Workshop 1: Plasmas in Multiphase media

Collated feedback from breakout sessions

How does the plasma contribute to enhanced interaction between species in multiphase media?

- role of synergistic processes of neutrals & electric fields etc significant influence on interfacial processes?
- enhanced charging of isolated surfaces changing local chemistry; bond breaking, new species, radicals ion bombardment. How is charge bound to the surface? What processes affect this, and what lifetime?
- reactivity often changed but not understood, e.g. formation of H2O2 can be much higher in charged droplets.
- in liquid polarizability can be more important than dielectric behaviour.
- plasma provides reactive species, the plasma might generate a gas in a liquid which leads to turbulence enhanced surface area.
- Plasma could potentially aid in biological research concerning biofilms (e.g. dealing with antibioticresistant bacteria) and cancer research (e.g. tumor drug delivery). Plasma can also provide a different (often better!) delivery of energy to the system, although there is an issue of selectivity.
- It forms particular structures that can't otherwise be formed in other systems.
- Surface electric field can enhance interactions in all phases.
- Synergies between particles, fields, coming from plasma into solid.
- Is there the concept of an electron distribution function in a liquid?
- How many phases should we consider at one time? Controlled by physical width of transition region? Need to consider collisional length scales within transition region?

What investigations can help identify and optimise the relevant processes?

- The aerosol/colloidal chemistry community has a plethora of techniques and studies that may influence the direction of multiphase media studies with plasmas.
- Diagnostics for penetration depths and charging are realistic goals for the intermediate future.
- find out what the basic processes are for charge attachment and lifetimes theory and experiment.
 Cross-section experiment.
- Need enhances source data (eg rate coeffts), covering regimes of interest;
- Atypical chemical pathways enhanced spectroscopic investigation?
- Collaboration with femtosecond lasers labs to resolve species crossing a boundary. (eg bubbles)
- modellers to collaborate with diagnostics experts to define desirable measurements
- do we have a robust repeatable plasma (benchmark)? We don't have benchmark models in much of plasma physics let alone multiphase physics to compare models to expt.
- Is there a proxy measurement, e.g. impedance that tells us something about the multiphase such as bubbles forming.
- These should be application-driven perhaps create a priority list of the fundamental data we need (probably tied to specific application). Need data for modelling e.g. cross-sections, rate coefficients and to know regions of applicability, etc.
- - There are procedures for liquids but no in interface with plasmas so not fully valid here.
 - New diagnostic methods are required.

What other relevant points should be made?

- A coherent model (or several) for charging of multiphase media would be desirable and ablation of metals by lasers: do these count as multiphase media?
- laser-surface interactions are a particular aspect. Reach out to other communities with different languages/terminology, but same underlying science principles