
1.  The following program creates a graphical user interface allowing the user to enter a 

sequence of numbers and calculate either the largest value or the sum. Assume that the 

functions maxList and sumList each take a string as a parameter and return the 

appropriate value. For example, maxList("2 5 1 4") returns 5. 

 
from Tkinter import *      #1 

 

root = Tk()          #2 

 

f = Frame( root )        #3 

f.pack()           #4 

 

def calculate():        #5 

    s = e.get()        #6 

    r = v.get()        #7 

    if r==1:         #8 

        result = maxList(s)    #9 

    else:          #10 

        result = sumList(s)    #11 

    l.configure( text = str(result) ) #12 

    l.update()         #13 

 

e = Entry( f )         #14 

e.pack()           #15 

 

l = Label( f, text="" )      #16 

l.pack()           #17 

 

v = IntVar()         #18 

 

r1 = Radiobutton( f, text = "Max", variable = v,  #19 

                  value = 1, command = calculate) #20 

r1.pack()          #21 

 

r2 = Radiobutton( f, text = "Sum", variable = v,  #22 

                  value = 2, command = calculate) #23 

r2.pack()          #24 

 

q = Button( f, text = "Quit",    #25  

            command = root.destroy ) #26 

q.pack()           #27 

 

root.mainloop()        #28 

 (a) Explain the purpose of each line or group of lines in the program, and describe exactly 

how the user should interact with it. Ignore any errors that may occur due to inappropriate 

input. 

[20] 

 (b) The question does not say what maxList and sumList do if their input is inappropriate. 

What would you like them to do, so that the user can see an error message in this case? 

You do not need to define maxList and sumList, but if your solution also requires 

modifications to calculate then you should define the new version of calculate. 

[5] 

  



1a 

Line 1 makes the definitions in the Tkinter module available for use; it provides 

GUI functionality. 

Lines 2 – 4 set up a window and prepare it for other GUI elements to be added. 

Lines 14 – 15 create a text entry field and add it to the main window. 

Lines 16 – 17 create a text label (an area in which messages can be displayed) and 

add it to the main window. 

Line 18 creates an integer variable object, required for use with the radio buttons. 

Lines 19 – 20 create a radio button with label "Max", which when selected will 

store the value 1 in the variable v and call the function calculate, and adds it 

to the main window. 

Lines 22 – 24 similarly create a second radio button with label "Sum", which 

when selected will store the value 2 in the variable v and call the function 

calculate. 

Lines 25 – 27 create a button with label "Quit", which when pressed will call the 

destroy method of the root window, terminating the user interface. 

Line 28 activates the user interface by calling the mainloop method of the 

root window, so that mouse and keyboard activity will be monitored in relation 

to the user interface elements. 

Lines 5 – 13 define the function calculate which is called when either of the 

radio buttons is selected. This function obtains a string from the text entry field 

(line 6), and the value of the integer variable indicating which radio button was 

pressed (line 7). It uses either maxList or sumList, as appropriate, to calculate 

result (lines 8 – 11). Finally it converts result to a string and displays it in the 

label field of the user interface (lines 12 – 13). 

The program creates a window with a text entry field, a label on which text can be 

displayed, and two radio buttons labelled "Max" and "Sum". The user can type a 

sequence of numbers into the text entry field and press either "Max" or "Sum". 

The result of the selected calculation is displayed on the label.  

1b 

The simplest solution is that the functions should return the string "Error" if their 

input is unsuitable, because this string will be displayed directly in the window by 

the existing version of calculate. Other solutions, for example using exceptions, 

are possible if calculate is also modified appropriately. 



