Europhysics Sectional Conference on the Atomic and Molecular Physics of Ionized Gases

ESCAMPIG XXIV

Glasgow July 17-21

Conference Guide

Contents

Committees
Committee meetings2
Location
Wi-fi4
Welcome Reception
Transport4
Glasgow City Centre Map5
Campus and surrounding area map6
Timetable7
Catering
Conference Dinner
Excursion
Local Area9
Cultural:9
Entertainment10
Sports and fitness:10
Full Programme:11
Tuesday, July 17 th
Wednesday July 18 th 11
Thursday, July 19 th 11
Friday, July 20 th
Saturday, July 21 st
Poster Presentations

Committees International Scientific Committee

Carlos D. Pintassilgo (Chair), Portugal Ronny Brandenburg, Germany Nikolay Dyatko, Russia Richard Engeln, Nertherlands František Krčma, Czech Rep. Savino Longo, Italy Kinga Kutasi, Hungary Tiberiu Minea, France Bogdana Mitu, Romania Nevena Puač, Serbia Isabel Tanarro, Spain Erik Wagenaars, United Kingdom

Local Organising Committee:

Declan Diver (Chair, University of Glasgow) Alasdair Wilson (University of Glasgow) Kyle Martin (University of Glasgow) Nick Braithwaite (The Open University) Mark Bowden (Liverpool University) Timo Gans (University of York) Bill Graham (Queen's University Belfast) Kirsty Mckay (University of Liverpool) Paul Maguire (Ulster University) Deborah O'Connell (University of York) Abraham Ogwu (University of the West of Scotland) Alan Phelps (Strathclyde University) Craig Stark (Abertay University)

Committee meetings

ESCAMPIG ISC Meeting: July 18th, lunch time in the Turnbull Room ICPIG ISC Meeting: July 18th, 5pm in the Turnbull Room

Location

he conference will take place in Hunter Halls, in the East Quadrangle of the University of Glasgow (see the Campus Map). Hunter Halls can be found by entering the main gate on University Avenue: the Gilbert Scott(GS) building is directly ahead (it's the very large gothic sandstone building with the tower). Enter the GS by heading to the large entrance near the protruding bay window, and head up the stairs. The cloisters should now be on your left: walk across them to the grass square on the other side; Hunter Halls make up the entire side of the quadrangle. Hunter Halls East for the oral presentations, Hunter Hall West for posters, industry exhibitions and refreshment breaks.

Lunch will be served in 1A The Square, which will be exclusive to

Main Gate and path to Hunter Halls ESCAMPIG; please remember to bring your conference badge with you at lunch time, to ensure entry.

Break-out rooms (for the Workshop Discussions) are located in the Gilbert Scott Conference Suite (shown on the map), and the lecture theatre G466, as well as Hunter Halls East. The Tech-X workshop will use one of these rooms.

Wi-fi

There is eduroam access throughout the campus. For those needing alternative connectivity, please use the GUVISITOR identities that will be emailed to you before the conference begins.

Welcome Reception

The conference welcome reception will be hosted by the City Council at the Glasgow City Chambers, George Square, in the heart of the city. The reception will start at 19:30, and should last about 1 hour (drinks and canapes will be served), after which delegates are free to organise the rest of their evening. Please make your own way there: there are multiple transport options (the nearest subway station is Buchanan Street – see below). Delegates can choose to eat from a wide variety of restaurants in the city and the West End (and of course their own hotel). However, the restaurant Browns, right next to the City Chambers (see Map 2), is offering a 20% on their á la carte menu for delegates who wish to dine there – this discount will apply to any meal taken there by delegates for the duration of the conference, including immedi-

ately after the reception.

Transport

Air: from Glasgow Airport, the campus is about 40 mins taxi ride, costing approximately £30. There is an airport coach (First Bus No. 77 and Glasgow Airport Express 500) which connects the airport to Buchanan Street bus station in Glasgow City Centre, from which the campus is a short bus, underground or taxi journey away. The airport bus costs £8 (https://www.firstgroup.com/greater-glasgow/routes-andmaps/glasgow-airport-express).

Underground: the Glasgow Underground (the 3rd oldest in the world, opened in 1896) is known as the subway, denoted by a large orange "S". It offers a rapid,

simple connection in a single ring between the city centre and the West End (and multiple other points), where the University is located (the nearest subway station is Hillhead). A single journey (to anywhere on the circuit) costs £1.70, and is valid only on the day that it is bought. There are multi-journey tickets available (<u>http://www.spt.co.uk/subway/tickets/</u>).

Rail: Glasgow Central Station has connections with all mainline stations to the South, including London Euston. Typical travel times are: London, 5 hours; Birmingham, 4 hours 20 mins; Manchester, 3 hours 20 mins. Services to the North and East of Glasgow are based in Queen Street Station, a short distance from Central. There are many fast trains to Edinburgh from Queen Street, about 40 minutes

journey time. Queen Street and Central are a short distance from the Subway station Buchanan Street (Central is also close to St Enochs).

The closest rail station to the campus is Partick (shown on the map), offering rail services to the city centre, and to the countryside all around, including coastal areas.

Taxi: Taxis are generally plentiful in the West End, and not too expensive. There is a taxi-stance at Hillhead Underground, close to the conference site. A taxi to Glasgow International Airport takes about half an hour.

Bus: there are extensive bus services close to the campus, connecting to the city centre and beyond. Main bus routes are Byres Road, Great Western Road and Dumbarton Road. Many buses also travel along University Avenue, where the campus is located (<u>http://www.spt.co.uk/</u>)

Bike: getting around Glasgow can be done by bicycle – nextbike operate 500 bikes and 53 stations across the city, where you can collect a bike for short term use, and drop it off at convenient locations. See https://www.nextbike.co.uk/en/glasgow/ for details. Campus Map

Glasgow City Centre Map

Campus and surrounding area map

Timetable

Full programme details are given the accompanying table; the outline below is a quick-guide to the daily structure of the events.

