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Abstract We extend a non-Tikhonov asymptotic embedding, proposed earlier, for
calculation of conduction velocity restitution curves in ionic models of cardiac ex-
citability. Conduction velocity restitution is the simplest non-trivial spatially extended
problem in excitable media, and in the case of cardiac tissue it is an important tool
for prediction of cardiac arrhythmias and fibrillation. An idealized conduction veloc-
ity restitution curve requires solving a non-linear eigenvalue problem with periodic
boundary conditions, which in the cardiac case is very stiff and calls for the use of
asymptotic methods. We compare asymptotics of restitution curves in four examples,
two generic excitable media models, and two ionic cardiac models. The generic mod-
els include the classical FitzHugh–Nagumo model and its variation by Barkley. They
are treated with standard singular perturbation techniques. The ionic models include
a simplified “caricature” of Noble (J. Physiol. Lond. 160:317–352, 1962) model and
Beeler and Reuter (J. Physiol. Lond. 268:177–210, 1977) model, which lead to non-
Tikhonov problems where known asymptotic results do not apply. The Caricature
Noble model is considered with particular care to demonstrate the well-posedness of
the corresponding boundary-value problem. The developed method for calculation
of conduction velocity restitution is then applied to the Beeler–Reuter model. We
discuss new mathematical features appearing in cardiac ionic models and possible
applications of the developed method.
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1 Introduction

Cardiac excitability models Hodgkin and Huxley’s model of the electric proper-
ties of the giant squid axon (Hodgkin and Huxley 1952) was the first to describe in
mathematical terms the exclusively biological phenomenon of excitability. It started
a revolution in science well worth the Nobel prize it was awarded. This achievement
has been followed by the development of a long sequence of mathematical models
of heart excitability starting from Noble’s (1960, 1962) works. Due to its importance
for biomedical applications, particularly for understanding and treatment of cardiac
arrhythmias caused by pathologies of electrical excitation and propagation, the math-
ematical modeling direction has been under intensive development during the last
decades, and currently has reached clinical applications and industrial scale. It lies in
the heart of the ambitious Physiome project,1 which aims at a mathematical descrip-
tion of the physiology of whole organisms. Due to complexity of the models involved,
they are mainly used in numerical computations and contribute a substantial load on
the UK national supercomputer facilities (Plank et al. 2006).

Stiffness of cardiac excitability models The computational complexity of cardiac
models lies not only in the complexity of the heart as a system, which compared to
the brain is relatively modest, but also in the essential stiffness of cardiac equations.
These equations have to describe very sharp and fast excitation fronts where some
processes happen on the scale of tens of microseconds and micrometers, through to
tissue and organ level, on the scale of seconds and centimeters, thus covering several
orders of magnitude. Thus, a challenge for applied mathematics is how to turn this
stiffness from an adversary into an ally. A standard approach is to treat small parame-
ters, responsible for such stiffness, using asymptotic rather than numerical methods.
For the Hodgkin–Huxley model, a simple caricature easily treatable mathematically
has been introduced by FitzHugh (1961) and Nagumo et al. (1962), which was based
on a modification of the classical van der Pol (1920) system of equations. Asymptotic
analysis of FitzHugh–Nagumo type systems, a nice summary of which can be found,
e.g. in Tyson and Keener (1988), has achieved remarkable success in describing in
qualitative terms, many of the phenomena observed in more realistic, experiment-
based ionic models.

The traditional asymptotic approach The essence of the approach is separation
of the dynamic variables into “fast and slow”, similar to the classical Tikhonov–
Pontryagin scheme (Tikhonov 1952; Pontryagin 1957; Mishchenko and Rozov 1980),
only in a spatially extended context. A typical solution consists of moving, fast and
steep “fronts” and “backs” of excitation pulses, located near codimension-one mani-
folds, i.e. points in one spatial dimension (1D), lines in two spatial dimensions (2D),
and surfaces in three spatial dimensions (3D), which are interspersed by smooth and
slow intervals. During the fast fronts and backs, the slow variables remain almost
unchanged. During the slow intervals, the fast variables remain very close to their
quasi-stationary values determined by the current values of the slow variables. The
slow pieces are typically of two kinds: with lower and with higher values of the trans-
membrane voltage or a variable that corresponds to it. The lower-voltage, “diastolic”

1See http://www.physiome.org [n.d.].

http://www.physiome.org
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pieces are close to or include the “resting state”, representing excitable tissue which
was not excited for a long time, and the higher-voltage, “systolic” pieces represent
the “action potential” phase of the excitation. An extra feature of 2D and 3D is the
possibility of “wave breaks”, which are of particular relevance for cardiac arrhyth-
mias. Such wave breaks are moving codimension-two manifolds, i.e. points in 2D
and lines in 3D, where the fronts and backs meet. It is essential that mathematically,
fronts and backs are objects of the same nature, differing only in the direction of
motion: at the fronts, the systolic phase advances; at the backs, the systolic phase
recedes, so the wave break is where the interface between the phases is momentar-
ily stalled. This description allows even some analytical treatment of the motion of
wave breaks in 2D, including steadily rotating and meandering spiral waves of exci-
tation (Hakim and Karma 1999). Conceivably, this asymptotic description could be
also used numerically within an appropriate moving interface methodology.

The need for a non-Tikhonov embedding However, since models of FitzHugh–
Nagumo type have been typically postulated rather than derived from realistic ionic
models of cardiac excitation, the question about their quantitative validity was not
usually posed. Successful attempts to apply the same singular perturbation technique
as developed for systems of FitzHugh–Nagumo type, directly to detailed ionic mod-
els, have been made, e.g. Keener (1991), but this did not turn into a mainstream
practical approach. We believe that the reason is that systems of FitzHugh–Nagumo
type are actually quite different, in the asymptotic sense, from detailed ionic cardiac
models, as they fail completely to describe, even at a qualitative level, some important
properties of cardiac excitation, such as

• slow repolarization,
• slow subthreshold response,
• fast accommodation,
• variable peak voltage and
• front dissipation,

all of which are experimentally well established and also successfully reproduced by
detailed cardiac ionic models (Biktashev 2002; Biktashev et al. 2008). The slow re-
polarization means that, although cardiac excitation pulses do indeed possess steep
fronts, they have no steep backs, at least not steep enough compared to the steep-
ness of the fronts anyway. Hence, interpretation of wave breaks in 2D and 3D as
loci where fronts meet backs is inapplicable to cardiac models for absence of backs.
Since propagation blocks and wave breaks are very important in most applications of
mathematical cardiology, there is not much hope that the FitzHugh–Nagumo ideol-
ogy could lead to a practical numerical tool that could tame the stiffness of the cardiac
equations.

In a recent series of works (Biktashev 2002; Biktashev and Suckley 2004; Bikta-
sheva et al. 2006; Biktashev et al. 2008), we have developed an analytical approach
to cardiac equations based on their special structure, different from the FitzHugh–
Nagumo paradigm, and taking into account small parameters actually present (some-
times hidden) in the equations, rather than trying to force them into the Procrustean
bed of a classical scheme. Using the existence of large (or small) values of some vari-
ables for model reduction and perturbation analysis is a basic technique in applied
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mathematics. One well-known example is the quasi(pseudo)-steady-state approxima-
tion (Heineken et al. 1967; Segel and Slemrod 1989), which reduces the equations of
an enzyme reaction to a singular perturbation Tikhonov problem. Another prominent
example is the wide application of scale separation and model reduction techniques
to problems of chemical kinetics and reactive flows. Since in such problems the num-
ber of reacting species is huge, this is typically done by computational algorithms
such as Computational Singular Perturbations (CSP), Intrinsic Low-Dimensional
Manifolds (ILDM), the grad moment method and others (Gorban and Karlin 2005;
Kaper and Kaper 2002). It has been shown that these computational techniques gen-
erate the asymptotic expansion of a slow invariant manifold of a Tikhonov prob-
lem (Kaper and Kaper 2002; Zagaris et al. 2004).

However, the application of asymptotic embedding techniques is not restricted to
Tikhonov problems, nor must it, a priori, lead to such. Indeed, our recent works (Bik-
tashev 2002; Biktashev and Suckley 2004; Biktasheva et al. 2006; Biktashev et al.
2008) have clearly demonstrated that, to achieve a physiologically correct asymptot-
ics in realistic models of cardiac excitation, a parameter embedding is needed which
involves a large factor in front of individual terms, but not the whole, of the right-
hand side of some equations (e.g. the INa term in the transmembrane voltage evolu-
tion equation), non-analytical, perhaps even discontinuous, asymptotic limit of some
right-hand sides (e.g. the INa gating variables), even though the original system is
analytical, non-isolated equilibria in the fast subsystem and dynamic variables which
change their character from fast to slow within one solution (e.g. the transmembrane
voltage).

In particular, we have demonstrated that separate consideration of the fast subsys-
tem describing excitation front produces a simple useful criterion of dynamic prop-
agation block in a modern cardiac model (Simitev and Biktashev 2006), and the fast
and slow subsystems can be successfully matched to describe the action potential as
a singular limit in a single-cell (0D) variant of a simple cardiac model (Biktashev
et al. 2008). The next step is to combine the fast and slow description in a spatially
extended context.

CV restitution curves: a spatiotemporal problem involving fast and slow scales The
aim of the current work is to make this next step. For this purpose, we have cho-
sen the simplest non-trivial spatially extended problem that depends both on the fast
and the slow processes: the conduction velocity restitution curve. This choice is also
motivated by the practical importance of restitution curves, which are of two kinds.
The action potential duration (APD) restitution curve is the dependence of the APD
on the duration of the preceding diastolic interval (DI). Nolasco and Dahlen (1968)
noted that in a single-cell setting and with a fixed period of excitation, a slope of
the APD(DI) curve greater than one indicates instability of the even APD sequence.
For this reason, the restitution curves are considered an important instrument in un-
derstanding instabilities of excitation waves leading to onset of cardiac arrhythmias.
Later studies have demonstrated that in a spatially extended context, another im-
portant tool is the conduction velocity (CV) restitution curve, which describes the
dependence of CV on the preceding diastolic interval. The CV(DI) dependence to-
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gether with the APD(DI) dependence and the fact that the overall period known in
electrophysiology as Basic Cycle Length is given by BCL = APD + DI, makes it
possible to define the CV(BCL) dependence, i.e. relationship between the period of
excitation waves and their propagation speed, which is also known as the dispersion
relation in general wave theory. The CV(DI) curve depends on the definition of the
boundary between action potential phase and the diastolic phase, which for cardiac
excitation pulses is arbitrary for lack of sharp backs. The CV(BCL) dependence is,
on the contrary, free from such arbitrariness and is well defined mathematically. So
in our study, we shall use this dependence as the restitution curve.

Types of restitution curves In view of the clinical importance of fibrillation, nu-
merous experimental, e.g. Garfinkel et al. (2000), Watanabe et al. (1995), Boyett
and Jewell (1978), Nolasco and Dahlen (1968), Chialvo et al. (1990) and numerical,
e.g. Courtemanche (1996), Karma (1994), Courtemanche et al. (1993), Ito and Glass
(1992), Karma et al. (1994), Watanabe et al. (2001) studies are concerned with tests
of this hypothesis, and with measurements and computation of restitution curves in
various types of cardiac cells. Measurement and computation of restitution curves are
not straightforward. A number of different experimental/numerical protocols are in
use (see, e.g. Schaeffer et al. 2007 and references therein), which produce different
curves and it is not always clear which is the most relevant one in a particular case.
For instance, in the so-called “dynamic” protocol the tissue is paced at a given basic
cycle length until a periodic regime is established, and the APD, DI, and CV of the
established pulses are recorded. Then the process is repeated with other cycle lengths.
Another protocol is the “S1–S2” restitution protocol, in which the tissue is paced at
a fixed cycle length S1 until a periodic regime is reached, and is then perturbed by an
out-of-sequence stimulus (S2) and the response is recorded. The preparation is then
paced at a the same S1 until steady-state has been reached again, and is then perturbed
by a different S2. The curve so measured depends on the choice of the S1 cycle length
and, therefore, it is not even unique. Although used in electrophysiological practice,
these protocols have a number of drawbacks: they contain some arbitrariness, and
thus lead to results which are not unique, they are prone to systematic errors since it
not easy to distinguish the ultimate periodic regime from transient, they are time con-
suming and, in the case of numerical simulations, computationally expensive since a
repeated solution of large systems of stiff nonlinear partial differential equations is
required.

The aim of this study In the present study, we have chosen to use an idealized def-
inition of the “dynamic” restitution protocol, i.e. we consider strictly periodic wave
solutions, and study the dependence between the BCL and CV of such solutions.
This dependence is well defined mathematically via solvability of the corresponding
boundary-value problem with periodic boundary conditions. This idea is not new but
so far it has had only limited application for the following two reasons. First, the re-
sulting boundary value problem is typically very stiff, with very steep upstroke but
slow prolonged plateau and recovery stages of a typical cardiac action potential, and
so its direct solution requires considerable effort. Secondly, the Tikhonov asymptotic
embeddings which are typically used to alleviate such scale disparities fail to produce
results which are even qualitatively correct, as noted above.
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We wish to emphasize that the periodic boundary value problem approach we
advocate here is applicable both to cardiac models with Tikhonov as well as with
non-Tikhonov asymptotic structure and in this work we illustrate both of these cases.
However, in the absence of a rigorous theory of the non-Tikhonov case, we make a
special effort to investigate whether the resulting asymptotic boundary value problem
is well-posed. This is not obvious a priori.