2.  Consider the following Tkinter program: 

from string import *;  from Tkinter import * 

root = Tk(); f = Frame( root ) ; f.pack()  

           

c = Canvas( f, height = 100, width = 200,  

            background = "white" ) 

c.grid( columnspan=2 ) 

 

x = 100;  y = 50 

i = 3 

p = c.create_oval( x-i,y-i,x+i,y+i ) 

c.update() 

 

def nextAction():         

    global x, y 

    s = e.get()         

    r = v.get()         

    bits = split( s ) 

    dx = int( bits[ 0 ] );  dy = int( bits[ 1 ] ) 

    nx = x+dx;  ny = y+dy 

    if r==1:          

        c.create_line( x,y,nx,ny ) 

        c.update() 

    l.configure( text = str( nx ) + " " + str( ny ) )  

    l.update()          

    x = nx 

    y = ny 

    c.move( p,dx,dy ) 

    c.update() 

     

e = Entry( f )          

e.grid()            

 

l = Label( f, text= str( x ) + " " + str( y ) ) 

l.grid( row=1, column=1 )      

 

v = IntVar()          

 

r1 = Radiobutton( f, text = "This", variable = v, value = 1) 

r1.select() 

r1.grid( row=2 )          
 

r2 = Radiobutton( f, text = "That", variable = v, value = 2) 

r2.grid( row=2, column=1 )   
 

d = Button( f, text = "Do Something", command = nextAction ) 

d.grid( row=3)        
 

q = Button( f, text = "Quit", command = root.destroy )  

q.grid( row=3, column=1)       

 

root.mainloop()         

 (a) Draw the graphical user interface created by the program.  You do not need to be precise 

on the sizes of the items, but you should ensure that the positioning of items relative to one 

another is correct. [6] 

 (b) Explain, in only a few sentences, the operation of the program e.g. what is displayed as 

the user interacts with the various components of the interface. DO NOT explain exactly 

what each separate line does. [6] 



 (c) What will happen if the user types in inappropriate input?  How would you adjust the code 

to improve the user interface in this respect?  (You do not need to write the precise code 

for this.)  [3]  



2a 

The window contains a canvas drawing error across the top, twice as wide as it is 

high, with a very small circle right in the centre.  Below this are two columns of 

widgets, in three rows.  The first row contains a text entry area and a label area.  

The entry box is initially blank, the label area contains 100 50.  The second row 

contains a pair of radio buttons, labeled This and That; the latter is selected.  The 

third row contains two buttons, labeled Do Something and Quit.  All items are 

centred in their columns. 

Only the general configuration need be shown.  Absolutely precise positioning is 

not required. 

2b 

The program allows line drawings consisting of straight lines to be created on the 

canvas area.  Initially, the drawing point is in the middle of the canvas area, 

shown with a small circle – and this position is displayed in the label to the right 

of the entry area.  The user types in a pair of integers into the entry area, separated 

by a space.  When the user clicks on Do Something, if This is selected, then a line 

is drawn from the current drawing position to a second position offset from the 

first by the two values in the entry box; if That is selected, the drawing position is 

moved to the second position, but no line is drawn.  The offsets can be negative.  

The new position is displayed in the label field, irrespective of which radio button 

is selected, and the small circle is moved to show the position on the canvas. 

2c 

An error is raised when the Do Something button is pressed, but there is no report 

to the user via the graphical interface.  Wrap the code in nextAction, from where 

the integer conversion is attempted to the end of the function, in a try…except…   

In the except case, an error message could be written to either the entry field or the 

label field.  Below is code for the entry field (but they need not provide this): 
def nextAction():         

    global x, y 

    s = e.get()         

    r = v.get()         

    bits = split( s ) 

    try: 

        dx = int( bits[ 0 ] ) 

        dy = int( bits[ 1 ] ) 

        nx = x+dx 

        ny = y+dy 

        if r==1:        

            c.create_line( x,y,nx,ny )     

            c.update() 

        l.configure( text = str( nx ) + " " + str( ny ) ) 

        l.update()         

        x = nx 

        y = ny 

        c.move( p,dx,dy ) 

        c.update() 

    except: 

        e.delete( 0,END ) 

        e.insert( 0,"bad input" ) 

        e.update() 