Tue	2pm	Registration (also on Wed morning)
Tue	7pm	Welcome Reception, Glasgow City Chambers
Wed	08:45 - 09:00	Welcome Address, Hunter Halls
Wed	09:00 - 10:30	Oral presentations
Wed	10:35 - 11:10	Break (refreshments and snacks)
Wed	11.10 - 12:45	Oral Presentations
Wed	12:45 – 12:55	Lightning presentations: short adverts for forthcoming posters
Wed	12:50 - 14:00	Lunch
Wed	13:30 - 14:30	Optional Tech-X workshop
Wed	14:00 - 15:30	Poster Session 1 (topics 1-5)
Wed	15:30 - 16:00	Break (refreshments and snacks)
Wed	16:00 - 17:30	Workshop 1: Plasmas in multiphase media
Thu	08:45 - 09:00	Feedback on previous day's events
Thu	9am – 10:35	Oral Presentations
Thu	10:35 - 11:10	Break (refreshments and snacks)
Thu	11:10 - 13:05	Oral Presentations
Thu	13:15	Packed lunch collection
Thu	13:30 -	Departure for excursions. Return to campus by c18:00
Fri	08:45 - 09:00	Feedback on previous day's events
Fri	09:00 - 10:35	Oral Presentations
Fri	10:35 - 11:10	Break (refreshments and snacks)
Fri	11:10 - 12:45	Oral Presentations
Fri	12:45 – 12:55	Lightning presentations: short adverts for forthcoming posters
Fri	12:55 – 14:00	Lunch
Fri	14:00 - 15:25	Poster Session 2 (topics 6-12)
Fri	15:25 - 16:00	Break (refreshments and snacks)
Fri	16:00 - 17:30	Workshop 2: Plasmas and living systems

Fri	18:00	Transport to Conference Dinner, return to campus by c22:30
Sat	08:45 - 09:00	Feedback on previous day's events
Sat	09:00 - 10:35	Oral Presentations
Sat	10:35 – 11:10	Break (refreshments and snacks)
Sat	11:10 - 11:55	William Crookes Prize Lecture (D O'Connell)
Sat	11:55 – 12:45	Oral Presentations
Sat	12:45 – 13:00	Closing Remarks and poster prizes
Sat	13:00 - 14:00	Lunch and then departure.

Note that Lightning Presentations are a single power-point slide introducing a poster; there will be a limited number of presenters accepted for this, restricted to 1 minute maximum. Watch out for the invitations!

The feedback on the previous day's events will be a display of information gathered from the talks, and from the workshops. Delegates will be invited to send comments electronically and fully anonymously (full details of the mechanism will be announced closer to the time) on 3 key general questions covering interest, impact and future strategy. This is a chance for all delegates to express an opinion!

Additional conference activities

1 CON

Tech-X will host a short workshop on Physics Simulation Software, to be held in lecture theatre G466, close to the main conference hall.

The University Library Special Collections Unit (Henry Heaney Room Level 12, Main Library) will host a display of rare materials relevant to electricity, plasmas and spectroscopy, dating from 1709 (including F Hauksbee, B Franklin, Lord Kelvin); this will take place on Friday 20th July, 12 noon to 2pm.

110M

The University Bookshop will offer special discounts to conference delegates on selected relevant books throughout the conference period.

Catering

Lunches, tea/coffee breaks are included in the conference registration, as is the conference dinner. Delegates should make their own arrangements for breakfast and evening meals (apart from the conference dinner). Lunches will be served to ESCAMPIG delegates only (including accompanying others if they wish) at 1A The Square, a short walk across the campus from the conference venue. Please remember to bring your conference badge. If you prefer to eat off campus, there are plenty of excellent cafes and restaurants nearby. Coffees, teas, soft drinks and snacks will be served during the programme breaks, in Hunter Hall West, beside the posters and industry exhibits. On the day of the excursions, a packed lunch will be provided to save time.

Conference Dinner

The banquet will be held at the Glasgow Science Centre, on the banks of the River Clyde. Though only a short distance from the campus (about 25 minute walk), transport to and from the Science Centre will be provided. There will be an opportunity to peruse the exhibits before dinner, and each delegate is invited to enjoy a planetarium show in the 15m hemispherical dome digital planetarium, as part of the conference banquet.

https://www.glasgowsciencecentre.org/discover/our-experiences/planetarium

Excursion

Two excursions have been provided, with delegates choosing one: a cruise on Loch Lomond with <u>Sweeney's Cruises</u> (a 1-hour circular tour of the South basin); and a visit to <u>Stirling Castle</u> (self-guided tour). Transport to and from the venues is provided.

Local Area

The University campus is located in Glasgow's West End.

Cultural: On the campus itself there is the Hunterian Museum (<u>https://www.gla.ac.uk/hunterian/</u>), the Hunterian Art Gallery (https://www.gla.ac.uk/hunterian/collections/permanentdisplays/hunterianartgallery/) (both free) and the University Gift Shop (https://www.universityofglasgowshops.com/). Close by – within easy walking distance - is the renowned Kelvingrove Art Gallery and Museum (https://www.glasgowlife.org.uk/museums/venues/kelvingrove-art-gallery-and-museum), and across the road from Kelvingrove is the recently refurbished Kelvin Hall (https://kelvinhall.org.uk/), where the National Library of Scotland digital resources can be found (films, maps, books and manuscripts), including the national Moving Image Archive. Just a bit further away is the award-winning transport museum (https://www.glasgowlife.org.uk/museums/venues/riverside-museum). A short walk from the campus lies the Botanic Gardens (http://www.glasgowbotanicgardens.com/), free to use with grounds, glasshouses and tearooms. The city centre has many cultural venues, including the Gallery of Modern Art (https://www.glasgowlife.org.uk/museums/venues/gallery-of-modern-artgoma), the Glasgow Concert halls (Royal Concert Hall, City Hall and Old Fruitmarket (https://www.glasgowconcerthalls.com)) and the Royal Conservatoire ; also of note are the Theatre Royal, The Tron Theatre, The Pavilion Theatre, The King's Theatre and the Citizens Theatre (http://www.atgtickets.com/shows/glasgow/).

Entertainment: There are several cinemas in Glasgow: the closest to the campus is the Grosvenor (http://grosvenorwestend.co.uk/cinema/); Cineworld (https://www.cineworld.co.uk/cinemas/glasgow-renfrew-street) and Odeon (https://www.odeon.co.uk/cinema/2017/glasgow/) are two of the larger chains, with the Glasgow Film Theatre (https://glasgowfilm.org/) an independent cinema. There is a variety of live entertainment in pubs and clubs (http://www.whatsonglasgow.co.uk/eating-and-drinking/pubs/).

Sports and fitness: Kelvingrove park has several outdoor activities, including free outdoor tennis courts, lawn bowls, fitness sessions, yoga and walks (<u>https://glasgowlife.sportsuite.co.uk/direc-tory/kelvingrove-pavilion</u>). The University of Glasgow Sports facility at the Stevenson Building (swimming pool, gymnasium, sports halls) offers ad-hoc access for visitors at £6 per day, or £15 for 3 days (<u>https://www.gla.ac.uk/myglasgow/sport/</u>).