Structure of the paper In Sect. 2, we formulate the periodic boundary-value prob-
lem which gives a general method of computing CV restitution curves regardless of
the asymptotic structure of the particular cardiac model. In Sects. 3, 4, and 5, we ap-
ply the method to well-known models with Tikhonov asymptotic structure in order to
provide simple illustrations. Section 6 is central to the article. Here, we use a suitably
reformulated version of the Noble model of cardiac Purkinje fibers (Noble 1962) to
illustrate the non-Tikhonov asymptotic reduction in detail and to investigate whether
the resulting asymptotic boundary value problem is indeed well-posed. In Sect. 7, we
calculate the full and the asymptotic CV restitution curves of the Beeler–Reuter ven-
tricular model (Beeler and Reuter 1977) and demonstrate a good quantitative agree-
ment. Section 8 provides concluding remarks and suggests possible extensions of the
work.

2 Restitution Curves: The Boundary-Value Problem Formulation

A typical voltage-gated model of cardiac excitation and propagation in a one-
dimensional, homogeneous, and isotropic medium has the form of a reaction–
diffusion system,

∂E

∂t
=

∑

l

Il(E,y) + D
∂2E

∂x2
, (1a)

∂y
∂t

= Fy(E,y), (1b)

where x is the spatial coordinate, t is the time, E is transmembrane voltage of the
cardiocytes, the functions Il(·) represent individual transmembrane ionic currents,
each conducted by a specific type of transmembrane channel, the vector y includes
a number of “gating” variables controlling the permittivity of the ionic channels and
the intra- and extra-cellular concentrations of ions involved, and D > 0 is a “volt-
age diffusion constant”, depending on the electric capacitance of cardiocytes and
Ohmic contacts between them. Note that D can be made equal to any positive value
by rescaling the spatial variable x; we shall choose this scaling so that D = 1, or
related to the small parameter when considering asymptotics. This means that the di-
mensionality of x is that of t1/2. Correspondingly, to compare our subsequent results
with experimental data, lengths and speeds should be scaled up by the factor of D1/2,
where D is the value of the voltage diffusion coefficient, depending on the properties
of the given tissue and the direction of wave propagation.

The number of gating variables, concentrations and the form of the functions Il(·)
and Fy(·) are fitted to reproduce the very latest experimental observations. As experi-
mental methods improve, the models evolve to be ever more complicated but the gen-
eral form of the reaction–diffusion system (1) has hardly changed since 1962 when
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the first cardiac model was published by Noble (1962). A relatively recent but by no
means ultimate list of cardiac models can be found in the review (Clayton 2001) and
confirms this assertion.

CV restitution curves are typically computed by direct numerical simulation of the
partial differential equations (1) following a particular protocol. As argued above, this
is computationally expensive and time consuming, and prone to systematic errors.
A more sound mathematical approach is to look for solutions in the form of waves
traveling with a constant velocity c > 0 and a fixed shape. This is guaranteed by
the traveling wave ansatz F(z) = F(x − ct) for the dynamical variables F = E,y,
where z = x − ct . Equations (1) are then reduced to a system of autonomous ordinary
differential equations and the CV restitution curve can be found from the periodic
boundary value problem

d2E

dz2
+ c

dE

dz
+

∑

l

Il(E,y) = 0, (2a)

c
dy
dz

+ Fy(E,y) = 0, (2b)

E(0) = E(cP ),
dE

dz

∣∣∣
z=0

= dE

dz

∣∣∣
z=cP

,

y(0) = y(cP ), E(0) = E0,

(2c)

where P is the temporal period of the waves. The last boundary condition E(0) = E0
is related to the translational invariance of the problem. This condition allows the
selection of a single solution out of a one-parametric family of solutions differing
from each other only in their position along the z axis; thus the exact choice of E0
is not essential, as long as it is selected within the range of values of E(z). Problem
(2) is of order (dim(y) + 2), where dim(y) is the dimension of the vector y, and its
general solution includes (dim(y) + 2) arbitrary constants. In addition, the problem
involves two unknown parameters, c and P . On the other hand, it has (dim(y) + 2)

periodic boundary conditions plus the last “phase” or “pinning” condition required
to eliminate the translational invariance of the system. Thus, we have (dim(y) + 4)

parameters and (dim(y) + 3) constraints on them, so the solution of the problem
should yield, in principle, a one-parameter family of solutions. A projection of this
family onto the (P, c) plane is the sought after “ideal” dynamic CV restitution curve
describing the dependence of the wave speed on the wave period.

3 Outline of the Singular Perturbation Theory of Tikhonov Excitable Systems

The method outlined in Sect. 2 is applicable to any cardiac model, but due to the
inherent stiffness of cardiac equations solution it is difficult for a numerical study if
asymptotics are not exploited. Our first illustrations of the method will involve the
Barkley model (Barkley 1991) and the FitzHugh–Nagumo system (FitzHugh 1961;
Nagumo et al. 1962). We take advantage of the fact that these models have well-
known asymptotic structures of a Tikhonov type which has been studied in a number
of works, e.g. (Keener 1980; Tyson and Keener 1988; Dockery and Keener 1989;
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Murray 1991; Keener and Sneyd 1991; Meron 1992) and thus they provide simple
illustrations and set the context for our main results.

3.1 Asymptotic Reduction of the CV Restitution Boundary Value Problem for
Tikhonov Systems

A typical model with a Tikhonov asymptotic structure has the form

∂E

∂t
= 1

ε
FE(E,y) + ε

∂2E

∂x2
, (3a)

∂y

∂t
= Fy(E,y), (3b)

where E is interpreted as the voltage while y is taken to represent all other variables
of an ionic cardiac model. We assume for simplicity that the dynamical variables E

and y are scalar fields, which is true for the Barkley and the FitzHugh–Nagumo mod-
els. The small parameter ε � 1 specifies the asymptotic structure of the system ex-
plicitly by indicating the relative magnitude of the various terms in the model. Here,
and in subsequent asymptotic formulations, the spatial scaling is chosen so that the
diffusion coefficient is equal to ε; the convenience of this choice will be evident
shortly. In order for (3) to have excitable or oscillatory dynamics, certain properties
of the functions FE(·) and Fy(·) need to be assumed. We shall assume that in a certain
interval of y values, y ∈ Iy = (ymin, ymax), the following is true:

A1. Equation FE(E,y) = 0, understood as an equation for E at a fixed y, has three
roots, namely E−(y) < E∗(y) < E+(y). This equation defines the reduced slow
manifold of the system (3) in the sense of the geometric singular perturbation
theory (Jones 1995; Kaper 1999).

A2. The roots have alternating stability in linear approximation, that is ∂EFE(E−(y),

y) < 0, ∂EFE(E∗(y), y) > 0 and ∂EFE(E+(y), y) < 0, where ∂E denotes a par-
tial derivative.

Further, we assume that, in a possibly smaller interval y ∈ I ′
y = (y′

min, y
′
max) ⊆ Iy ,

the following is true:

A3. The slow dynamics for y is growth for the lower root E = E−(y) and decrease
for the upper root E = E+(y), that is Fy(E−(y), y) > 0 and Fy(E+(y), y) < 0.

A4. The periodic wave solutions of interest only involve the interval y ∈ I ′
y .

These assumptions are true for the Barkley and the FitzHugh–Nagumo models, and
are illustrated in Figs. 1(a) and 2(a) below. The last assumption A4, unlike the first
three, is difficult to formulate in a priori terms, and we shall discuss its implications
as we obtain the relevant results below.

Due to assumption A1, the sets (E−(y), y)) and (E+(y), y)) are disjoint in the
(E,y)-plane. These two sets are known as the diastolic and the systolic branches of
the reduced slow manifold, respectively.

To formulate the CV restitution boundary value problem (2) for (3), we look for
solutions in the form of waves traveling with a constant velocity c and a fixed shape,
i.e. we assume the traveling wave ansatz z = x − ct , which gives the asymptotic
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boundary-value problem

ε2 d2E

dz2
+ εc

dE

dz
+ FE(E,y) = 0, (4a)

c
dy

dz
+ Fy(E,y) = 0, (4b)

E(0) = E(P ) = E0,
dE

dz

∣∣∣
z=0

= dE

dz

∣∣∣
z=P

, y(0) = y(P ). (4c)

We first formulate the slow and fast subsystems corresponding to this problem, and
after that we will discuss matching and boundary conditions.

The slow-time subsystem is obtained immediately from (4) in the limit ε → 0, and
has the form

FE(Ē, ȳ) = 0, (5a)

c
dȳ

dz
+ Fy(Ē, ȳ) = 0, (5b)

so a unique solution is obtained by imposing a single boundary condition, e.g.

ȳ(0) = y∗, (6)

where y∗ is a constant. Here, we use Ē(z) = limε→0 E(z) and ȳ(z) = limε→0 y(z) to
denote the slow-subsystem solution approximation and distinguish it from the exact
solution.

The fast-time subsystem is obtained from (4) by first rescaling the traveling wave
coordinate, Z = (z − z∗)/ε, where z∗ = const is the position of the jump (front or
back) in the slow wave coordinate, and then taking the limit ε → 0, which gives the
equations

d2V

dZ2
+ c

dV

dZ
+ FE(V,Y ) = 0, (7a)

dY

dZ
= 0, (7b)

the boundary conditions for which can be taken in the form

V (−∞) = El, V (+∞) = Er, V (0) = V0,

dV

dZ

∣∣∣
Z→+∞ = 0, Y (−∞) = Y∗.

(8)

Above we have introduced V (Z) = limε→0 E(z∗+εZ) and Y(Z) = limε→0 y(z∗+
εZ) for the fast-subsystem approximation to explicitly distinguish it from the solu-
tion in the original slow coordinate. The arbitrary constant V0 is assumed in the range
of V , and is used to define the position z∗ of the jump in terms of the slow wave co-
ordinate z, so that E(z∗) = V0. Note that (7) are obtained in that form without the
need of ε-dependent scaling of the speed c only if the spatial scaling depending on ε

is chosen as in (3), which is the reason for that choice.
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3.2 Solution of the Fast Subsystem

Due to (7b), Y is a first integral, and then (7a) together with the boundary condi-
tions (8) present an eigenvalue problem for the profile V (Z) and velocity c of a
trigger wave, depending on Y = Y∗ as a parameter. It also depends, of course, on
the values of the voltage to the left and to the right of the front, El and Er , which
should be the two stable roots of FE(·, Y∗), i.e. {El,Er} = {E−(Y∗),E+(Y∗)}. Un-
der the assumptions made about function FE(·, Y∗) and with an appropriate choice
of the pinning value V0, the fast-time boundary-value problem for the trigger wave
has a unique solution, which is guaranteed by a result due to Aronson and Wein-
berger (1978, Theorem 4.1). We denote this unique solution by

V (Z) = V (Z;Y∗,El,Er); (9)

and the corresponding propagation speed by

c = C(Y∗;El,Er). (10)

The boundary value problem (7b), (8) is invariant with respect to simultaneous trans-
formation Z → −Z, c → −c, El ↔ Er . Hence, it follows that

V (Z;Y∗,Er,El) = V (−Z;Y∗,El,Er) (11)

and

C(Y∗;Er,El) = −C(Y∗;El,Er). (12)

Note that these formal solutions can be with positive as well as negative c; we are,
however, only interested in the waves propagating rightwards, c > 0. Now we can
discuss fronts and backs as two different types of trigger waves.

• Suppose that for some Yf we have C(Yf ;E+(Yf ),E−(Yf )) > 0. This means
that we have a forward propagating trigger wave that switches the system from
the lower quasi-equilibrium Er = E−(Yf ) to the upper quasi-equilibrium El =
E+(Yf ). We will call this type of fast solution a front.

• Now suppose that for some Yb we have C(Yb;E+(Yb),E−(Yb)) < 0. This means
that an up-jump trigger wave does not propagate forward but retracts backward,
and is not suitable for us as we are interested in forward propagating waves, c > 0.
However, due to (10), we know that we then have C(Yb;E−(Yb),E+(Yb)) > 0, that
is there is a forward propagating down-jump trigger wave switching from the upper
quasi-equilibrium Er = E+(Yb) to the lower quasi-equilibrium El = E−(Yb). We
will call this type of fast solution a back.

3.3 Solution of the Slow Subsystem

Equation (5a) implies that Ē = E±(ȳ) or Ē = E∗(ȳ). By assumption A2, the latter
solution is the unstable branch of the reduced slow manifold FE(Ē, ȳ) = 0 while
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E±(ȳ) are the stable ones. Hence, ignoring the possibility of “canard” solutions that
involve the unstable branch, we must solve

c
dȳ

dz
+ Fy

(
E±(ȳ), y

) = 0, (13)

which is separable and can be easily integrated, giving the (spatial) length of the piece
of a solution say between ȳ(z1) = y1 and ȳ(z2) = y2 as

z2 − z1 = c

∫ y1

y2

dy

Fy(E±(y))
, (14)

where the plus subscript refers to the systolic (action potential) branch and the minus
subscript refers to the diastolic (diastolic interval) branch. Naturally, z2 > z1 requires
that y1 − y2 and Fy(E±(y) have the same sign.

