what is the implication of having a likelihood of the form p(yt|yt−1, x, θ), and estimating

the parameters θ using GAMP under the approximation that yt and yt−1 are independent.

The best way to understand this issue, is to focus on the case of a simple autoregressive

model. The setup of this Monte Carlo exercise is trivial: generate 1000 samples of length

T from the following AR(4) model without intercept

yt = 0.40yt−1 + 0.22yt−2 + 0.05yt−3 + 0.14yt−4 + εt (C.11)

where εt ∼ N(0, 1) and the values of the autoregressive coefficients in the DGP are

obtained by estimating an AR(4) for US GDP growth over the sample 1960Q1-2016Q4.

Data are generated for T = 30, 100, 500 and then an AR(4) model is fitted using two

methods: GAMP (with constant, unknown variance as in the second Monte Carlo exercise

of the previous subsection) and OLS. The results of this simple exercise are summarized

in Figure C.10 by means of boxplots of AD statistics as in the previous two exercises.

GAMP not only converges in all 3000 cases (1000 iterations for each of T = 30, 100, 500),

but its numerical performance is identical to OLS. In addition, for the small-sample case

T = 30 GAMP performs a little bit better only because it relies on a shrinkage prior

relative to OLS that is an unrestricted estimator. Therefore, this simple exercise provides

sufficient support for the choice in the empirical exercise to include two lags of inflation

when forecasting with the TVP-GAMP algorithm.
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Figure C.10: Boxplots of absolute deviation (AD) statistics over the 1000 Monte Carlo
samples from and AR(4) data generating process.
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D Additional results using real data

D.1 Empirical estimates from TVP regression using GAMP

We can use the GAMP algorithm derived in Appendix B in order to find estimates of β, σ2
t

and α. In this paper interest lies in the particular TVP model of equation (15). Once we

write this model in static form, then the Algorithm B1 can be readily applied. Note that

while in the main text, for simplicity in notation, the reference equation is (15), in the

empirical exercise the non-centered parametrization (Frühwirth-Schnatter and Wagner,

2010) of the TVP regression is used. This parametrization has the form

yt = xtβ̃ + xtβ̃t + εt, (D.1)

where using this notation the βt of (15) is now equivalent to βt = β̃ + β̃t. That is,

the equivalent representation in equation (D.1) splits the coefficient into a constant part,

and an add-on time-varying part (i.e. on top of the level of the constant coefficient).

In practice, the estimated constant part β̃ is equivalent to the initial condition β0 of the

coefficient βt in equation (15). The non-centered representation is numerically more stable.

Additionally, as shown in Belmonte et al. (2014) – albeit, in a state-space model setting –

this parametrization allows to shrink flexibly a coefficient either towards zero or towards

a constant value (by shrinking only β̃t but not β̃). The static form of this non-centered

parametrization is

y = Xβ + ε, (D.2)

where β =
[
β̃′, β̃′1, ..., β̃

′
T

]′
. It is the case then that estimates of βt can be recovered from

the elements of β once this parameter vector is estimated using GAMP.

An interesting empirical question is how do estimates of time-varying parameters look
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like when estimating the formulation above that does not allow for persistence in these

parameters (in contrast to the majority of macroeconomic TVP models, that specify

persistent AR/RW processes for stochastic parameters). This question holds both for the

time-varying coefficients βt and the time-varying volatility σ2
t . The specified forecasting

models in the main paper rely on many predictors that result in thousands of parameters

that would be hard to summarize using plots. To simplify things, in this Appendix I

estimate a time-varying intercept (trend) model for inflation, that is, what would have

been a local-level model in the traditional state-space form. Therefore, the following

specification is assumed:

πt = τt + φπt−1 + εt, (D.3)

where πt is the annual (12-month) difference in the logarithm of CPIAUSL (CPI, All

items). This specification is similar to that of Stock and Watson (2007) with a few key

differences, e.g. τt in their paper follows a random walk process with stochastic volatility,

while persistence here is captured using the AR component φπt−1 and the prior variance

for τt is not time-varying. For estimation purposes the equation above is written in the

form (D.2):