Full Programme:

Tuesday, July 17th

14:00 registration

19:00 Welcome Reception (Glasgow City Chambers)

Wednesday July 18th

	Session 1 Chairs: Carlos Pintassilgo & Declan Diver
09:00	Giorgio Dilecce "Laser Induced Fluorescence in a collisional environment: the case of OH molecule in a ns pulsed discharge"
09:45	Zdenek Navratil "Optical diagnostics of helium coplanar barrier discharge: pre-break- down light and electric field measurement"
10:15	Gabi Daniel Stancu "Tracking NO absolute density, temperature and hydrodynamics by QCLAS and PLIF in nanosecond post-discharges"
10:35	Break
	Session 2 Chairs: Kinga Kutasi & Frantisek Krcma
11:10	Zoran Petrovic "Overview of the procedure to obtain cross section data from the transport coefficients"
11:55	Thomas Gries "Ultrathin metallic oxide nanostructures synthesized by plasma afterglow- assisted oxidation for photocatalysis applications"
12:25	Dmitry Fursa "Electron-impact dissociation of molecular hydrogen"
12:45	Lightning poster presentations
12:55	Lunch
13:30	Tech-X workshop (1 hour, optional)
14:00	Poster Session 1 (topics 1-5)
15:25	Break
16:00	Workshop 1: Plasmas in multiphase media.
17:30	Close

Thursday, July 19th

	Session 3 Chairs: Savino Longo & Craig Stark
09:00	Anne Bourdon "Modelling and simulation of non-equilibrium plasma discharges"
09:45	Tiago Silva "Understanding the electron and vibration kinetics in CO ₂ plasmas"
10:15	Ana Sofia Morillo Candas "Effect of high surface-area on CO ₂ plasma kinetics"
10:35	Break
	Session 4 Chairs: Nikolay Dyatko & Nevena Puac
11:10	Nickolay Aleksandrov "Kinetics of high-voltage nanosecond discharge plasmas in hydro- carbons and combustible mixtures"
11:55	Aranka Derzsi "The effect of secondary electrons on the discharge characteristics in low pressure CCPs excited by tailored voltage waveforms"
12:25	Augustin Tibère-Inglesse "Experimental study of recombining air and nitrogen plasmas"
12:45	Walter Gekelman (LOC Invited Speaker): "Three-dimensional Measurements of magnetic fields and plasma properties in an industrial etch tool"
13:15	Lunch collection and departure for excursions
Friday,	July 20 th
	Session 5 Chairs: Bogdana Mitu & Tiberiu Minea

09:00	Gheorghe Dinescu "Plasma processing of nanomaterials at low and atmospheric pres-			
	sure"			
09:45	Anton Nikiforov "Atmospheric pressure plasma sources diagnostics as a key to control			
	their utilization in surface or liquid processing"			

10:15	Alexandra Brisset "Spatio-temporal electric field measurements of a diffuse nanosecond atmospheric discharge under very high electric fields"
10:35	Break
	Session 6 Chairs: Erik Wagenaars & Alasdair Wilson
11:10	Ryo Ono "Optical diagnostics in atmospheric-pressure non-thermal plasma"
11:55:	Ana Sobota "Electric field measurements in atmospheric-pressure plasma jets"
12:25	Zoltan Donko "The effect of VUV photons on nanosecond helium microdischarges at at-
	mospheric pressure"
12:45	Lightning poster presentations
12:55	Lunch
14:00	Poster Session 2 (topics 6-12)
15:25	Break
16:00	Workshop 2: Plasmas and living systems
17:30	Close and transport to Conference Dinner
Saturda	y, July 21 st

	Session 7 Chairs: : Ronny Brandenburg & Isabel Tanarro
09:00	Ralf-Peter Brinkmann "Plasma modelling for the understanding and active control of technological plasmas"
09:45	Mario Merino "Kinetic electron response in a rarified plasma jet expanding into vacuum"
10:15	Florian Sigeneger "Phase-resolved modelling of a non-thermal atmospheric pressure RF plasma jet"
10:35	Break
	Session 8 Chairs: Carlos Pintassilgo & Alan Phelps
11:10	Deborah O'Connell
	William Crookes Prize Lecture
11:55	James Walsh "Cold atmospheric-pressure plasmas for improved food safety"
12:25	Craig Stark "Evolution of sub-stellar dust clouds via plasma deposition and sputtering"
12:45	Closing remarks and poster prizes
13:00	Lunch and departure

Text in blue denotes General Invited Speaker (45 minutes); in green denotes a Topical Invited Speaker (30 mins). The talk in purple is the LOC invited talk (30 minutes). Talks in black are Hot Topic Speakers (20 mins).

Poster Presentations

PN is the poster number: look for this on the boards. Unfortunately there is not sufficient space to record all authors, but the conference abstract booklet has a comprehensive author list. Posters 1-111 inclusive will be in session 1 on Wed 18th July; the remainder will be in session 2 on Friday 20th July.