3.4 Matching

A period of a steadily propagating periodic pulse train, to which the asymptotics
described above are applicable, must include at least one fast front, one fast back,
one systolic interval and one diastolic interval. The restitution curve sought for can
be obtained from conditions of matching of these four pieces.

The asymptotic matching of the fast and slow pieces in the leading order in ε is
rather straightforward. Let us consider a fast jump solution (V (Z),Y (Z)), existence
of which is guaranteed by the Aronson–Weinberger theorem (Aronson and Wein-
berger 1978, Theorem 4.1), located at z = z∗ so that Z = (z − z∗)/ε, and compare
it with the slow solutions (E(z), y(z)) ahead and behind it. By van Dyke’s matching
rule, we have

lim
Z→−∞V (Z) ≡ El = lim

z→z∗−0
Ē(z),

lim
Z→+∞V (Z) ≡ Er = lim

z→z∗+0
Ē(z),

lim
z→z∗−0

ȳ(z) = Y∗ = lim
z→z∗+0

ȳ(z),

(15)

that is, ȳ is continuous across z = z∗ and the jump of Ē at z∗ is related to ȳ(z∗) and
c via the speed equation (10).

Note that above we distinguished between y, Y, and ȳ only in order to demonstrate
explicitly the decoupling of the slow- and the fast-time problems. However, they all
coincide in the leading order in ε, below we will, for simplicity of notation, use y

to represent any of them, as this distinction does not run any deeper. This applies, in
particular, to y∗ = Y∗, yf = Yf and yb = Yb . For the same simplicity, henceforth we
write E instead of Ē as they coincide in the same limit almost everywhere. We keep
distinguishing V , though, as it describes gradual change of the voltage where Ē has
a jump.

Let us take the conduction velocity c as the parameter, i.e. construct the periodic
pulse propagating with a given speed c > 0, and then calculate its temporal period P .
Further to assumptions A1–A4, we make the additional assumption.
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A5. Function C(y;E+(y),E−(y)) is a monotonically decreasing function of y.

This is easily verified for the two examples that follow; note that a monotonically
increasing function can be deal with in just the same way. Then equation

Cf (yf ) ≡ C
(
yf ;E+(yf ),E−(yf )

) = c (16)

may have at most one solution for first integral parameter yf of the front, and equation

Cb(yf ) ≡ C
(
yb;E−(yb),E+(yb)

) = c (17)

may have at most one solution for the first integral parameter yb of the back, and we
always have

yb > yf , (18)

as positive values of a monotonically decreasing function are achieved at smaller
values of the arguments than negative values.

Now we can formalize assumption A4 in the following way:

A4. There is a non-empty interval of c values, Ic = (cmin, cmax), which is the interval
of interest, such that Cb

−1(Ic) ⊂ I ′
y and Cf

−1(Ic) ⊂ I ′
y .

So, under the assumptions A1–A5, for every c ∈ Ic, there are exactly two types of
fast jump solutions,

• a front, at y = yf , with a pre-front voltage V
f
α and post-front voltage V

f
ω ,

Vf (Z) = V
(
Z;yf ,V f

ω ,V f
α

)
,

V f
α = E−(yf ), V f

ω = E+(yf ), yf = Cf
−1(c),

(19)

• and a back, at y = yb, with a pre-back voltage V b
α and post-back voltage V b

ω ,

Vb(Z) = V
(
Z;yb,V

b
ω ,V b

α

)
,

V b
α = E+(yb), V b

ω = E−(yb), yb = Cf
−1(c).

(20)

Let us now consider the slow pieces. Since there is only a unique choice of the
y-values they can have at their ends, namely yb and yf as shown above, there are
only two possibilities: a slow piece that has yb on the left (back) end and yf on the
right (head) end, and vice versa. For a piece with yb on the left and yf on the right,
due to inequality (18) and assumption A3, (14) gives positive length of the piece only
if it is a systolic piece. The temporal duration of such piece is the APD, and equals

APD =
∫ yb

yf

dy

−Fy(E+(y))
. (21)

Similarly, for a piece with yf on the left and yb on the right, due to inequality (18)
and assumption A3, (14) gives positive length of the piece only if it is a diastolic
piece. The temporal duration of such piece is the DI, and equals
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DI =
∫ yb

yf

dy

Fy(E−(y))
. (22)

Hence, we have demonstrated that in the assumptions made A1–A5, for every c ∈ Ic

there is exactly one, up to translations along the z axis, solution of each of the follow-
ing four kinds: a front, a systolic slow piece, a back and a diastolic slow piece, and
they can be matched only in a unique order. Hence, for every c, we have a periodic
solution, each period of which consists of exactly one piece of each kind.

To summarize, for every c ∈ Ic , in the leading order in ε, the temporal period of
the solution is

P = APD + DI =
∫ yb

yf

(
1

Fy(E−(y))
− 1

Fy(E+(y))

)
dy, (23)

where yf = Cf
−1(c) and yb = Cb

−1(c) are the unique solutions of (16) and (17),
respectively.

3.5 Special Case: Cubic Fast Dynamics

Problem (7a), (8) has an explicit solution in two popular special cases, for a cu-
bic (Zel’dovich and Frank-Kamenetsky 1938) and for a piece-wise linear (McKean
1970) dependencies FE(·;y). The two simple examples that follow fall in the case of
cubic non-linearity:

FE(E,y) = −A(E − E−)(E − E∗)(E − E+),

E±,∗ = E±,∗(y), A = A(y) > 0, (24)

which evidently satisfies assumption A2 as long as assumption A1 holds. Assump-
tion A5 imposes obvious constraints on the functions E±(y) defining this non-
linearity.

In this case, it is convenient to choose V0 = (E− + E+)/2 = (El + Er)/2, and
then the solution to problem (7), (8) is

V = V0 + (Er − El) tanh
(
(A/8)1/2(Er − El)Z

)
/2,

c = C(yf ;El,Er) = (2A)1/2 (V0 − E∗) , (25)

and we remind that {El,Er} = {E−(yf ),E+(yf )}.

4 Asymptotic Restitution Curves in the Barkley Model

4.1 The Model

The functions FE(·, ·) and Fy(·, ·) of the Barkley model (Barkley 1991) are given by

FE(E,y) = E(1 − E)

(
E − y + b

a

)
, (26a)

Fy(E,y) = E − y, (26b)
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Fig. 1 (Color online) CV asymptotics in the Barkley model. Parameters: a = 0.7, b = 0.1. (a) Schematic
of the asymptotic pulse solution in the (y,E) plane. Note that in this and the next figures, the direction of
the axes (E vertical, y horizontal) is different from the traditional (y vertical, E horizontal), which is to
comply with subsequent ionic gate figures where the transmembrane voltage (corresponding to E here) is
on the vertical axis. (b) CV restitution curves for various values of ε. The curve ε = 0 is the asymptotic
given by (32)

where a and b are parameters, satisfying b > 0, 2b < a < 1 + b. The equation of the
reduced slow manifold FE(E,y) = 0 is trivial to resolve and yields the branches

E− = 0, E∗ = (y + b)/a, E+ = 1. (27)

With this choice of the branches, assumptions A1 and A2 are satisfied for y ∈ Iy =
(−b, a − b). However, assumption A3, specifically the condition Fy(E+(y), y) < 0,
narrows this down to y ∈ I ′

y = (0, a − b). The phase portrait and the N-shaped form
of the reduced slow manifold of the Barkley model is illustrated in Fig. 1(a), with an
example of a trajectory corresponding to a traveling wave train.

4.2 The Fast Subsystem

Substituting (27) into (25), (16) and (17) gives the front velocity

c = Cf (yf ) = 1√
2

(
1 − 2

yf + b

a

)
> 0, yf ∈ (0, a/2 − b), (28)

and the back velocity

c = Cb(yb) = 1√
2

(
2
yb + b

a
− 1

)
> 0, yb ∈ (a/2 − b, a − b). (29)

As the front and the back have the same speed c, we can obtain yb for a given yf by
eliminating c from system of (28) and (29) and resolving it with respect to yb , which
gives

yb = a − 2b − yf , (30)

and provides a link for matching with the slow-time problem. The resulting interval
of achievable speeds is Ic = (0, (1 − 2b/a)/

√
2).
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Fig. 2 (Color online) CV asymptotics in the FitzHugh–Nagumo model. Parameters: β = 0.13, α = 0.37.
(a) Schematic of the asymptotic pulse solution in the (y,E) plane. (b) CV restitution curves for various
values of ε. The curve ε = 0 is the explicit asymptotic result found from (35) and (38), (39) as detailed in
the penultimate paragraph of Sect. 5

4.3 The Slow Subsystem and Matching

Evaluating expression (23) along the stable branches E+(y) and E−(y) of the re-
duced slow manifold given by (27), yields the temporal period of the wave

P = ln

[
(1 − yf )yb

(1 − yb)yf

]
. (31)

Combining expressions (28), (30), and (31), finally, yields the CV restitution curve
in explicit form

P = ln

(
(a − 2b + ac

√
2)(2 − a + 2b + ac

√
2)

(a − 2b − ac
√

2)(2 − a + 2b − ac
√

2)

)
(32)

which for c ∈ Ic gives the range P ∈ (0,∞). Figure 1(b) illustrates this result in com-
parison with curves obtained by numerical solution of the full boundary value prob-
lem (2) for equations (3) with right-hand sides given by (26) and periodic boundary
conditions as described in Sect. 2.

5 Asymptotic Restitution Curves in the FitzHugh–Nagumo Model

5.1 The Model

We will use the right-hand sides FE(·, ·) and Fy(·, ·) of the FitzHugh–Nagumo equa-
tions in the following form:

FE(E,y) = E(1 − E)(E − β) − y, (33a)

Fy(E,y) = αE − y, (33b)

which is related to the original (FitzHugh 1961; Nagumo et al. 1962) formulation by
an affine transformation of the variables, involving the small parameter ε. Parameters
α and β are assumed to obey 0 < β < 1/2, α > (1 −β)2/4. The corresponding phase
portrait is illustrated in Fig. 2(a), with a typical trajectory corresponding to a traveling
wave train.
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5.2 The Fast Subsystem

To use the general results on the front velocity (25), we need to know the branches
of the reduced slow manifold E±(y) and E∗(y) as functions of the slow variable y.
However, unlike the case of the Barkley model, here this would require using the
formula for the roots of a generic cubic equation. This is rather inconvenient so we
employ an alternative strategy. Given the value of the pre-front voltage at the lower
branch of the reduced slow manifold, V

f
α = E−(yf ), we determine from (33a) the

corresponding value of slow variable during the front yf = V
f
α (1 − V

f
α )(V

f
α − β).

Further, to find the corresponding values of E∗(yf ) and the post-front voltage of the

up-jump V
f
ω = E+(yf ), we need to solve the cubic E(1 − E)(E − β) − yf = 0

for which we already know one root, namely E = V
f
α , so the cubic is divisible by

(E−V
f
α ). Hence, the other two roots are solutions of the resulting quadratic equation,

which leads to the required values

E∗(yf ) = 1

2

(
β + 1 − V f

α −
√

(β − 1)2 + 2V
f
α (β + 1) − 3

(
V

f
α

)2
)
, (34a)

V f
ω = 1

2

(
β + 1 − V f

α +
√

(β − 1)2 + 2V
f
α (β + 1) − 3

(
V

f
α

)2
)
, (34b)

and, therefore, we get the expression for the front velocity

Cf (y) =
√

2

4

[
3V f

α + 3
√

(β − 1)2 + 2V
f
α (β + 1) − 3

(
V

f
α

)2 − β − 1
]
, (35)

assuming V
f
α = E−(y), and a similar expression for the back velocity. Finally, from

the condition Cb(yb) = Cf (yf ), we find the pre-back voltage as

V b
α = E+(yb) = 2

3
(β + 1) − V f

α , (36)

which provides the link for matching with the slow-time system. The interval of bista-
bility required by assumptions A1 and A2 in this case is Iy = (ymin, ymax), where
ymax,min = (1 + β ± σ)(2 − β ∓ σ)(1 − 2β ± σ)/27 with upper signs are for ymax,
lower signs are for ymin, and σ ≡ √

1 − β + β2. Assumption A3 narrows this to
y ∈ I ′

y = (0, ymax). Assumptions A4 and A5 for this interval are verified by direct

elementary calculations, giving Ic = (0, cmax) where cmax = (1 − 2β)/
√

2.

5.3 The Slow Subsystem and Matching

To use the coordinate E± to describe the motion along the reduced slow manifold,
we rewrite (5) as

dE±
dz

= dE±
dy

dy

dz
= αE± − E±(1 − E±)(E± − β)

−3E±2 + 2(β + 1)E± − β
. (37)
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Therefore, we have the action potential duration as the time between V
f
ω and V b

α

along the upper branch of the reduced slow manifold,

APD =
∫ V b

α

V
f
ω

−3E2 + 2(β + 1)E − β

αE − E(1 − E)(E − β)
dE, (38)

and the diastolic interval as the time between V b
ω and V

f
α along the lower branch of

the reduced slow manifold,

DI =
∫ V

f
α

V b
ω

−3E2 + 2(β + 1)E − β

αE − E(1 − E)(E − β)
dE (39)

and hence the period of the wave P = APD + DI. Note that (38) and (39) have the
same integrand, and only differ in the integration limits, which are related by rela-
tionship (34b), a similar expression relating V b

ω and V b
α , and (36).