π = iτ c + τ tvp + π(−1)φ
c + εt, (D.4)

where i is a T × 1 vector of 1’s, τ c is the constant part of τt and τ tvp is its time-varying

part (also a T × 1 vector), such that τt can be recovered as τt = τ c + τ tvpt . Additionally,

π = [π2, ..., πT ]′ and π(−1) = [π1, ..., πT−1]
′. Using this specification, we can apply to each

element of τ c and τ tvpt the same independent Normal-inverse Gamma prior used for the

coefficients β in the TVP regression, that is, the prior in equations (19) and (20). In the

main document, forecasting results have been produced using the default, noninformative

choice a = b = 1 × 10−10. However, it is important to demonstrate how the amount of

time-variation in the model above depends on αi which is regulated from the choices of
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a, b. This is illustrated in Figure D.1 for three pairs of values of these hyperparameters,

namely a = 1, b = 1× 10−10 (panel (a)), a = 1, b = 0.1 (panel (b)), a = 1, b = 10 (panel

(c)). The first choice overshrinks the trend not only to time-invariance but also to a value

of zero, while the other two priors gradually allow for more time-variation. Due to the lack

of a random walk evolution for the trend in this specification, in the case of zero shrinkage

the trend will become identical to the original inflation series.
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Figure D.1: Time-varying estimates of the trend, τt, implied by various choices of the
shrinkage hyperparameters a, b. The values used in each of the three panels of this figure
are (a) a = 1, b = 1×10−10 , (b) a = 1, b = 0.1 , and (c) a = 1, b = 10. In all three panels
the solid line is the data for annual inflation rates, πt, and the dashed line is the estimate of
the trend. The horizontal axis denotes the monthly observations of inflation, corresponding
to the sample period 1959M1 to 2016M6, minus observations lost from transforming CPI
to inflation, and taking lags.

A similarly important question is how good the volatility estimates are based on the
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proposed GAMP algorithm; see equation (35). These are expected to be less persistent

than a GARCH(1,1) or SV model, and closely related to the “squared returns” estimator

of volatility typically used in financial econometrics. Figure D.2 compares the GAMP

volatility estimates with a simple GARCH(1,1) model estimated with maximum likelihood

for the case of 16 important series from the U.S. data set described in Appendix A. For

simplicity, and given the focus on estimation of volatility, the modeling assumption for the

mean of yt in both the GAMP and GARCH(1,1) cases is that of a constant intercept and

Gaussian errors. For all 16 variables the two estimates are quite close, especially in those

cases where volatility doesn’t seem persistent (such as price series; see RPI, OILPRICE

and CPIAUCSL). In other cases where a variable has very persistent volatility (notably

the HWI variable), the GAMP volatility estimator provides a very noisy approximation

to GARCH(1,1). Note that current results using the GARCH(1,1) as a benchmark, are

qualitatively identical when comparing GAMP with a Bayesian SV specification similar

to Kim, Shephard and Chib (1998).
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D.2 Identifying inflation forecast gains

While Tables 1-3 in the main text show the ranking of different models based on their

average forecast performance during the evaluation period, it is of interest to identify

those episodes that contribute the most in their relative performance. For that reason, the

following four figures plot cumulative squared forecast errors, rather than just presenting

the mean squared forecast error over the sample. Figure D.3 presents results for forecast

horizon h = 12 using the specification in equation (37), while Figure D.4 presents results

for forecast horizon h = 12 using the specification in equation (38). The dates in the x-axis

of the graphs represent the time period where the forecast was made (hence, for h = 12

the date 01/01/2000 on the x-axis means that the squared forecast error is based on the

observation of 01/01/2001).

