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Abstract

A study of the neutral Higgs spectrum in a general Zs-breaking Next
to Minimal Supersymmetric Standard Model (NMSSM) is reported in
several significant contexts. Particular attention has been devoted to the
upper bound on lightest Higgs boson. In the C'P-conserving case we show
that the extra terms involved in the general Zs-breaking superpotential
do not affect the upper bound which remains unchanged: it is ~ 136 GeV
when tan 8 = 2.7.

The Spontaneous CP Violation scenario in the Zs-breaking NMSSM
can occur at tree-level. When the phases of the fields are small the spec-
trum shows the lightest Higgs particle to be an almost singlet C P-odd.
The second lightest particle, a doublet almost-C P-even state, still mani-
fests the upper bound of the C P-conserving case. When the C' P-violating
phases are large the lightest particle is a doublet with no definite C P par-
ity and its mass shows the usual upper bound at ~ 136 GeV'.

The large number of parameters involved in the effective potential
can be significantly reduced in the Infrared Quasi Fixed Point (IRQFP)
resulting after solving the Renormalization Group (RG) equations as-
suming universality for the soft SUSY breaking masses. In the Zs-
breaking NMSSM, unlike the Zs-conserving NMSSM, it is possible

v



Abstract vi

to find a Higgs spectrum which is still compatible with both experiment
and universality at the unification scale. Because in the ITRQF' P regime
tan f ~ 1.8 and the stop mixing parameter is reduced then the upper
bound on the lightest Higgs boson turns out to be ~ 121 GeV'. This re-
sult is compatible with experimental data coming from LEPII and might

be one of the next predictions to be tested at hadron collider experiments.
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Introduction

The Standard Model (SM) is the most successful known theory of high
energy particle physics. In the last two decades the experimental results
coming from the high energy physics laboratories have been mostly in
agreement with the predictions of this theory. Despite this remarkable
success in particle physics, the SM has indeed some limitations. As an
example from the phenomenological point of view, it is not able to gener-
ate the C'P violation necessary to produce the actual matter-antimatter
asymmetry of the universe (baryogenesis problem). From a more theo-
retical point of view, in the SM troubles arise when quantum corrections
to the Higgs mass are calculated. Such contributions lead to a divergent
Higgs mass influencing all the SM masses, because all of these acquire
mass due to the coupling with the Higgs particle; this is called the hier-
archy problem. It is needed to extend the SM to a new wider framework
capable of describing physics eventually up to very high energies.

A possible extension of the SM is represented by the Supersymmetric
theories (SUSY). In any of such theories there exists a transformation
which transforms bosonic fields into fermionic fields and viceversa. For

example if we take a scalar field A and a spinor one Yx,, then the trans-



Introduction 2
formation between the two is

0A = Exq

-1/2

where €* must have dimension of (mass) and be anticommuting. If

we assume the transformation of x, to be linear, we get
Oxa = ()P Do A€ + - -

The term J,A, on the right hand side of the equation, is a space-time
translation acting on A, so that we find that Poincaré transformations
are necessary to close supersymmetric transformations.

In SUSY theories there can be enough CP-violation to account for
the observed baryon asymmetry because of complex phases of the Higgs
fields violating this discrete symmetry. SUSY theories can solve the tech-
nical hierarchy problem due to a very nice ultraviolet behaviour, namely
that the divergences caused by high momenta in the particle loops cancel
because the contributions of fermions and bosons are equal and oppo-
site in sign; this in turn prevents the mass of any fundamental boson
in the theory from becoming super-heavy due to the higher order cor-
rections (fermions do not suffer this problem as the divergences are at
most logarithmic). This in itself is a very strong argument in favour of
supersymmetry as the Higgs boson, which gives mass to the fermions and
vector bosons of the SM, is required to have a mass lower than ~ 17eV.
In all SUSY models there must be at least two Higgs doublets in order to
give mass through the Yukawa couplings to the up-type and down-type
quark fields of each of the three quark doublets. Consequently in SUSY
models we have an increase in the number of Higgs bosons, i.e. at least

two extra neutral Higgs bosons and a charged one, whereas in the SM we
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have only one Higgs doublet, and just one neutral Higgs boson. This is
obviously the minimum number of Higgs doublets. One can in principle
think of adding more, although several problems regarding the predictiv-
ity of such models arise.

In SUSY theories we have a very remarkable behaviour of the cou-
pling constants, which have a common value at an energy scale of about
10'6 GeV, the so-called unification scale. This suggests that above that
scale we are dealing with a unified theory of the strong and electroweak
interactions.

As supersymmetry naturally encompasses Poincaré transformations, it
raises the possibility of a quantum theory of gravity. In fact we find the
appearance of the graviton and its super-partner gravitino once we allow
supersymmetry transformations to be local, that is to say dependent on
the space-time points. However, up to the present no definitive super-
gravity or superstring theory exists. The reader is referred to [1]-[5] for
general discussions of the theoretical and phenomenological motivations
for supersymmetry.

In the present work, our attention will focus explicitly on the neu-
tral Higgs boson spectrum, in particular on the lightest boson, as SUSY
provides an upper bound on its mass. After a preliminary discussion of
supersymmetry in chapter 1, in chapter 2 we examine the upper bound on
the lightest Higgs boson in the general Z3-breaking NMSSM. Chapter 3
looks at the mass spectrum in the presence of spontaneous C'P-violation.
In chapter 4 renormalisation group equations are used to reduce the num-
ber of undetermined Yukawa couplings and soft SUSY -breaking param-
eters, and the implications for the Higgs spectrum are followed up in the

next chapter. Chapter 6 summarizes our conclusions.



Chapter 1

Supersymmetry

1.1 MSSM

The simplest supersymmetric extension of the SM is the so called Mini-
mal Supersymmetric Standard Model (M SSM). The most general Higgs

superpotential is given by:
WMSSM = MH1H2 + errm ’ (11)

where

errm = 'ﬁyuQHZ - JYdQHl - é-YeL‘H‘l (12)

Hy, H,, Q, L, @, d are chiral superfields, yy, Y4, Ye are 3 x 3 matrices
in family space representing the dimensionless Yukawa coupling. The ex-
pression (1.2) reveals how down-type and up-type quarks aquire masses
thanks to the two Higgs doublet H; and Hs respectively. Since the super-
potential has to be analytic in the chiral superfields, the presence of H}

and Hj is forbidden as well as the possibility for H; to give mass to the

4
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up-type quark because of gauge invariance. However there are other terms
that could be added without disturbing the analyticity and the gauge in-
variance, but are not included because they would violate explicitly the
baryon number B and the lepton number L. Indeed the superpotential
manifests a new symmetry: this is called R-parity [7] or matter parity
[8]. If these symmetries are preserved, then important phenomenological
consequence follows: the stability of the Lightest Supersymmetric Parti-
cle (LSP) candidate which may solve the dark matter problem. It then
follows that any sparticle should ultimately decay into a state containing
at least one LSP and that sparticles can only be produced in pairs [5]
[9].

In the superpotential (1.1), the term pH;H, is the well known super-

symmetric py-term, where
H, = Hy , H, = H , (1.3)

Hf Hj

and we define the product

H\H, = H} e;; H] = (HYH] - Hy Hy) , (1.4)

with € the antisymmetric tensor

0 1
€= . (1.5)
-1 0

Related to p is the naturalness problem of the MSSM. Since y has to
satisfy phenomenology it should be of the order of the electroweak scale,
but this has to be set by hand [10].

Because of the two Higgs doublets the electroweak symmetry breaking
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in the MSSM is more complicated than the one occurring in the SM.

The classical tree-level scalar potential for the Higgs scalar fields is:

Vo= (| +miy) (HLP + [Hy ) + (pl® + mi,) (Hy 1 + [ Hy )
+my(HYHY — Hy HY) + c.c.
1 _
+5(0t + ) (HP + HU P = |HS [ = [Hp[)?

1 —— .
VT HY + HYHSP (16)

where p is the term coming from the superpotential and g; and g, are re-
spectively the gauge coupling constants of the groups U(1)y and SU(2)y.
In the potential (1.6) m%,, m%, and mi, are the soft SUSY breaking
masses. One of the phenomenological aspects of supersymmetry is that
it does not appear as an exact symmetry because the particles of the SM
do not show any mass degeneracy with their superpartners’. Somehow
the symmetry should have been broken; the soft SUSY breaking masses
refer to this yet unclear aspect of any supersymmetric theory and they
are temporarily assumed as arbitrary parameters. In Chapter 4 we will
see in detail the behaviour of such parameters after studying the Renor-
malisation Group (RG) equations assuming universality. This analysis
will exhibit the so called radiative electroweak symmetry breaking phe-
nomenon, which allows us to break the electroweak symmetry in a more
consistent manner than in the SM; the negative mass squared term in
the SM Higgs potential has to be put by hand.

The potential (1.6) breaks the electroweak symmetry down to the QED

gauge symmetry, when the non-symmetric minimum corresponds to the

1To be more precise these have not been observed yet.
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Higgs fields acquiring vacuum expectation values (vevs):

(Hr)=0, (Hf)=0, (1.7)
for the charged fields, and

(HY)=vi, (H3)=vs, (1.8)

for the neutral ones. These can be connected to the mass of the Z° boson

and the electroweak gauge couplings:

(% —+ Uy =1 = m ~ (174 G@V)2 y (19)
1T 93
whereas their ratio is defined as
tanf = 2 . (1.10)
U1

The tree-level potential (1.6) is C' P-conserving and the violation of this
discrete symmetry can be triggered only when radiative corrections are
involved [5] [11].

The Higgs fields consists of two complex doublets under SU(2), or eight
real scalar degrees of freedom. After electroweak symmetry breaking the

Higgs spectrum is composed as follows:

three Nambu-Goldstone bosons G® and G*, which become the lon-

gitudinal modes of the electroweak gauge bosons Z° and W#*;

one C'P-odd neutral scalar A°;

two charged scalars H;

two C P-even neutral scalars H® and A°.
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Expressing these eight mass eigenstate fields in terms of the original

gauge-eigenstate fields, we have

G\ 1 ([ sinf —cosf Im[HY] (111)
A° V2 \ cosp sinp Im[H] |’ '
Gt [ sinf —cosp H (112)
H* cosf8 sinf H* ’ .
where G- = G** and H~ = H**, and
h® cosa —sina L Re[HI] —
_ e I RT
H° sina cosa 5 Re[HY] — v

which defines a mixing angle a. Expanding the potential around its min-

imum, then one can find the tree-level masses:

2m?

2 12
= M2 1.14
Ao sin 23 ( )
mZs = mo +mi, (1.15)

1
Mo po = 5(771310 +m2 £ \/(mio +m%)? — 4m3m?, cos? 2ﬁ). (1.16)

It is possible from these masses to express at tree-level the mixing angle

« appearing in eq.(1.13) as follows

sin2a  mi, +my cos2a  mi, —my

sin 23 Mm% — Mo’ cos 288 Mm% — M3,

(1.17)

From the expressions (1.14)-(1.16) it is easy to see that the masses
of A°, H* and H° can be arbitrarily large, since they become directly
proportional to the soft parameter m2, [5]. In contrast, the mass myo is

bounded from above; from eq. (1.16) it is possible to show that [12]

mao < m%cos’ 28 . (1.18)
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This upper bound for mye is ruled out by the experimental data because it
is kinematically accessible to LEP2. However, the tree level mass formulae
for myo and all the mass eigenstates (1.14)-(1.16) are subject to significant
quantum corrections. The radiative corrections to the tree-level lightest

Higgs mass will be the main topic of the next chapter.

1.2 NMSSM

The simplest possible extension of the particle content of the MSSM
results after adding a new gauge singlet chiral supermultiplet. This is
called the Next to Minimal Supersymmetric Standard Model (NMSSM).
The strongest motivation for this extension is provided by the solution
of the u-problem in the M SSM. The solution to the u-problem comes
after imposing the invariance of the superpotential under the so called
Z3-symmetry, which means that each field is multiplied by a phase eﬁs&,
precluding the possibility of having terms like? uH; H,. The superpoten-
tial then turns out to be a trilinear function in the fields H;, H, and the
singlet N:

Wxmssy = ANH Hy — §N3 + Wierm - (1.19)

The factor AN smartly provides a substitute for p [13] [14]. The cubic
term in N is necessary to avoid a U(1l) symmetry, which would force
the existence of a light pseudo-Goldstone mode once the symmetry is

broken. The resulting NMSSM scalar potential coming from eq. (1.19),

2To be precise, the Zs-invariance allows the superpotential to have only trilinear terms,
but we stress the exclusion of the bilinear y-term because historically the NM SSM has been
introduced to solve this embarassment for the MSSM.
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including the gauge and the soft part is:

1 1
V = 5A1(HIH1)2+§)\2(H§H2)2

+(As + A) (H] Hy) (HI Hp) — A |H{fﬂ2}2

+(\sHIH, + X\eHIHy)) N*N

+(ArHy HoN*2 + h.c.) + Ag(N*N)?

+m?, HHy, +m?%, H}Hy + m% N*N

—(myHHoN + h.c.) — %(m5N3 + h.c) . (1.20)

where m; are the soft SUSY breaking terms of the model. It should be
noted that in this tree-level potential there are three more soft terms than
in the M SSM; one is the singlet squared scalar mass m?%, then there are
my and ms. The latter are also named trilinear soft masses because they
appear in the cubic terms of the Higgs fields. On the other hand, because
of the imposed Z3-symmetry, in the potential there is not anymore a bilin-
ear soft mass m?,. The potential (1.20) could be explicitly C P-violating
if the couplings and the soft masses are assumed to be complex. Here
we assume all of these to be real. Furthermore, the potential cannot vio-
late C'P spontaneously [11]; we can have spontaneous C'P violation only
through radiative corrections. At the scale Mg, where supersymmetry is

broken, the quartic couplings A\; must satisfy the boundary condition

2 2 2 2
_), =82t _%_"9
)\1—/\2—“ 4 ) )\3_ 4 Y
g2
)\42/\2——5', )\5:)\6:)\27 (121)

A= Xk, dg=k?,

where g, and g, are respectively the U(1) and SU(2) gauge coupling

constants of the SM at that energy scale. The tree level potential can be
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expressed in terms of 10 scalar fields ¢;:

Hy = %(¢1 +id4) , (1.22)
Hy = —%Wz +igs) , (1.23)
N = Z=(6a+id) (1.24)
Hi = %(¢7+i¢9) , (1.25)
Hy = %(‘ﬁs + ig1o) - (1.26)
The full 10 x 10 scalar mass squared matrix M?; is given by
M3 = % : (1.27)

At the symmetry breaking minimum of the potential the fields get vevs:

<¢1) = \/57)1 )
($) = Vv, , (1.28)
<¢3> = \/5'77 )

(p;) =0, Vi#1,2,3
where v;, v, are related to the Higgs vev 7 in the same way as in the
MSSM (see eq. (1.9)) and tan f is defined as in eq. (1.10) as well. The
squared mass matrix M?j decouples into one 3 x 3 block for the neutral
C P-even particles, another 3 x 3 block for the neutral C'P-odd, and two
2 x 2 blocks for the charged sector.
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The tree-level CP-even mass squared matrix is

( 2/\1’0% 2(/\3 + /\4)’01’02 2)\5.’13’01

M2 = 2()\3 -+ A4)’U1’02 2/\27)% 2/\6.’1"02 (129)
\ 2X5T01 26TV 4)gx? — msx
([ tan Blmaz — Arz®]  —[mux — Mz?]  —2[mgz — 2)7z?]
+ —[max — Mz?]  cot flmaz — Ma?] —L[maz —2X27 |
—2[myx — 2M5?] —L[myx — 2\72?] ULz [mya]

in the basis {Re(H?), Re(HY), Re(N)}, and the tree-level C P-odd mass

squared matrix is

tan B[myx — A7z [myz — A7z?] L myx + 2A72?]

M = [maz — A7z cot B[myx — A72?] Ulmaz + 2A72?] )

©2myx + 202?]  B[max +2X72?])  3msz + L2 [myz — 4727

’ (1.30)

in the basis {Im(HY), Im(HY),Im(N)}. Because one of the physical
eigenstates of this matrix corresponds to the neutral massless Goldstone

mode, then it is possible isolate it using eq. (1.11); explicitly we have:

Q° = sin 8 Im(HY) — cos 8 Im(HY?)] ,

ol
V2
A = L [cos B Im(HY) +sin B Im(HY)] .

V2

The resulting pseudoscalar matrix will contain a non-trivial 2 x 2 block

[

R S
Mig = : (1.31)
Prls T

from which one easily obtains the analytic expressions for the masses of

the eigenstates A? and AY:

1 1
Mo a9 = §(R+T)$§\/(R—T)2+4SQ, (1.32)
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where
R = 2 (m4x - /\7.’1)2)
sin 23 ’
T = 3msz+ % sin 28 (myz — 4\72?) (1.33)
= -g sin 23 (m4x + 2)\7302) .

Finally the charged Higgs boson mass is

My = 528 (Mmaz — M72® — A qv1v9) . (1.34)

Because the C'P-even mass matrix (see eq. (1.29)) has the maximum
rank, it is not possible to obtain any analytic expression for its eigenvalues.

Nonetheless the mass of the tree-level lightest eigenstate h° has, in analogy

with the MSSM, an upper limit given by [14]:
mao < mycos® 2B + A\?n?sin® 24 , (1.35)

where n = 174 GeV. Comparing this last upper bound with the one
obtained in the MSSM (i.e. eq.(1.18)), one notes the additional term
A2n?sin? 26. In contrast to the MSSM, in the NMSSM the maximum
is reached in the region of low values of tan 8. Then the upper bound
on the Higgs coupling A involves the study of the Renormalization Group
Equations (RGE). In the next chapter part of the attention will focus on

the value of this coupling and the consequent maximum of m0.

1.3 The y problem

It is worth considering a little more closely the parameter p appearing

in the superpotential (1.1) of the MSSM. The term pH;H, affects the
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mass matrices of the Higgs fermions, namely the spin % supersymmetric
partners of the Higgs bosons, named charginos and neutralinos. It also
enters in the Higgs bosons mass matrix itself, and finally in the slepton
and squark masses through the off diagonal elements of the mass matri-
ces. Phenomenologically i needs to be of the order of the weak scale, but
it is not clear how this happens, indeed it is naturally expected to be of
the order of the GUT scale.