To summarize, (35) gives the wave velocity c as the function of the pre-front volt-
age V

f
α . Equation (36) gives the pre-back voltage V b

α as a function of the pre-front

voltage V
f
α . Equation (34b) and its analogue for the back give the post-front voltage

V
f
ω and post-back voltage V b

ω as functions of the pre-front voltage V
f
α . Using those,

finally, (38) and (39) give the wave period P , as a function of the pre-front voltage
V

f
α . Hence, we have a parametric description of the conduction velocity restitution

curve, (P (V
f
α ), c(V

f
α )) in a parametric form with parameter the pre-front voltage

V
f
α . The parametric representation can be transformed into explicit representation by

noting that expression (35) is equivalent to a quadratic equation with respect to the
pre-front voltage V

f
α and can be easily solved to give the desired explicit expression

for P = APD + DI as a function of c; the result, however, is rather lengthy and we
omit it here.

Figure 2(b) presents a comparison between this explicit asymptotic P(c) depen-
dence and the solution of the full periodic boundary-value problem at various values
of ε.

6 Asymptotic Restitution Curves in the Caricature Noble Model

The classical asymptotic theory of slow-fast systems described in the previous sec-
tions is not appropriate for the asymptotic reduction of cardiac equations which have
a different nature, as pointed out in the Introduction. To develop a fully fledged al-
ternative general theory is beyond the scope of this paper. Instead, in this section, we
study an archetypal “caricature” model of cardiac excitation previously proposed in
Biktashev et al. (2008). One can think of this caricature model as a simple example
of an ionic cardiac model in which a small parameter has been embedded so as to
reveal explicitly the non-Tikhonov properties of the equations. The resulting fast and
the slow problems have analytical solutions in closed form which makes the model
convenient for investigation of well-posedness of the asymptotic reduction of the CV
restitution problem in this particular case.
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6.1 The Model

We consider the following set of equations (Biktashev et al. 2008):

∂E

∂t
= 1

ε
GNa(ENa − E)θ(E − E∗)h + g̃2(E)n4 + G̃(E) + ε

∂2E

∂x2
, (40a)

∂h

∂t
= 1

ε
Fh

(
θ(E† − E) − h

)
, (40b)

∂n

∂t
= Fn

(
θ(E − E†) − n

)
, (40c)

where

g̃2(E) = g21θ(E† − E) + g22θ(E − E†),

g21 = −2, g22 = −9,

G̃(E) =
⎧
⎨

⎩

k1(E1 − E), E ∈ (−∞,E†),

k2(E − E2), E ∈ [E†,E∗),
k3(E3 − E), E ∈ [E∗,+∞),

k1 = 3/40, k2 = 1/25, k3 = 1/10, E1 = −280/3,

E2 = (k1/k2 + 1)E† − E1k1/k2 = −55,

E3 = (k2/k3 + 1)E∗ − E2k2/k3 = 1,

Fh = 1/2, Fn = 1/270,

ENa = 40, E† = −80, E∗ = −15, GNa = 100/3,

(41)

and where θ(·) is the Heaviside unit step function.
The time in this model is measured in ms and the voltages E, E1, E2, E3, E∗, E†

are measured in mV. Correspondingly, the units of g̃2, g21, g22 are mV/ms, and the
units of GNa, Fh, and Fn are ms−1. As discussed above in Sect. 2, the space scale
is chosen to get the convenient value ε for the coefficient at the voltage diffusion
term, so the dimensionality of x in (40) is given by the “space unit” su = ms1/2.
The real physical lengths are given by xD1/2 where D is the tissue voltage diffusion
coefficient in the direction of wave propagation. The rest of the quantities in (40) are
dimensionless.

This system is obtained from the authentic Noble model of Purkinje fibers (No-
ble 1962) using a set of verifiable assumptions and well-defined simplifications as
detailed in Biktashev et al. (2008). The main features of (40) which make them an
appropriate illustration are:

(a) They reproduce exactly the asymptotic structure of the authentic Noble model (No-
ble 1962), which is guaranteed by the embedding of the artificial small parame-
ter 0 < ε � 1. The authentic Noble model is the prototype of all contemporary
voltage-gated cardiac models, and we believe that the asymptotic structure of (40)
is rather generic in this class. Realistic voltage-gated cardiac models do not have
explicit small parameters already present in them; or, rather, they have so many
parameters that it is not a straightforward task which of them to use for asymp-
totics. Hence, we employ a procedure of embedding artificial small parameters,
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as discussed, e.g. in Biktashev et al. (2008). An example of the embedding proce-
dure appears in Sect. 7 below, where the Beeler–Reuter model (Beeler and Reuter
1977) is discussed.

(b) Equations (40) have the simplest possible functional form consistent with prop-
erty (a). Most functions in the right-hand side are replaced by constants as jus-
tified in Biktashev et al. (2008) which allows analytical solutions to be obtained
in closed form. This in turn makes it possible to prove the well-posedness of the
asymptotic boundary value problem to be formulated below.

For brevity, we shall call this model “Caricature Noble”.

6.2 The Asymptotic Reduction of the CV Restitution Boundary-Value Problem

Model (40) contains an explicit small parameter ε embedded in essentially the same
way as it would be in a realistic model. In this section, we demonstrate how this
may be used for simplification of the Caricature Noble model or, indeed, of a more
realistic ionic model.

A slow-time subsystem which describes the plateau and the recovery stages can
be obtained immediately from (40), by taking the limit ε → 0. At time scales much
longer than ε, the second equation implies h → θ(E† − E). Hence, the first term
of (40a) is proportional to θ(E − E∗)θ(E† − E) = 0 which vanishes in the limit
ε → 0 despite the large factor ε−1 in front of it.2 The diffusion term ∂2

xE vanishes in
the same limit and we are left with the slow-time system,

dE

dη
= g̃2(E)n4 + G̃(E), (42a)

dn

dη
= Fn

(
θ(E − E†) − n

)
, (42b)

where η = t − x/c is the traveling wave coordinate, which we use in this section
instead of our standard choice of z = x − ct . A fast-time subsystem of (40) can be
obtained by stretching time and space, T = t/ε, X = x/ε, taking the limit ε → 0 and
neglecting the equation for n which decouples from the rest. It is useful to distinguish
explicitly the functions of the old from the functions of the new independent vari-
ables, say E(x, t) = V (X,T ) = V (x/ε, t/ε) and h(x, t) = H(X,T ) = H(x/ε, t/ε).
It is also useful to introduce at this stage the following non-dimensionalization
(which, as noted above, is different from other sections and specific for this particular
model)

v = V − E∗
ENa − E∗

, ξ = X
√

Fh, τ = FhT ,

g = GNa

Fh

, C = c/
√

Fh.

(43)

In these variables, the traveling wave ansatz becomes ζ = τ − ξ/C. As a result of
these transformations, we obtain the following fast-time model of the wave front,

2This is an attempt to summarize briefly the essence of the non-Tikhonov asymptotics of this and similar
models. For a more detailed treatment, see our previous publications, e.g. Biktashev et al. (2008).
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dv

dζ
= 1

C2

d2v

dζ 2
+ g(1 − v)θ(v)H, (44a)

dH

dζ
= θ(v† − v) − H, (44b)

where v† = (E† − E∗)/(ENa − E∗) < 0. In a periodic wave train, a front propagates
in the tail of the preceding wave, so slow pieces described by (42) and fast pieces
described by (44) alternate, and there is one slow piece and one fast piece per period,
as opposed to two fast pieces and two slow pieces in classical Barkley and FitzHugh–
Nagumo models. The matching points for the van Dyke rule are: (a) the end of a slow
piece η = P corresponds to the beginning of the fast piece ζ → −∞ and (b) the end
of the fast piece ζ → ∞ corresponds to the beginning of the next slow piece η = 0.
This situation is summarized by the following set of boundary conditions

v(−∞) = vα, v(∞) = vω,
dV

dζ

∣∣∣
ζ→∞ = 0,

H(−∞) = 1, v(0) = 0,

(45a)

together with

E(0) = E∗ + vω(ENa − E∗),
E(P ) = E∗ + vα(ENa − E∗),
n(0) = n(P ),

(45b)

where C ∈ (0,∞), P ∈ (0,∞), vα ∈ (−∞, v†), and vω ∈ (0,1) are parameters to
be found. Condition v(0) = 0 is a pinning condition as discussed above in (2),
i.e. we choose E0 = E∗. Condition H(−∞) = 1 follows from matching condition
H(−∞) = h(P ), by noting that h in the slow time system is given by h = θ(E† −E)

and E(P ) < E†. The asymmetry of the conditions imposed at ζ → ±∞ can be un-
derstood by analysing the ζ → ±∞ asymptotics of the linearized problem: the con-
dition on the ζ -derivative, v′(−∞) = 0, and the condition H(∞) = 0 are satisfied
automatically for open sets of solutions, whereas the condition on the ζ -derivative,
v′(+∞) = 0, excludes solutions exponentially growing as ζ → +∞ and the condi-
tion H(−∞) = 1 excludes solutions exponentially growing as ζ → −∞.

Equations (42) and (44) together with the boundary conditions (45) form a set
of coupled boundary value problems representing an asymptotic description of CV
restitution. The slow system is of order 2 while the fast system is of order 3 and
there are 4 unknown constants namely C, P , vα, and vω. Hence, 9 conditions are
needed to select a unique solution, while (45) provide only 8 conditions. Hence, a
one-parameter family of solutions may be found where the wave velocity is a function
of the wave period, C(P ).

The asymptotic boundary-value problem (42), (44), and (45) of CV restitution is
essentially simpler than the full one (2) for (40). Indeed, the small parameter has
been eliminated and the resulting system is no longer stiff. Furthermore, the right-
hand sides of equations are simpler and each stage of the action potential is modeled
asymptotically by a system of lower dimension. However, to be useful the coupled
asymptotic boundary value problem must satisfy two essential requirements: (a) the
coupled problems must be well-posed (b) their asymptotic solution must provide a
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good approximation to the solution of the full non-asymptotic problem. It is not ob-
vious that the asymptotic formulation of the CV restitution problem satisfies either
of these requirements in the non-Tikhonov case under consideration. While a proof
of properties (a) and (b) in the case of any arbitrary voltage-gated cardiac model is
beyond the scope of this paper, in this section, we prove the well-posedness of the
archetypal Caricature Noble problem (42), (44), and (45). The convergence of the
asymptotic and full solutions is demonstrated numerically.

6.3 The Fast Subsystem

6.3.1 Exact Solution

To solve the fast-time equations (44) and (45a), we follow the ideas presented in
Hinch (2002), Simitev and Biktashev (2006). Since the right-hand-side of (44a) is
a piece-wise function of voltage, we distinguish three intervals in terms of voltage
separated by v† and 0, or alternatively in terms of the wave coordinate ζ we use the
intervals ζ ∈ (−∞, κ], ζ ∈ [κ,0], and ζ ∈ [0,∞) with internal boundaries ζ = κ and
ζ = 0 for which the equations v(κ) = v† and v(0) = 0 are satisfied, and impose nat-
ural continuity conditions at the internal boundaries. Exact analytical solution of the
fast system can be obtained by first solving the H -equation (44b) which is separable
and independent of v and then substituting its solution in the voltage equation (44a).
In the first two intervals, ζ ∈ (−∞, κ] and ζ ∈ [κ,0], (44a) is then readily solvable.
The internal boundary point κ can be obtained by matching the solutions in these two
intervals. To solve the voltage equation (44a) in the third interval ζ ∈ [0,∞), we use
the auxiliary change of variables,

s = 2C
√

g exp
(
(κ − ζ )/2

)
,

w(s) = (
v(ζ ) − 1

)
exp

(−C2ζ/2
)
,

(46)

and obtain a modified Bessel equation of order C2,

s2 d2w

ds2
+ s

dw

ds
− (

C4 + s2)w = 0, (47)

the solutions of which are a linear superposition of the modified Bessel functions
IC2(s) and KC2(s) of order C2 (Abramowitz and Stegun 1965). The requirement
of boundedness of the solution at infinity eliminates the KC2(s) term. The value of
the post-front voltage vω is obtained as the limit of the expression for the voltage as
ζ → ∞ and using formula (Abramowitz and Stegun 1965, Eq. (9.6.7)). In summary,
the exact analytical solution of (44) is3

H(ζ) =
{

1, ζ ∈ (−∞, κ]
exp(κ − ζ ), ζ ∈ [κ,∞)

(48a)

v(ζ ) =
⎧
⎨

⎩
(v† − vα) exp(C2(ζ − κ)) + vα, for ζ ∈ (−∞,0]
1 − exp(C2ζ/2)

I
C2 (2C

√
g exp((κ−ζ )/2))

I
C2 (2C

√
g exp(κ/2))

, for ζ ∈ [0,∞),
(48b)

3At v† = 0, κ = 0, this solution coincides with that of Hinch (2002) at vr,eff = 0.
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where the internal boundary point κ is given by

κ = 1

C2
ln

(
1 − v†

vα

)
< 0 (49)

and the post-front (peak) voltage is

vω = lim
ζ→+∞v(ζ ) = 1 − (s0/2)C

2

�(C2 + 1)IC2(s0)
, (50)

where �(·) is the Gamma function (Abramowitz and Stegun 1965). The dispersion
relation is then found from the continuity of the derivative of voltage v at ζ = 0 and
takes the form

C2(1 − 2vα) = s0I
′
C2(s0)

IC2(s0)
, s0 = 2C

√
g

(
1 − v†

vα

)1/(2C2)

, (51)

where the prime indicates a derivative with respect to the argument s. At a given
pre-front voltage vα , the wave velocity C of the traveling impulses can be found as a
solution of the dispersion relation (51) and we remind that for comparison with nu-
merical results the wave velocity should be transformed back to the original variables,
c = C

√
Fh. Once again, note that the pre-front voltage vα cannot be found from con-

ditions (45a) alone and so the entire front solution is a one-parameter function as
expected.