3.  Consider the following Tkinter program: 
 

from Tkinter import *  

 

root = Tk() ; f = Frame( root ); f.pack() 

 

c = Canvas( f, height=100, width=200, background = "white" ) 

c.grid( rowspan=2,columnspan=3 ) 

 

p = c.create_oval( 97,47,103,53 ); c.update() 

 

def nextAction():    

    s = int( e.get() ) 

    r = v.get() 

    dx = 0; dy = 0 

    if r == 1: 

        dy = -s 

    elif r == 2: 

        dx = -s 

    elif r == 3: 

        dx = s 

    else: 

        dy = s   

    c.move( p,dx,dy ) 

    c.update() 

 

e = Entry( f, width=2 ); e.grid(row=1,column=3) 

e.insert( 0,"1" ) 

 

l = Label( f, text="Step" ); l.grid( row=0, column=3 ) 

 

v = IntVar() 

 

r1 = Radiobutton( f, text = "A", variable = v, value = 1) 

r1.grid( row=2, column=1 ); r1.select()                                               

 

r2 = Radiobutton( f, text = "B", variable = v, value = 2) 

r2.grid( row=3, column=0 ) 

 

r3 = Radiobutton( f, text = "C", variable = v, value = 3) 

r3.grid( row=3, column=2 ) 

 

r4 = Radiobutton( f, text = "D", variable = v, value = 4) 

r4.grid( row=4, column=1 ) 

 

d = Button( f, text = "A1", command = nextAction ) 

d.grid( row=3, column=3) 

 

q = Button( f, text = "A2", command = root.destroy ) 

q.grid( row=4, column=3) 

 

root.mainloop()         

 (a) Draw the graphical user interface created by the program.  You do not need to be precise 

on the sizes of the items, but you should ensure that the positioning of items relative to one 

another is correct.  [5] 

 (b) Explain, in only a few sentences, the operation of the program e.g. what is displayed as 

the user interacts with the various components of the interface. DO NOT explain exactly 

what each separate line does. [5] 



 (c) Is it possible to crash the program? If so, explain how, and explain accurately how you 

would go about fixing the problem, writing out the adjusted code if necessary.  



3a 

The window contains Tkinter objects on a 4 across by 5 down grid.  It contains a 

canvas drawing area across the top, twice as wide as it is high taking 3 by 2 of the 

grid in the top left.  The canvas contains a very small circle right in the centre.  In 

the final column adjacent to the canvas on the right are a label “Step”, and a text 

entry widget, initially containing “1”, one above the other.  Below this are four 

columns of widgets, in three rows.  The left most 3 by 3 cells contain radio buttons 

labeled A, B, C, and D, at the North, West, East and South positions respectively.  

The other cells in the 3 by 3 area are empty.  The North radio button should be 

selected.  The lowest two cells in the fourth column contain two buttons labeled A1, 

A2.  ALL items are centred in their columns. 

Only the general configuration need be shown.  Absolutely precise positioning is 

not required. 

3b 

The program allows the circle in the middle of the canvas to be moved, as follows.  

Each time button A1 is pressed, the circle is moved in the direction currently 

indicated by the radio buttons – if A is selected, the circle moves up, B, to the left, 

C, to the right, and D, downwards.  The circle is moved by the number of pixels 

indicated in the entry widget under the label ‘Step’.  The A2 button quits the 

program. 