PN	Submitting Author	Title	Торіс
1.	Jung, Young-Dae	Renormalization shielding effect on the electron-impact ionization in dense plasmas	 Atomic and molecular pro- cesses in plasmas
2.	Rice, John	X-ray Observations of K_β Emission from Medium Z Helike lons in C-Mod Tokamak Plasmas	 Atomic and molecular pro- cesses in plasmas
3.	Blin Simiand, Nicole	Butanoic acid and butanoic acid/ethanol mixture re- moval by electro-ceramic barrier discharge	 Atomic and molecular pro- cesses in plasmas
4.	Blin Simiand, Nicole	Acetone decomposition in homogeneous and filamen- tary plasmas of atmospheric gases	 Atomic and molecular pro- cesses in plasmas
5.	Suzuki, Susumu	Determination of Arrhenius equations for collisional quenching rate coefficients of Ar(${}^{3}P_{2}$) by Ar(${}^{1}S_{0}$) and H ₂ O	 Atomic and molecular pro- cesses in plasmas
6.	Aleksandrov, Nickolay	Recombination of electrons with water cluster ions in afterglow of high-voltage nanosecond discharge	 Atomic and molecular pro- cesses in plasmas
7.	Aleksandrov, Nickolay	Collisional quenching of N ₂ (C ³ Π_u) and N ₂ ⁺ (B ² Σ^+_u) by hydrocarbon molecules in nanosecond discharge afterglow	1. Atomic and molecular pro- cesses in plasmas
8.	Fursa, Dmitry	Vibrationally resolved electron-impact excitation of mo- lecular hydrogen	 Atomic and molecular pro- cesses in plasmas
9.	Van de Steen, Cyril	Mobility of Kr_2^+ ions in Kr for cold plasma modelling	 Atomic and molecular pro- cesses in plasmas
10.	Khassenov, Men- dykhan	Emission and level population in noble gases and their binary mixtures ionized by ion beam	 Atomic and molecular pro- cesses in plasmas
11.	Khassenov, Men- dykhan	Luminescence spectra of noble gases and their binary mixtures excited by products of ${}^{6}Li(n,\alpha){}^{3}H$ nuclear reaction	1. Atomic and molecular pro- cesses in plasmas
12.	Wünderlich, Dirk	Yacora on the Web: providing collisional radiative mod- els for plasma spectroscopists	 Atomic and molecular pro- cesses in plasmas
13.	Plasil, Radek	Elementary processes in low temperature plasma down to 30 K – experimental setup	 Atomic and molecular pro- cesses in plasmas
14.	Gibson, Andrew	Calculated electron impact excitation and dissociation cross sections for H ₂ O ₂ and implications for plasma modelling	1. Atomic and molecular pro- cesses in plasmas
15.	Koepke, Mark	Experimental development of iso-electronic line ratio temperature diagnostic for soft x-ray absorption spectra	 Atomic and molecular pro- cesses in plasmas
16.	Bettadj, Latifa	Effects of radiative cascades from higher levels on the properties of the Fe ²⁵⁺ Lyman-line emission following radiative recombination	1. Atomic and molecular pro- cesses in plasmas

17.	Boufatah, Moham- med Reda	Original expression of the nonrelativistic partial cross sections for radiative recombination of bare ions	 Atomic and molecular pro- cesses in plasmas
18.	Chatterjee, Ab- hyuday	O ₂ X, a and b densities and kinetics in pure O ₂ DC dis- charges: VUV absorption, IR emission and Cavity Ring Down Spectroscopy measurements	 Atomic and molecular pro- cesses in plasmas
19.	Krivoruchko, Dariya	Experimental and theoretical investigations of atomic and molecular processes in Hall Thruster plasma	 Atomic and molecular pro- cesses in plasmas
20.	Dosbolayev, Mer- lan	Influence of the cathode sputtering on gas discharge parameters	 Atomic and molecular pro- cesses in plasmas
21.	Tudorovskaya, Ma- ria	Electron-molecule scattering in coma plasma: R-matrix calculations with Quantemol-N	 Atomic and molecular pro- cesses in plasmas
22.	Orszagh, Juraj	Electron induced excitation of molecules relevant for astrophysics	 Atomic and molecular pro- cesses in plasmas
23.	Papp, Peter	Understanding the differences in electron attachment and dissociation of gas phase vs molecular clusters of c- $C_4 F_8$	1. Atomic and molecular pro- cesses in plasmas
24.	Durian, Michal	High sensitivity measurements of electron induced fluorescence of H_2 continuum radiation	 Atomic and molecular pro- cesses in plasmas
25.	Okuyama, Yui	Variations of ion-molecule reactions and observed ion mobility in O_2 with a little amount of impurities	2. Transport phe- nomena; particle velocity distribu- tions
26.	Chernyshev, Timo- fey	Numerical simulation of the kinetic effects in a Hall thruster	 Transport phe- nomena; particle velocity distribu- tions
27.	Tejero-del-Caz, An- tonio	The LisbOn KInetics Boltzmann solver	2. Transport phe- nomena; particle velocity distribu- tions
28.	Babinov, Nikita	ITER in-vessel optics cleaning: Transport and re-deposi- tion of sputtered materials	2. Transport phe- nomena; particle velocity distribu- tions
29.	Vass, Máté	Measurement and kinetic computations of electron transport parameters in acetylene	2. Transport phe- nomena; particle velocity distribu- tions
30.	Ogloblina, Polina	Electron kinetics in CO ₂ /CO mixtures	2. Transport phe- nomena; particle velocity distribu- tions
31.	Schweigert, Irina	Properties of switching devices based on open dis- charge	2. Transport phe- nomena; particle velocity distribu- tions
32.	Schweigert, Irina	Non-uniformity of electron and ion fluxes over emissive surface with debye-scale erosion grooves	 Plasma surface interactions (boundary layers, sheaths, surface processes etc)
33.	Sharma, Rohit	Investigation of electron transport properties of two- temperature Argon-Helium thermal plasma	2. Transport phe- nomena; particle velocity distribu- tions

34.	Yamazaki, Masa- hiro	Decomposition efficiency of CO ₂ in recombining hydro- gen plasma with ultralow electron temperature	3. Physical basis of plasma chemis- try
35.	Bilea, Florin	Effect of pulse duration on degradation and mineraliza- tion of 2,4-dichlorophenoxyacetic acid in a corona plasma system	3. Physical basis of plasma chemis- try
36.	Guaitella, Olivier	DC discharges on CO ₂ /Ar mixtures: modelling and experiment	3. Physical basis of plasma chemis- try
37.	Pontiga, Francisco	Comparison between AC DBD and nanosecond pulsed DBD for carbon dioxide dissociation with mixtures of ox- ygen	3. Physical basis of plasma chemis- try
38.	Chatain, Audrey	Experimental characterization of a N ₂ -H ₂ CCP RF dis- charge: electron density, NH ₃ concentration, positive ion populations	 Physical basis of plasma chemis- try
39.	Tejero-del-Caz, An- tonio	The LisbOn KInetics tool suit	3. Physical basis of plasma chemis- try
40.	Brandenburg, Ronny	Multi-Dimensional Time-Correlated Single Photon Counting for Investigation of Microplasma Reactors	 Physical basis of plasma chemis- try
41.	Er, Mine	Synthesis of metallic silver nanoparticles by solution plasma processing – A parametrical study	 Physical basis of plasma chemis- try
42.	Furusato, Tomohiro	Efficient production conditions of OH radicals generated by pulsed surface discharge plasma on water	 Plasma surface interactions (boundary layers, sheaths, surface processes etc)
43.	Sasaki, Koichi	Production of droplets by magnetron sputtering of a liq- uid tin target	 Plasma surface interactions (boundary layers, sheaths, surface processes etc)
44.	Silva, Carla	Diagnostics of hollow cathode plasma and sputtered materials ejected from small diameter metallic tubes by 2-D deposition patterns on silicon wafer targets	 Plasma surface interactions (boundary layers, sheaths, surface processes etc)
45.	lto, Gen	Wall Reflection Model of Low Energy Xenon Ions Accel- erated by Hall Electric Thrusters	 Plasma surface interactions (boundary layers, sheaths, surface processes etc)
46.	Viegas, Pedro	Modelling and experimental investigation of plasma- target interaction at atmospheric pressure through electric field characterization	 Plasma surface interactions (boundary layers, sheaths, surface processes etc)
47.	Somboonkittichai, Nopparit	Rice Grain Dehydration Enhanced by Sheath Plasma	 Plasma surface interactions (boundary layers, sheaths, surface processes etc)
48.	Ellis, James	Surface production of negative ions on nitrogen doped diamond samples	 Plasma surface interactions (boundary layers, sheaths, surface processes etc)