These Figures show that there were a few critical dates/episodes in the evaluation

sample that determine differences in forecast performance. In Figure D.3 the TPV-GAMP

dominates in all periods and the differences become more obvious after 1999, 2005 and

2008. In Figure D.4 the UCSV dominates until early 2008 (which refers to inflation

forecasts for early 2009), and after this date the KP-AR is the best model. TVP-GAMP’s

performance over time looks closer to that of the BMA, even though TVP-GAMP improves

a lot over BMA. The general message is that, while the global financial crisis has lead

to severe deterioration in performance of all forecasting models, it is not the sole most

important episode of relative performance. It turns out that “inflection points” also exist

in the early 1990s, late 1990s, and 2005. Nevertheless, the largest gaps showing divergence

in forecast performance are observed during the last 10 years in the sample.
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Figure D.3: Cumulative sum of squared forecast errors over the forecast evaluation period,
CPI inflation for h = 12 using the specification in equation (37).
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E Competing specifications

This Section sheds light on the specification of benchmark models used in the forecasting

illustration. These are mainly heavily parametrized TVP regression models that involve

selection of a wide array of prior hyperparameters and initial conditions. In order to make

the comparison fair I try only to use what can be thought of as “default” values for all

priors and initial conditions. These are values that have minimal impact, and are typically

the default values used in several other papers in this literature.

In particular, many of the models presented in this Section (KP-AR, GK-AR, UC-

SV, TVP-AR) are the benchmark models used in a large-scale forecasting exercise for

many monthly and quarterly U.S. macroeconomic time series published in Bauwens et al.

(2015). Therefore, instead of replicating all tedious details regarding posterior computation

as well as selection of priors, the reader is mostly referred to this paper and its long online

Appendix for these specific benchmark models. For other recently proposed TVP models

(TVD and TVS) that are not explicitly included in the forecasting exercise of Bauwens et

al. (2015), I try to adopt default values suggested by the authors who created them (and

provide relevant citations to their papers). If this is not feasible, as is the case with BMA

and TVP-BMA, only then I provide exact details about computation and prior selection.

E.1 KP-AR, Koop and Potter (2007)

The Koop and Potter (2007) specification is a structural breaks model that builds on

the more general time-varying parameter (TVP) specification but doesn’t allow breaks to
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occur necessarily in each time period. The KP-AR model is of the form

yt+h = xtβst + σstεt+h, (E.1)

βst = βst−1 + ηst , (E.2)

log σst = log σst−1 + ζst , (E.3)

where xt includes only an intercept and lags of yt, εt+h is an error following the standard

Normal distribution and st ∈ {1, 2, ..., K} is a Markov switching process with K states.

This specification follows much of the Bayesian structural breaks literature and assume

that the transition probabilities matrix is block diagonal, such that we can move from one

regime to the next and never come back (which is the distinguishing feature of structural

breaks compared to standard regime-switching specifications). I follow Bauwens et al

(2015) and specify a maximum number of Kmax = 10 and allow the Gibbs sampler to

determine how many structural breaks are relevant (up to the maximum of Kmax). I also

use fairy reasonable priors and initial conditions as in Bauwens et al. (2015), and the

reader is referred to this paper and its Appendix for all the tedious computational details.

E.2 GK-AR, Giordani and Kohn (2008)

The Giordani and Kohn (2008) model is also a structural breaks model based on state-

space form, however, the way breaks occur are very different from the KP specification

outlined above. The GK-AR model is a dynamic mixture model of the form

yt+h = xtβt + εt+h, (E.4)

βt = βt−1 +Ktηt, (E.5)
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where xt includes only an intercept and lags, Kt ∈ {0, 1}. Gerlach, Carter and Kohn

(2000) outline an algorithm for sampling efficiently Kt. Conditional on knowing Kt

(e.g. conditional on having a sample from its posterior), the remaining model parameters

can be updated using standard expressions for their conditional posteriors, leading in a

straightforward Gibbs sampling scheme. Estimation and prior settings are again those

used in Bauwens et al. (2015) and the reader is referred to their detailed Appendix.