Although this is considered an unclear point for the MSSM, from
string theory it could be a well motivated clue as p, being a mass term,
would naturally vanish since all SM particles are massless modes of the
theory [9]. Within string theory the value of y can be seen as a string
boundary condition. On the other hand if x4 = 0 then charginos and neu-
tralinos might be so light that they would have been observed already.
As far as light SUSY particles are concerned, here is raised the issue of
the Lightest Supersymmetric Particle (LSP) in connection with the Dark
Matter (DM) problem.

As has been discussed in section 1.1, the NMSSM represents an ele-
gant solution to the u-problem of the M SSM [13]. The superpotential of
eq. (1.19) is traditionally the most common in the literature, and because
it is a cubic function of the chiral supermultiplets then the superpotential
is Z3-symmetry invariant. This discrete Z3-symmetry can be the origin of
a serious domain wall problem during the Electroweak Phase Transition
(EPT); in this way the NMSSM trilinear superpotential (1.19) can be
ruled out unless the Z; symmetry is broken explicitly [10].

Because of these considerations, we will next consider a more general

NMSSM superpotential without Zs-symmetry.
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1.4 The most general case of NMSSM

In the previous section some criticisms of the MSSM and the tradi-
tional NMSSM have been discussed. Here we introduce the most general
NMSSM superpotential [15] [16]

k
Wxmssmu = pH1Hy + ANH Hy — §N3 —rN 4+ Weerm (1.36)

where we get back the u-term of the M SSM and a linear term in IV, the
singlet superfield. In the superpotential a term in N? is missing, but it
can be removed after an appropriate field redefinition [17]. Other authors
have introduced a superpotential without the linear term rN, in place
of this a quadratic term p'N? is introduced [18], but the two models are
equivalent.

The corresponding tree level scalar potential, expressed in the same
notation as section 1.2, is

1 1
V - 5)\1(HIH1)2+§)\2(H;H2)2

s+ \0) (B HL) (L) — Ao [HL |

+(AsHIHy + Mg HHy)N*N + (A HiH,N*2 + h.c.)
+As(N*N)? + (|u)® + \*N + h.c.))(HIH, + H} Hy)
—I—mihH;le + milegHQ +myN*N

—(muH H,N + h.c) — Ef;(mf,N3 +he)

+(m2H,Hy + h.c.) + (m2N? + h.c.) . (1.37)
It is easy to see that V now differs from the tree level potential (1.20)

because of the reintroduction of the p parameter and the additional soft

masses m32 and m2. Because now the Z3-breaking p-term is allowed, m3 is
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a corresponding Z3-breaking soft mass multiplying the bilinear term H; H,
and is the NMSSM version of m?2, typical of the MSSM (see eq. (1.6)).
The extra soft mass m? is due to the new term rN in the superpotential
(1.36). Another important difference, first noticed by Pomarol, lies in the
possibility of having spontaneous CP violation already at tree-level [19].
In chapter 3 we will focus on the spontaneous CP violation in this model,
including the dominant radiative corrections.

Once we have the tree level scalar potential, it is straightforward to
obtain in the C P-conserving case the tree level C'P-even mass squared

matrix; we use the same basis { Re(H?), Re(HY), Re(N)} as in section 1.2

M} = (M3,),, —mitang, (1.38)
MP, = (M3,),+mg, (1.39)
Mfy = (M3,),, +2Mpvr , (1.40)
M3, = (M3,),, —micotf, (1.41)
Mz = (Mg,),, + 2\uvs (1.42)
M3, = (M3,),, — A,ﬂ; (1.43)

In the basis {Im(H?),Im(HY),Im(N)} we have the CP-odd squared

mass matrix

M = (~§3)11—m§tanﬂ, (1.44)
iy = (M,) -mi, (1.45)
iy = (M) (1.46)
MZ = (~§3)22—m§cotﬁ, (1.47)
g = (M) (1.48)
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Mz = (Mgg) i (1.49)

Here (M%S)ij and (Mﬁg)ijare the matrix elements of the matrices (1.29)
and (1.30) respectively. The latter notation emphasises the fact that
the matrices M%, and M2, refer to the NMSSM invariant under the
Z3 symmetry. The soft squared mass m2 introduced in the tree level
potential (1.37) doesn’t appear in any matrix element (1.38)-(1.49) as a
consequence of the C'P-invariance. As in the traditional NMSSM, it is
possible in this general model to obtain an analytical expression for the
CP-o0dd eigenstates A? and A9 adopting the general notation introduced

in (1.32) where now

_ _ 2 .2
R = Sn 28 (m4:c AT m6),

,]72

T = 3msz+ % sin 28 (maz — 4\72%) — )\/L—x— , (1.50)

= gsin 283 (m4x + 2)\7332) .

Finally, the analytical expression for the charged Higgs boson mass is

2 2
B= = sin 23

(myx — M2 — Aqv1vg — m3) . (1.51)

From the tree-level C P-even mass matrix we get the same upper bound

on the lightest eigenvalue as before
mae < mycos’ 23 + A*n?sin® 23 . (1.52)

At this point we should note a remarkable general result that applies
to any supersymmetric theory: the supersymmetric lightest Higgs neutral
boson mass is always bounded from above, no matter if extra soft terms
are added to the tree-level potential [12]. In the two models so far con-

sidered it is possible to rotate each of the Higgs squared mass matrices
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applying a transformation
WM*Wt = M"” | (1.53)
giving a bound on the smallest eigenvalue
m2o < Mp2 . (1.54)
The rotation matrix is the 2 x 2

W= cosf3 sinf , (1.55)
—sinf8 cospf

in the MSSM, and the 3 x 3

cosf sinf 0
W=| —sin cosp 0 | , (1.56)
0 0 1

in the NMSSM. The effect of the rotation matrix in both models is to
give the matrix M’ in a basis where the second doublet does not have
any vev. The matrix element M2 so obtained, in our case the right hand
side of equations (1.18), (1.35) and (1.52), does not depend on any soft
mass (see discussion in reference [20]). The same kind of rotation on the
C P-odd mass matrix gives the upper bound on the lightest eigenvalue
which is zero as it corresponds to the Goldstone boson.

The next chapter will be devoted to the radiative corrections to the mass
of the lightest Higgs particle. The main differences between the MSSM
and the two NMSSM versions presented above will be highlighted using

the effective potential approach.



Chapter 2

The lightest Higgs boson

2.1 Introduction

The tree-level upper bounds (1.18) and (1.35) found on the lightest Higgs
neutral boson myo in the MSSM and in the NMSSM might induce
one to think that the Supersymmetry predictions are wrong, since they
are well inside the range of energy achieved at LEPII. But the question
of whether or not the Supersymmetric predictions are correct cannot be
answered yet. This happens because the tree-level upper bounds are af-
fected by radiative corrections that can raise these limits above the range
of energy as yet achieved by any high energy physics laboratory. The
issue of discovering the Higgs boson is truly one of the most important
targets of the LHC' experiments.

In this chapter we will see how the lightest Higgs boson mass depends
on the tree-level and radiative correction parameters. In the next section

we will highlight the main differences between the behaviour of myo in the

19
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MSSM and the traditional NMSSM; in both models we will show the
different upper bounds obtained using analytic approximations. Then in
section 2.3, we will review the methodology used in the effective poten-
tial approach. Concerning the Zs-breaking N M SSM, numerical routines
have been used to evaluate and to maximize the lightest C'P-even Higgs
particle mass mpo. The results obtained will be compared with those

obtained in section 2.2.

2.2 Upper bound on the lightest Higgs boson mass

In this section we want to analyse the behaviour of myo in the MSSM
and NMSSM with the usual Z3-symmetry including the radiative cor-
rections. The differences between the upper bounds on myo in the two
models will be highlighted. This analysis will be the basis on which we
will develop the numerical calculations in the following sections, having
a clearer idea about the space of the parameters to use.

When radiative corrections to the lightest Higgs boson mass are con-
sidered in the MSSM and NMSSM, the most significant contributions
come from loops involving the quarks of the third generation, top (t) and
bottom (b), and their supersymmetric partners, stops (t1,12) and sbottoms
(51,7)2) respectively. In particular these are driven by the top Yukawa
coupling h; and the bottom Yukawa coupling h; [21] [22]. The top and

bottom quark running masses depend on the Higgs fields as follows
M; =R HS * + |H3P) (2.1)

M = hi(|H;|” + |H{ ) (2:2)
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and at the electroweak symmetry breaking minimum of the potential (see

eq. (1.7) and (1.8) or (1.28)) these masses are
m% = h’%”% ) (23)
mp = hiv? | (2.4)

from which we evaluate the top and the bottom Yukawa couplings respec-
tively:

h=—, (2.5)

hy = —2. (2.6)

Two different cases can be distinguished:

o low valuesof tan5: 1 < tanf8 < 6 (v2 R v1); the dominant con-

tributions come from the top/stop loops and the bottom/sbottom

ones can be neglected;

e large values of tan 8: tan 8 > 6; the bottom/sbottom contributions

can also be significant as now vy > v;.

By looking at the tree-level upper bounds (1.18) and (1.35), we can easily
see that the M .SSM upper bound reaches its maximum in the large tan
region. Concerning the NMSSM one, because it depends on the addi-
tional term \?n? sin? 3, where 7 is the SM Higgs vev, some considerations
are needed. Regarding the Higgs coupling constant A, here we can antic-
ipate that it has to be free of Landau poles from the electroweak scale
up to the GUT scale, which means roughly A < 1. Bearing this in mind,
it is understood that the maximum of the upper bound as a function of

tan S turns out to be in the low tan 8 region. Because one of the main
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interests of this work is the upper bound on the lightest Higgs boson mass
in the general Z3-breaking NMSSM, in the following we will focus our
attention on the low tan § region. The reader interested in the quantum
corrections in the large tan 8 region, or including the bottom/sbottom
contributions, is referred to [21] (M SSM) and [22] (NMSSM).

As a starting point, we use the M SSM analytic approximation for the
upper bound on myoe including two-loop corrections. This has been car-
ried out to provide an approximation to the numerical results based on
the RG improved effective potential approach® [25] [26]. The resulting
analytical approximation involves the mass of the top quark m; and the

masses of the supersymmetric partners m; and m;,, which are defined

2

stop- LUXpressing it in the basis

from the stop mass squared matrix M
{EL, ER} this is:

mg + hi|H3|? hi(A:Hy* + pHY)
hy(AcH3 + pHYY) mi + B (|HR” + |HS )

2
Mstop -

(2.7)

where mé, m2 and A; are the soft SUSY breaking masses characterising
the order of magnitude of the masses of the stops [5] [21]. The off-diagonal
element A; is involved in the mass splitting between the physical eigen-
states. Also in the off-diagonal matrix elements we can see the dependence
on the term pH;H, of the superpotential (1.1). Because of the lack of
experimental evidence for their existence the masses of the stops are as-
sumed to be heavy compared with the top mass m;. So we take the soft

SUSY breaking masses m% and m?Q to satisfy the condition

mi, mg > mj . (2.8)
!See also [23] [24] and references included.

For one and two-loop radiative corrections to the Higgs mass based on different approach see

references [27].
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Because of this the D-terms have been omitted in the squared mass matrix
(2.7) as they would give negligible contributions. At the electroweak

symmetry breaking the masses of the physical eigenstates mtgl, m§2 are

m? ;= -;— (m +mi) +mi £ \/i (m% — m2)? + m2(A; + p cot B)? .
(2.9)
Because A; and p could increase the splitting in such a way as to render
mZ ~ mj or even negative, we supplement the condition (2.8) with the

requirement that the masses satisfy the condition

2 2 2 2
mt-l — m£2 < mfl + mf2 . (210)

: 2 2 2 2 2
We can then approximate mg and mg by Mg ~ mg ~ mi.

After the considerations made above the analytic expression for the
MSSM upper bound on myo is [25]:

3 m? M2 3 mi[1 M2
2 2 2 i S t S
Mo < myz COS Qﬁ ( — _8 2—772 lOg *?*) - m? |:§Xt + lOg ———%—]

+Z%T—;§ [i’élﬁ (g?—f - 327ra3> (Xt log%—? + log? Z—g)] . (2.11)
This is a good approximation to the exact numerical result provided that
Ms $1.5TeV. Ineq. (2.11) az = g3/(4r) is the QCD coupling constant
and X; defines the mixing between the stops:

_ 2(A¢+ p cot B)? 1 (A; + p cot B)?
B M? 12M3 ’

X, (2.12)

where A;+ i cot 8 comes from the off-diagonal element of the stop squared

mass matrix (2.7) and is an unknown parameter. We can see that when

A+ p cot = V6Mg (2.13)
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then X, takes its maximum value at X; = 6; this is the so-called maximum
mixing case which is indeed consistent with the condition (2.10). When
X; = 0 then the minimum mixing case is realised.

The analytic approximation (2.11) is readily extended to approximate
the upper bound to myo in the NMSSM [28], which simply by analogy
is given by:

m2, < (m% cos® 28 + A?n?sin? 23)

3 m? M?2 3 mif1 M?2
1— 2 Myge 05) L 2 T | 2y | jog 05
(1 g o8 ) * g [+

2
3mi[ 1 (3m? M3 2 M3
iy [ (55~ o2me) (Mo 5 w0 2 )] a9

It is easy to see that the difference between eq. (2.14) and eq. (2.11)

arises from the tree-level contribution A\?n?sin?23. The difference in the

quantum corrections lies in the usual substitution
w— Az (2.15)

in eq. (2.12), occurring when we pass from the M SSM to the NMSSM.

Because we are interested in the upper bound on myo in the NMSSM,
we need to find the value of A such that the tree-level contribution is
maximal. It is possible to find constraints on the coupling constants A
from the Renormalization Group (RG) equations. The complete set of
RG equations can be found in Appendix A. For the gauge couplings ¢;,
g2 and g3, the coupling constants A and &, and the top Yukawa coupling

hs, at one-loop level and in the low tan 3 scenario, we have [28]

16w2%§ = 6k(k* + \?) ,

d\ 3
167r2E = \(2k% + 4)\% + 3h2 — ggf —3g2) ,
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(2.16)
dh 13 16
16m°—> = hy(6h; + \* — 7201 — 363 — —°03) ,
da:
16%2% = —cig;.3 , 1=1,2,3;

where ¢; = —%?1 (in a GUT normalization), co = —1, c3 = 3, and ¢ is

defined as
11 2
= =log— . 1
t 5 108 - (2.17)

Here we neglect the effect of supersymmetric particle mass thresholds,
considering these RG equations valid from the electroweak breaking scale
Q ~ My, up to the unification scale Q ~ 10'® GeV. For any scale Q we

impose the constraints:
N(Q?) <4m, K(QY) <4n, RH(Q*) <4r. (2.18)

The boundary conditions on the gauge couplings come from the experi-

mental values at the electroweak scale? [29]:

We need to calculate the value of the top Yukawa coupling at the elec-

troweak scale from the top quark pole mass
mP® = (173.8 £5.2) GeV . (2.20)

We transform this into the running top quark mass using the relation:

pole
my(mg) = —— = (165 + 5) GeV . (2.21)
1+ 2

32
2A more extensive analysis of the RG-equations for A, k and h; and the relationships
between these Yukawa couplings is contained in chapter 4.
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After this transformation (using the relation (2.5)) we get the value of
he(my).

After using the RG equations, we find the value of A such that the
mass mpo reaches its maximum. In figure 2.1 we show the upper bound
on ), called Az, as a function of tan 8. In our range of study, i.e. for
tan 8 < 6 and k = 0, we find Ay =~ 0.7. The dependence on k is better
shown in figure 2.2, where X is plotted versus tan 8 and & is assumed to
be a parameter at the scale m;. In order to get the maximum value for A
we fix the running mass of the top quark m; = 160 GeV'.

Once we have fixed the value of the coupling A, we can calculate the
upper bound on myo in the NMSSM. In figure 2.3 we can see the plot of
equations (2.11) and (2.14) as a function of tan £ in the minimal mixing
scenario (X; = 0). In figure 2.4 we can see the same plot in the maximal
mixing scenario (X; = v/6). In both cases, the stop masses have been
identified with a SUSY breaking scale of Mg = 1 TeV. The behaviour
of the upper bounds in the two supersymnietric models are significantly
different. In the M SSM the upper bound reaches its maximum for large
values of tan 3. However in the NMSSM the upper bound reaches its
maximum already for low values of tan 8 (2 < tan < 3), and then it
decreases for tan 8 > 1, where the MSSM and NMSSM upper bounds
approach each other. Comparing the figures 2.3 and 2.4 we can apprec-
ciate how the upper bound on mye increases with the mixing. Using the
definition (2.12), and the substitution (2.15), it is useful to define the
parameter A, in the MSSM

AMSSM — A, 4 jicot B (2.22)



Chapter 2. The lightest Higgs boson

hmax

Mmax

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

my = 160 GeV

m, =170 GeV

1.5 2 25 3 35
tan B

Figure 2.1: Upper bound on |A(m¢)| (Amaz) as a function of tan 8 for

k(m:) = 0. The dotted lines take account of the error on
the running top quark mass.

3.5
tan B

Figure 2.2: Upper bound on |A(m¢)| (Amas) as a function of tan 3 for

mg = 160 GeV and k(m;) = 0; 0.3; 0.4; 0.5; 0.6 (lines 1,

2, 3, 4, 5 respectively).
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and in the NMSSM

ANMSSM — A, 4 g cot 5 . (2.23)

From figures 2.5 and 2.6 we can see how the radiative corrections to mpo
vary as a function of the parameter A;. Once we fix the value of tan g
we see that, in any case, the maximum contribution to the lightest Higgs
boson mass occurs when A, = v/6Mj, as anticipated in eq. (2.13). The
choice of tan 8 in these two figures corresponds to two different cases:
tan 8 = 2.5 is in the region where the NMSSM upper limit reaches
its maximum, mpo ~ 133 GeV, it is also clear that in this region (2 <
tan 8 < 3) the two upper bounds in the different SUSY models have the

maximal difference:
mMMSSM _ MSSM ~ 95 GeV . (2.24)

In figure 2.6 the choice of tan 8 = 6 corresponds to the region in which
the upper bounds in both models start to be significantly closer compared

to the case shown in figure 2.53.