The existence of solutions to the fast-time boundary value problem thus ultimately
depends on the existence of solutions to the transcendental dispersion relation (51).
Solutions are guaranteed by the following

Proposition 1 For every set of parameters such that vα < v† < 0 and C > 0,
there exists a unique value of the excitability parameter g = L(C,vα, v†) > 0 which
solves (51).

Proof 1◦ We will need an important property of modified Bessel functions: the ratio

rγ (p) = Iγ+1(p)

Iγ (p)

is a strictly increasing function of its argument p ∈ (0,∞) for any order γ > 0. This
follows directly from the estimate r ′

γ (p) > 0 (Amos 1974, p. 243).
2◦ Moreover, it is easily established from the asymptotics of Bessel functions that

limp→0 rγ (p) = 0 and limp→∞ rγ (p) = 1.
3◦ The right-hand side of (51) is a composite of the function

Fγ : p �→ pI ′
γ (p)

Iγ (p)
,

further depending on γ = C2 as a parameter, and the function

S : g �→ s0 = 2C
√

g

(
1 − v†

vα

)1/(2C2)

further depending on C, vα and v† as parameters. In the assumptions made, S is
obviously strictly increasing as a function of g, and maps (0,∞) → (0,∞). Using
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the recurrence relations (Abramowitz and Stegun 1965, Eq. (9.6.26)), we can rewrite
the definition of the function Fγ as

Fγ (p) = γ + prγ (p). (52)

By 1◦ and 2◦, we have that Fγ (p) is strictly increasing (and, therefore, invertible)
and maps (0,∞) → (γ,∞). Overall, we conclude that the right-hand side of (51) is
a strictly increasing function of g defined for all g > 0 and with the range of (γ,∞).

4◦ The left-hand side of (51) does not depend on the parameter γ and, since the
pre-front voltage vα < 0 by assumption, it lies within (γ,∞) which by 3◦ is the range
of the right-hand side. Hence, a solution g > 0 always exists. Moreover, since by 3◦
the right-hand side is strictly monotonic, the solution is unique. �

Denoting by Gγ the inverse function to Fγ at the constant order γ , the existence
of which has just been established in 3◦ above, the solution of (51) can be written as

g = L(C,vα, v†) ≡ 1

8C

(
1 − v†

vα

)−1/(2C2)

GC2

(
(1 − 2vα)C2). (53)

6.3.2 Bounds and Asymptotics

We have demonstrated the existence of solutions to the fast subsystem (44) and (45a).
We will now consider some estimates related to this solution which will lead to con-
venient explicit approximations of the propagation speed and the minimal excitability
required for wave propagation. We treat v† ∈ (−∞,0) as a parameter characterising
the system (and omit dependence on it in the function notations), while C and vα as
variables characterising a particular front solution.

Lower bounds on the excitability g From 1◦ and 2◦, we know that rγ (p) < 1, where
the inequality becomes approximate equality for large p. We shall denote this as
rγ (p) � 1. With account of (52), this implies that Fγ (p) � γ + p. A sharper upper
bound, rγ (p) � ((p2 + γ 2)1/2 − γ )/p, is given in (Amos 1974, Eq. (9)) and implies

Fγ (p) �
(
γ 2 + p2)1/2

, γ > 0, p > 0. (54)

Substituting this into (51), we get the more easily tractable approximation

C2(1 − 2vα) �
(

4C2g

(
1 − v†

vα

)1/C2

+ C4
)1/2

. (55)

Resolving this with respect to the excitability parameter g, we get a lower bound for
it in the form

g � L(C,vα) ≡ vα(vα − 1)C2
( −vα

v† − vα

)1/C2

. (56)

The minimum of L(C,vα) defined in (56) with respect to the wave speed C ∈ (0,∞)

at a constant pre-front voltage vα ∈ (−∞, v†) is achieved for

C = C∗(vα) =
(

ln

( −vα

v† − vα

))1/2

(57)
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and is equal to

L∗(vα) = evα(vα − 1) ln

( −vα

v† − vα

)
. (58)

Hence, for any fixed value of the pre-front voltage vα ∈ (−∞, v†) and the excitabil-
ity parameter g > L∗(vα), there exist two solutions for the wave speed C, namely
Cfast(vα, g) > C∗(vα) and Cslow(vα, g) < C∗(vα).

Similarly, the minimum of L(C, ·) with respect to the pre-front voltage vα ∈
(−∞, v†) for a fixed value of the wave speed C ∈ (0,∞) is defined by

vα = vα
�(C) = −σ + √

σ 2 − 2C2(C2 + 1)v†

4C2
,

σ = v† − 2C2v† − C2,

(59)

which is the negative root of the quadratic equation

2C2vα
2 − (

v† + C2 + 2C2v†
)
vα + v† + C2v† = 0, (60)

and a corresponding value L�(C) = L(C,vα
�(C)) (the explicit equation for which

is lengthy and of no further consequence so we omit it). Hence, for any given wave
speed C, and excitability parameter g > L�(C), we have two solutions for the pre-
front voltage vα , separated by the value vα

�(C).
Alternatively, (60) can be resolved with respect to C to obtain

C = C�(vα) =
( −v†(1 − vα)

(1 − 2vα)(v† − vα)

)1/2

. (61)

The absolute minimum of L(C,vα) over {(C, vα)} = (0,∞) × (−∞, v†) is achieved
when C∗(vα) = C�(vα) or, equivalently,

f (vα) ≡
(

C∗

C�

)2

≡ (v† − vα)(1 − 2vα)

−v†(1 − vα)
ln

( −vα

v† − vα

)
= 1.

The left-hand side f (vα) of this equation is a strictly decreasing function in vα ∈
(−∞, v†), which is established, e.g. by differentiation and using the estimate ln(x) >

1 − 1/x for x > 1 (the calculations are tedious but elementary and we omit them).
Besides, limvα→−∞ f (vα) = 2 and limvα→v†−0 f (vα, v†) = 0, hence the above equa-
tion for the minimum always has a unique solution, vα = vα

∗�, with corresponding
C = C∗� and L = L∗�, all depending on v† ∈ (−∞,0) as a parameter.

To summarize, we have established that the lower bound L(C,vα) given by
(56) has a unique absolute minimum L∗� = L(C∗�, vα

∗�) in {(C, vα)} = (0,∞) ×
(−∞, v†), tends to infinity as C → 0 and C → ∞ uniformly in vα ∈ (−∞, v†)

and as vα → −∞ and vα → v† uniformly in C ∈ (0,∞). Hence, by Milnor et
al. (1963, Theorem 3.1), all level sets L(C,vα) = const > L∗� are diffeomorphic to
each other, and thus are simple closed curves circumventing (C∗�, vα

∗�). Moreover,
for any g > L∗�, there are two values of vα = vα− and vα = vα+ > vα−, that are
exactly two solutions of L∗(vα) = g, such that for any vα ∈ (vα−, vα+), there exist
exactly two solutions for the front velocity, C = Cfast(vα, g) and C = Cslow(vα, g),
where Cslow(vα, g) < C∗(vα) < Cfast(vα, g).
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Consequently, the level sets L(C,vα) = g, which are the dispersion curves de-
fined by (51), are located wholly inside corresponding level sets of the lower bound
L(C,vα) = g. In particular, there are no solutions for (51) for g < L∗�.

Estimates of the propagation velocity Inequality (55) can also be explicitly resolved
with respect to C, giving double-sided inequality

C � C � C (62)

where

C =
( ln

(
1 − v†

vα

)

W−1
(

vα(vα−1)
g

ln
(
1 − v†

vα

))
)1/2

, (63)

C =
( ln

(
1 − v†

vα

)

W0
(

vα(vα−1)
g

ln
(
1 − v†

vα

))
)1/2

, (64)

and W0(·) and W−1(·) are the principal and the alternate branch of the Lambert func-
tion (Corless et al. 1996), respectively.

The upper inequality in estimate (62) becomes an asymptotic equality for the faster
velocity in the limit of rescaled coordinate s0 → ∞ which is achieved, e.g. for large
excitability g and wave speed C at fixed pre-front voltage vα . In this limit, the argu-
ments of the Lambert functions are small, and since W0(z) = z + O(z2), z → 0, we
have

Cfast ≈ C ≈
(

g

vα(vα − 1)

)1/2

, g → ∞ (65)

which agrees with Hinch (2002, Eq. (39)), as should be expected since in this limit
the difference between our model and Hinch (2002) is inessential.

Similarly, using a crude estimate for the alternate branch of Lambert function
W−1(z) = ln(−z)(1 + o(1)) for z → −0, see Corless et al. (1996), we find for the
lower inequality in (62)

Cslow ≈ C ≈
( ln

(
1 − v†

vα

)

ln
(− vα(vα−1)

g
ln

(
1 − v†

vα

))
)1/2

, g → ∞.

However, because the convergent series representation of the Lambert function W−1
is in terms of logarithms, it converges rather slowly, and thus the asymptotic above
does not give a good approximation for the standard parameter values. A better, more
accurate and simpler asymptotic can be obtained directly from (51) in the limit s0 →
0 and using I ′

ν(z)/Iν(z) = ν/z + z/(2ν + 2) + O(z3), z → 0, which can be easily
obtained from Abramowitz and Stegun (1965, Eq. (9.6.7)). This leads to

Cslow ≈
( ln

(
1 − v†

vα

)

ln
(− vα

g

)
) 1

2

, g → ∞. (66)

Note that since the estimate (66) is only asymptotic rather than uniform, it is not nec-
essarily defined for all g for which the solution exists. Indeed, since ln(1−v†/vα) < 0
for all vα < v†, we must require that ln(−vα/g) < 0 in order that C ∈ R. This is only
possible when g > −vα , although according to (58), for v† → 0, the minimal ex-
citability L∗ → 0.
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Fig. 3 (Color online) Solutions of the dispersion relation (51). (a) Accurate numerical solutions, for the
standard value of g = 200/3 (thick solid black line) and smaller values of g = 18,20,30,40,50 (thin
dashed red lines, g increasing from inside out) and the standard value of v†. (b) The accurate numerical
solution for all standard parameters (solid black line) against the solution provided by the lower bound
L(C,vα) (dashed red line) and the asymptotics (65) for the fast branch and (66) for the slow branch
(dash-dotted blue line). The magenta dotted lines indicate the position of the tip of the curve vα

∗ as
estimated by (78)

6.3.3 On the Properties of the Exact Solution

The above estimates of the propagation velocity C are derived from the lower bound
of the excitability L(C,vα). The exact dependence L(C,vα) exhibits similar prop-
erties, as demonstrated numerically in Fig. 3. We summarize these properties in the
following.

Conjecture 1 The function L(C,vα) has an absolute minimum L# = L(C#, vα
#)

in (C, vα) ∈ (0,∞) × (−∞, v†), and for every g > L# the level set L(C,vα) = g

is a simple closed curve, crossing each line C = const (or alternatively each line
vα = const) at most twice.

Supposing Conjecture 1 is true, the solutions of the dispersion relation form a
simple closed curve, for every g > L#. Then there exist v1

α and v2
α with v1

α < v2
α < v†,

such that for any vα ∈ (v1
α, v2

α) (53) has two positive solutions for C, which we may
denote C = C+(vα;v†, g) and C = C−(vα;v†, g), where 0 < C− < C+. Since the
level sets are simple closed curves the statement may be inverted so that C has the role
of the independent parameter: for every C in some open interval C ∈ (Cmin,Cmax)

there exist two distinct values of the pre-front voltage vα which satisfy (53). At the
end points of the interval, i.e. C = Cmin and C = Cmax (53) has single solutions for
vα . The points Cmin and Cmax are extremum points of C as a function of vα and the
CV restitution curve has opposite slopes to the left and to the right of each of them.

The fast-time systems is linked, via the boundary conditions (45) and parameters
vα and vω to the slow-time system the solution of which is discussed below.