49.	Favre, Mario	Characterization of the on-substrate plasma in Pulsed Laser Deposition of Carbon Films	 Plasma surface interactions (boundary layers, sheaths, surface processes etc)
50.	Tavant, Antoine	Effects of secondary electron emission from the ceramic walls on the discharge of Hall effect thrusters using a 2D PIC simulation.	 Plasma surface interactions (boundary layers, sheaths, surface processes etc)
51.	Sakudo, Noriyuki	Ion energy bombarding the surface of pulse-biased sample	 Plasma surface interactions (boundary layers, sheaths, surface processes etc)
52.	Honnorat, Bruno	Interaction of cold plasma with living tissue: heat and chemical transport across the skin	 Plasma surface interactions (boundary layers, sheaths, surface processes etc)
53.	Munoz-Cordovez, Gonzalo	Silicon surface modifications produced by outflows emitted by tungsten conical wire array Z-pinches	 Plasma surface interactions (boundary layers, sheaths, surface processes etc)
54.	Davies, Helen	Low Temperature Air Plasmas for Wound Healing Appli- cations	 Plasma surface interactions (boundary layers, sheaths, surface processes etc)
55.	Utegenov, Al- masbek	Dust formation during the interaction of a pulsed plasma flow with ITER candidate wall materials	 Plasma surface interactions (boundary layers, sheaths, surface processes etc)
56.	Tabares, Francisco	Ammonia formation from H ₂ /N ₂ Glow Discharge plas- mas on metal surfaces in the presence of noble gas bombardment	 Plasma surface interactions (boundary layers, sheaths, surface processes etc)
57.	Ussenov, Yerbolat	Thin film deposition by combined plasma jet and spark discharge source at atmospheric pressure	 Plasma surface interactions (boundary layers, sheaths, surface processes etc)
58.	Christensen, Paul	The production of ketene and C_5O_2 from CO_2 , N_2 and CH_4 in a non-thermal plasma catalysed by earth-abundant elements: an in-situ FTIR study	 Plasma surface interactions (boundary layers, sheaths, surface processes etc)
59.	Christensen, Paul	The Production of Methane, Acetone, "Cold" CO and Oxygenated Species from Isopropyl Alcohol in a Non- Thermal Plasma: An In-Situ FTIR Study	 Plasma surface interactions (boundary layers, sheaths, surface processes etc)
60.	Škoro, Nikola	Treatment of flour by surface DBD source in air	 Plasma surface interactions (boundary layers, sheaths, surface processes etc)
61.	Škoro, Nikola	Effect of target surface on optical and electrical proper- ties of He plasma jet	4. Plasma surface interactions

			(boundary layers, sheaths, surface
			processes etc)
62.	Medvecká, Ve- ronika	Low-temperature plasma assisted preparation of ce- ramic nanofibers	 Plasma surface interactions (boundary layers, sheaths, surface processes etc)
63.	Meehan, David	Composition of various metal-oxide films as a function of depth, deposited by Plasma Enhanced-Pulsed Laser Deposition.	 Plasma surface interactions (boundary layers, sheaths, surface processes etc)
64.	Benilov, Mikhail	On the validity of the kinetic Bohm criterion	 Plasma surface interactions (boundary layers, sheaths, surface processes etc)
65.	Akbi, Mohamed	Influence of arcing in air on EWF for Silver-Metal Oxide (Ag-MeO) Electrical Contacts	 Plasma surface interactions (boundary layers, sheaths, surface processes etc)
66.	Bhattarai, Shankar	Flexibility, Validity and Susceptibility of Cylindrical Lang- muir Probes for CubeSat and Pico-Satellite to Character- ize Ionosphere and Thermosphere Plasma	5. Plasma diag- nostics
67.	Inada, Yuki	Talbot Interferometer for Two-Dimensional Electron Density Measurement over Positive Secondary Streamer Discharge Propagating in Atmospheric-Pres- sure Air	5. Plasma diag- nostics
68.	Regodón, Guillermo Fer- nando	Radial Langmuir probe models for electronegative plas- mas: Dependance of the floating potential on the geom- etry	5. Plasma diag- nostics
69.	Ding, Chenyang	Time-resolved electron temperature OES measurement in filamentary discharge	5. Plasma diag- nostics
70.	Hansen, Luka	Measurements of the energy flux on an atmospheric pressure surface barrier discharge	 Plasma diag- nostics
71.	Xiong, Qing	Visualization of an atmospheric-pressure micro-glow discharge by multi-advanced diagnostic approaches	5. Plasma diag- nostics
72.	Dyatko, Nikolay	Study of radial distributions of Ar(1s ₅) metastable atom number density in Ar and Ar:N ₂ dc glow discharges	5. Plasma diag- nostics
73.	Dyatko, Nikolay	Experimental and theoretical study of the population of Ar(3p ⁵ 4p) states in a dc glow discharge in argon	5. Plasma diag- nostics
74.	Dyatko, Nikolay	Determination of electric field in pre-breakdown wave in Ar-Hg mixture by spectroscopic method	5. Plasma diag- nostics
75.	Kettlitz, Manfred	Impact of N ₂ O admixture in N ₂ on the characteristics of pulsed-driven DBDs at atmospheric pressure	5. Plasma diag- nostics
76.	Kersten, Holger	An optically trapped and manipulated microparticle as plasma probe	5. Plasma diag- nostics
77.	Slikboer, Elmar	Diagnostics of Targets under Plasma Exposure using Mueller Polarimetry	5. Plasma diag- nostics
78.	lto, Masafumi	Diagnostics of radicals generated from atmospheric- pressure radical source and their activated water using ultra-violet absorption spectroscopy	5. Plasma diag- nostics