3Although here we neglected the effect of the radiative corrections due to the bot-
tom/sbottom contributions, it has been proved that including the radiative effect of such
particles for large values of tan 8 the two upper bounds continue to approach each other [20].
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Figure 2.3: Upper bound on mpo in the MSSM and the NMSSM
for X; = 0 (minimal mixing). The results are derived for
my = 170 GeV (dotted lines matching at the point 1), m; =
165 GeV (solid lines) and for m; = 160 GeV (dotted lines
matching at the point 2) and Mg =1 TeV.
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Figure 2.4: Upper bound on myo in the MSSM and the NMSSM
for X; = 6 (maximal mixing). The results are derived for
my = 170 GeV (dotted lines matching at the point 1), m; =
165 GeV (solid lines) and for my = 160 GeV (dotted lines
matching at the point 2) and Mg =1 TeV.
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Figure 2.5: Upper bound on myo in the MSSM and the NMSSM
versus A;/Mg fixing tanf = 2.5 and Mg = 1 TeV. The
dotted lines reflect the error on the top mass.

125

120 |

mpo
15 "
110
105 1 ) R — - 1 .
? * K 0 1 2 3
Ai/Mg

Figure 2.6: Upper bound on mpo in the MSSM and the NMSSM
versus Ay/Mg fixing tanf8 = 6 and Mg = 1 TeV. The
dotted lines reflect the error on the top mass.
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2.3 The effective potential approach

In the previous section we have been looking at the two-loop analytic
approximation to the upper bound on the lightest Higgs boson mass. In
this section we will use an effective potential approach in the Zs-breaking
NMSSM. One and two loop corrections will be added to the tree-level
neutral Higgs potential (1.37) to give the two-loop corrected effective
potential. Then, we will present the methodology used to handle the many
free parameters, and the upper bound on myo will be obtained numerically
from the corrected Higgs squared mass matrix. The numerical results
obtained will be briefly compared with the results shown in the previous
section, and an interesting comparison will be made with the results of

reference [30] which inspired the present analysis.

2.3.1 The effective potential

The effective potential V. is defined as
Vs =VO 4 vO 4 v® 4 (2.25)

where V(© is the potential of eq. (1.37) and V") and V® are respectively
the one-loop and two-loop radiative corrections* to V(?). Assuming the
case of electroweak symmetry breaking vevs for the fields (eq.(1.28)), the
tree-level potential can be written as

1
Vo= (R @) — o) N0 + o) + Noed

—2X\kvyvea? + k22t + (Jul” + 2 uz) (v} + v2)

“In the analysis we are going to show, we are not going further than the dominant two-loop
radiative corrections.
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2,2 2 2 2 .2
+mpy, v] + my,v; + Myx

2
§m5x3 + 2miv v + 2mia? . (2.26)

Let us first consider the one-loop radiative corrections to the effective

—2m4v1 Vo +

potential, which takes the form:

v = [zn(g‘;) g] , (2.27)

where @ is the renormalisation scale. The supertrace is a trace over
all fields which couple through the mass matrix and includes a factor
(=1)27(2J + 1) so that a Weyl fermion acquires a factor —2, a real scalar
a factor 1, and there are appropriate colour and flavour factors. M2 is the
field dependent mass squared matrix for the particles. Here we will con-
sider the contributions coming from the top quark, whose field dependent
squared mass is expressed in eq. (2.1), and from its superpartners #; and
t5. The field dependent squared mass matrix for the scalar top quarks
can be generalised from eq. (2.7) by simply including contribution from
the terms puH,H, and AN H; H, in the superpotential (1.36); in the basis

{tz,tr} we have:

m + hi|H3|? h[AyHY* + (AN + p) H?)
h[AcHY + (AN* + p*)HP*] mi + B (|HD|? + |Hy ?)

stop =

(2.28)
The physical mass eigenvalues are formally identical to those of eq. (2.9).

It turns out useful to rearrange them as

mZ tz—M5+mti\/62M4+mtA% , (2.29)

in which Mgy is defined as follows

1
M= 5(mz2 +m2), (2.30)



Chapter 2. The lightest Higgs boson 33

and

mé—m?,wl

o
il

(2.31)

mg + ma
From the assumption stated in eq. (2.8), it turns out that Mg > my.
The off-diagonal matrix elements of eq. (2.28) define the new mixing

parameter A; as:

Ay = Ay + Az + p) cot B (2.32)

and finally the one-loop radiative corrections to the effective potential can
be written in terms of the top/stop squared mass eigenvalues:
m; 3 m; 3 m? 3
7 4 i 4 ¢
- 5) (l”'é’;” ~5) —2mi (l"‘Q—z -3
(2.33)

Next let us consider the dominant two loop radiative corrections to the

v = % [m%l (ln

effective potential. These are the terms coming from the leading logs

M2 2
=In (—St@-) : (2.34)

quadratic in ¢, where

my
multiplied by terms ~ h$ and ~ a,h}, with o, the strong coupling con-
stant. The two loop radiative correction to the effective potential then

reads [30]
@) h ’ 4 3.2 2
Finally let us consider the quantum corrections to the Higgs boson

kinetic terms. Because of these, there is a wave function renormalization

factor Zy, in front of the D, HyD*H, term given, to order hZ?, by [30]

2

h
Zy =1+ 3751 (2.36)
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Then the top quark Yukawa coupling h¢(m;), including the quantum cor-

rections to order h? and ay, is

1 9 ,
hi(mg) = hy(Q) [1 + 39,2 (327ra5 — iht) t] , (2.37)
where the running top quark mass is
1/2
my(my) = hy(my) Zy, vs (2.38)

and it is related to the pole quark mass, to order a;, through the relation

(2.20).

2.3.2 Implementing the upper bound on myo

So far we have determined the two-loop effective potential, and now
we need to work out the C'P-even Higgs squared mass matrix applying
eq.(1.27) as follows®

o’V
0¢i0¢; ’

Once the squared mass matrix is determined, we need to use the first

M = i,j=1,3.

derivative minimization conditions

Vers o Werr _ g Wers _

8’01 ’ 8'1)2 ’ or 0. (239)

If the effective potential derivatives satisfy such conditions, then the ef-
fective potential itself, satisfying eq. (1.9) and (1.10), has a stationary

point. If the scalar masses are positive, then the potential has a local

5We could extend our study to the whole Higgs spectrum as we did in chapter 1, but
the main focus of this chapter is the upper bound on myo. A review of the complete Higgs
spectrum in the NMSSM, including radiative corrections can be found in reference [22]. In
chapter 3 we will report the complete neutral Higgs spectrum in the Zz-breaking NMSSM
with and without spontaneous C P-violation.
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mimimum. The conditions (2.39) allow us to eliminate respectively the
soft masses m%, , m%, and m% from eq.(2.26), and replace them by vevs
v1, v2 and z. Using eq. (1.27), and after considerable algebra, we get
the full dominant two-loop C'P-even squared mass matrix in the basis
{H,,H;,N}:

M? = M? + AM? +5M? (2.40)
where M? is the tree-level matrix introduced in section (1.4) and here
explicitly expressed:

M2 = 2X\0? +tan B (maz — A7z — m)
M122 = 2()\3 + )\4)’01’02 - (m4x - )\7.'1,'2 — mg)

MZ%L = 2 570, — % (maz — 2X72® — 2\ cot )

(2.41)
M2, = 2Xv3 + cot B (maz — Arz® — mj)
M2 = 2\exv9 — % (maz — 2X72* — 2Apz tan §)
2
Mz, = 42’ —msz + my 2 )\/ﬂ—
x z
AM? is the one-loop correction
AM? = | A2, A%, A% |+| -1 cotp -2 |A%  (242)
A%z A%?, A§3 _'1;72 _v?l %

The explicit matrix elements of the two-loop corrected CP-even mass
matrix, including A? and the AZ; can be found in appendix B.

Finally, in eq.(2.40), 6 M? is the two-loop correction where

M7 =0 i, j#2, (2.43)
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and the only contribution comes from

2 AN 3,2) 2
Ms, = 12(167r2) (327ra5—§ht)v2

M} m? Mz O\
2 —t—F5 (34—t — 5 . (2.44
X[ M§+mg( +Mg+mg)+<Mg+mg (2.44)

In the matrix M2, v; and v, are related to the physical Z°%boson mass

through the the relation

1
my, = 5(9% + 93) (v} + Zy,v3) (2.45)

where the correction factor Zg, has been defined in eq.(2.36). Finally, the
correct 3 X 3 symmetric squared mass matrix is related to the matrix of

second derivatives of the Higgs potential at the minimum after dividing

M2, and M2, by Z}/>, and M3, by Zg,.

2.3.3 Parameter discussion and numerical results

After finding the two-loop dominant C P-even mass squared matrix, the
remaining task is to diagonalise numerically the 3 x 3 matrix obtained
and maximize the lightest eigenvalue m2,. The first problem we have
to face is the large number of parameters involved in the mass matrix.
In particular mio depends on nine tree-level parameters and four others

appearing only through the radiative corrections. Resuming, these are:

e the couplings A and k;

e the variables defined from the electroweak symmetry breaking Higgs
fields x and tan ;

e the soft SUSY breaking parameters my, ms, m2 and m2;



Chapter 2. The lightest Higgs boson 37

e the parameter y
and continuing in the radiative corrections:

e the SUSY breaking scale Ms;

e the mixing parameters A, which involves the soft term A; and the

tree-level parameters x, tan 8 and u;
e the top Yukawa coupling hy;

e the parameter é representing the splitting of the soft SUSY breaking

masses mg, and mj. (see eq. (2.31)).

We start tackling the problem by looking at the results shown in the
previous section. The first parameter choice to be made can be inferred
by looking at figures 2.1 and 2.2, obtained after solving the RG equations
and imposing the condition that A and k are free of Landau poles below
the GUT scale. We obtain the upper limits on mpo when A = \,0, ~ 0.7
and k ~ 0. Then combining together the plots of figures 2.3-2.6 we can fix
tan 8 and A,. It turns out that the maximun upper bound on myo occurs
when tan 8 ~ 2.5 and, according to eq. (2.13), 4; = v/6Ms. Finally it is
useful to fix mg = myr = Mg, and then from eq. (2.31) § = 0. This choice
is essential for obtaining the maximal mixing scenario® and allows us to
handle the masses of the stops in an easier way as the splitting between
them then only depends on the mixing parameter A;,. Concerning the
supersymmetry breaking scale Mg, it will be fixed to 1 T'eV, consistent

with the assumption (2.8). Finally, because we assume C P-invariance,

5This will be explicitly shown in chapter 5.
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the Higgs mass squared matrix does not depend on m2; this advantage
will be lost once we impose the spontaneous C P-violation scenario in the

next chapter’. At the end we are still left with five free parameters:
T, W, my, ms, ma. (2.46)

The task is to find the maximum possible value for the Higgs mass myo
using numerical routines. Performing the calculations we disregarded any
issue related to the naturalness of the parameters involved, as the aim is
to simply show that the upper bound does not depend on any soft parame-
ter®. At this point it is straightforward to calculate the lightest eigenvalue
from the mass matrix (2.40). Because the conditions (2.39) do not guar-
antee a minimum of the effective potential, only a stationary point, our
task is now to find the set of free parameters such that all the eigenvalues
of the mass squared matrix (2.40) are positive. Our procedure was first
to set up a grid of over 10° points in the space of the parameters (2.46)
and select only the sets for which eigenvalues were positive. Starting from
each of these selected points in the 5-dimensional parameters space, we
then varied the parameters, using a hill-climbing routine, to maximise
the lightest eigenvalue. At the end of the task we obtain the maximum
calculated eigenvalue corresponding to the upper bound on the lightest
Higgs boson. Here we comment on the results found.

In figure 2.7 is shown the dependence of the upper bound as a func-
tion of tan 8. The absolute upper bound, muo ~ 136 GeV, occurs when
tan 8 ~ 2.7. This result is in good agreement with the Z3-symmetric

NMSSM upper bound shown in figure 2.4. Comparing the two results,

7 Although this seems a complication, there will be the possibility to deal with this, as will
be discussed in chapter 3.

8Finding a set of low energy soft SUSY breaking parameters resulting from an appropriate
RG analysis will be the issue of chapters 4 and 5.
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it is important to remark that these are obtained following different ap-
proaches®.

Another numerical analysis gives as an outcome the plot shown in fig-
ure 2.8, where the absolute upper limit on myo is plotted versus Mg. In
this figure m?°'® = 173.8 GeV. Concerning this graph, when Mg = 1 TeV
the upper limit is mpo < 136 GeV. In the range 1 TeV < Mg < 3 TeV,
Mg weakly affects the upper bound on myo, which increases only by a
few GeV due to the negative contribution of the two-loop corrections. In
the region where Ms S 1T eV, the dependence of myo is much stronger.
From eq.(2.9), and setting 6 = 0, one can see that the assumption of
maximal stop mixing (i.e. A; = v/6Mg) cannot be kept for Mg in the

range

- V2 2

because otherwise the squared mass of the lightest stop mtgz becomes nega-

:, (2.47)

tive. To avoid this, in this range of Mg it is enough to choose A, such that
m?a remains positive. On the other hand, because of the choice of our pa-
rameters, the region of small Mg would contradict the negative results on
sparticle searches. For example, in the maximal mixing scenario Mg ~ my
would give the contradictory result of the lightest scalar top with a mass
lower than the experimental lower bound 86.4 GeV (CL = 95%) [29].
As previously mentioned, the analysis performed has been inspired by
that of reference [30], which is based on the traditional NMSSM. It is
natural then to compare the results shown in figures 2.7 and 2.8, with
those of the cited paper. Because of the Z3-symmetry imposed in the

superpotential (1.19), the number of free parameters can be reduced by

9This can be seen in the M SSM comparing references [21], [23] and [27]. Concerning the
NMSSM the reader can compare the results of references [20] and [24]
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three in the effective potential; these are u, m2 and m2. The calcula-

tions in the limit of the traditional NMSSM have been performed by
setting to zero pu and m2 in the Higgs mass squared matrix; the results
are shown in figures 2.9 and 2.10. To allow a comparison between the re-
sults for the two models, the parameters of the Z3-symmetric NMSSM
in common with the general one have been kept unchanged. This means
that in figure 2.7, where the upper bound on mye is plotted versus tan 3,
mP° = 173.8 GeV and Mg = 1 TeV. In figure 2.8, where the upper
bound on myo is expressed as a function of Mg, we set tan 8 = 2.7. The
two plots show an excellent agreement with plots in figures 2.9 and 2.10,
confirming at two-loop-leading-log-level the equality obtained in the tree-
level results (1.35) and (1.52).

A final remark has to be made concerning the results shown in figures
2.4 and 2.7. The former, obtained from the analytic approximation (2.14),
reveals a maximum in the curve when tan 8 ~ 2.5; the latter, obtained
using the numerical effective potential approach, shows a maximum in the
upper bound for mp, when tan ~ 2.7. This could lead to the tempt-
ing conclusion that one of the two plots is wrong. However this is not
correct, since the expression (2.14) represents, although accurate, always
an approximation. On the other hand because it has been introduced
in the context of the M SSM, and only adapted to the NMSSM case
in reference [28] with the aim of highlighting the differences between the
two supersymmetric models, the level of accuracy of eq. (2.14) in the
NMSSM is not completely reliable. To support this comment we recall
the results of reference [25]: already in the M SSM and adopting the pa-
rameters as specified in section 2.2, eq. (2.14) provides an approximation

for the myo upper bound with a discrepancy which in the worst case is



Chapter 2. The lightest Higgs boson 41

2 GeV. Then similarly in the NMSSM we accept the results of figure
2.4 as just a good hint to help us find more accurate results based on
the numerical approach. We note, however, that this plot confirms the

analysis of reference [28] and figure 2.7 agrees with the results of reference

[30].
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Figure 2.7: Z3-breaking NMSSM upper bound on the mass of the
lightest CP-even Higgs boson myo versus tanf with
mPo = (173.8 + 5.2) GeV and fixing Ms = 1 TeV. The
dotted lines refer to the error on m?**.
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Figure 2.8: Z3-breaking NMSSM upper bound on the mass of the

lightest C P-even Higgs boson mpo versus Mg fixing mP®'¢ =

173.8 GeV and tan = 2.7.
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Figure 2.9: Upper bound on the mass of the lightest C P-even Higgs
boson myo versus tan 8 with mP**® = (173.8+5.2) GeV and
fixing Ms = 1 TeV. This figure, obtained in the traditional
NMSSM, is the analogue of figure 2.7. The dotted lines
are referred to the error on the top quark mass.
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Upper bound on the mass of the Iilghtest CP-even Higgs
boson myo versus Mg fixing m{>® = 173.8 GeV and
tan 8 = 2.7. This is the calculated upper bound in the
traditional NMSSM. Compare with figure 2.8.
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Spontaneous C'P Violation

3.1 Introduction

The origin of C' P violation is one of the open questions in particle physics.
In the Standard Model C P symmetry is explicitly broken by the complex
Yukawa couplings in the Lagrangian; these give rise to the complex C P-
violating phase in the Cabibbo-Kobayashi-Maskawa matrix. Although
this phase can give an account of the C'P-violation observed in the neutral
kaon sector, it is insufficient to generate the matter-antimatter asymme-
try in the universe.

In Supersymmetric theories there are more possibilities for finding sources
of C'P violation. In Supersymmetry the Lagrangian can violate CP
through the complex Yukawa couplings as in the Standard Model and
also through the complex soft terms. Another possibility is spontaneous
CP violation, where the CP symmetry is preserved by the Lagrangian,

assuming all the coupling constants to be real, but it is violated by the

44
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vacuum.

In the SUSY models revisited in the previous chapters, the “tradi-
tional” MSSM and NMSSM, spontaneous C'P violation by means of
the vevs of the Higgs fields occurs only when we consider radiative cor-
rections to the effective potential [11]. Both models predict the existence
of a very light Higgs boson in accordance with the Georgi-Pais theorem
[31], but this is ruled out in the MSSM because of the lack of any ex-
perimental evidence [32]. On the other hand, such a possibility in the
NMSSM is allowed because here a singlet Higgs field is introduced [19].