6.4 The Slow Subsystem

The slow-time problem (42) and (45) can be solved exactly, also. Notice that it does
not depend on the wave velocity and it is therefore similar to the slow problem con-
sidered in Biktashev et al. (2008). First, we solve (42b), which is separable and inde-
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Table 1 Values of the constants used in the expression (67)–(69)

i η mi αi βi γi δi

1 [0, η∗] 1 − e−Fn(P−η†)

e−FnP − 1
k3 g22 k3E3 1

2 [η∗, η†] 1 − e−Fn(P−η†)

e−FnP − 1
−k2 g22 −k2E2 1

3 [η†,P ] 1 − eFnη†

e−FnP − 1
k1 g21 k1E1 0

pendent of E. Its right-hand side is different in each of the two intervals η ∈ [0, η†]
η ∈ [η†,P ] due to the presence of a Heaviside function. The equation is constrained
by the continuity condition at η = η† and periodic boundary conditions at η = 0 and
η = P . The solution has the form

n(η) = i
n(η) = δi + mi exp(−Fnη), (67)

where the values of the constants δi and mi are different for the intervals η ∈ [0, η†]
(i = 1,2) and η ∈ [η†,P ] (i = 3) and are given in Table 1, and the overset index here
above n and below above E designates the corresponding interval. This solution is
then substituted in (42a) which becomes

E′ + αiE = βi

4∑

l=0

(
4

l

)
δ
(4−l)
i

(
mi exp(−Fnη)

)l + γi, (68)

where the constants αi , βi and γi also depend on the interval and are given in Table 1.
The values in the table are obtained by a straightforward manipulation of the model
definitions of G̃(E) and g̃2(E) in (41) and the binomial theorem is used for the term
n(η)4. Within each of the intervals [0, η∗], [η∗, η†] and [η†,P ], (68) is a first order
linear ODE with constant coefficients, and the solution of (42a) can be written in the
explicit form,

E(η) = i

E(η) = γi

αi

+ θi exp(−αiη) + βi

4∑

l=0

(
4

l

)
δ4−l
i ml

i

exp(−lFnη)

αi − lFn

, (69)

where θi are integration constants. The exact solutions (67) and (69) contain seven
parameters, namely η∗, η†, P , θ1, θ2, θ3, vα , that need to be found from the boundary
conditions and from the internal matching conditions,

1
E(0) = vω(ENa − E∗) + E∗,

1
E(η∗) = E∗,

2
E(η∗) = E∗,

2
E(η†) = E†, (70)

3
E(η†) = E†,

3
E(P ) = vα(ENa − E∗) + E∗.

The existence of solution to the slow-time boundary value problem ultimately de-
pends on the existence of solutions of the transcendental equations (70). Based on the
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Fig. 4 (Color online) The phase portrait of the slow subsystem (42) of the Caricature Noble model.
Standard parameter values (41) are used except Fn which increased three times to Fn = 1/90 ms−1,
for visualization purposes. Red dash-dotted lines represent vertical isoclines dn/dt = 0. Blue dotted lines
represent horizontal isoclines dE/dt = 0. Thin solid black lines with attached arrows represent trajectories

uniqueness and existence of solutions to an initial-value problem, it is obvious that
the problem reduces to four essential unknowns, which we denote Eω = vω(ENa −
E∗) + E∗ = E(0), Eα = vα(ENa − E∗) + E∗ = E(P ), n∗ = n(0) = n(P ) and P .

Proposition 2 Suppose that the values of the parameters of the slow subsystem (42)
and (45) obey the same qualitative relationships as the default values, i.e. E1 < E† <

E2 < E∗ < E3, k1, k2, k3,Fn > 0, g21, g22 < 0 and G̃(E) is continuous. Then for any
n∗ ∈ (0,1) and Eω ≥ E†, the system of equations (67), (69), and (70) has a unique
solution for Eα and P . For a fixed n∗, this defines a function vω �→ vα with domain
vω ∈ (v†,+∞) and range vα ∈ (−∞, v†), which is monotonically decreasing.

Proof is evident from the phase portrait shown in Fig. 4. Every trajectory starting
above E = E† goes to the right and, therefore, eventually goes down below E†.
Whilst below E† it goes to the left, so n(η) → 0 as η → ∞ (this is also evident from
the analytical solution). Therefore, there exists a point η such that n(η) = n(0) = n∗.
Moreover, such η is unique, as the domain E < E† is absorbing and n(η) is monoton-
ically increasing outside it and monotonically decreasing inside it. So, we have the
proposed mapping (n∗, vω) �→ (Eα,P ). The monotonicity of this mapping follows
from the fact that the trajectories cannot intersect, so if Eω2 > Eω1, then the contour
made by the straight line between points (n∗,Eα1) and (n∗,Eω1) and the segment
of trajectory joining these two points, lies within the similar contour made by points
(n∗,Eα1) and (n∗,Eω1). �

6.5 Matching and Well-Posedness

The CV restitution curve can be obtained by combining the results of the slow and the
fast subsystems. According to Proposition 1 and Conjecture 1, for sufficiently large
values of the excitability g the fast subsystem defines the wave velocity as a func-
tion of pre-front voltage, C = C±(vα), for vα ∈ (−∞, v†), which via (50), defines
the post-front voltage vω = vω

±(vα). On the other hand, according to Proposition 2,
the wave period P and the peak voltage Eω = E∗ + vω(ENa − E∗) are functions of
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Fig. 5 (Color online) Matching solutions of the fast subsystem (44) and slow subsystem (42) of the
Caricature Noble model in terms of the dimensionless pre- and post-front voltages vα and vω . Standard
parameter values (41) except Fn = 1/90 ms−1 as in Fig. 4. The non-dimensionalized resting potential
v1 = (E1 − E∗)/(ENa − E∗) ≈ −1.4242 and the non-dimensionalized h- and n-gate switch potential
v† = (E† − E∗)/(ENa − E∗) ≈ −1.1818. The choice of values of n∗ in (a) is: 0, 0.5 and 1.0; for in
(b): from 0 to 1 with step 0.1; in (c): from 0 to 0.9 with step 0.1, then to 0.99 with step 0.01, and then
to 0.999 with step 0.001

Eα = E∗ +vα(ENa −E∗) and n∗. Hence, the matching of the fast and slow solutions,
for any given n∗, can be obtained by solving the simultaneous system of equations for
vα and vω, one resulting from the fast subsystem and one resulting from the slow sub-
system, the latter depending on n∗ as a parameter. This subsequently provides where
C(vα) is given by the fast subsystem, and P = P(n∗, vω) from the slow subsystem.
Hence, we have ultimately the CV restitution curve (c(n∗),P (n∗)) in parametric form
and we have proven that the asymptotic CV-restitution problem (42), (44), and (45)
is indeed well-posed.

The equations of the aforementioned system for vα and vω are complicated and
finding analytical solutions seems unfeasible. Some qualitative insight can be ob-
tained from numerical analysis, which for the standard parameter values is illustrated
in Fig. 5. The solutions correspond to the intersection of the closed fast-subsystem
contour (dashed blue line) with a slow subsystem line (solid red lines). The family of
slow-subsystem lines stretches continuously, but non-monotonically, from the verti-
cal line vα = v1 at n∗ = 0 to the vertical line vα = v† for n∗ = 1. In accordance with
Proposition 2, these lines are monotonically decreasing except for the above men-
tioned vertical lines for extreme values of n∗. Almost all of these lines intersect the
fast-subsystem contour, with the exception of the lines with n∗ very close to unity.
The line vα = v1, n∗ = 0 corresponds to the limit P → ∞ of the restitution curve, as
that limit corresponds to a solitary wave propagating through the resting state, which
is characterized by E = E1 and n = 0. The other extremity corresponds to the n∗ line
which is tangent to the slow-subsystem contour for a value of n∗ very close to but
smaller than unity, and at a value of the pre-front voltage vα very close to but smaller
than that of the parameter v†. As evident from the above analysis, e.g. see Fig. 3(a),
we have vα

∗ → v† − 0 as g → ∞, which motivates consideration of asymptotics
related to this limit. The details are presented in the next subsection.

Another qualitative feature evident from Fig. 5 is that the slow lines are nearly
vertical for larger vω. This, and the non-monotonic behavior of the horizontal (vα)
position of the slow-subsystem lines on n∗ around larger values of vω is a direct
consequence of the non-monotonic behavior of the trajectories which can be observed
in Fig. 4: a typical “tail” of a trajectory starting at a large vω is a curve which starts
at v1 at n = 0, then decreases and then increases up until v†; besides, all trajectories
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starting from larger vω join together very closely. As follows from the analysis in
Biktashev et al. (2008), this is due to an extra small parameter present in the slow
subsystem, namely Fn → 0.

These observations motivate consideration of further asymptotics to the obtained
solution, which lead to less accurate but more explicit results. We present them less
formally than the main limit ε → 0 as they are of a secondary importance to our main
results.

6.6 Further Asymptotics

The fast branch of the restitution curve For values of 1 − n ∼ 1, the period P is
large compared to the parameter Fn

−1 which plays the role of a time constant in the
n-gate equation (40c), and hence we can exploit the Tikhonov singular perturbation
in terms of Fn understood as a small parameter. This corresponds to the secondary
asymptotic embedding ε2 → 0 considered in Biktashev et al. (2008). In this limit, the
trajectories differ only in the initial post-overshot stage, after which they move along
the reduced superslow manifold n ≈ N (E) ≡ (−G̃(E)/g̃2(E))1/4 with the excep-
tion of the re-polarization stage when N (E) /∈ R. It is important to note that except
during the initial transient, the trajectories are nearly the same, up to a correction
which is exponentially small in Fn as evident from Fig. 4. We consider two parts of a
typical trajectory, one for η ∈ [0, η†] when n increases, and the other for η ∈ [η†,P ]
when it decreases. Due to the above mentioned convergence of trajectories, the value
nmax = n(η†) is practically independent on Eω up to exponentially small corrections.
A typical value of nmax can be found, e.g. in the following way: first, consider so-

lution (69) for i = 1 and θ1 = 0 and solve the matching condition
1
E(η∗) = E∗ for

η∗, next determine θ2 from the initial condition
2
E(η∗) = E∗, then solve

2
E(η†) = E†

for η†, and finally with the knowledge of η† and n∗, the value of nmax can be ob-

tained from (67) as nmax = 2
n(η†) = 3

n(η†) = 1 − (1 − n∗)e−Fnη† . This however leads
to a transcendental equation. Numerical value for the standard parameter values is
nmax ≈ 0.7827.

Using (67), the duration of the second half of the trajectory, between η = η†, n =
nmax, E = E† and η = P , n = n∗, E = Eα , is given by

η2 = P − η† = 1

Fn

ln
(
nmax + (1 − nmax)e

FnP
)
. (71)

The evolution of E during the second half of a typical slow trajectory is described by
the relevant form of (42a)

dE

dη
= g21nmax

4e−4Fn(η−η†) + k1(E1 − E)

wherefrom

Eα = E1 + g21nmax
4

k1 − 4Fn

e−4Fnη2 +
(

E† − E1 − g21nmax
4

k1 − 4Fn

)
e−k1η2 . (72)

Combining (71), (72), and (65), we get an explicit dependence of c(P ) in elementary
functions.
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The slow branch of the restitution curve The slow branch is considered in a similar
way. The difference is in the initial transient where a typical trajectory approaches the
reduced superslow manifold from lower values of E rather than from the higher E as
it was for the faster branch, and also in the c(vα) dependence. Hence, the dependence
of c(P ) is obtained by combining (71), (72), and (66).

The turning point of the restitution curve The turning point is the point where the
fast branch meets the slow branch. It is characterized by extreme proximity of vα to
v† and n∗ to 1. The front parameters can be estimated via the limit vα → v†, g → ∞
of (57) and (58), which gives the highest pre-front voltage as

vα
∗ ≈ v†

(
1 +

(−v†(1 − v†)

g

)e)
(73)

and the corresponding slowest stable front velocity as

C∗ = C∗(vα
∗) ≈

(
e ln

(
g

−v†(1 − v†)

))1/2

. (74)

Given vα
∗ and C∗, (50) then gives the value of the post-front voltage,

vω
∗ = 1 − (s0

∗/2)(C
∗)2

�((C∗)2 + 1)I(C∗)2(s0
∗)

, (75)

s0
∗ = 2C∗√g

(
1 − v†

vα
∗

)1/(2(C∗)2)

. (76)

The duration of the slow trajectory corresponding to these vα
∗ and vω

∗ will be an
estimate of the shortest wave period possible in this model, P ∗. A simple approx-
imation of it can be obtained from the consideration that in the limit vα ≈ v†, we
have n(η) ≈ 1 throughout, hence the slow-subsystem equation for E is simplified by
replacing n(η) = 1 so the link between n and E dynamics is only via the values of
η† and P . The period P is almost the same as the η† taken by the voltage to decrease
from Eω to E†, since the interval P − η† needed to decrease from E† to Eα is small
compared to that. In this case, the interval η† can be estimated from solutions (69)
for i = 1,2. Hence, we have

P ∗ ≈ 1

k2
ln

(−g22 + k2(E2 − E†)

−g22 + k2(E2 − E∗)

)
+ 1

k3
ln

(
k3(Eω

∗ − E3) − g22

k3(E∗ − E3) − g22

)
. (77)

Equations (73)–(77), together with the scaling relationships (43) define the turning
point of the restitution curve. For the standard parameter values, this gives

