
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Results of diagnostic tests.

How good is the test, i.e. is it sensitive and specific?
Will it help you reach a diagnosis, i.e. will it change our minds from what we thought before the test (the "pre-test" probability) to what we think afterwards (the "post-test" probability).
Do the results make a condition more or less \qquad "likely"?
\qquad

Two by two table.

Two by two table (version for printing).

		$a+c$	$b+d$
Result of	Test positive	True positive	alse positiv

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Sensitivity.

The proportion (fraction) of those people who really have the disease $(a+c)$ who are \qquad correctly identified as such (a). i.e. the true positives. \qquad
From two by two table: \qquad
Sensitivity $=a /(a+c)$.
\qquad

Specificity.

The proportion (fraction) of those people who really do not have the disease ($\mathrm{b}+\mathrm{d}$) who are correctly identified as such (d). i.e. the true negatives. \qquad
From two by two table: \qquad
Specificity $=d /(b+d)$.

Likelihood ratio of a positive
test.

The probability of a positive test result when the patient has the disease compared to a patient without the disease.

Likelihood ratio of a positive test = sensitivity / (1 - specificity).
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Likelihood ratio of a negative

test.

The probability of a negative test result when
the patient does not have the disease
compared to a patient with the disease.
Likelihood ratio of a negative test =
(1 - sensitivity) / specificity.
\qquad

Accuracy.

The proportion of all tests that gave a correct result. i.e. the true positives and true negatives
as a proportion of all tests.

From the two by two table: \qquad
Accuracy $=(a+d) /(a+b+c+d)$.

Pre-test probability.

The probability of a patient having a disease before the diagnostic test is carried out. \qquad

The pre-test probability is the same as the \qquad
prevalence of that disease in a population similar to the patient.

From the two by two table:
Pre-test probability (prevalence) = $(a+c) /(a+b+c+d)$

Post-test probability.

After running the diagnostic test, the post-test probability of the patient having the disease is the number of people who truly have the disease (a) as a proportion of those who tested positive $(a+b)$.

From the two by two table:
Post-test probability $=a /(a+b)$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

Positive predictive value.

The proportion (fraction) of the people who test positive $(a+b)$ who truly have the disease (a).

From two by two table:
Positive predictive value $=a /(a+b)$

Negative predictive value.

The proportion of people who test negative
($\mathrm{b}+\mathrm{d}$) who truly do not have the disease (d).

From two by two table:
Negative predictive value $=\mathrm{d} /(\mathrm{c}+\mathrm{d})$.