E.3 UC-SV, Stock and Watson (2007)

The Stock and Watson (2007) unobserved components stochastic volatility (UC-SV) model

only allows for a time-varying intercept, that is, it is a local level specification of the form

yt+h = τt + σεt εt+h, (E.6)

τt = τt−1 + σηt ηt, (E.7)

log σεt = log σεt−1 + ζt, (E.8)

log σηt = log σηt−1 + ξt, (E.9)

where we observe that not only the measurement error εt+h features stochastic volatility,

but also the variance of state error ηt. This model has been specifically proposed

for forecasting inflation, but it is a parsimonious and flexible time-varying parameter

specification that can fit other series as well. This model is the most parsimonious

among all other time-varying parameter specifications presented in this Section, as it only

requires specification of initial conditions and priors for the scalar variances of the volatility

parameters. In any case, selection of these hyperparameters needed for estimation follows

again the implementation of Bauwens et al. (2015).
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E.4 TVP-AR, Pettenuzzo and Timmermann (2017)

The time-varying parameter autoregression has not been obviously first proposed by

Pettenuzzo and Timmermann (2017), however, this is a recent of many representative

studies that find that the TVP-AR model beats a large number of alternative models when

forecasting inflation in particular. It is a regression with an intercept and autoregressive

lags where regression coefficients and variances are all time-varying. By allowing for

autoregressive terms the TVP-AR generalizes the UC-SV model, however, it typically

only features stochastic volatility in the measurement equation and not in any of the state

equations. All priors used for estimation of this model also follow the “default” values

specified in Bauwens et al. (2015), and the reader is referred to this paper for more

details.

E.5 TVP-BMA, Groen, Paap and Ravazzolo (2013)

Even though this specification builds on Groen, Paap and Ravazzolo (2013), it is

actually only a simplified version of their proposed model.10 In practice, the TVP-BMA

specification takes the following form

yt+h =

p∑
j=1

xjtsjβjt + εt+h, (E.10)

βt = βt−1 + ηt, (E.11)

where sj is an indicator variable such that when sj = 0 then the jth predictor is removed

from the regression in all periods, while when sj = 1 the predictor is included. The full

Bernoulli posterior of each parameter sj is a sequence of zero and one values, such that

10In particular, their model also features a dynamic mixture specification as in Giordani and Kohn
(2008), but since the GK specification is estimated separately (see GK-AR model above), I do not add the
dynamic mixture part in the Groen, Paap and Ravazzolo (2013) specification for computational reasons.
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the posterior mean can be interpreted as a well-defined probability of inclusion in the

regression model of each predictor j. This probability can be used for model selection

or Bayesian model averaging, hence the acronym TVP-BMA for this specification. We

assume that the probabilities sj have a Bernoulli prior with prior inclusion probability of

each predictor equal to 0.5. Given this parameter, all other initial conditions and priors

are identical to the TVP-AR case.

E.6 TVD, Chan et al. (2012)

The time-varying dimension (TVD) model of Chan et al. (2012) takes the following form

yt+h =

p∑
j=1

xj,tsj,tβj,t + εt+h, (E.12)

βt = βt−1 + ηt, (E.13)

where sj,t is an indicator variable such that when sj,t = 0 the jth predictor is removed from

the regression model in period t only, and when sj,t = 1 it is included in the regression.

This is a very flexible specification that generalizes the Groen, Paap and Ravazzollo (2013)

model to allow a predictor to exit the regression only for certain periods. I have used

the default settings and priors suggested by Chan et al. (2012)11. Following the exact

implementations by the authors, also means that for computational reasons, the sj,t are not

allowed to index all possible 2p models available in each time period. Instead only models

with one variable at a time, the full model, and the model with no predictors are estimated

and then the optimal model is chosen among this reduced number of specifications. Finally,

the authors specify three different ways of specifying a TVD model. The specification used

here is the first model presented in that paper. Priors, initial conditions and posterior

computation for this first model can be found in Section 1.1 of the online Appendix of

11Joshua Chan kindly provided code for their model, which I gratefully acknowledge.
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Chan et al. (2012).