It is our intention in this chapter to explore in detail the C P-violation
due to the vacuum in the most general NMSSM. Within such a Z3-
breaking model, according to the result of reference [19], it is possible
to achieve C'P violation already at tree-level. Then we want to study
the Higgs spectrum and eventually see if the lightest Higgs boson has an

upper bound as well as in the C'P conserving case.

3.2 (P-violating phases and the effective potential

Let us recall that the Higgs complex scalar fields N, H; and H, can
be expressed in terms of the real scalar fields ¢4, ..., ¢y as in equations
(1.22-1.26). At the non-trivial minimum of the potential (1.37) we can
have

() £0, withi=1,...,6.

These assumptions, generalising the assumptions (1.28), take into account

a complex phase on each field vev:

HY) = et , HS = pqe'0? , N) = ze's | 3.1
1
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With these three phases the Lagrangian still remains explicitly C P-symmetric,
but the vacuum is not anymore: this is what is known as Spontaneous
CP Violation (SCPV). Then expressing the tree-level potential (1.37) in

terms of the vevs (3.1) we have:

1

Vo = 3 (Ao} + Aovs) + (A3 + Ag) vivs + (Asvf + Agv3) 2°
+2X 7010222 cos Oar + Asz* + (1P + 2Apz cos 03) (vi + v3)
-!-mf[{1 Uf + m%zvg + m?va — 2myv 9z cos Op

2
—§m5x3 cos 363 + 2mav, v, cos B19 + 2mx? cos 203 (3.2)
where the the phases 0, 6 and 65 appear in the linear combinations:

0M = 01 + 02 - 203 ;
0p = 0,+0,+065, (3.3)
912 = 01 + 02 .

Here we recall the boundary conditions to be satisfied by the A; (with

i=1,...,8) at the scale Mg:

95 + g3 \ 95 -g
3 — 9

4 ’ 4
g2
/\4:/\2—?2 ’ >\5:)\6:/\2v
Ar=-Mk , M=k,

)\1:)\2:

The complex phases in the Higgs field vevs affect the masses of the scalar
tops as well. These enter in the one-loop correction to the effective poten-
tial (see egs. (2.25) and (2.33)). By looking at the squared mass matrix
of the stops (2.28), we see that the complex phases affect the mixing

parameter A;. Then, using the vevs (3.1), we obtain

Ay = A+ (p+ Mz €%) cot B €i01702) | (3.4)
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When the phases §; = 0, = 63 = 0, we obtain eq. (2.32) of the CP-
conserving case.

Concerning the further correction to the effective potential, the field
dependence of VL(? (see eq. (2.35)) is such that the phase 6, doesn’t affect
the two-loop correction. Finally, not surprisingly the kinetic correction
considered at the end of section 2.3.1 (see eq. (2.36)) is not affected by
the C P-violating phases; this is in agreement with the concept of SCPV

because the Yukawa coupling of the top quark is real.

3.3 Neutral Higgs spectrum

After having considered the effect of the phases 6; (with ¢ = 1,2,3) on
the effective potential, we want to see what happens to the Higgs scalar
mass matrix after imposing the SCPV. In the CP-conserving case we
know this matrix splits into two 3 x 3 blocks: one C'P-even or scalar (5),
and another C' P-odd or pseudoscalar (PS). Because of the phases, now
the off diagonal blocks of our matrix are non-zero so that it is impossibile

to split it into submatrices with different and definite CP eigenstates:

0 S 0 o0 [ A X
M* = - ;
0 PS X B
where the off-diagonal block X contains factors sin 6; and A and B involve
factors cos ;. As a consequence any eigenvalue obtained from the 6 x 6
Higgs matrix represents a hybrid state between C'P-even and C P-odd.

Despite such a complication in the Higgs mass matrix, we can obtain

more constraints compared to the C'P-conserving case: one for each in-
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troduced phase on the Higgs fields vevs. In simple words, if before we had
three minimization conditions, now we have two additional ones. Because
of the identical dependence of the effective potential on the phases 6; and
05, we have two additional minimization conditions instead of three, and
without loss of generality we can fix 5 = 0. Calculating the first deriva-
tive of the effective potential we get five minimization conditions, the first

three are the ones already mentioned in section 2.3.2

Werr _ g Werr _ Wess _

8’1)1 ’ 8’1}2 0 ’ Ox 0 ’ (35)
and to these we add
OVesr Vers _
36, =0, 365 =0. (3.6)

These five minimization conditions will allow us to eliminate from the

tree-level potential (3.2) five soft masses

2 2 2 2 2
mHlamH27mN7m67m7 ’

and for these the corresponding conditions are given in equations (C.7)-
(C.11). The conditions on the first derivatives of Vgss, together with
the condition of having positive eigenvalues, are enough to ensure a local
minimum of the effective potential. After eliminating the five soft masses

we are left with seven other tree-level free parameters:
Ak, x, tan B, my, ms, i
and with another four at one-loop level:
Mg, Ay by, 6

As already discussed in the previous chapter (see section 2.3.3), we can

restrict most of the free parameters as we are interested in finding the
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upper bound on the lightest neutral Higgs boson. We can apply these
constraints by fixing some of the parameters and deducing some others.

Here we summarize:

e FIXED PARAMETERS

— A=Az 0.7, E~0, tanf =27,
—M5=1T6V, |At|=\/ng, szmT:MS.

e OTHER DEDUCED PARAMETERS

— once |4, is fixed, then from eq. (3.4) we can express A, in

terms of it together with the still free parameters x and y;

— we determine the Yukawa coupling h; using eq. (2.37).

At this stage we are left with four free parameters: the tree-level trilinear
soft masses m4 and ms, the modulus of the singlet vev x and the reap-
peared u parameter typical of our general model.

We can use the expression for the mass of the charged Higgs particle

mg+ to eliminate my:
2
sin 23

Here we observe that elimination of m4 doesn’t mean a reduction in the

m?;i = (myx — Az — Aqvivg — mg) ) (3.7)

number of unknown parameters, because in this way we introduce an-
other parameter my+. The real advantage of this substitution lies in
the fact that we can express the neutral Higgs spectrum as a function
of the charged Higgs particle mass, and when we try to maximise mpo
we perform the task effectively eliminating another free parameter. Sum-

marising we are left with three parameters:

T, M5, ph - (3-8)
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The complete neutral Higgs mass matrix inclusive of the dominant two-
loop contribution is given in appendix C.

The most natural thing to do at this point is to see what happens to the
eigenvalues of the Higgs mass matrix when we vary the phases 6; and 05
from small to large values. Evaluating the Higgs spectrum it is necessary
to recall that the C P-violating phases are constrained by the Electric
Dipole Moment (EDM) of the electron, the neutron and the mercury
atom [33]. To suppress EDMs in SUSY models then it is necessary for
the CP-violating phases to be < 1072 [34]. Nonetheless studies of the
C P-violation in the Zs3-breaking NMSSM requires large C P-vilolating
phases to give an account of € for the decay of the neutral kaon [35] [36]
[37]. Aware of these facts, in the next section our results will range from
small to large C P-violating phases, as the main issue of this chapter is the
study of the mathematical features of the matrix giving the full spectrum

of the neutral Higgs bosons and its eigenvectors.

3.4 Analysis and results: the lightest Higgs bosons

Let us start this section with some interesting theoretical remarks about
the lightest Higgs boson. As previously mentioned in the Zs-symmetric
NMSSM the SCPV cannot be achieved unless radiative corrections are
involved and, according to the Georgi-Pais theorem [31], with the con-
sequence that a light particle characterises the Higgs spectrum. In the
Zz-breaking NMSSM the SCPV occurs already at tree-level because of
the non-trilinear terms in the superpotential (1.36) and a light particle is

only predicted in the limit of small C P-violating phases [38]. The latter
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result depends on a different argument and is not a consequence of the

Georgi-Pais theorem. In the small phase limit from eq. (3.1) we have
v ~ vy + 30,0y

1}26:&1'02 >~ Vg + ’i02’l]2 y (39)
zet ~ gz + 0y .

It follows that the effective potential has two C'P-conjugate minima at

the points

& = (’Ul,’l}z,.’I), ’1)191,1)202,1'03), (310)

€9 = (’Ul,’Ug,.’L', —’1)191, —’0202, —11703) y (311)

where the two vectors are expressed in the basis {¢1, @2, @3, P4, P35, D6}
for the neutral scalar fields. In a small neighbourhood of radius ¢ of the
6-dimensional point g; such that § > |g; —g,| > 0, we can always expand
the first derivative of the potential
ov. oV
O¢; — 09
where |¢ — g,| < 6. Now in the case ¢ = g, the right hand side of eq.

0V
o (@=2)s 0p;00;

~0, (3.12)
&

(3.12) is identically equal to zero, and we can write:

(6 —€ )-22_{/— I~ ov - oV
c9 =1 ]8¢Ja¢z € ~ aqbz £y a¢z

In the case when the phases tend to zero, this expression represents a

=0-0. (3.13)

5]

solution of the eigenvalue equation: one eigenvalue zero at the leading
order with eigenvector along the direction g,—¢,. When 6; # 0, but small,
then we have a light particle. Because (g,—¢;) contains just the imaginary

parts of the Higgs fields, this particle is purely CP-odd in the limit of
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small phases. To this remarkable result it is necessary to add another
important consideration based on the experimental signatures. Because
of the lack of evidence for the existence of a light C'P-odd doublet, we will
not study the case 6; > 03 ~ 0. In that case the nature of the eigenvector
would be predominantly doublet in contradiction with the experimental
results.

In figures 3.1-3.4 we can see the plots of the upper bound on the lightest
Higgs neutral boson myo obtained by fixing 6; and scanning versus 63 in
the range 0 < 635 < 26;. The numerical analysis has been performed
after setting #; = 0, this does not affect the generality of the results.
Concerning the remaining free parameters we started the scan for them

in the ranges:

0GeVS = S1TeV,
—500 GeV < ms <500 GeV ,
2TeVS p S2TeV,

and for the mass of the charged Higgs boson
80GeV 5 mpgx S2TeV .

my has been determined, for a given mg=, using eq. (3.7). mZ plays a
significant role after being fixed automatically by one of the the mini-
mization conditions (3.6).

Figure 3.1 shows the plot of the upper bound on my0 for the smallest val-
ues of the phases, with §; = 1073 rad and 63 ranging up to 3x1073 rad. As
03 grows the calculated upper limit approaches the limit myuo < 1.5 GeV
when 603 ~ 26,. Plots in figures 3.2 and 3.3 show the same behaviour of

the lightest Higgs boson mass as in figure 3.1, with the only difference that
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the upper bound myo saturates to different upper limits: myo < 15 GeV
in figure 3.2, and myo < 130 GeV in figure 3.3. Finally, from figure 3.4,
we can see that when 6; ~ 1 rad, then the lightest eigenvalue of the
Higgs mass matrix shows an upper bound. This upper bound on myo
turns out to be ~ 136 GeV, in good agreement with the upper bound on
the lightest eigenvalue of the C P-even Higgs mass matrix obtained in the
previous chapter for the C P-conserving case.

The behaviour of the two lightest Higgs boson masses? mpo and myg
changes remarkably as the phases 6; increase. In figure 3.5 the plots show
the upper bound on the two masses versus the phase § = 6; = 65. In the
small phase region the upper bound on the lightest eigenvalue My is less
than a few GeV', and the upper bound on the next lightest turns out to be
mpg ~ 136 GeV. The plot of figure 3.6 shows the percentage of the sin-
glet field in the eigenvectors corresponding to my9 and mpg. Concerning
the nature of these bosons, in the region of small C'P-violating phases,
the analysis of the eigenvectors reveals that the lightest Higgs boson is
predominantly singlet due to large values? of z. For small phases and
from egs. (3.10) and (3.11) the percentage of the singlet field contained
in the eigenstate (g, — &;) of h? is approximately

202
No = n? 0032,92:%3—0— 262

100 . (3.14)

The second lightest A9 is instead predominantly doublet for small phases.
For larger phases 6,65 ~ 1 rad, the upper bound on the lightest Higgs
boson mye ~ 136 GeV, and the second lightest satisfies mpy S 1 TeV.

In the rest of the chapter, when we will deal with the neutral Higgs spectrum, we will
identify mp0 with myo. We will swap from one notation to another without creating too many
problems for the reader. In general we shall use m,o (i =1,...,5) to denote the masses of

the neutral Higgs bosons in increasing order.
2The singlet percentage depends also on the value of tan 8, as we will see later.
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Figure 3.1: Plot showing the upper bound on the lightest Higgs bo-
son mass myo versus the C P-violating phase 03 in the Z3-
breaking NMSSM. In the plot we fixed 8; = 102 rad and
Mg=1TeV.
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Figure 3.2: Same plot as the one shown in figure 3.1 with §; = 10~2 .
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Figure 3.3: Same plot as the one shown in figure 3.1 with 6, = 0.1 .
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Figure 3.4: Same plot as the one shown in figure 3.1 with §; =1 .
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Figure 3.5: Plots of the upper bounds on the two lightest Higgs boson
masses mpo and mpo versus 8 = 6, = 63 . The SUSY
breaking scale Ms = 1 TeV and the dotted line represents
the limit 136 GeV'.

Now the situation concerning the nature of the two upper limits is re-
versed as the eigenvector of h) shows a small percentage of singlet field,
and hj is almost exclusively singlet. In figure 3.5 the dotted line highlights
the limit ~ 136 GeV. An additional consideration relates to the number
of upper bounds. Although in the region of large 6; and 3 the second
lightest eigenvalue doesn’t shown any sign of saturation, when the two
phases are small the presence of the light my and the upper bound on
myg reveal that the two lightest eigenvalues of the Higgs mass matrix both
have upper bounds. This is a special feature of the general NMSSM in
the SCPV case.

From figures 3.5 and 3.6, the region where § ~ 0.2 rad shows an in-
teresting crossover. As the C'P-violating phases approach this region the

upper bound on myg starts to increase above the line at ~ 136 GeV, and
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Figure 3.6: Plots showing the singlet percentage of the two lightest
Higgs bosons as a function of § = 6, = 63 . The plots
refer to the masses of figure 3.5.

it continues to increase when 6 2 0.2 rad. At the same time the content
of singlet field in its eigenstate changes as before mentioned, as in this
region the eigenstate evaluated for different values of the phases ceases to
be exclusively doublet dominated. Concerning the lightest Higgs boson
hy, the eigenvector analysis show the opposite tendency. It remains in
any case the lightest physical eigenstate as in this cross-over region its
mass flattens out as a function of # and the upper bound on mpo becomes
the usual ~ 136 GeV'. From the overall point of view, in the region where
0 ~ 0.2 rad the two lightest eigenstates clearly swap roles and this regime
is the only one where the limit 136 GeV represents an upper bound for
neither of them.

Figures 3.7-3.10 can help us to understand the situation better. The

plots show the singlet component in the eigenvector analysis of the light-
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Figure 3.7: Plot showing the percentage of the singlet fields contained
in the eigenvector of the lightest Higgs boson versus 03. We
fixed 6; = 1073 rad and Mg =1 TeV.
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Figure 3.8: Same plot as the one shown in figure 3.7 with §; = 1072 .
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Figure 3.10: Same plot as the one shown in figure 3.7 with 6, =1 .
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est Higgs boson for the plots shown in figures 3.1-3.4 respectively. In the
first two of these, where 6, is fixed to 1072 and 102 rad respectively, the
eigenvector analysis show the high dominance of the singlet part. In the
plot of figure 3.9 we can see the singlet percentage in the cross-over region
previously mentioned, and here the singlet dominance starts to decline.
Eventually when 6;,0; ~ 1 rad, as shown in figure 3.10, the eigenvector
of the lightest eigenvalue has the lowest singlet component, corresponding
to an eigenvector strongly dominated by the doublet fields.

At this point it is worth discussing on the differences between the re-
sults just shown and those of reference [38]. There the upper bound on

the lightest Higgs boson mass for small C' P-violating phases is given by
mpo >~ —————=5 GeV , (3.15)

whereas we obtain larger masses. Figure 3.2 shows masses up to ~ 14 GeV
for 6, = 63 = 0.01, not ~ 5 GeV as in reference [38]. The difference can be
explained as follows. The result of the mentioned reference was obtained
calculating the one-loop radiative corrections to the dimensionless cou-
pling constants of the tree-level Higgs potential using the RG approach.
Besides assuming Mg = 1 TeV, the parameters in the cited paper were
randomly chosen in the following ranges, which are narrower than ours,

described previously in this section:

2< tanf <3,
10GeV < = <510GeV ,
—500 GeV < my <500 GeV
—-500 GeV < p <500 GeV
55 GeV < mpy+ <800 GeV ,
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and the Yukawa-like coupling A and k were fixed differently:
A=k = 05.

An additional important difference is that reference [38] assumed the min-
imum mixing. As discussed in section 2.2, this means degeneracy in the
masses of the scalar tops m;, and mj, and translates to X; = 0 (see eq.
(2.12)). Adopting this scenario and restricting the parameters range as
in reference [38] we performed an analysis of the lightest Higgs boson
mass and the results are reported in figures 3.11-3.14. In the small CP-
violation regime they roughly follow the evolution stated in eq. (3.15),
provided we substitute 4.5 GeV for the factor 5 GeV. The discrepancy is
due to the effect of the two-loop contributions to the effective potential
and to the correction to the top Yukawa coupling h; left in our calcula-
tions. Figure 3.14 finally shows the large C' P-violating regime and we see
that when 63 approaches ~ 0.3 rad then the upper bound saturates to
an upper limit of ~ 118 GeV. Comparing this with the 136 GeV shown
in figure 3.4, we can once more appreciate the important contribution to
the raising of the upper bound on myo coming from the mixing regime
between the stops. This confirms what was found in Chapter 2 where we

analysed the upper limit in the C P-conserving case.
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3.5 Analysis and results: the complete spectrum

Let us now focus our attention on the complete neutral Higgs spectrum.
The plots of figure 3.15 and 3.16 show the five eigenvalues® MR, - -, MRY,
as a function of the mass of the charged Higgs particle my+ which is
represented by the the dotted line. The CP-violating phases are 6; =
63 = 1072 rad. The first of the two plots is obtained after maximising
numerically the lightest eigenvalue myo which remains very light as it is S
1 GeV even when mg=+ ~ 2 TeV. The plot of figure 3.16 is obtained after
maximising numerically the second lightest eigenvalue mypg. The mass
myg reaches its upper limit ~ 136 GeV already when my+ ~ 500 GeV'.
Concerning the remaining particles of the neutral Higgs spectrum, we
observe myg ranging from a few hundred GeV in the region of low values
of the charged Higgs particle, up to ~ 17eV when mg+ ~ 2 TeV. The
heaviest particles myy and myg remain always almost degenerate with*
myg=.