79.	Chng, Tat Loon	TALIF N(⁴ S) atom density measurements in the after-	 Plasma diag- nostics
80.	Briefi, Stefan	Benchmark measurements of a dissociation and ioniza- tion model for low pressure low temperature hydrogen discharges	5. Plasma diag- nostics
81.	Wyndham, Ed- mund	Plasma dynamics of wire explosions using twin inde- pendent kA single and multiple pulse top-hat pulse gen- erators	5. Plasma diag- nostics
82.	Fröhler, Caecilia	Absolute measurements of UV/VUV photon fluxes with a portable diode system in low pressure plasmas	 Plasma diag- nostics
83.	Tyl, Clémence	Local electrical diagnostics of a homogeneous Dielectric Barrier Discharge at atmospheric pressure	5. Plasma diag- nostics
84.	Grofulović, Marija	A rotational Raman study under non-thermal conditions in pulsed CO ₂ /N ₂ and CO ₂ /O ₂ glow discharges	5. Plasma diag- nostics
85.	Nakagawa, Yusuke	Measurement of atomic oxygen temperature produced in narrow gap ozone generator	5. Plasma diag- nostics
86.	Gordillo-Vázquez, Francisco J	GALIUS: A new spectrograph for ultrafast spectroscopy and imaging of lightning and meter long arcs	5. Plasma diag- nostics
87.	Kasri, Salima	Optimisation of a ns-pulsed micro-hollow cathode dis- charge array in Ar/N_2 for atomic nitrogen production	5. Plasma diag- nostics
88.	Marmuse, Florian	Temperature and density measurements in an iodine RF-CPP plasma with emission and absorption spectros- copy.	5. Plasma diag- nostics
89.	Fantz, Ursel	Application of an AC method for measuring the EEDF in low pressure plasmas by a Langmuir probe	5. Plasma diag- nostics
90.	Krivoruchko, Dariya	Laser Induce Fluorescence for thruster plume diver- gence measurements: theory and application	5. Plasma diag- nostics
91.	Morillo Candas, Ana Sofia	Comparison of gas temperature measurements with Ra- man, FTIR and HR-TALIF	5. Plasma diag- nostics
92.	Meehan, David	Measurements of gas temperatures within pulsed oxy- gen inductively coupled plasmas by use of the $O_2(b^1 \Sigma_g^+)$ to $O^2(X^3 \Sigma_g^+)$ transition.	5. Plasma diag- nostics
93.	Thomas, Sébastien	Decomposition of acetone in a photo-triggered dis- charge and identification of products using PTRMS	5. Plasma diag- nostics
94.	Yamazaki, Masa- hiro	Measurements of electron density, electron tempera- ture, and gas temperature in recombining hydrogen plasma with addition of CO ₂	5. Plasma diag- nostics
95.	Han, Jia	Spatially Non-Uniform Plasma Conductivity and Power Deposition in a Process Plasma	5. Plasma diag- nostics
96.	Qian, Yuchen	An Inexpensive Python Based Data Acquisition and Mo- tion Control System for 2D and 3D Plasma Measure- ment	5. Plasma diag- nostics
97.	Booth, Jean-Paul	Oxygen metastable molecule densities in inductively- coupled plasmas in pure O ₂ measured by VUV absorp- tion	5. Plasma diag- nostics
98.	Minea, Tiberiu	Electron property evolution in HiPIMS plasmas by inco- herent Thomson scattering	5. Plasma diag- nostics
99.	Lee, S.h	Comparative measurements of negative ion density by a laser photo-detachment method and an electric probe in a DC-filament plasma source	5. Plasma diag- nostics

100.	Srivastav, Prab- hakar	Temperature Fluctuation Measurement and Electron Temperature Gradient (ETG) turbulence in Large Vol- ume Plasma Device(LVPD)	5. Plasma diag- nostics
101.			
102.	Valinattaj Omran, Azadeh	Control of the atmospheric pressure plasma gun for tis- sue treatment	5. Plasma diag- nostics
103.	Stancampiano, Au- gusto	Time-resolved measurement of the electric field in- duced by a plasma gun device in a conventional electro- poration setup	5. Plasma diag- nostics
104.	Cartry, Gilles	Surface production of negative ion in low pressure H_2/D_2 plasmas: measurement of the absolute negative ion flux	5. Plasma diag- nostics
105.	Moravský, Ladislav	Ion Mobility Spectrometry monitoring of decomposition of Phthalates by Corona Discharge	5. Plasma diag- nostics
106.	Naudé, Nicolas	Local Characterization of Homogeneous Dielectric Bar- rier Discharges in presence of hexamethyldisiloxane and nitrous oxide used for plasma deposition	5. Plasma diag- nostics
107.	Asimakoulas, Leon- idas	Discharges in liquids-Experiment and Simulations of plasma kinetics	5. Plasma diag- nostics
108.	Woodward, David	Full wave numerical simulations of cross-polarization Doppler backscattering	5. Plasma diag- nostics
109.	Mitu, Bogdana	Monitoring the hydrogenated/fluorinated carbon layers deposition by Optical Emission Spectroscopy	5. Plasma diag- nostics
110.	Schröter, Sandra	Picosecond TALIF to quantify collisional quenching of la- ser-excited states in atmospheric pressure plasmas	5. Plasma diag- nostics
111.	Hemmati, Mostafa	Speed and Current in Lightning Return Strokes	 Plasma dis- charges: theory and simulation
112.	Sugawara, Hirotake	Monte Carlo analysis of the asymmetry in azimuthal electron flow in an inductively coupled plasma driven under confronting divergent magnetic fields	 Plasma dis- charges: theory and simulation
113.	Ciobotaru, Catalina	The monochrome radiation emitted by Kr-H ₂ gas mix- ture plasma in inductive magnetic field	 Plasma dis- charges: theory and simulation
114.	Vialetto, Luca	Monte Carlo Flux simulation of electrons for plasma modelling	 Plasma dis- charges: theory and simulation
115.	Su, Li-Wen	Two dimensional simulations of triode VHF SiH ₄ plasma using fluid model	 Plasma dis- charges: theory and simulation
116.	Lazarou, Constanti- nos	Numerical modelling of the effect of water admixtures in a helium/air parallel plate dielectric barrier discharge	 Plasma dis- charges: theory and simulation
117.	Hartmann, Peter	Ionization waves in the PK-4 direct current neon dis- charge	6. Plasma dis- charges: theory and simulation
118.	Martorelli, Roberto	1D fluid simulation of Hall Thruster with self-consistent anomalous electron transport	 Plasma dis- charges: theory and simulation
119.	Moore, Chris	PIC-DSMC Simulations of Ultra-Fast Pin-to-Plane Dis- charge in Air	6. Plasma dis- charges: theory and simulation
120.	Babaeva, Natalia	Interaction of argon and helium plasma jets with sur- faces	 Plasma dis- charges: theory and simulation