C∗ ≈ 2.973, vα
∗ ≈ −1.18199, vα

∗ − v† ≈ 1.709 × 10−4,

c∗ ≈ 2.102 su/ms, P ∗ ≈ 13.09 ms.
(78)
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Fig. 6 (Color online) Restitution curves of the Caricature Noble model, (a) in Cartesian and (b) logarith-
mic coordinates. Insets in panel (a) show selected features magnified. Lines in all plots as described by
the legend in panel (b), specifically, accurate numerical solution of the full boundary-value problem (2)
for various values of ε > 0 (bold solid black, short-dashed green and dash-dotted cyan for ε = 1,0.7,0.3,

respectively), the accurate matching of the fast and slow subsystems (42)–(45) which corresponds to the
limit of ε = 0 (long-dashed red), and the approximations of the fast and slow branches of the RC at ε = 0
given by asymptotics (71), (72), (65), and (66) (dash-dotted blue). The magenta dotted lines indicate the
position of the tip of the curve vα

∗ as estimated by (78)

Fig. 7 (Color online) Profiles
of the action potentials
corresponding to the faster
branch of the solution of the
Caricature Noble model. The
values of the period P and the
values of ε are given in the plot.
The values ε �= 0 correspond to
the full CV restitution boundary
value problem (2) for (40) with
standard parameter values while
ε = 0 corresponds to the
asymptotic limit given by (42),
(44), (45)

6.7 Comparison of the Asymptotics with the Exact Solution

With the aim to assess the proximity of the analytical solutions obtained in the main
asymptotic limit ε → 0 and the full numerical solutions of the CV restitution bound-
ary value problem, we present in Fig. 6 sets of CV restitution curves of the Caricature
Noble model, and we show in Fig. 7 the action potential profiles for two selected base
cycle lengths P . We also demonstrate in Fig. 6 the asymptotic estimates of the upper
and lower branches and of the tip position P ∗ of the curve found with the help of the
secondary embedding Fn → 0. The asymptotic CV restitution curve was obtained
by solving numerically problem (42), (44), and (45) which defines c(vα) and P(vα).
The full CV restitution curve was obtained by solving the full boundary-value prob-
lem (2) formulated for (40). Figure 6(a) presents the curves in Cartesian coordinates
and Fig. 6(b) in semi-logarithmic coordinates to reveal in more detail the behavior at
small values of the wave period P . We can see that as ε is decreased the solution of
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Fig. 8 (Color online)
Dependence of the minimal
basic cycle length Pmin on the
embedding parameter ε. The
asterisks represent Pmin
calculated at the specified values
of ε, the solid circle is the
estimate (78). The dashed line is
the best cubical fit
of all the asterisk points, which is
Pmin = 13.34+13.40ε−2.91ε2 +
0.85ε3 [ms]

the full problem converges to the solution of the asymptotically reduced problem at
ε = 0, and that the full model curve for ε = 1 at standard parameter values is close to
the asymptotic limit everywhere except at the smallest values of the period P .

This indicates that at small P , the parameter ε is not a “good small parameter”.
Note that in our asymptotic analysis, we have calculated the period P as the length
of the slow subsystem solution, and we have neglected the contribution of the fast
subsystem, i.e. the duration of the front, which is small of the order O(ε). However, at
the smallest values of P , the front length is comparable to duration of the solution of
the slow subsystem. This can be seen already in Figs. 6 and 7, and is further confirmed
by the analysis of the dependence of the minimal wave period P on ε shown in Fig. 8.
We see that to second order, the basic cycle length can be approximated by P = P0 +
εP1 + O(ε2), where P0 is the cycle length given by the asymptotic theory presented
above, and P1 ≈ 13.4 may be interpreted as the front duration in the fast subsystem.
Note that P0 ∼ P1, hence neglecting O(ε) for smaller P produces relatively large
error. That this is not the whole story, however, as not only the horizontal position of
the P ∗ = Pmin point changes with ε, but also its vertical position c∗, so a proper next-
order asymptotic should take into account of the influence of the slow subsystem on
the front velocity as well.

7 Asymptotic Restitution Curves in the Beeler–Reuter Model

In this section, we apply the methodology presented above to the Beeler–Reuter ven-
tricular model (Beeler and Reuter 1977). This model is an example of a realistic
voltage-gated model which represents an intermediate step between relatively simple
early models and complicated contemporary models. It has played an important role
for understanding of cardiac excitability with a large volume of literature devoted to
it, and it is still the model of choice in many situations, e.g. (Dokos and Lovell 2004;
Herman et al. 2007; Chen et al. 2007) are some recent examples. In the following,
we find the CV restitution curve of the Beeler–Reuter model using both the asymp-
totic formulation and the full formulation of the periodic boundary value problem as
described above and demonstrate an excellent quantitative agreement.

7.1 The Model and the Asymptotic Embedding

The initial step of our approach requires an appropriate asymptotic embedding of
the original Beeler–Reuter model (Beeler and Reuter 1977). The embedding is con-
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structed following the procedures presented in detail in our earlier works (Biktasheva
et al. 2006; Simitev and Biktashev 2006; Biktashev et al. 2008) and here we shall
summarize briefly the relevant arguments. We would like to remark that an analo-
gous embedding procedure applies to the Caricature Noble model of Sect. 6 where ε

appeared seemingly without much justification.
We rewrite the Beeler–Reuter model in the one-parameter form,

∂E

∂t
= 1

ε
gNa(ENa − E)m∞(E; ε)jh + I�(E,y) + ε

∂2E

∂x2
, (79a)

∂h

∂t
= 1

ε

(
h∞(E; ε) − h

)
/τh(E), (79b)

∂j

∂t
= (

j∞(E) − j
)
/τj (E) (79c)

∂y
∂t

= Fy(E,y, . . . ), (79d)

where only the equations affected by the artificial small parameter ε � 1 are shown.
As in the previous model, the voltage E is measured in mV, time in ms, the gating
variables h, j , m, y are non-dimensional, and the space coordinate x is measured in
su = ms1/2.

The functions τy(E) and y∞(E) are time-scaling functions and quasi-stationary
values of the gating variables, respectively. Functions m∞(E; ε) and h∞(E; ε)
are “embedded”, i.e. they are ε-dependent versions of m∞(E) and h∞(E) such
that m∞(E;1) = m∞(E) and h∞(E;1) = h∞(E) on one hand and m∞(E;0) =
θ(E − Em) and h∞(E;0) = θ(Eh − E) on the other hand, with Em = −33.75 mV
and Eh = −71.33 mV so that m3∞(Em) = 1/2 and h∞(Eh) = 1/2. The last two
parameters are analogous to E∗ and E† of the Caricature Noble model. The rest
of the model (79) is the same as defined in Beeler and Reuter (1977), namely
I� = −(INac + IK1 + Ix1 + Is) is the sum of all slow currents, y = (x1, d, f, [Ca])
is the vector of all slow variables in addition to gate j which is also slow, and Fy(·)
stands for the functions governing the dynamics of the gating variables y. The ratio-
nale for this parameterization is the following:

1. The dynamic variable m is a ‘superfast’ variable and has been adiabatically elimi-
nated by replacing it with its quasi-stationary value m∞. The variables E and h are
‘fast variables’, i.e. they change significantly during the upstroke of a typical AP
potential, unlike all other variables which change only slightly during that period.
The relative speed of the dynamic variables is estimated by comparing the mag-
nitude of their corresponding ‘time-scaling functions’ as illustrated in Fig. 9(a).
For a system of differential equations dwl/dt = Fl(w1, . . . ,wN), l = 1, . . . ,N the
time scale functions are defined as τl(w1, . . .) ≡ |dFl/dwl |−1, l = 1, . . . ,N and
coincide with the functions τy(·) already present in (79).

2. The dynamic variable E is fast due only to one of the terms in the right-hand side,
the large sodium current gNa(ENa − E)m∞(E; ε)jh, whereas other currents are
not that large and so do not have the large coefficient ε−1 in front of them.
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Fig. 9 (Color online) (a) On the left ordinate: Time scaling functions τy of the dynamical variables of
the Beeler–Reuter model during a typical action potential. The time scaling function of the voltage τE is
given by a solid line (red online), the time scaling functions of the slow variables are given by dashed lines
(green online) and of fast variables by dotted lines (blue online) with all lines labeled correspondingly in
the plot. On the right ordinate: Voltage of a typical action potential given by a dash-dotted line. (b) The
quasi-stationary values m3∞ and h∞ and their approximations m∞(E,0) and h∞(E,0)

3. The fast sodium current gNa(ENa − E)m∞(E; ε)jh is large only during the up-
stroke of the AP, and not that large otherwise. This is due to the fact that either
gate m or gate h or both are almost closed outside the upstroke since their quasi-
stationary values m∞(E) and h∞(E) are small there as seen in Fig. 9(b). Thus,
in the limit ε → 0, functions m∞(E) and h∞(E) have to be considered zero in
certain overlapping intervals E ∈ (−∞,Em] and E ∈ [Eh,+∞), and Eh ≤ Em,
hence the representations m∞(E;0) = θ(E − Em) and h∞(E;0) = θ(Eh − E).

A more detailed discussion of the parameterization given by (79), as well as the jus-
tification of our method of parametric embedding, i.e. a seemingly “arbitrary” intro-
duction of an artificial small parameter ε, can be found in Biktashev et al. (2008).

7.2 The Asymptotic Reduction

We are now ready to formulate the asymptotic CV restitution problem as a set of
coupled boundary value problems similar to those described in Sect. 6.2. Being inter-
ested in propagation with constant velocity and fixed shape, we introduce the travel-
ing wave coordinates z = x − ct for the slow subsystem and Z = X − cT = z/ε for
the fast subsystem. As before, we distinguish the functions of the fast time by name
and set E(z) = V (Z) and h(z) = H(Z).

The slow-time subsystem is obtained in the limit ε → 0 of the original slow inde-
pendent variable z,

c
dE

dz
+ I�(E,y) = 0, (80a)

c
dj

dz
+ j∞(E) − j

τj (E)
= 0, (80b)

c
dy
dz

+ Fy(E,y, . . . ) = 0, (80c)



Asymptotics of Conduction Velocity Restitution in Models 107

E(z = 0) = Eα, E(z = cP ) = Eω,

j (z = 0) = j (z = cP ) = jα, (80d)

y(z = 0) = y(z = cP ).

The fast-time subsystem is obtained in the limit ε → 0 of the fast independent vari-
able Z,

d2V

dZ2
+ c

dV

dZ
+ gNa(ENa − V )Jθ(V − Em)H = 0, (81a)

c
dH

dZ
+ θ(V − Eh) − H

τh(V )
= 0, (81b)

V (−∞) = Vα, V ′(+∞) = 0, V (0) = Eh,

V (+∞) = Vω, H(−∞) = 1,
(81c)

The boundary conditions of the fast subsystem include the pinning condition elim-
inating the translational invariance along the Z axis. This problem depends on
four parameters, namely the pre-front voltage Vα , the post-front voltage Vω, the
fixed value of the j gate inherited from the slow system J and the wave speed c

which are determined by matching with the slow subsystem, given by the condi-
tions,

Eα = Vα, Eω = Vω, jα = J. (82)

7.3 The Fast Subsystem

The fast subsystem (81) describes the wave front of an action potential as it propa-
gates by diffusion. This problem has, on one hand, differential equations of cumula-
tive order three and four parameters, and on the other hand, five constraints, thus the
solution will typically depend on two “leading” parameters chosen arbitrarily, and the
other parameters will be functions of these two. The structure of (81) is very similar to
the fast subsystem of the Caricature Noble model (44) and (45a). In fact, if τh(V ) was
a piecewise constant function with a step at V = Eh, then the Beeler–Reuter fast sub-
system would be equivalent to the Caricature Noble fast subsystem up to parameter
values and identification of gNaJ in the former with gNa in the latter. Hence, we may
expect that the set of solutions here has a structure similar to that of the Caricature
Noble model. In particular, we expect that J and Vω can be determined as uni-valued
functions of Vα and c. Further, we expect that for a fixed J , we have the set of solu-
tions in the (Vα, c) such that there exists jmin such that if J > jmin then there exists
an interval (Vαmin(J ),Vαmax(J )) such that for any Vα within this interval, there are
two solutions for the front velocity c = c±(J,Vα), and correspondingly two values
of the post-front voltage Vω = Vω

±(J,Vα). This is confirmed by numerical analysis
of this problem, see Fig. 10.

7.4 The Slow Subsystem

As in the Caricature Noble model, the slow subsystem in the leading order does not
depend on diffusion and, therefore, coincides, up to the scaling of the independent
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Fig. 10 (Color online) Solutions of the fast subsystem (81) of the Beeler–Reuter mode for a selection
of values of J . (a) Front speed vs. pre-front voltage. (b) Post-front voltage vs. pre-front voltage. In both
panels, the prefront voltage is shown in logarithmic scale with respect to Eh, since the curves are very
close to the line Vα = Eh . Note that Vα increases from left to right

variable, with the slow subsystem of the single-cell model. The slow subsystem de-
pends on four parameters, namely the pre-front voltage Eα , the post-front voltage
Eω, the initial value of the j -gate jα and the wave period P , and has differential
equations of cumulative order of dim(y) + 2. On the other hand, it has dim(y) + 4
constraints, hence similarly to the fast system, it has typically a two-parametric fam-
ily of solutions. From the viewpoint of matching with the fast-time problem and in
analogy with the Caricature Noble case, one possible convenient choice of leading
parameters is Eα and jα from which Eω, P as well as y(0) can be found. How-
ever, unlike the Caricature Noble case, it is now more difficult to establish rigorous
conditions for existence of solutions. This, however, can be easily done numerically.