In figures 3.17 and 3.18, the same spectrum is shown in the large CP-
violating phases regime: 6; = 63 = 1 rad. The two figures have been
obtained after maximising respectively mpo and myg. In the former case,
the upper bound on My 18 ~ 136 GeV as usual. Then the next physical
mass eigenvalue myg is not limited as in the small C'P-violating phases
case, and increases as the charged Higgs boson mass increases. For a

charged Higgs boson mass my+ ~ 2 T'eV then the masses myg and Mg

3 After diagonalising the 6 x 6 mass matrix, we have always to keep in mind that one of the
eigenvalues is zero corresponding to the Goldstone boson. In the plots this is not reported,
but the presence of the massless particle provides a check of the calculations.

4Because myg and my,0 are almost degenerate with my;+ (see tables 3.2 and 3.3) they are
also hardly distinguishabie. In these graphs the range of values in which my+ varies goes
from ~ 200 GeV up to ~ 2 TeV.
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range between 400 GeV and 700 GeV. As in the small CP-violating
limit, the masses of the heaviest neutral Higgs bosons myg and myg are
almost degenerate with the charged Higgs particle mg+. Figure 3.18
shows the neutral Higgs spectrum after maximising myg. The result of
this maximisation shows an unexpected quasi-degeneracy between Mg
and myg and for my+ ~ 2 TeV these masses are S 800 GeV. For
the lightest particle of the spectrum we have a large range of values,
0.1 GeV' S mye S 100 GeV, while the remaining particles myg and myg

show the same pattern as in figure 3.17.
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3.6 The decoupling limit

We conclude the analysis of our results by summarising the nature of the

particles that constitute the spectrum in the decoupling limit
mgt, T >N, (3.16)

where n = 174 GeV is the SM Higgs vev. In this regime, analytic ap-
proximation for the eigenvectors provide a useful check for our numerical
work.

In table 3.1 we summarise the results in the small C P-violating phase
region, with §; = 0; = 1073 rad, and the large one with §; = 05 = 1 rad.
In the first limit we see that the lightest Higgs particle is C P-odd, which
confirms the theoretical predictions on the eigenvector coming from the
approximation (3.9). The dominant part of the eigenvector lies in the
direction of the imaginary part of the singlet field. The next to lightest
eigenvalue myg is the closest to the lightest C'P-even Higgs boson of the
CP-conserving case. The next state hJ is the heavier singlet with the
dominant component of the eigenvector in the direction of the real part
of the field N. Finally the heaviest particles hl h2, whose masses are
nearly degenerate with the mass of the charged Higgs boson mg+, have
a strong doublet predominancy, CP-even and CP-odd respectively. In
the parenthesis is expressed the particular doublet field with the highest
component in the respective eigenvector. For completeness, the Gold-
stone boson is included.

When we consider the large phase case, §; = 03 = 1, it is not possi-
ble to determine the C' P-state because these are not eigenstates of C'P.

From table 3.1 we can see that the singlet-doublet character remains un-
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0, =06y = 103 0, =6y =
G° | doublet (H) | CP-odd G° | doublet (Hy)
hY singlet CP-odd Ry | doublet (Hz)

hy | doublet (H) | CP-even h3 singlet

hd singlet CP-even h3 singlet
h} | doublet (H;) | CP-even h$ | doublet (H;)
h? | doublet (H;) | CP-odd h? | doublet (Hy)

Table 3.1: Nature of the neutral Higgs spectrum particles in two C P-
violating phases cases: §; =65 =103 and 6, = 65 = 1.

changed compared to the small phase limit as far as the three heaviest
Higgs are concerned, but that of the two lightest particles mpg and myg:
is inverted. The dominance of a particular Higgs field in each eigenstate
depends on the choice of tan S and the following analysis shows how this
is determined.

In the decoupling limit the physical eigenstates can be better under-

stood by making the transformation [39]:

H —cosf sinf et 0 H,
_ RNERT)

H sin8 cosf 0 1 H,

~\T ~ ~
where H represents the effective SM Higgs field and (Hl) = (Hfr , H{))

is defined as H; = (H;)* with ¢ the antisymmetric tensor introduced in
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eq. (1.5). Explicitly we have
Hf H*
= (3.18)
HY —HY
Following this definition, which is a generalisation of the egs. (1.11) and
(1.12) to the SCPV case, and concentrating on the neutral fields only,
then®
H® = cos Be® (H?)* + sin BHY . (3.19)
This includes the Goldstone boson and the SM-like Higgs boson in the

decoupling limit, the corresponding eigenvectors of the squared mass ma-
trix in the basis {Hy, Ho} in which are given by
cos Bet cos Bet
G = —i ; hO = — . (3.20)
—sin g sin 8
Relative to the states shown in table 3.1 this last eigenstate in the small
C P-violating phases regime corresponds to h3, and in the the opposite

regime corresponds to h). Concerning the neutral component of the sec-

ond Higgs field H?, following the transformation (3.17) we have:
H° = —sin Be® (H?)* + cos BHY . (3.21)
This contains the corresponding eigenvectors for the heaviest particles h$

and h? which, in the basis {H,, H,}, are

sin Bei®1—®) sin Bei(f1—2)
ho = — R = , (3.22)

— cos et cos et

®In this notation the symbol H° has not to be confused with the one of eq. (1.13)
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where « is an additional phase coming from the orthonormality with
eigenvectors (3.20). For the last pair of Higgs particles we kept the nota-
tion used throughout the chapter because from table 3.1 the doublet char-
acter of these two particles remain unchanged as we change from the small
to the large C P-violating regime. The phase factor €* parametrizes the
most general H® orthonormal to H°. As has been remarked, the masses
myg and mypg are almost degenerate with mp=, this being a consequence

of the decoupling limit as

2
n
mhg, mhg ~ mgs + o (mH:t> (323)

Concerning the predominantly singlet particles shown in table 3.1, the
condition (3.16) affects the 6 x 6 tree-level squared mass matrix (see ap-
pendix C). The matrix elements representing the mixing between the two
doublet Higgs fields H; and H, and the singlet one N become negligible
compared to the remaining matrix elements. This means that the eigen-
states for these particles are nearly independent of H; and Hs. The de-
coupling limit (3.16) produces the separation in terms of masses between
the heavy Higgs particles and the light ones, which provide the effective
SM spectrum, and at the same time decouples the doublet Higgs fields
and the singlet one. To illustrate this, we provide a numerical example in
the different C P-violating regimes shown in table 3.1. To satisfy (3.16)
we fix my+ = 2 TeV and after fixing tan § = 2.7 the maximum on myo
saturates when z ~ 1 T'eV. Then we express the normalized eigenvectors
for the six particle states in the usual basis { H;, Hy, N}. With reference
to the notation of table 3.1 with #; = 63 = 1073 rad we get the results
shown in table 3.2. According to table 3.1, because of the small CP-

violating regime, the mass eigenstates are nearly CP-eigenstates. The
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mass (GeV) H; H, N
G° 0 0.000 — 2 0.347 0.000 + ¢ 0.938 | 0.000 + % 0.000
h 0.54 0.000 + 2 0.059 0.000 + 2 0.022 | 0.000 + ¢ 0.998
h3 136 —0.348 +4 0.000 | —0.937 + ¢ 0.000 | 0.033 + ¢ 0.000
hg 657 —0.014 47 0.000 | 0.040 + 0.000 | 0.999 + 7 0.000
hg 2002 0.937 4+ ¢ 0.000 | —0.347 44 0.000 | 0.028 + % 0.000
hg 2005 0.000 — 7 0.936 0.000 — % 0.347 | 0.000 + 7 0.063

Table 3.2: The components of the Higgs fields H,, Hy, and N entering
in the eigenstates of the Higgs spectrum fixing 6; = 03 =
1072 rad, tan 8 = 2.7 and my+ = 2 TeV. Maximising Mo
we find x ~ 1 TeV.
results shown in the table refering to the doublets are confirmed by the
eigenvectors (3.20) and (3.22). In particular (3.20) for G° and hj gives
tan 8 = % ~ 2.7 and §; = 1073 rad as expected. Using the eigenvectors
(3.22) since hj is real and h? is imaginary, we have a = 0.
In table 3.3 are shown the same results as table 3.2, but fixing
0, = 63 = 1 rad. In this case, as expected in the large CP-violating
regime, the eigenstates are not exact CP eigenstates. Nonetheless, the
singlet/doublet nature of each particle confirms the decoupling of H;
and H, from N. (3.20) applied to G° and h? confirms tan 8 ~ 2.7 and
6, =1 rad and (3.22) leads to a ~ 0.316 rad.
To complete the picture, we go back to the neutral Higgs spectrum in
the C'P-conserving case. In figure 3.19 is plotted the neutral Higgs spec-
trum as a function of the mass of the charged Higgs particle mg+. In these

plots, the C P-even lightest Higgs boson shows the usual upper bound.

The remaining particle masses can be divided in two pairs. The masses
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mass (GeV) H; H, N
G° 0 0.292 — 5 0.188 0.000 4 ¢ 0.938 | 0.000 + ¢ 0.000
h(l) 136 —0.188 — 7 0.292 | —0.938 4 ¢ 0.000 | 0.001 + ¢ 0.003
hy 410 —0.023 — 7 0.017 | 0.009 + 2 0.004 | 0.816 — ¢ 0.577
hg 501 —0.039 + ¢ 0.052 | —0.005 + ¢ 0.023 | 0.576 + 7 0.814
hS 2002 0.726 +12 0.592 | —0.330 — 7 0.108 | 0.023 — ¢ 0.019
h 2006 0.591 — 7 0.725 0.108 —¢ 0.329 | 0.041 + ¢ 0.055

Table 3.3: The components of the Higgs fields H,, H» and N entering in
the eigenstates of the Higgs spectrum fixing 6, = 63 = 1 rad,
tan B3 = 2.7 and my+ = 2 TeV. Maximising Mpo We find
z~1TeV.
mpg and myg, of the first pair, range from around 150 GeV up to 1 TeV
showing a rather random pattern; they divide into one C'P-even and one
C P-odd state and both are singlet dominated. The second pair of neutral
particles are, like in the C' P-violating regime, nearly degenerate with mg+
and the eigenstates are dominantly doublet (H;). Unsurprisingly, they
have opposite CP parity. The physical eigenstates are summarised in
the table 3.4; after comparison with table 3.1 we can see that the Higgs
field components remain unchanged. Finally in table 3.5 is shown the
analysis of the eigenvectors. As expected, every particle corresponds to
an exact C'P state and as a consequence of the decoupling limit the two
lightest eigenvalues provide the effective SM Higgs particles remaining

completely uncoupled to the singlet vev x.
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G° | doublet (Hs)

CP-odd

h{ | doublet (Hz)

CP-even

h singlet

CP-odd

h singlet

C P-even

h$ | doublet (Hi)

CP-odd

hg doublet (H 1)

CP-even

Table 3.4: Nature of the neutral Higgs spectrum particles in the CP-
conserving case.

mass (GeV) H, H, N
G° 0 0.000 — 2 0.347 | 0.000 4 ¢ 0.938 | 0.000 + 7 0.000
h 136 0.347 + 4 0.000 | 0.938 47 0.000 | 0.000 + 7 0.000
h3 396 0.040 4z 0.000 | —0.015 + ¢ 0.000 | 0.999 + ¢ 0.000
hg 1168 0.000 + ¢ 0.015 | 0.000 + 7 0.006 | 0.000 + 7 0.999
hg 2001 0.000 4+ 0.938 | 0.000 + 7 0.347 | 0.000 + 7 0.016
hg 2003 0.938 + ¢ 0.000 | 0.347 + 4 0.000 | 0.043 + 4 0.000

74

Table 3.5: The components of the Higgs fields H1, Hy and N entering in
the eigenstates of the Higgs spectrum in the C P-conserving
case with tan f = 2.7 and mg+ = 2 TeV. Maximising My
we find x ~ 1 TeV.
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Figure 3.19: Plots of the Higgs spectrum in the CP-conserving case:
0, =603 = 0. Mg = 1 TeV and the maximization has
been performed on the lightest mass myo.
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Chapter 4

Renormalization group

analysis

4.1 Introduction

In the previous chapters studying the neutral Higgs spectrum, with and
without C'P conservation, we focused our attention on the upper bound
on the lightest Higgs boson mass. Performing this task many parameters
entering in the effective potential were selected in such a way as to raise
as much as possible the upper bound on mpo. The only constrained pa-
rameters were the dimensionless constants A; (with ¢ = 1,2, 3) related to
the gauge coupling constants of the groups U(1) and SU(2) through the
boundary conditions (1.21). Furthermore using the minimization condi-
tions imposed on the effective potential assuming the Electroweak Sym-
metry Breaking (ESB), we were able to eliminate some of the parameters,

the number of these depending on whether or not CP conservation was
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imposed.

In this chapter we want to use the RG equations to obtain a relevant
set of parameters entering in the neutral Higgs spectrum of the NMSSM
at the electroweak scale. The electroweak solutions of this set of differ-
ential equations can be calculated once a set of boundary conditions is
introduced at a very high scale called Mx. Although the low energy scale
solutions of a general set of differential equations depend on such bound-
ary conditions, the RG equations represent a special class of these for
which it is possible to have low energy scale solutions concentrated in a
narrow space, to a large extent independent of the boundary conditions.
These are the so called InfraRed Quasi Fixed Points (IRQFP).

M SSM investigations based on the IRQF P of the RG equations have
been made [40]-[41]. The stable RG-equations solutions determining
tan f ~ 1.8 correspond to an upper bound on the lightest Higgs boson
mass of (94 +5) GeV. From the existing LEPII data based on the mass
mP (see eq. (2.20)) the mass mpo 2 113 GeV for low tan 8 [29]. This
rules out the RG-based M SSM in the low tan § limit. In the case of large
tan 8 (tanf ~ 60) the RG analysis shows that the MSSM TRQFP is
still consistent with the experimental data as mpo < (125 +£5) GeV [41]-
[42] .

In this chapter we are going to study the properties of the RG equations
of the general Zs-breaking NMSSM in our usual low tan 8 regime.
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4.2 The set of RG equations

The set of RG-equations used in our analysis is given in Appendix A. The
methods commonly adopted to determine the RG equations are based
on two renormalisation schemes: dimensional reduction (DRED) and di-
mensional regularization (DREG). DREG violates supersymmetry and
the RG equations we use are determined using the DRE D with modified
minimal subtraction (DR). In Appendix A the set of RG equations used
are calculated at one-loop order. For the purposes of this work they are
accurate enough and at this level they are scheme independent® [5].

The RG-equations of Appendix A consist of 17 differential equations
combined, each one integrating the respective S-function from a high
scale Mx down to the electroweak scale m;. The first six equations de-
scribe the dimensionless parameters and can be split into two significant
groups of three equations each. The first group (see egs. (A.1)-(A.3)) in-
volves the RG-equations for g, g, and g3, respectively the gauge coupling
constants of the groups U(1)y, SU(2); and SU(3)c. The second three
RG-equations (see egs. (A.4)-(A.6)) concern respectively the top Yukawa
coupling h; introduced in eq. (2.1), and the two Higgs fields couplings
A and k entering in the superpotential (1.36). As previously mentioned,
because we have been interested in the upper bound on the lightest Higgs
boson mass and we limited our study to the region where tan 8 < 10, we
can neglect the contribution due to any particle/sparticle except those
belonging to the up-type third generation of quark/squark. Because of
this, together with the RG-equation of the top Yukawa coupling h;, we

'For a general discussion about the RG equations and the methods to evaluate them see
reference [43] and references included therein.
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need to solve the RG-equations involving the soft masses entering into
the definition of the stop squared mass matrix (2.28). Because all the
remaining RG-equations are devoted to the soft SUSY breaking terms,
it is useful to write explicitly the soft part of the tree-level potential V(©)

Vel = md|QP + mali

+

miy, | Hi | + myy, | Ha|? + m3 |N|?
1 ) _
'2‘(M1§1§1 + M€ + M3€3Es)

—  (hAQHt + NA\NH, H, + %kAkN?’

+

—BuH,Hy + h.c.). (4.1)

In the first and the fourth line of V*°/* we can see the squared masses
mg, mz. and A; determining the entries of the mass matrix of the stops
(2.28). In the second line we can see the terms containing the scalar
masses squared m%; , m¥, and m%. The remaining trilinear soft terms
containing Ay and Ay enter in the tree-level potential through the soft

SUSY breaking masses m4 and mj as follows

my = )\A)\, (42)

In the third line of eq. (4.1) &1, & and &3 are the gauginos corresponding
to the U(1)y, SU(2)L, SU(3)c gauge groups respectively. The gaugino
masses M7, M, and M3 enter in most of the S-functions for the soft SUSY
breaking terms and the RG-equations for these masses will be discussed
later. Finally in the last line of eq. (4.1), the term —Byu enters in the
definition of the soft mass squared m2. In particular from this soft term

and from the superpotential (1.36) that defines the tree-level potential
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(2.26) we have

miz = —Bup+ir, (4.4)
m: = kr. (4.5)

Clearly these two masses depend on 7, ;1 and B which satisfy the RG-
equations (A.17)-(A.19) and their infrared values will be discussed in

section 4.2.4.