121.	Gudmundsson, Jon Tomas	The influence of the electrode surfaces on the electron heating in capacitively coupled oxygen discharge	6. Plasma dis- charges: theory and simulation
122.	Gudmundsson, Jon Tomas	On recycling in high power impulse magnetron sputter- ing discharges	 Plasma dis- charges: theory and simulation
123.	Lucken, Romain	Universal Instabilities in Low Temperature Plasma Dis- charges	 Plasma dis- charges: theory and simulation
124.	Charoy, Thomas	Influence of the modelling of electron injection at the cathode in a 2D axial-azimuthal simulation of a station-ary plasma thruster	6. Plasma dis- charges: theory and simulation
125.	Zhu, Yifei	Peculiarities of kinetics in pulsed nanosecond discharge at high and low specific deposited energy on the exam- ple of argon actinometry technique of O density meas- urements	6. Plasma dis- charges: theory and simulation
126.	Terraz, Loann	$N_{\rm 2}$ influence on the vibrational distribution of the asymmetric level of $CO_{\rm 2}$	 Plasma dis- charges: theory and simulation
127.	Regodón, Guillermo Fer- nando	PIC simulation of a collisional planar pre-sheath	6. Plasma dis- charges: theory and simulation
128.	Diomede, Paola	Fokker-Planck equation for chemical reactions in plas- mas	 Plasma dis- charges: theory and simulation
129.	Tereshonok, Dmitrii	Appearance of the cavitation in a dielectric liquid under the effect of electrostrictive forces	 Plasma dis- charges: theory and simulation
130.	Kuhfeld, Jan	Impedance modelling for DF-plasmas where one of the frequencies is well below the ion plasma frequency	 Plasma dis- charges: theory and simulation
131.	Hopkins, Matthew	High Fidelity 3D Simulations of Discharge in Helium/Ni- trogen Including Photonic Effects	 Plasma dis- charges: theory and simulation
132.	Akashi, Haruaki	Effect of electron desorption from dielectric surface on atmospheric pressure dielectric barrier discharge	 Plasma dis- charges: theory and simulation
133.	Karim, Mohammad	Dynamic Characteristics of DBD Discharges Produced in the Aqueous Solution of NaCl	 Plasma dis- charges: theory and simulation
134.	Tretiak, Krasymyr	A new high-order time-stepping algorithm to track fast ions in fusion reactors	 Plasma dis- charges: theory and simulation
135.	Malagón-Romero, Alejandro	Space stem precursors and the attachment instability	 Plasma dis- charges: theory and simulation
136.	Ferreira, Nuno	Stability of glow corona discharges and corona-to- streamer transition	 Plasma dis- charges: theory and simulation
137.	Ferreira, Nuno	Modelling positive glow corona in high-pressure air	6. Plasma dis- charges: theory and simulation
138.	Pal, U N	Investigation of High Density Electron Beam Generation and Propagation from a Pseudospark Discharge Based Plasma Cathode	6. Plasma dis- charges: theory and simulation
139.	Shiratani, Masaharu	Density modulation of nanoparticles in amplitude mod- ulated discharge plasmas	 Self-organisa- tion in plasmas, including dusty plasmas

140.	Valin, Sergei	Constricted gas discharge instability with respect to two-dimensional wave perturbations	 Self-organisa- tion in plasmas, including dusty plasmas
141.	Siasko, Aleksei	Dynamics of formation of positive column constriction in neon	 Self-organisa- tion in plasmas, including dusty plasmas
142.	Irimiciuc, Stefan Andrei	Experimental and theoretical investigations of the inter- action between two complex space charge structures in hollow grid cathode discharge plasma	 Self-organisa- tion in plasmas, including dusty plasmas
143.	Irimiciuc, Stefan Andrei	Transition to chaos by intermittency of multiple fireballs dynamics in low-temperature discharge plasma	 Self-organisa- tion in plasmas, including dusty plasmas
144.	Kodanova, Sandugash	The effect of magnetic field on charging processes of dust particles in gas discharge plasma	 Self-organisa- tion in plasmas, including dusty plasmas
145.	Longo, Savino	Charge Fluctuations of small Particle in a Plasma	 Self-organisa- tion in plasmas, including dusty plasmas
146.	Tanarro, Isabel	Carbonaceous dust and films generation in capacitively and inductively coupled RF discharges	 Self-organisa- tion in plasmas, including dusty plasmas
147.	Smith, Matthew	Dust Charging in Magnetised Complex Plasmas	 Self-organisa- tion in plasmas, including dusty plasmas
148.	Martin, Kyle	Cloud Formation surrounding Ablating Dust Grains in a Hot Magnetised Plasma	 Self-organisa- tion in plasmas, including dusty plasmas
149.	Chatain, Audrey	Evolution of dust in Titan's ionosphere: an experimental simulation monitored by IR transmission spectroscopy	8. Upper atmos- pheric plasmas and space plas- mas
150.	Speirs, David	Two-dimensional Vlasov simulations of parametric wave decay and stochastic electron heating	8. Upper atmos- pheric plasmas and space plas- mas
151.	Wilson, Alasdair	Ionisation balance in coupled MHD-Gas interaction sim- ulations	8. Upper atmos- pheric plasmas and space plas- mas
152.	Ohta, Takayuki	Growth promotion of radish sprouts treated by neutral oxygen radicals	8. Upper atmos- pheric plasmas and space plas- mas
153.	Krcma, Frantisek	Formation of high molecular weight products by glow discharge in Titan like gaseous mixture at cryogenic temperatures	 Upper atmos- pheric plasmas and space plas- mas
154.	Ueda, Mario	High Temperature Plasma Immersion Ion Implantation (and Deposition) Using Hollow Cathode Discharges in Small Diameter Metal Tubes	9. Low pressure plasma sources
155.	Pat, Suat	Tungsten oxide thin film deposition by thermionic vac- uum arc (TVA) discharge	9. Low pressure plasma sources