E.7 TVS, Kalli and Griffin (2014)

The time varying sparsity (TVS) model of Kalli and Griffin is of the form

yt+h =

p∑
j=1

xj,tβj,t + εt+h, (E.14)

βj,t = (1− αj)ρj,tβj,t−1 + αjηj,t, (E.15)

where ρj,t =
√

ψj,t
ψj,t−1

and var (ηj,t) = ψj,t. In this specification, αj ∈ [0, 1] is a parameter

controlling the temporal correlation, and ψj,t is an autoregressive gamma process. That

way, the implied prior for βj,t is of normal-gamma autoregressive process form, which

generalizes the traditional normal-gamma priors in linear regression. Such priors have very

good shrinkage properties, and in the model above the coefficient of each predictor can

be shrunk flexibly only in some periods, while be unrestricted in others. Note that these

authors specify a Gamma autoregressive process for the variance, instead of the typical

stochastic volatility process that all previous methods build upon. All initial conditions

are identical to those suggested by the authors. Also following the suggestion of Kalli

and Griffin when forecasting inflation (see their Section 5) I set s∗ = b∗ = 0.1, although it

should be acknowledged at this point that their application involves quarterly data instead

of the monthly data used in this paper.
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E.8 Bayesian Model Averaging (BMA)

The BMA approach is the only one in the list of competing specifications that is based on

a constant parameter regression with many predictors of the form

yt+h = xtβ + εt+h (E.16)

where β is a p × 1 vector of time-varying parameters and εt+h ∼ N (0, σ2) with σ2 the

error variance term. This approach is implemented via the stochastic search variable

selection (SSVS) prior of George and McCulloch (1993), with the following hiearchical

representation

p (βi|γi) ∼ (1− γi)N
(
0, τ 20

)
+ γiN

(
0, τ 21

)
, (E.17a)

p (γi|π) ∼ Bernoulli(π), (E.17b)

where I set π = 0.5, τ0 = 0.001 and τ1 = 4, and the regression variance parameter σ2 has

a diffuse prior.

Given these prior settings, the posterior can be obtained by sampling recursively from

the conditional posteriors

β|σ2, γ, y ∼ N
((
x′x/σ2 + V −1

)−1
x′y/σ2,

(
x′x/σ2 + V −1

)−1)
, (E.18a)

γi|βi, π, y ∼ Bernoulli

(
N(0|βi, τ 21 )π

N(0|βi, τ 20 )(1− π) +N(0|βi, τ 21 )π

)
, (E.18b)

σ2|β, y ∼ iGamma

(
T

2
,
1

2

T∑
t=1

(yt − xtβ)2

)
, (E.18c)

where V is a diagonal matrix with i-th element τ 20 if γi = 0 or τ 21 if γi = 1.
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E.9 The Bayesian lasso

The full hierarchical representation of the lasso prior12 is

p
(
β|σ2, τ 21 , ..., τ

2
p

)
∼ N

(
0, σ2V

)
, (E.19a)

p
(
τ 2j
)
∼ Exponential

(
λ2

2

)
, for j = 1, ..., p, (E.19b)

p
(
λ2
)
∼ Gamma (r, δ) , (E.19c)

p
(
σ2
)
∝ 1/σ2, (E.19d)

where V = diag
{
τ 21 , ..., τ

2
p

}
. I follow the recommendations in Park and Casella (2008) and

I choose r = 1 and δ = 3.

Given these priors, the posterior can be obtained by sampling recursively from the

conditional posteriors

β|σ2,
{
τ 2j
}p
j=1

, y ∼ N
((
x′x+ V −1

)−1
x′y, σ2

(
x′x+ V −1

)−1)
, (E.20a)

1

τ 2j
|β, σ2, y ∼ IG

(√
λ2σ2

β2
j

, λ2

)
, for j = 1, ..., p, (E.20b)

λ2|β, σ2,
{
τ 2j
}p
j=1

, y ∼ Gamma

(
p+ r,

1

2

∑p

j=1
τ 2j + δ

)
, (E.20c)

σ2|β,
{
τ 2j
}p
j=1

, y ∼ iGamma

(
T − 1

2
+
p

2
,
1

2
Ψ +

1

2
β′V −1β

)
, (E.20d)

where IG denotes the Inverse-Gaussian distribution.

12Note that the Bayesian lasso is only used as a benchmark in the second Monte Carlo exercise, and
not in the empirical section (BMA is only used there as a representative method for a constant parameter
regression with many predictors).
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