4.2.1 Unification of the gauge couplings constants

The idea of a fixed scale Mx, which represents the starting point for the
RG-equation calculations of the parameters of an effective theory, relies
on the well known unification in a Grand Unified Theory (GUT) of the
gauge coupling constants g;, go and gs. At the one-loop level the RG

equations for these couplings are

d 1

at? = 162

where we recall the definition (2.17) ¢t = log(Q/mz), and @ is the RG

cgd, i=1,...,3, (4.6)

scale. Concerning the vector of the coefficients c;, in the SM it is ¢;¥ =

(4 -12 _7), while in the NMSSM it is cNMSSM = (31 _3). The

latter coefficient ¢; is expressed in a GUT normalisation, which is re-

lated with the non-GUT normalisation (see eq. (A.1)) by means of the

5
geuT = \/;gl . (4.7)

NMSSM jg different from cf™ because of the extra

relationship

The set of coefficients ¢

particles typical of any supersymmetric model®. In figure 4.1 we plot

2The set of coefficients ¢]Y™55M is identical to the set in the MSSM.
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L0g10 1 GeV

Figure 4.1: RG evolution of the gauge couplings g1 (U(l)y), g
(SU(2)L) and g3 (SU(3)¢), in the SM (dotted lines), and
in the NM SSM (solid lines).

the evolution of the coupling constants in the SM and in the NMSSM
according to eq. (4.6). In both cases, we can see the gauge coupling
constants approaching to closer values as the RG scale increases but the
unification occurs only in the latter case. In the supersymmetric case the
unification occurs at a scale Mx ~ 3 x 106 GeV, and the common value
gx ~ 0.71 is called the universal gauge coupling constant. While such
unification of gauge couplings could be an accidental result, it may also
be taken as a strong indication in favour of a GUT or of a superstring
theory, both of which indeed predict gauge coupling unification below
the Plank scale Mpj,ncx- Based on this fact we are motivated to use the
RG equations as a fundamental tool to determine the couplings and the
soft masses of the effective potential at the electroweak scale, from which

we determine the mass spectrum of the neutral Higgs bosons in the Z5-
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Figure 4.2: Evolution of hy versus t after setting A = k = 0. In the
MSSM the IRQF P limit is defined as the h; line for which
h: has a Landau pole at the scale Mx .

breaking NMSSM.
After finding the scale My it is possible to solve simultaneously all the
RG equations of Appendix A governing the gauge coupling constants, the

dimensionless Yukawa-type couplings and the soft masses of the model.

4.2.2 Yukawa couplings

Let us now analyse the 8 functions for the Yukawa couplings h;, A and k

given in equations (A.4)-(A.6); these are:

d 13 16
16r° 2 h = hy (th + X = gt — 305 — gg:?) ,  (498)
d
1672 2X = A (4N + 2K+ 3K} — g} - 3¢5) (4.9)
167r2ik = 6k (N2 +K?) . (4.10)

dt
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The RG equations for A and k are typical of the NMSSM. If we set
A = k = 0 then the right hand side of eq. (4.8) reduces to the S-function
of h; in the MSSM. In this case the study of h; is easier because there
is no dependence on A and k. The TRQF' P for the top Yukawa coupling
is defined as the IR value of h; for which it has a Landau pole at the

IRQFP .
[RRFP corresponds to the maximum value

scale Mx. In other words h
of hi(m;) derived from the equation and allowed by perturbativity up to
the scale Mx. Figure 4.2 shows that hf RQFP ., 1.12, the different curves
confirming the fact that the solutions in the neighbourhood of the QF P
are independent or very weakly dependent on the value of h?(Mx).
More complicated is the situation when A and k are non-zero in the
RG equations. The three equations (4.8)-(4.10) now all depend on each
other. We can tackle this more complex problem by fixing in turn A,
k and h; and then analysing the low energy solutions in the plane of
the other two parameters. We start by analysing solutions in the plane
(k,hs) using A as an input parameter. Setting A = 0 then eq. (4.8)
does not depend on k and, and because in eq. (4.10) there is not any
dependence on the three gauge coupling constants g;, go and g3, these
equations completely decouple. In figure 4.3 we can see the plots of the
so-called Hill line of & versus h; in four different cases. For each point on
this line, the Yukawa coupling constants at the electroweak scale corre-
spond to a Landau pole at the scale Mx [44]. The case \?(Mx) = 0 is
shown in plot a, and the cases in which A\?(Myx) = 2.25,5, 10 are shown
in plots b, ¢ and d. The points plotted below the Hill line in the four
cases indicate solutions for £ and h; at the electroweak scale with start-
ing values such that 2 < k?(Mx),h?(Mx) < 10. The Hill line sets a

border line above which no solution without Landau poles can exist. On
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Figure 4.3: Plot showing the Hill line in the plane (k,h;) and selecting
M (Mx) = 0,2.25,5,10; respectively shown in figures a, b,
¢, d. The points below the curve correspond to the solution
for k and h; satisfying the conditions (4.11).

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

0 1 1 1 L 1 0 1 1 1 1 1
0 02 04 06 08 1 1.2 0 02 04 06 08 1 1.2

hy h,

Figure 4.4: Plot showing the Hill line in the plane (\h;:) and selecting
k*(Mx) = 0,2.25,5,10; respectively shown in figures a, b,
¢, d. The points below the curve correspond to the solution
for A and h; satisfying the conditions (4.11).
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the other hand the majority of the allowed solutions lying below this line
are concentrated in the proximity of the highest value of the top Yukawa
coupling. From the four cases plotted it is possible to recognize the re-
lationship between A and k already pictured in section 2.2, according to
which increasing A(Mx) reduces k(m;) (see figures 2.1 and 2.2). This
relationship does not appear obvious after looking at figure 4.4, where in
analogy with the previous one, the plots show the Hill line in the plane
(X, hy) after setting k?(Mx) = 0,2.25,5, 10, in plots a, b, ¢ and d respec-
tively. The apparent weak dependence of A\(m;) on k*(Mx) in the four
cases is due to the S-function of A. Contrary to eq. (4.10), eq. (4.9) de-
pends explicitly on h;, and the further contributions —g? and —3g2 keep
the dependence on k smooth even in the limit h; ~ 0 [14]. As in the
previous plots, we can see that for the input parameters satisfying the
condition 2 < A?(Mx),h?(Mx) < 10, the solutions at the electroweak
scale are concentrated below the Hill line where h; < h**®. Finally fig-
ure 4.5 shows the RG analysis in the plane (A, k) for the four different
cases h?(Mx) = 0,2.225,5,10 in the plots a, b, ¢ and d respectively. As
usual the points below the plotted lines represent the solution at the elec-
troweak scale of the RG equations corresponding to the starting values
2 < N(Mx),k*(Mx) < 10. The distribution of these points is not as
sharp as the cases observed in figures 4.3 and 4.4. However based on the
latter plots, where the majority of the solutions are concentrated where
h; approaches its maximum, we conclude that the solutions of plot d in
figure 4.5 represents the one in which to look for the IRQF'P for the three
Yukawa couplings.

To help us to understand better the results of our analysis, it is ap-

pealing to summarize the results obtained in the plot of figure 4.6. The
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Figure 4.5: Plot showing the Hill line in the plane (\k) and selecting
h2(Mx) = 0,2.25,5,10; respectively shown in figures a, b,
¢, d. The points below the curve correspond to the solution
for A and k satisfying the conditions (4.11).

surface represents the tridimensional generalisation of the Hill lines of
figures 4.3-4.5 and the shaded area contains all those infrared solutions

corresponding to the initial conditions
2 < h2(Myx), \*(Mx),k*(Mx) < 10 . (4.11)

At the centre of this shaded area are the calculated TRQF P values of
the Yukawa coupling obtained by solving numerically the RG equations®
(4.8)-(4.10):

AP =1.09, X9FP =049 and k9FF =0.38. (4.12)

3The RG analysis shown is inspired by the analysis reported in reference [45], whose results
concerning the JRQF P values are confirmed by eq. (4.12).
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Figure 4.6: Surface representing the Hill surface for the Yukawa cou-
pling constants h;, A and k. The shaded corresponds to all
the solutions for the Yukawa couplings at the electroweak
scale satisfying the condition (4.11).

In the following part of this thesis, we perform a RG analysis in the
regime characterised by these I RQF P solutions. Because of the choice of

the input parameters (see conditions (4.11)) we can see that the Yukawa

couplings satisfy the following conditions:

h2(M X2 (M k2(M
t—(Q—ﬁ>>1, —(—5—’-‘—2>>1, (2X)>>1, (4.13)
Ix 9Ix 9x

which define the strong Yukawa coupling regime.

A comparison between the /RQF P regime and the regime adopted in
the previous chapters leads to some further considerations. In section 2.2
the Yukawa couplings were chosen with the aim of maximising mpo. Look-
ing at the plots of figure 2.2 we can see that \,,,; ~ 0.7, corresponding

to k = 0, was directly related to the value of h;(m;) = 1.01 < h2FF. Al-
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though the inequality reveals a small relative difference between h;(m;) =
1.01 and hy(my;) = thQFP, it has to be emphasized that a small change
in the top Yukawa coupling can cause great differences in the dependent
parameters: this is known as the fine tuning problem (see reference [46]
and references included). The plots shown in figure 4.5 give an idea of
the behaviour of A and k with different values of h?(Mx).

Recalling the definition (1.10) we can recast eq. (2.3) at the electroweak
scale as follows:

m? = h?n’sin® 3 . (4.14)

From this and using the results found in the /RQF P limit (see eq. (4.12))
we find tan 8 ~ 1.82. In this limit the maximum allowed value of A
corresponding to k = 0 is A =~ 0.57, which is well below the value

Amaz == 0.7 of section 2.2.

4.2.3 Soft SUSY breaking terms

Continuing the description of the set of RG equations from Appendix
A, we arrive at the group containing the S-functions describing the soft
SUSY breaking terms. Let us start with the equations referring to the
soft trilinear terms. These are A;, the off-diagonal entry of the squared
mass matrix of the stops (see equations (2.7) and (2.28)), then A, and
Ay, introduced in egs. (4.2) and (4.3) respectively. Recalling equations
(A.7)-(A.9) we have:

167r21A, = 12R2A; + 2)%A,,

dt
13 , 3,

8
— 4 (IgglMl -+ —2—g2M2 -+ §g§M3> y (415)



Chapter 4. Renormalization group analysis 89

o d

167* —A = 8A2Ay — 4k® Ay, + 6h2A;
— 2(giMy + 3g2Ms) (4.16)
167 %Ak = 12 (KA — N°4,) , (4.17)

where M7, Ms and M3 are the gaugino masses.
The remaining five RG equations are those describing the evolution of

the scalar squared masses:

165 Sl = 2h? (md + my, 4+ 4 A7)

~ 8 (316 @EM? + 3g2M2 39 3M3) , (4.18)
165 S = 4? (m -+ miy, +md+ A7)

- 8 (g ME+ ;1 3M3) ) (4.19)
167r2%m%,1 = 2)* (mf;, + mi, + my + A3)

- 8 ( 191 2M?+ ig%Mg) , (4.20)
16#2%m§12 = 6h] (m) + my, +mi + A7) +2X* (m3;, + m}y, +m} + A3)

- 8 (i 2M? + i §M2) : (4.21)
167r2%m§, = 4N (my, + mi, + my + A3) + 4k (3my + A7) . (4.22)

The first two B-functions refer to the on-diagonal entries of the squared
stop mass matrix of equations (2.7) and (2.28), while the last three involve
the S-functions describing the evolution of the squared soft masses m%h,
m3;, and m%; of the Higgs fields Hy, H, and N respectively. Like equations
(A.7)-(A.9) concerning the soft terms A;, the last five equations are also

related to the gaugino masses M; (with ¢ = 1,2,3). Before proceeding to
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the integration of the fB-functions, it is necessary to focus our attention
on how these masses evolve with the RG scale. It turns out that the RG

equations for the gaugino masses at one-loop level are:

16#2%% =2¢;g?M;, i=1,...,3. (4.23)

The form of these equations makes the evolution of M; identical to the

evolution of g2, which allows us to write the relationship:

Mi(Q)  g2(Q)
My %%

, (4.24)

at any scale Q between m; and Mx. M 1 is the universal gaugino mass.
The last relationship introduces the important issue of the boundary con-
ditions for equations (4.15)-(4.22) at the scale Mx. These are assumed

to satisfy universality, that translates into:

9i(Mx) = g5(Mx) = g3(Mx) = g%, (4.25)
M;(Mx) = My(Mx) = M3(Mx) = My, (4.26)
Ai(Mx) = Ax(Mx) = —Ax(Mx) = Ao, (4.27)

mi(My) = md, (4.28)

where in the last line i+ = Hy, Hy, N,Q,T, and the convention used in
our work follows the one of reference [22]. The universality gives the ad-
vantage of reducing the number of independent parameters by expressing
them in terms of only three: M/, Ay and mg. Thanks to this hypoth-
esis, the S-functions (4.18)-(4.22) appear in the simplest possible form
[22]. Beside this technical issue, the choice of universality makes it possi-
ble to avoid unwanted flavor changing neutral current (FCNC) in the low
energy SUSY phenomenology.

Performing the RG analysis of the A; and the m?, we study the be-
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haviour focusing on the TRQF P for the Yukawa couplings. The most
natural thing to do is to check if these are compatible with QFP so-
lutions for equations (4.15)-(4.22). What turns out is that the strong
Yukawa coupling limit, and of course at the IRQF P, is the only regime
for which the entire set of equations, or some linear combinations of these,
have simultaneously I RQF P solutions. Then we fixed h?(My), \2(Mx)
and k?(Mx) in such a way as to obtain the TRQF P values (4.12) after
the numerical integrations have been performed.

Let us start with the results concerning the trilinear terms A;. In figure
4.7 plots a, b and c, referring respectively to A;, Ay and A; expressed in
units of the universal gaugino mass M 1 show the evolution of the A;

versus t. At the electroweak scale m; the three terms show a QF P; these

are
( A‘Z ) o ~ 1.73, (4.29)
( ;Z ) o ~ —0.43, (4.30)
( A‘Z ) . ~ —0.033. (4.31)

The three plots show a weak dependence on the universal trilinear soft
term Ay, while their values at the electroweak scale depend entirely on
the choice of M;/;. This choice will be an important issue in calculating
the neutral Higgs spectrum at the electroweak scale.

Analysing the infrared behaviour of the RG-equations involving the (-

functions of m?, we observe that they can be expressed in terms of the
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linear combinations:

M = m)h+mh+my,, (4.32)
M = my, +mi, +mby, (4.33)
M = 3m3 . (4.34)

In fact we can recast the RG equations (4.18)-(4.22) in terms of these
variables and obtain the three RG equations in the following form:

d
16%23293"@ = 12h7 (MM + A7) +2X% (I3 + A3) (4.35)

13 3 8
- s (qgmnt+ S+ S (a3

6n T = 6h (905 + A7) + 8X? (] + A3)

1 3
- 8 (goe+ 3ng) | (431

d
16m° 90 = 12X° (0 + A3) + 1287 (MG + A7) . (4.38)

The reason we perform the analysis in terms of 9tZ, 92 and 9?2 lies in the
fact that it is possible to find TRQF' P solutions for these combinations
of soft masses . As we have seen for the trilinear terms A;, the strong
Yukawa coupling regime is compatible with the following I RQF P values
for the masses (4.32)-(4.34):

IRQFP
m2
(M%) ~ 6.5, (4.39)
2
IRQFP
mQ
(M%*) ~ —2.56, (4.40)
2
IRQFP
93"(2
( M?) ~ 0.29 . (4.41)
2
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Figure 4.8 shows the evolution of the soft squared masses 9?2, 92 and
92, in the plots a, b and c respectively, expressed in units of M; 2. The
plots are shown versus ¢ and we set Ay = 0. Because these soft masses
have IRQF Ps their values are independent of m2. In figures 4.9 and 4.10
the plots show the evolutions of the 9? assuming the initial condition
Ap = —My/, and Ay = M/, respectively. The nicest property of the
TRQF P scenario is to allow us to greatly reduce the number of indepen-
dent variables. Another important issue related to the IRQF P solutions
of the RG equations is the possibility to obtain the radiative electroweak
symmetry breaking when the soft parameter are used to evaluate the ef-
fective potential. These two results have significant consequences when
one tries to calculate the mass spectrum of the neutral Higgs particles in

the NMSSM.
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Figure 4.8: Evolution of 9} /M?,,, 3 /M7, and 9 /M7, versus t
(figures a, b and c respectively) and assuming h?(Mx) =
N (Mx) = k{Mx) = 10. We fix Ap = 0 and m} is set to
vary in the range 0 < mg < M7 ,.
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N (Mx) = k(Mx) = 10. We fix Ay = —M, /5 and mj is set
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(figures a, b and c respectively) and assuming h?(Mx) =
N (Mx) = k(Mx) = 10. We fix Ay = M5 and mj is set

to vary in the range 0 < m§ < M7,.
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4.2.4 Three more equations: Z; breaking terms

In the previous sections we introduced the set of RG-equations for the
traditional NMSSM. On the other hand equations (4.15)-(4.22) repre-
sent also part of the RG equations of the Zs-breaking NMSSM. As we
already had the opportunity to notice in the tree-level potential of eq.

(1.37), this most general model introduces three new terms:
p, mé . m2, (4.42)

where p is the mass factor that multiplies H; and H, in the superpotential
(1.36) while mZ and m?2 are defined in eqs. (4.4) and (4.5) respectively.
m? is proportional to r: the (mass)? factor of the linear term in the field
N. mg is the generalisation of the MSSM term m2, introduced in the
tree-level potential (1.6). Then to complete the set of RG equations for
the general NMSSM we have the additional three equations

d 3 1 3
2— = — 2 2 2 - = 2 - 5 2
1677~ [ (2ht + X K - o] 292) ) (4.43)
d
L6’ —r = r(X+4°) , (4.44)
167r2% B = 2X°B+3hjA, +2XA5 + gi My + 362 M, . (4.45)

The treatment of these three equations is different compared to the ones
of the previous sections. p and r are soft parameters but they do not
break supersymmetry because they appear in the superpotential. B is a
soft SUSY breaking parameter, but it is neither a trilinear parameter or

a soft squared scalar mass parameter, B is a soft bilinear parameter. At
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the input scale we have:

B(Mx) = B, . (4.46)
p(Mx) = o . (4.47)
T(Mx) = To . (448)

We have analysed the infrared behaviour of the A-functions in (4.43)-
(4.45). Our main result is that there is not any QFP: the solutions of
the RG equations show a strong dependence on the universal trilinear soft
parameter Ay in any regime of the Yukawa couplings h;, A and k. One
might think this would cause some difficulties determining the Higgs mass
matrix because still some of the parameters remain unknown. However
this uncertainty will be eliminated in the next chapter, where the first
derivative minimisation conditions on the effective potential are used to
fix these three parameters, allowing us at the same time to have a local

minimum in the effective potential.