3c 

An error is raised when the A1 button is pressed and there is not a well-formed 

integer in the entry box.  No report to the user via the graphical interface.  Wrap the 

code in nextAction, from where the integer conversion is attempted to the end of 

the function, in a try…except…   In the except case, an error message could be 

written to either the entry field or the label field.  Below is code for the entry field 

(but they need not provide this): 
def nextAction():         

    try: 

        s = int( e.get() ) 

        r = v.get() 

        dx = 0; dy = 0 

        if r == 1: 

            dy = -s 

        elif r == 2: 

            dx = -s 

        elif r == 3: 

            dx = s 

        else: 

            dy = s   

        c.move( p,dx,dy ) 

        c.update() 

    except: 

        e.delete( 0,END ) 

        e.insert( 0,"Err" ) 

        e.update() 

  



4.  Consider the following Tkinter program: 
 

from Tkinter import *  

 

root = Tk()  

f = Frame( root ) 

f.pack() 

 

c = Canvas( f, height = 100, width = 200, 

            background = "white",  

            bd = 5, relief = RIDGE ) 

c.grid( rowspan = 2 )   

 

p1 = 100 

p2 = 50 

 

def action( e ): 

    global p1, p2 

    if e.num == 1: 

        if v.get() == 1: 

            r1.deselect() 

            r2.select() 

        else: 

            c.create_line( p1, p2, e.x, e.y ) 

        p1 = e.x 

        p2 = e.y 

    elif e.num == 2: 

        s = d.get()                                   # 1 

        c.create_text( e.x, e.y, text = s ) 

         

    c.update() 

 

c.bind( "<Button>",action )                           # 2 

 

d = Entry( f, width=20 ) 

d.grid(row=2) 

d.insert( 0,"message" ) 

 

v = IntVar() 

 

r1 = Radiobutton( f, text = "Move", variable = v, value = 1) 

r1.grid( row=0, column=1);                                              

 

r2 = Radiobutton( f, text = "Join", variable = v, value = 0) 

r2.grid( row=1, column=1); r2.select()                                               

 

x = Button( f, text = "A2", command = root.destroy ) 

x.grid( row=2, column=1)                              # 3 

 

root.mainloop()         

 (a) Explain precisely the action of the lines identified with comments 1, 2, and 3.   [5] 

 (b) Draw the graphical user interface created by the program.  You do not need to be precise 

on the sizes of the items, but you will lose marks if you do not ensure that the positioning 

of items relative to one another is correct – look at the layout commands carefully.  [6] 

 (c) Explain, in only a few sentences, the operation of the program e.g. what is displayed as 

the user interacts with the various components of the interface. DO NOT explain exactly 

what each separate line does.  [5] 



4a 

1: Gets the text that is currently in the text entry box 'd', assigning it to variable 's'. 

2: This sets an action handler for the Canvas 'c'.  The action that activates this 

handler is any button being pressed down on the mouse.  The activity that is 

executed as a result of the action is the 'action' function. 

3: This is a layout instruction, directing the button widget 'x' to be placed in the 

row 2 (ie third row) and column 1 (ie second column) of the grid inside Frame 'f'. 

4b 
 

 

The window contains Tkinter objects on a 2 across by 3 down grid.  It contains a 

canvas drawing area across the top, twice as wide as it is high taking 2 down by 1 

across of the grid in the top left.  The canvas is initially empty.  In the final column 

adjacent to the canvas on the right are two radio buttons, one above the other, 

labeled Move and Join respectively, in row positions 0 and 1 respectively.  The Join 

button should be selected. Below the canvas in the lower left position (0,2), is a text 

entry box, initially holding the text "message".  In the lower right position (1,2), 

below the radio buttons, there is a button with the text A2.  All items are centred in 

their columns. 

Only the general configuration need be shown.  Absolutely precise positioning is 

not required. 

3c 

The program allows the user to draw lines and text in the canvas.  The program 

remembers the last position clicked on in the canvas with mouse button 1 – 

initially this is set to 100, 50.  With Join selected, each time mouse button 1 is 

clicked, a line is drawn from the last position clicked to the current position.  If 

Move is selected, the position is moved without drawing a line, next time button 1 

is clicked – this automatically resets the radio buttons to Join.  If mouse button 2 

is clicked, then the text in the text box is drawn onto the canvas, centred at the 

position clicked.   The A2 button quits the program. 

 

 