7.5 Matching and Comparison with the Exact Solution

The three constraints (82) offset the four free parameters of the slow and fast subsys-
tems so that the resulting set of solutions is typically one-parametric, i.e. it is curve
in the parameter space. The projection of this curve on the (c,P ) is the CV restitu-
tion curve. Given appropriate analytical approximation of the relevant dependencies,
which could be obtained for instance by asymptotic means or by fitting, solving the
resulting finite (transcendental) system will produce analytical approximation for the
restitution curve. Doing so for Beeler–Reuter model is however beyond the scope of
this paper and we restrict to demonstrate the validity of our asymptotic approach for
this model by solving the asymptotic matching problem numerically.

In solving the problem (80), (81), and (82) numerically, the following features
need to be taken into account

(a) The fast-time problem is posed on an infinite interval.
(b) At the same time, the slow-time system is posed on a finite interval.
(c) The length of that finite interval is the wave length of the periodic traveling wave,

i.e. it is an unknown variable.
(d) The fast-time system has piece-wise right-hand sides.
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Fig. 11 (Color online) (a) The numerical CV restitution curves of the full non-asymptotic problem (2)
for the original Beeler–Reuter model (Beeler and Reuter 1977) (solid line, red online) compared to the
numerical CV restitution curve of the asymptotic problem (80), (81), and (82) (dashed line, black online).
(b) The AP profiles corresponding to P = 79 ms and P = 500 ms (same line types)

(e) The pinning condition needs to be imposed in the fast subsystem. Since the fast
system is piece-wise, it is convenient to impose it at a boundary between pieces.

(f) The slow variable j appears as a parameter in the fast-time system.

These features can be addressed by a number of well-known techniques and we re-
fer the interested reader to Ascher and Russell (1981) for a general discussion and to
Simitev and Biktashev (2006) for a numerical implementation of a similar problem.
In short, the issue of the boundary conditions at infinity can be resolved by consider-
ing a finite interval with boundary conditions obtained as a solution of the problem
linearized about the asymptotic equilibria. This finite interval is then dissected into
three subintervals to take care of the piece-wise definition of the equations. The three
subintervals together with the interval on which the slow-time system is posed are
then mapped to the interval [0,1] by introducing appropriate scaling factors. The
pinning condition can be easily incorporated at one of the internal matching points.
Finally, in this representation, (81)–(82) can be solved by any standard boundary
value problem solver such as Maple’s dsolve, NAG’s d02raf, and others.

The resulting asymptotic CV restitution curve is shown in Fig. 11 by a dashed thin
red line. The bold solid black line in the figure corresponds to the CV restitution curve
found from the full non-asymptotic boundary value problem (2) written for the full
Beeler–Reuter model (79) at ε = 1. The two curves demonstrate a good quantitative
agreement.

We would like to emphasize here that, while it was still possible to solve the full
problem numerically in this case, and the asymptotic problem was solved numerically
also, solution of the full problem was a substantially more difficult task than the
computation of the asymptotic CV restitution curve. The problem is certainly well-
posed but it is very stiff and it required a prolonged experimentation with a variety of
software tools and parameter continuation techniques. It is also worth recalling that
the Beeler–Reuter model is not as complicated as contemporary models are, which
leads us to expect that the non-asymptotic problem for such models is even more
difficult to solve.
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Fig. 12 (Color online) Pre/post-front voltage selection in the four different models, (a) Barkley,
(b) FitzHugh-Nagumo, (c) Caricature Noble, (d) Beeler–Reuter. (a, b) Relationship between Vα , Vω and
corresponding value of the slow variable y in bold lines, with their projections on the coordinate planes
in thin lines. Each of the cases has two dependencies, for the front of a pulse and for the back of a pulse.
(c, d) Relationship between Eα , Eω and an indicated slow variable, as semi-transparent surfaces, as fol-
lowing from the relevant fast and slow subsystems. The lines of intersection of the surfaces and their
projection onto (Eα,Eω) plane are also shown

8 Discussion

Summary We have demonstrated that singular perturbation theory based on the
largeness of the maximal value of the sodium current INa compared to other cur-
rents and quality of the INa ionic gates (smallness of m∞(E) and h∞(E) in certain
voltage ranges), is capable of reproducing essential spatiotemporal phenomena, us-
ing conduction velocity restitution curve as the simplest nontrivial example involving
both the fast scale and slow scale. We have explicitly compared the mathematical
technique involved here, with similar problems in the classical FitzHugh–Nagumo
(FHN) like models of excitable media. Apart from the different number of equations
and the more complicated right-hand sides, we have identified in the cardiac models
qualitatively new features of topological nature.

Classical simplified excitable models vs. ionic cardiac models Figure 12 illustrates
the fundamental difference between FHN-like and cardiac models as far as the prob-
lem of Eα and Eω selection is concerned. In FHN-like systems (panels (a) and (b)),
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if the values of the slow variables are given, then Eα and Eω are uniquely defined, up
to the choice between front (jump up) and back (jump down). So, for one slow vari-
able y as in the examples considered in Sect. 3, there are one-dimensional manifolds
representing all possible fronts and backs. In contrast in cardiac equations (panels (c)
and (d), we have two-dimensional manifolds in place of one-dimensional manifolds.
This is related to the fact that in the parametric embedding we use, the transmem-
brane voltage, like a double-faced Janus, is both a “slow” and a “fast” variable. In its
slow capacity, it contributes to the pre-front conditions, among other slow variables.
In its fast capacity, it participates in the excitation front. So given one “truly slow”
variable (n∗ in panel (c) and J in panel (d)), we have not a one-dimensional, but a
two-dimensional manifold representing possible fronts, as even when the value of that
slow variable is fixed, the pre-front voltage Eα and, consequently, post-front voltage
Eω are still undefined. Hence, to obtain the restitution curve, which is a 1-dimensional
manifold, we have to find an intersection of the manifold representing possible fast
fronts with the manifold representing possible slow solutions, which is something
that we do not do for the FHN-like systems.

Another qualitative difference is, of course, the number of fast solutions per one
excitation pulse. In FHN-type systems, it is essential that there is a back correspond-
ing to every front, as the systolic and diastolic pieces of the reduced slow manifold are
separated from each other. In our asymptotic embedding of cardiac models, the sys-
tolic and diastolic pieces of the slow set (which is now not a manifold) are connected
via a piece where both n and m gates are firmly closed and E is in its slow-variable
capacity. Here it should be noted that existence of a back is not a necessary feature
of a FHN-type system, as in presence of two or more slow variables it is possible to
have a slow manifold with a cusp singularity so that its systolic and diastolic pieces of
the are connected via a monostable pieces, as in the example suggested by Zeeman
(1972). However, although the structure of ionic models admits, in principle, such
manifolds (Suckley and Biktashev 2003), it has not been identified in any cardiac
models so far.

The numerical method for dynamic CV restitution curves In this work, we have pro-
posed a computationally efficient method of calculating an ideal case of the so called
“dynamic” or “steady-state” restitution protocol, with exactly periodic propagating
pulses. The method exploits asymptotic splitting the problem into two parts, the slow
and the fast subsystems. The advantage of such a split is that each of the subsystems
no longer depends on the small parameter due to the largeness of INa and quality of
its ionic gates, so they are significantly less stiff than the original full problem, hence
the computational efficiency. The well-posedness of the problems arising from the
asymptotic splitting is not obvious a priori, since the asymptotic embedding we use
is non-Tikhonov, and the general results from singular perturbation theory are not
applicable to our case. We have thus taken care to prove the well-posedness, at least
for the case considered.

Perspective: more complicated spatiotemporal regimes There are several other pro-
tocols used in defining restitution curves; see, e.g. Schaeffer et al. (2007) and ref-
erences therein. They do not correspond to periodic steadily propagating wave so-
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lutions. Nevertheless, we expect that the proposed asymptotic splitting should still
work there, under some natural assumptions.

So, if propagation of waves is not too complicated, then evolution of the system
away from the fronts can be expected to be well approximated by the corresponding
slow subsystem, which is a non-stiff ordinary differential equation for every point of
the medium. After application of the propagating wave ansatz, the slow subsystems
of the Caricature Noble and Beeler–Reuter become systems (42) and (80) respec-
tively. Here we note, that without such ansatz, the slow subsystems would be differ-
ential equations with time as the independent variable, with exactly the same structure
as (42) and (80) only with a different scaling, so all the above analysis applies. Fronts
themselves for most part of their evolution can be considered locally as steadily prop-
agating nearly plane waves, well described by systems like (44) and (81).

Under these assumptions, according to the analysis of the fast subsystem, the con-
duction velocity and post-front voltage can be found as functions of the pre-front
voltage and, if relevant, pre-front value of gate j , and the dynamics of the front is
governed by an ordinary (in the case of one spatial dimension) differential equation
for the position of the front as a function of time. This gives an unusually coupled sys-
tem of ordinary differential equations: the local dynamics provide right-hand sides for
the equation of motion of the next front, and the trajectory of the front provides ini-
tial condition for the subsequent piece of slow dynamics. This unusual ODE system
can predict non-stationary evolution of the excitation patterns, including restitution
protocols. In different settings, this approach has been used, e.g. in Biktashev and
Tsyganov (2005) and Echebarria and Karma (2007). As demonstrated in Echebarria
and Karma (2007), such unusually coupled ODE system can form a basis for in-
vestigation of such complicated spatiotemporal phenomenon as the spatiotemporal
dynamics of cardiac alternans.4 So, extension of the present results to other, more
complicated and important spatiotemporal regimes, seems to be a natural and immi-
nent next step.

Perspective: the problem of restitution memory The above considerations lead us
to the problem of rate-dependence of restitution curves, or the so called “memory”
effects; see, e.g. Schaeffer et al. (2007) and references therein. A typical approach
to studying memory effects is purely phenomenological: memory variables in the
restitution relationships are usually postulated and their properties are obtained in-
ductively from measurements of the differences between results from various restitu-
tion protocols. Asymptotic analysis such as the one used in the present work offers
a deductive ab initio way of treatment of the memory variables. In such setting, the
number of memory variables equals dimensionality of the phase space of the slow
subsystem minus one, and the memory variables themselves may be identified with
values of the slow variables apart from E, measured during an excitation front. For
example, in the Caricature Noble model here there would be one memory variable,
say taken to be n∗, and in the Beeler–Reuter model, there would be dim y = 5 of
them, and they may be identified with the values of the slow variables j , x1 d , f

4Echebarria and Karma (2007) considered a simplified model with some features of the ionic models and
similar to the Caricature Noble model considered there, but only two variables, without any slow gates.
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and [Ca] as measured at the front, thus making the restitution much more difficult
to predict. However, empirical evidence from simulations of modern detailed ionic
models suggests that the variability of slow trajectories may be much narrower, i.e.
they may de facto be restricted to a manifold of a smaller dimensionality (Simitev
and Biktashev 2006). A possible theoretical explanation for such dimensionality re-
duction is the presence of further small parameters within the slow subsystem; this
mechanism was considered in detail in Biktashev et al. (2008). So, detailed studies of
finer asymptotic structure of slow subsystems of practically interesting ionic models
are a promising direction for further studies, which may help in understanding the
memory effects in restitution. It is well known that memory effects can play con-
siderable part in development of alternans and, therefore, in development of cardiac
arrhythmias (see, e.g. Mironov et al. 2008 for a recent study) and are for this reason
of considerable interest.

Perspective: a novel numerical method for excitation propagation The above con-
siderations outline possible qualitative applications of the present study. A possi-
ble quantitative application is an advanced method for calculation of activation se-
quences, which can be achieved by the aforementioned coupling of differential equa-
tions for the local slow dynamics and for the front motion. For these applications,
two or three spatial dimensions rather than one are interesting, hence the equation
of motion for the front is a partial differential equation of motion of a line (in 2D)
or surface (in 3D). One immediate difference is that propagation of the front shall
no longer depend only on the pre-front voltage and j -gate, but also on the spatial
configuration of the front. It is well known that unless the shape of the front deviates
very strongly from plain, the effect of its shape is mostly accounted for through its
mean curvature, and we have demonstrated that the effect of curvature can be easily
incorporated into the asymptotic description of the front dynamics (Simitev and Bik-
tashev 2006). This approach can be used to describe normal activation sequences in
the heart, when the graph of the front solution in the space-time is a manifold with-
out internal boundaries. More serious problems occur if there are propagation blocks
and/or wave breaks, which introduce boundaries of the front manifold in space-time.
In such cases, a separate asymptotic description for the codimension-two areas, the
wave break trajectories and the propagation block loci, are needed; obtaining such
asymptotic description is another important direction for further research.

An obvious caveat here is, as with any asymptotic approach, that the asymptotics
are valid in the limit of ε → 0 whereas we apply it for a finite value of that small
parameter. Hence, applicability of this approach on the quantitative level will depend
on whether the error generated by such approximation is tolerable for the particular
application; however, it should be remembered that higher-order terms if necessary
can improve the accuracy; see an example in Biktashev et al. (2008).
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