Chapter 5

Higgs spectrum at the /TRQFP

5.1 Introduction

The RG analysis made in the last chapter led to the interesting results
represented by the I RQF P scenario in the general NMSSM after the as-
sumption of universality made in eqs. (4.25)-(4.28). These include stable
solutions for the Yukawa couplings A, k¥ and h; and the infrared stability
of the soft trilinear couplings Ay, Ay and A; and of the linear combina-
tions 9?2, M2 and OMZ. Until this point the set of S-functions considered
coincides with that of the traditional NMSSM [22]. In section 4.2.4 we
introduced three extra RG-equations for the parameters originating from
the terms pH; H, and 7N in the superpotential (1.36) and the term By
involved in the definition for m2 of eq. (4.4). The behaviour of x, B and
r does not show any infrared stability as they keep a definite dependence
on the starting values at the scale Mx. In this chapter we will see how it

is possible to determine these parameters using the first derivative min-

100
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imisation conditions imposed on the effective potential in eq. (2.39) in
the C P-conserving case'.

The advantage in using this I RQF' P scenario is it provides the SUSY
phenomenology with a theoretically well motivated set of parameters.
This reduces the large number of unknown parameters in any supersym-
metric theory, and offers an attractive opportunity of evaluating the par-
ticle spectrum. In this chapter we focus on the spectrum of the neutral
Higgs bosons and in particular on the lightest C'P-even one. We will dis-
cuss the possible constraints on the parameters entering in the effective

potential and express the results in terms of the remaining free parame-

ters.

5.2 The effective potential

The effective potential we are going to examine in the present chapter is
that introduced in section 2.3.1. Assuming C' P-invariance, it is convenient

to rewrite the tree-level part V(© in the following manner

1
VO = 2(gf + ) (v = v3)” + N} + iy (0] + v3)
—2M\kvyvex? + K2zt + qul v? + m%,2 v3 + mar?
2
—2M 401 V2T + gmsx?’ + 2m2vivy + 2mia? (5.1)
where
Heff = AT+ 14 . (5.2)

The definition of p.ss can be seen as a generalisation of the p term of

the MSSM; it affects also the one-loop contribution V() (e.g. (2.33))

!The analysis of the neutral Higgs spectrum with SCPV based on the RG-analysis is not
treated in this work and is left as a possible future project.
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through the mixing parameter of the stops A,. Recalling eq. (2.32), we
have

fit = A; + HeffCOt B . (5.3)

An important comment needs to be made here about the supersymme-
try breaking scale Mg used in this context. According to the definition
(2.30), Mg is defined using the soft squared masses entering in the mass
eigenstates of the scalar superpartners of the top quark. In the present
calculations we choose to remain consistent with such a definition, making
Mg vary depending on M/, and m2. At the scale m; then we have

1

Mgzz

(mg +m7) . (5.4)

From the low energy solutions of the RG equations it is straightforward
to deduce tanf from eq. (4.14). So in the TRQFP regime we find
tan 8 ~ 1.8.

The next important feature of the effective potential to be considered is
the requirement of electroweak symmetry breaking with a corresponding
non-symmetric local minimum. To achieve this we invoke once again the
minimisation conditions (2.39). When we calculated the neutral Higgs
spectrum in chapters 2 and 3 we were using those conditions to eliminate
the soft scalar squared masses m% , m¥, and m3% from the tree-level
potential. Now, because these are determined by the RG equations we
can use the conditions on the first derivatives to eliminate s, m2 and
m? from the effective potential. These three terms are strictly related to
u, B and r through the relationships (5.2), (4.4) and (4.5); then using the
RG equations (4.43)-(4.45) (i.e. (A.17)-(A.19)) we can evaluate the three
input parameters po, By and rq (see respectively (4.47), (4.46) and (4.48))

at the scale Mx if needed. After some algebra we obtain the tree-level
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relationships:
1 m2, —m? tan?
2 2 H; Ho
—mi: = , 5.5
Hets T+ 5T tan? 8 — 1 (5:5)
1
Mex? —myz +mi = —3 sin 28 (m3, + qu2 + 2u§ff + )\2772) ,

2

where the first one leaves the sign of p.ff unknown and it will be consid-

1
(m?v + 2m$) T+ AP pess = msx® — 2k%2% + ()\km + -—m4) n*sin 24 ,

ered as a free parameter. We note that in the traditional Zs;-symmetric
NMSSM the minimisation conditions (2.39) can be used to determine
M, s, m2 and Ay. If universality constraints are imposed then the so-
lution can be found but for \*(Mx), k?(Mx) < 0.1. Because of this the
NMSSM upper bound on the lightest C P-even Higgs boson mass reduces
to the M SSM one. The Z3-breaking NMSSM allows us to continue to
keep universality avoiding the difficulties of the traditional Z3-symmetric
NMSSM.

The relationships (5.5) need to be upgraded including the one-loop and
two-loop corrections to V(%). Then it is necessary there to make the fol-

lowing replacements
2 2 2
my, — my +Amy, ,
2 2 2 2
my, — My, +Amy, +0dmy, ,
may — mi+Am%

where from eq. (2.33) we have

1 v
Am% = —
My 2’01 8111 ’
1 v
Am?% = —
mH2 2’02 6v2
1 v
Ami = —

2¢ Ox
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and from eq. (2.35) we have

1 ov®
2_?)2 8’02 '

At this point we need to consider the remaining free parameters. We

2 _
omy, =

are left with the singlet vev x as the only electroweak scale free parameter
and two free parameters defined at the scale Myx; these are the univer-
sal gaugino mass M, and the soft mass squared m3. Concerning the
dependence from the remaining universal trilinear mass Ay, we can see
from figures 4.7.a, 4.7.b and 4.7.c that the trilinear soft SUSY breaking
masses A;, Ay and A show IRQF Ps. This allows us to leave Ay free to
vary as it has no effect on any other soft SUSY breaking parameter at
the electroweak scale.

Finally the task to be accomplished now is to perform the numerical
calculations for the neutral Higgs spectrum as a function of z, M/, and

2
mo.

5.3 Results and analysis

We start this section by showing the first result obtained after maximising
the mass of the lightest Higgs boson hg in the TRQF P regime. There
are IRQFP predictions for the linear combinations 92, M2 and M3
but in general the squared masses m? (where i = Q,T, Hy, Ho, N) still
have a definite dependence on m2. For this reason in figure 5.1 the plot
shows the upper limit on myo as a function of M/, and mZ appropriately
scaled. According to the analysis performed in the previous chapter,
the universal scalar mass squared m2 has been left to vary in the range

0 < mj < M}, and the universal soft trilinear parameter in the range
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—My; < Ay < M. The independent universal gaugino mass M/,
ranges between 80 GeV and 1 TeV. Consequently the supersymmetry
breaking scale My defined by eq. (5.4) changes as follows:

M/, =80 GeV = Mg ~170 GeV
Myp=1TeV = Ms~22TeV .

Concerning the Yukawa couplings A, k and h;, these are calculated from

the input values
M(Mx) = k*(Mx) = h2(Mx) = 10, (5.6)

which are close to the JRQF P and therefore in the strong Yukawa cou-
pling regime. Finally the singlet vev has been varied in the interval
100 GeV < z < 10 TeV and pss has been choosen to be positive;
this choice of sign has been determined by the fact that it numerically
maximizes the lightest C P-even mass. From the plot we can see that
when M;;; = 1 TeV the upper bound for myo reaches its maximum at
~ 121 GeV. From the tridimentional plot of figure 5.1 we see that the de-
2

pendence of the upper bounds on mj is rather weak: when M/, = 1 TeV

we have

mh°|mg=M2 - mh0|m(2)=0 ~ O (10_1 GeV) . (5.7)

1/2
To better appreciate this difference we can look at figure 5.2, which
shows a plot of myo versus Mo, the upper and the lower lines represent
the upper bound on myo assuming m2 = Mf/z and m2 = 0 respectively.
The difference between the two curves reflects the difference of eq. (5.7)
through all the range of M ;.
The study of the Higgs spectrum in the NMSSM IRQF P regime has
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Figure 5.1: Surface representing the upper bound myo as a function of
M, /2/1TeV andm3 /(1 TeV)? at the IRQF P with tan § ~
1.8.

been performed also in reference [47]. The authors in this paper adopted

the following superpotential
k
Wnmssm = pHi1Hz + AH1HoN — §N3 — WN? + Wierm , (5.8)

which is Zs-breaking and equivalent to the superpotential (1.36). The
term r N in the superpotential (1.36) is replaced by the term p'N2. In this
model m% = B'y/ and the extra RG equations for ' and B’ replace the
one for r. On the other hand it is possible to assume an extra universality

condition:
B(Mx)= B'(Mx) =B, . (5.9)

In reference [47] the IRQF P limit is studied assuming k?(Mx) = 0 (see

figure 4.4.a). Because of this they obtain an upper bound on my, in-
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Figure 5.2: Plots showing the upper bound on mpo as a function of
M, /5. The upper (lower) curve refers to the maximal (min-
imal) choice of the universal mass m.

cluding the twoo-loop dominant corrections, at ~ 127 GeV. Another
remarkable difference with the results obtained in our calculations con-
cerns the singlet vev. Here the decoupling limit is allowed, and x has been
released to range up to 10 T'eV, while in the cited reference the singlet
vev turns out to be as small as ~ 1073 GeV in magnitude.

An important point to be considered in the /RQF P limit concerns the
mixing scenario. It is known that the one-loop contribution to the lightest
Higgs boson is maximal when the mixing parameter A, = v/6Ms. The
first thing to be noticed concerns the definition (2.9) of the masses mg
and mg,. In the results obtained in chapters 2 and 3 we opted to set

mg = mj. Consequently the splitting between m; and m;, was exclu-
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sively determined by the off-diagonal elements of the matrix (2.7). Now,
after solving the RG equations, the two soft masses m7 and mj. turn
out to be different and our numerical results show that this difference
between sz and m2 reduces the effect of the mixing between the stops.
Furthermore, based on the RG analysis, the mixing A; = V6Mg cannot
be achieved. We can see quantitatively this result in figure 5.3, where the
solid line represents the ratio A, /Ms scanned versus the supersymmetry
breaking scale Ms. This graph has been obtained using the identical set
of parameters used to plot figures 5.1 and 5.2. The dotted line repre-
sents the mass of the lightest C'P-even boson myo expressed in units of
100 GeV. It is easy to see from this plot that the ratio A, /Ms does not
grow to values greater than /2, which is far below the v/6 representing
the condition corresponding to the maximum one-loop contribution to
the mass of the lightest Higgs neutral particle.

Let us now extend out attention to the remaining particles of the
neutral Higgs spectrum. Figure 5.4 shows the masses of the five neutral
Higgs bosons as a function of the mass of the charged Higgs my+. The
masses are now expressed in the notation in which S;, S, and S; refer
to the scalar particles and A;, A; to the pseudoscalar particles; the in-
creasing index number indicates the increasing order in the masses. The
first thing to be highlighted from these plots is the completely different
behaviour of mg, and the remaining four masses. As we already discussed
in chapter 3, this difference is due to the decoupling limit. The behaviour
of mg, is indeed better shown in figures 5.1-5.3. The group of heavier
neutral particles shows an increase following the growth of the charged
Higgs boson denoted by the dotted line. The reason that mpg+ reaches

very high values lies in the fact that the vev of the singlet x is allowed to
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Figure 5.3: The mixing (solid line) plotted versus M. The dotted line
expresses the ratio mpo /100 GeV.

reach values of the order of 10 T'eV and, concerning the extremes of the
interval in which it varies, we have:
M,/ =80 GeV = Mg~ 300 GeV
Myjp=1TeV = Mg~4TeV .
It turns out to be interesting to compare these results with those ob-
tained in the previous chapters concerning the C' P-conserving case. An
attempt to compare the results based on RG analysis with those in figure

3.19 is the plot presented in figure 5.5. The graphs are obtained after

setting the Yukawa-like constants at the scale Mx as follows:

K*(Mx) = hi(Mx) = 1, (5.10)
M(Mx) = 3. (5.11)
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Figure 5.4: The complete neutral Higgs spectrum versus mg+. msg,
(with i = 1,2,3) and m4; (with j = 1,2) are the CP-even
and C P-odd particles respectively.
This choice ensures that we obtain tan 5 ~ 2.7 at the electroweak scale.
The solutions of the RG-equations are now far from the I RQF P; recalling
the conditions (4.13) we see that we are also away from the strong Yukawa
coupling regime. On the other hand the values of the Yukawa couplings
(5.10) and (5.11) still satisfy the conditions (4.13) in the following weaker
form
h2(M (M k2(M
LQ-’—‘-)—>1, ——%—-’-‘)->1, —-(-2—’()>1. (5.12)
9x Ix 9x
The real goal of changing the values of the Yukawa couplings lies in the
necessity to obtain tan 8 in the region where myo reaches its maximum

value. The range of the charged Higgs boson masses in figure 5.5 has been

limited to < 2 TeV, in order to render easier a comparison with figure
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Figure 5.5: The complete neutral Higgs spectrum versus mpg+ in the
same notation as figure 5.4 and tan 8 = 2.7.

3.19. On the other hand from the RG-analysis the minimum value of
my=+ is ~ 500 GeV and it is determined in correspondence with M,/ =
80 GeV. At this point an important remark should be made concerning
the definition of the supersymmetry breaking scale Mg (see (2.30) or
(5.4)). In the results of this chapter Mg varies as the universal gaugino
mass M/, does, while in chapters 2 and 3 it was simply fixed to 1 TeV.
Aware of this we want to compare the two results with tan 8 = 2.7.
The general behaviour of the neutral Higgs spectrum in the two different
scenarios seems to agree, with the two heaviest masses (mg, and mg,)
following closely mp+ represented by the dotted line. The intermediate
masses, namely m4, and mg,, show a smoother behaviour than the one

of figure 3.19. The reason for the smoother plots here lies in the fact
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Figure 5.6: In analogy with figure 5.3 the mixing (solid line) plotted ver-
sus Mg. The dotted line expresses the ratio mpo /100 GeV
and tan 8 = 2.7.

that the input parameters at the electroweak scale are driven by the RG-
analysis. Although the condition (5.12) does not ensure we are in the
strong Yukawa coupling limit, it gives enough stability to the solutions of
the RG equations at the electroweak scale. On the other hand, it is also
worthy of note to recall that the results shown in figure 3.19 were obtained
after maximising the lightest Higgs mass as a function of a larger number
of independent parameters. Finally the lightest Higgs boson mass mg, in
figure 5.5 shows an upper bound of around 125 GeV'. It is easier to figure
out the behaviour of the lightest C'P-even Higgs boson by looking at
figure 5.6. In this graph the curves are plotted versus Mg and, in analogy

with figure 5.3, the solid line corresponds to the ratio between the mixing
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parameter A, and the SUSY breaking scale Mg, while the dotted line
expresses the lightest C P-even boson mass divided by the mass factor
100 GeV'. In the region where Mg ~ 1.6 TeV, the upper limit on mg,
approaches to 125 GeV, and Méts' < 1.31, which is even smaller than
the value obtained in the TRQF P. Selecting Mg = 1 TeV we obtain
mg, ~ 123 GeV. Because of the RG-based non-maximal mixing scenario
this value is lower than the one illustrated in figure 2.7, 2.8 and 3.19.

Finally we conclude this chapter by remarking the fact that the I RQF P
scenario introduced in the previous chapter is consistent with experiment
in the regime with tan 8 ~ 1.8 giving an upper bound of ~ 121 GeV on
the lightest Higgs boson mass. In this low tan 3 regime, in the M.SSM we
know there is no possibility of agreement with the experimental results as
the upper bound on mg, is (94 £ 5) GeV. In the Z3-breaking NMSSM,
as well as the the traditional NMSSM, the tree-level extra contribution
can raise the upper bound on it at ~ 136 GeV. As described above,
the RG analysis reduces the bound to (121 & 3) GeV, where the error
reflects the experimental error on m?®. This upper bound at the present
is still compatible with experiment. This contrasts with the Z3-conserving
NMSSM in which universality lowers the bound below the experimental
limit [47].



Chapter 6

Conclusions

In this thesis we have studied the neutral Higgs spectrum of the Z;-
breaking NMSSM in three different contexts. In each of these we have
seen a spectrum in which the lightest Higgs boson myo has an upper
bound.

Chapter 2 is entirely devoted to the study of this upper bound for the
mass of this particle assuming C P-invariance. This upper limit is eval-
uated including the two-loop dominant radiative corrections to the ef-
fective potential and the corresponding complete spectrum deriving from
this limit on mpo is shown in figure 3.19. The result for the absolute
upper bound on the lightest Higgs boson is myo < 136 GeV in agree-
ment with the results of reference [30]. This agreement confirms the fact
that the upper limit on myo in the NMSSM does not depend on any
additional terms to the superpotential (1.19), which violate the original
Zs-symmetry with which the NMSSM was born [13].

The SCPV permitted by our model provides a new direction in which

114
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to extend our study of the Higgs spectrum. Chapter 3 is completely de-
voted to this topic and interesting results emerge in both limits of small
and large CP-violating phases, although the latter is incompatible with
experimental measures of the EDMs. In the small CP-violating case,
say 0; < 1072 rad, the spectrum is characterised by two upper bounds for
the two lightest masses myo and myg. The lightest Higgs particle hY is a
singlet quasi-C' P-odd state with a mass not exceeding O(10 GeV'). This
is consistent with the LEPII data as this particle could have not been
revealed due to the singlet reluctance to interact with the gauge and mat-
ter fields. The second mass upper bound is ~ 136 GeV and corresponds
to a doublet dominated boson hJ almost purely C' P-even. In the scenario
with large C P-violation the lightest Higgs particle has the usual upper
bound at ~ 136 GeV and is not even approximately a C'P eigenstate.