156.	Kais, Abderrah-	2.45 GHz low-pressure plasma characterization using	9. Low pressure
	mane	thermal and optical methods	plasma sources
157.	Tanarro, Isabel	STARDUST: experimental station for generation, pro-	9. Low pressure
		cessing and diagnostics of nanoparticles of astrophysical interest	plasma sources
158.	Antonov, Nikolay	Development of a model substances plasma source for spent nuclear fuel plasma separation	9. Low pressure plasma sources
159.	Kozak, Tomas	Gas rarefaction in high power impulse magnetron sput- tering – comparison of a particle simulation and vol- ume-averaged models	9. Low pressure plasma sources
160.	Fubiani, Gwenael	Modelling of Negative Ion Production and Extraction from a Magnetized Plasma Source	9. Low pressure plasma sources
161.	Yin, Helen	Pseudospark plasma-sourced sheet electron beam for application in high power millimetre wave radiation generation	9. Low pressure plasma sources
162.	Ronald, Kevin	Development of an apparatus to study nonlinear micro- wave coupling in magnetised plasma	9. Low pressure plasma sources
163.	Doyle, Scott	Electron and ion dynamics in capacitively coupled radio- frequency plasmas with structured electrodes driven by tailored voltage waveforms	9. Low pressure plasma sources
164.	Rauner, David	RF power transfer and heating mechanism of low pressure H_2/D_2 ICPs	9. Low pressure plasma sources
165.	Vicente Gabás, Ig-	Optimization of the discharge compartment geometry	9. Low pressure
	nacio Gabriel	of a toroidal electron beam source	plasma sources
166.	Bowden, Mark	Plasma Breakdown between Wire Grid Electrodes	 Low pressure plasma sources
167.	Bowden, Mark	Characterisation of Transparent Cathode Discharges	9. Low pressure plasma sources
168.	Irwin, Rachael	Characterisation of Atmospheric Pressure Plasmas	9. Low pressure plasma sources
169.	Ahr, Philipp	Novel efficient stochastic heating mechanism in periodi- cally structured vortex fields for large-area discharges	9. Low pressure plasma sources
170.	Marić, Dragana	Detection of RF breakdown by balanced capacitive bridge	9. Low pressure plasma sources
171.	Malović, Gordana	Low-pressure DC discharges in vapours of alcohols	9. Low pressure
172.	van Veldhoven, Jacqueline	Optimizing a low-energy plasma system towards low contamination for use in nanolithography material studies	9. Low pressure plasma sources
173.	Lamba, R. P.	Technological Advancement in High Power Plasma Switches Development at CSIR-CEERI, Pilani, India	9. Low pressure plasma sources
174.	Ashizuka, Naokazu	Dependence of plasma temperature and breakdown voltage on ambient medium temperature in high pressure CO ₂ including supercritical phase	10. High pressure plasma sources
175.	Kossyi, Igor	Excited by microwave beam discharge with advanced stages of ionization-overheating instability as a basis of plasmachemicalurban atmosphere cleaning reactor	10. High pressure plasma sources
176.	Invernizzi, Laurent	Characterization of He plasma jet in interaction with a liquid target by laser absorption spectrometry and optical emission spectroscopy	10. High pressure plasma sources
177.	Hamdan, Ahmad	Characterization of a microwave plasma jet in water	10. High pressure plasma sources

178.	Borzosekov, Valen-	Subthreshold discharge excited by a microwave beam	10. High pressure
	tin	as a basis of a plasma-chemical reactor for urban at-	plasma sources
		mosphere cleaning from mercaptans	
179.	Yagi, Hidetsugu	Analysis of carbon films by microwave-plasma assisted chemical vapour deposition in open-air system	10. High pressure plasma sources
180.	Hofmans, Marlous	Electric field measurements in a plasma jet using Stark spectroscopy: the influence of targets	10. High pressure plasma sources
181.	Boothroyd, Joshua	Absolute atomic chlorine density measurements in the effluent of a radio-frequency atmospheric pressure plasma	10. High pressure plasma sources
182.	Snirer, Miroslav	Optical emission spectroscopy of gas mixing process during graphene nanosheets synthesis by dual channel microwave plasma torch at atmospheric pressure	10. High pressure plasma sources
183.	Naudé, Nicolas	Atmospheric Pressure Townsend Discharge: Influence of barrier material on the memory effect in N_2 at low frequency and in air	10. High pressure plasma sources
184.	Tereshonok, Dmitrii	Arc discharge with the hafnium cathode in argon	10. High pressure plasma sources
185.	Choi, Jun	Microwave-excited atmospheric-pressure plasma jet in argon by transmission line resonator	10. High pressure plasma sources
186.	Samel, Matus	Tunnelling electron source operating at atmospheric pressure	10. High pressure plasma sources
187.	Coquery, Fabien	Power balance and heat control in capillary microwave argon plasmas	11. Plasmas and gas flows
188.	Litovko, Iryna	computer modelling of high density plasma flow propa- gation through the plasma kens	11. Plasmas and gas flows
189.	Bouazza, Redha	Effect of the corona electrode polarity on the electric wind velocity	11. Plasmas and gas flows
190.	Doyle, Scott	Spatial control of power deposition in radio-frequency electrothermal micro-thrusters via tailored voltage waveforms	11. Plasmas and gas flows
191.	Barni, Ruggero	On the Propagation of Ionization in Filamentary Surface Dielectric Barrier Discharges	11. Plasmas and gas flows
192.	Doyle, Scott	Electron heating in radio-frequency electrothermal mi- crothrusters	11. Plasmas and gas flows
193.	Surdu- Bob, Cris- tina	Insights into a plasma-based technique for the deposi- tion hydrogen - free nitride films	11. Plasmas and gas flows
194.	Surdu- Bob, Cris- tina	Si ₃ N ₄ – Si compound thin films obtained from nitrogen gas and silicon precursors	11. Plasmas and gas flows
195.	Irimiciuc, Stefan- Andrei	Role of molecule formation and multiple - structure sce- narios in dynamics of laser produced plasmas	12. Laser-pro- duced plasmas
196.	Favre, Mario	Plasma dynamics of laser produced annular plasmas	12. Laser-pro- duced plasmas
197.	Rajendiran, Sudha	Plasma-Enhanced Pulsed Laser Deposition: Proof-of- concept for copper oxide thin films	12. Laser-pro- duced plasmas
198.	Park, Insun	Analysis of the propagation of laser-produced plasma by a Mach probe in DiPS-2	12. Laser-pro- duced plasmas