The mass spectra of the neutral Higgs bosons obtained in chapters 2
and 3 depend on many soft SUSY breaking parameters, which are freely
chosen to maximise the lightest mass. The third topic is a study of the
spectrum with some parameters restricted by RG-analysis assuming C P-
invariance and universality at the unification scale Mx. In chapter 4 the
RG equations lead the dimensionless couplings and soft SUSY breaking
parameters down from the unification scale Mx to the electroweak scale
m; revealing the existence of several quasi-fixed points for the Yukawa
couplings h;, A and k, the trilinear terms A;, Ay and A; and the lin-
ear combinations for the scalar masses squared 92, 9% and IM2. After
obtaining infrared solutions, these are used in chapter 5 to evaluate the
Higgs spectrum.

The first consequence of the IRQF' P solutions is the strong Yukawa

coupling regime, which implies the significant constraint tan 8 ~ 1.82.
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Because in the NMSSM the absolute upper limit of ~ 136 GeV for
mpo occurs when tan 8 ~ 2.7, the upper bound in the ITRQF P regime is
lowered. Two other factors lower the bound. From the analytical approx-
imation of eq. (2.14) and the numerical results in figure 2.1 the upper
bound reaches its maximum when A = A4, ~ 0.7, whereas the IRQF P
value of eq. (4.12) is A ~ 0.49. The other consideration concerns the
mixing between the stops involved in the one-loop contribution to the
effective potential. As shown in figure 5.3, the TRQF P determines a
mixing parameter A; £ V2Mg which is considerably below the maxi-
mum mixing scenario in which flt < v/6Ms. The numerical result we find
for the upper bound on mye at the IRQF P is ~ 121 GeV. Although this
limit is lower than the one found before, this result is still in agreement
with the LEPII lower bound for myo at ~ 113 GeV'. Unlike the M SSM
and the Zs-conserving NMSSM there is no conflict between experiment
and universality for low tan 5. Because the theoretical and experimental
bounds are so close, the result found in chapter 5 might be one of the first

predictions to be tested at the coming generation of hadron colliders.



Appendiz A

Renormalization Group

Equations

Here are listed the set of one-loop RG equations in the Zs;-symmetric
NMSSM. The general set of one-loop equations can be found in [48],
and the derivation of the two-loop extension can be found in [43].

Retaining only the top quark Yukawa coupling h;, we have the RG
equations for the NMSSM.

d

167r2ag1 = 1143 (A.1)
d

167T2%92 = g (A.2)
d

1671'2'(%93 = —3¢3 (A.3)
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d 13 16
167r23—t-ht = M <6hf + A2 — —g—g% —3g2 — ggg) (A.4)
167 %,\ = X (4 +2k% + 3h7 — g7 — 3¢2) (A.5)
o d
16m° ok = 6k (A + &%) (A.6)
2 d 2 2
167 EZAt = 12h At +2A A,\
13 3 8
- 4 (18 2M; + 2g2M2 + 3g3M3> (A7)
167 %AA = 8)\2A, —4k*A, + 6h2A,
— 2(g7 My + 393 M) (A-8)
d
1671'2%14]6 = 12 (kZAk — )\2A)\) (Ag)
2 d 4 2 (2 2 2 2
- 8 = @M? + 3g2M2+fl—g2M2 (A.10)
36 9 4 22 3 3473 .
d
167r2am2T = 4h (m§ +my, +mj + A7)
4 4
- 8 (§g%M2 + 3g3M2) (A.11)
d
16%2%m§{1 = 2) (my, + mi, + my + A3)
3
- 8 ( @M+ 9 §M§) (A.12)
d
167r2am§12 = 6h] (m) + my, + my + A7) +2X* (m3;, + m}y, +mj + A3)
1 3
- 8 ( 19 M2+ 4g§M§) (A.13)
d
167r2g£m?v = 4N (ml, + miy, + my + A3) + 4k% (3m% + A7) (A.14)
where
2
== log Q (A.15)
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and the universality conditions are assumed. At one-loop level, the gaug-
ino masses M; evolve identically to «;, then we have

Mi(Q)  g2(Q)
My g%

(A.16)

where M 1 is the universal gaugino mass and gx is the unified coupling at
the scale Mx.
When we consider the Zs-breaking NMSSM we have to add to the

existing set of RG equations another three equations:

d 3 1 3
2 7 — Y12 2 2_-,2_ Y 2
167 i W <2ht +A+k 591 292) (A.17)
167r2d%-r = r(NX+§) (A.18)
d

16m° =B = 2\°B+3hjA, + 20045 + g} My + 3g3M,  (A19)



Appendixz B

Higgs mass matrices in the

NMSSM

The neutral Higgs mass matrix splits in two 3 x 3 blocks: one C P-even
and another one C'P-odd.

The tree-level C' P-even block in the basis of the real part of the fields
{H:,Hs,N} is:

( 2)\11/12 2()\3 + A4)1/11/2 2)\5.’1,'1/1
M(20) = 2()\3 + /\4)I/1V2 2)\21/3 2/\61}1/2 +
\ 2\ 2X6ZVo A)\gx? — M5z /
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( tan B[maz — Arz®]  —[max — Ax?]  —2[muz — 2Mz?] )
+ —[maz — Ma®]  cot Blmax — Arz®] —L[myz — 2X727]
\ —2[myx — 2M5%] —%[myz — 2\72?] ugz Imyx] )

From the one-loop correction to the effective potental (2.33), we have the

one-loop correction to M(20):

(1, a3, a4 | [ms 1 =)
M(21)= A}, A}, A% | T -1 cotp -4 A%
\A%s A A§3} -5 % %12}—2/
where
N = D On) KA () (B.2)

and the elements of the matrix Agj are

3

2
A2 = Whgyg()\x)2 (w) g(m2 , m?

Ai + Az cot B
AL, = @hf’/g(/\x) (tz—z)

m?
. (log i Addcdacoth) ))

2 2 2 110 '
my my, — My 1 ’
2
3 Az cot B
A% = hiE(2)(wm) | s 7o
13 872 tV2( .’I?)( Vl) m%z _m?l g(mt1 mtz)

b2 R00) wa) f(m? m2)

82
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3 m2 m2
2 _ 4.2 &Y
3 B2 Ai(A¢ + Az cot B)
8r2 172 mf~2 —m}l

m2 +At(At+/\mcotﬁ)g( 2 2 )>

to
x | 2log m2 m2 — m2 17 "
t1 to t1

3 Ai + Az cot 8
2 _ 9 44 2 t
A23 - 87r2hty2()‘l/1) ( m?} _m% )

mZ  Ay(A + Az cot B)
x | log —2 + : t2 3 (m%,m%)
< my My — ™My T
3 A+ dzeot B
¢ + AZ CcO
Ay = gahirs(n)” (W) g(mg,, mg,
t2 t1
and the functions f and g are defined by
1 m? m?
2 .2y _ 2 t 2 t 2 2
f(mtl,mtz) = m (m,:1 log Qzl — my, log Q; —my + mt2>

1 m2
2 2\ 2 2 t 2 2
g(mtl,mt2) = m ((mtl + mt2) log ;z“%‘f‘ + 2(mt1 - mt2)> .

The two-loop contribution M(22) is

(5M121 oMz, 5M123\

B2 \? 3
My =| sm2 M2 M2 12<16;2) (327ras—§hf> (B.3)

\ OMiy oMZy oMz,

where

M3 =0 i, j#2,
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and the only contribution comes from
M3 m? M2\
SM% = | —t—"— 3+t 5
2 ”2[ M2 +m] +M§+m§ * M2+ m

The second block of the neutral Higgs mass matrix is the C'P-odd one.
In the basis of the imaginary perts of the fields {H;, Hs, N} this is given

( tan B[maz — M%) [maz — A2 L[myx + 2A72?] )
M(20) = [myz — A\rz?]  cot B[muz — Az Ulmaz + 20727
\ “[max + 2M72?]  Bmax 4 202?]  3msz + B2 [max — 4072 )
(B.4)

In the same way as we did for the C P-even mass matrix, we have the

one-loop corrections to ]\;[(20):

(

M(zl) = 1 cotf 4 A? (B.5)

\

where A2 has been defined in eq (B.2). Finally we have the two-loop

tang 1 w2 \

als

v wuv )
T

contribution:

(51\2121 S M2, 51\7133\

~ - N 5 h2 2 3
My = | o2, o332 SMZ, 12<16;2> (327ra5—§hf) (B.6)

\ OMPy OM3, M3y )
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where
T2 ..
OMg;=0 4, j#2,

and the only contribution comes from

I, = o2f

Finally, to complete the Higgs spectrum we report the mass matrix of

the charged Higgs in the basis {H; , H; }

tang 1
M? = (myx — Mz? — A1), (B.7)

1  cotp

The one-loop radiative corrections to the charged Higgs matrix are

tang 1
AM? = A? (B.8)

1 cotp

where
2

3 m 2m?2
Az = 2 Z mi (ln 5 e _ 1) _—a - |'uevs -
1om ma €{mz ;mz, } Mgy sy OH{ 0H,




Appendiz C

Higgs mass matrix in the

Z3-breaking NMSSM

In this appendix we give the details of the 6 x 6 symmetric Higgs mass
matrix M? in the most general N M SSM with spontaneous C P-violation.
Here we will express the two-loop corrected mass matrix in the basis

{ReH:, ReHy, ReN,ImH,,ImH,, ImN}:
M? = M? + AM? + 6M* . (C.1)

Let us start with the tree-level part. Let us calculate the matrix of the

second derivatives of the tree-level potential V(©.

0,VO = 2)\11)% cos? 6,
+ tan 8 {myx [cos @p — sin Op cot 0,5

— A7z? [cos Oy — sin By cot O10] }
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312V(0)

3131/(0)

01V

3151/(0)

o, 6V(O)

Oos v (©

323v(0)

324v(0)

325v(0)

2()\3 + )\4)’01'1)2 COS 01 COS 02

9 _ sin HM _ .
+ A7z [cos(203) = 012] Myx [cos(293)

sin 0p
sin 012

25z cos By cos 3
+2\7zv9(cos b2 cos 3 + sin Oy sin B3) — m4v, cos Oy + 2\ pv; cos 6,

/\11)% Sin(201)
2(A3 + Ag)v1vg cos 8 sin Oy + Ayz? sin(263) 4+ myx sin 05

2)\5.’1)’01 COS 91 sin 03

—2X72v5(sin 62 cos @3 — cos O sin 03) + m4v, sin O,
2/\203 cos? 0,
+ cot S {m4x [cos fp — sin Op cot O;3]

— A7a? [cos Oy — sin By cot f1]}

262V €OS 05 cos O3

+2A7zv;1 (cos 61 cos 63 + sin 0; sin B3) — myv; cos O; + 2\ pvy cos Oy

2(A3 + Ag)v1vg sin 0y cos by

+A7z? sin(263) + myz sin s |

)\Q’U% sin (292)
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3261/(0)

333v(0)

05 4V(O)

335v(0)

3361/(0)
04 4V(O)

345v(0)

3461/(0)

Il

262 V2 €OS O sin O3

+2A7zv1 (sin 6 cos B3 — cos 0, sin 63) + my4v; sin 6,

4)s1° cos® B3 + msx {cos(363) — 2 cos B3 + sin B3 [cosec(263) — cot(2605)]}
+m4ﬂ;~2~ {cos Op + sin fp [cosec(265) — cot(263)]}

+2XA7v105 {cos O + sin Oy [cosec(265) — cot(263)]}

—)\un; {cos 05 + sin 03 [cosec(263) — cot(263)]}

2\s52v; sin 0 cos 3

+A\72vs(cos O sin B3 — sin O cos 63) + myve sin O + 2Apwv; sin b,
26z V9 Sin O cos O3

+A7zv1(cos 6 sin B3 — sin 0; cos 63) + myv; sin 6y + 2Apw, sin 6,
270103 €08 B19 + 2Xg2? sin(2603) + msx sin B3

2)\17;% sin? 6,

+ tan 8 {myx [cos @p — sin fp cot 0;,]

— Mz [cos Opr — sinfr cot O1o] }

2()\3 + )\4)’01’02 sin 01 sin 02
sin Oyr

—Mrz? |cos(2603) —

] + myx [cos 03 — o HP]

sin 012 sin 012

2521 sin 6 sin 63

+2A72v9(cos 6 cos O3 + sin O, sin O3) + m4vs cos by
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655 V(O) = 2/\2’05 Sin2 02
+ cot B {myx [cos Op — sin Op cot 13]

— Mz [cos Oy — sin s cot O10) }

656‘/(0) = 2)\6117’02 sin 02 sin 03

+2\7zv; (cos 6 cos 63 + sin 0, sin 03) + my4v; cos 0;

96V ® = 4)ga?sin® 03 + msz [cos(363) — sin b5 cot(263)]
+m4?—)—lf—g [cos @p — sin Op cot(265)]

+2\7v1v2 [cos 015 + 2 sin Oy + cos Oy cot(2603)]

—)\u%z [cos B3 — sin B3 cot(263)]
where 6,7, 0p and 65 are correspond to the linear combinations of the
phases 60y, 05 and 05 as defined in eq. (3.3).

The one-loop dominant correction to M? in the limit where tan 8 < 10
comes from the top/stop contribution. The one-loop contribution AM?
is calculated from the field-dependant one-loop effective potential given
in eq. (2.33). Then applying the formula (1.27) to V() we calculate the

matrix of the second derivatives of V(1) respect to the fields ¢, . . ., ¢s:
2,2 2 2 2
_ 3 m? o*mg log my 1) 4 om; om;
1672 | 1 9¢;¢h; Q? Op; 0d;

) 82mt22 mi 8mt32 Bmtg2
-I—m£2 ‘ IOg -1 + 3¢z a—qu (02)

0%m? m2 om?2 Om?
o |20 my _ s Om;
2 [mt Ty (l"g o ) * 6 94, ] H<¢> !

82V
0¢;9;

(¢)
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where 4,5 = 1,...,6 and the vevs of the fields are assumed to be (¢;) #
0 realising the SCPV. In eq. (C.2) the first derivatives of the field-

dependant top/stop masses squared are:

omg | Méi  i=25
O

(C.3)
0 i=1,3,4,6

for the top. Concerning the masses squared of the supersymmetric part-

ners we have:

amtgl,fz — 8mg h‘% At
0¢; oy — my —mg,

where

A = P06+ )+ W+ SN b — o)

7%
+uAsps + V2\udids
By = At MAdrs — Gud) + s
1 1 1
Ay = 5)\2¢3(¢% +¢1) + E)\At(%% — Gags) + 7§>\M(¢% +¢5)
AL = %)\2¢4(¢§ + 05) + 1P s — %)\At((bﬂ% + ¢3¢s5)
—pAshs + V2 udsds
AL = Algs - %)\At(¢l¢6 + ¢3d4) — pAida
By = 5¥60(6+6) — ZEAAbrds + a6)
The second derivatives are for the top
pmz | B oi=i=25
= 4
56:94; (C4)

0 otherwise
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and for the stops

2,..2
Oy _ Omi | M o R
0¢;09; 00:0¢;  mz —mg, Y (mg —mg,)2 T

where
AL = %Az(‘ﬁg +83) + 1+ V2 gy, Al = A Aibs + pA;

Al = Nigs + *\}-2—/\14@2 +vV2 oy, A, = 0,

A'is = _%)\At‘be J Alg = N1 — %)‘At(ﬁS )

Ay = A}, Ay = %)\Aﬂbl )

A3 = —%/\At% : ALy = 0,

Aty = —LAAiy Ay = IS+,

Al = Noaps— JsAAds +V2ups, Al = —F5A A,

A = 0, Ay = %)‘QW’% + @) + 12 + V2 ugs
Afs = 5Aips — pAs Afg = Noups — 5 i

Aés = At2 ) Ags = _%)‘Aﬁbl )

At = —3A\(¢1+¢7) -
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Finally the two-loop correction. The matrix of the second derivatives is

a generalisation of the matrices (B.3) and (B.6). This is given by

2V h2 > 3,
s = (se) (37— 30)

{(3¢% + ¢2)t% + 4o (03 + B2t

o
oo
ot

1 ot
+ 5(43 +¢5)° (5@) + (¢2 +5) i3 a¢2}

21/(2) 2 \2
83‘;? — (1?2) (327ra5———ghf)

{(¢2 3+ 105(B3+ )t

0 0?
(¢2 + $2)? (Tj{)) (¢2 + ¢5)2t3¢z }

B\ 3,2
2ma, — =
16%2) (3 o 2ht

2025t” + 202 (45 + ¢5)

G
a¢2 ¢5

3t
ot ot 0%t }

1 2
5( ¢5) 5—&_;9—(]5—_'_ (¢2+¢5) 8¢28¢5

+ A=

v
0¢;0;

In these derivatives ¢ is defined as

2 2
t=1In (M> , (C.5)

0 i,j=1,3,4,6

m;

and its first and second derivatives are

_ Q2 om .
at _ mt(Q2+mt) 0¢; t= 2’ 5

dd;i

0 i=1,3,4,6
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ot Q? {62m§
0¢id; m(Q* +m3) | 0¢id;
B [ 1 N 1 ] om? amf}
mi  Q*+mi| 0¢; Op;

At this point we can obtain the the correct Higgs mass squared matrix

M? after dividing by Z;I/f every element which is obtained by differen-
tiating Vs by one of the components of Hy; that is to say that matrix
elements like 014V,¢; simply remain unchanged, and matrix elements like
015Vess and Os5Vess have to be divided by a factor 211{/22 and Zy, respec-
tively. The neutral Higgs mass matrix obtained has been expressed after
eliminating m}; , m%,, m%, mg, m? by means of the minimisation con-
ditions on V¢ given in egs. (3.5) and (3.5). From those conditions we
have the explicit expressions for these five soft masses corrected at the

two-loop-leading-order:
my, = [muz (cosfp — sinfp cot br2)
—A7z? (cos Bpr — sin Oy cot 612)] tan B

—A1v] — (A3 + A)vd — Asz® — (p® + 2Apx cos 03)

tan 3 v

- 2?)11]2 cot 012 891 (C7)
m¥, = [maz(cosfp —sinbpcot bys)
—A7z? (cos Oy — sin Oy cot 6y2)] cot B
—Aovs — (A3 + Ag)v? — Xez® — (u® + 2\px cos b;)
1 v ‘o v

_2’01’02 (’1)1 61)2 -+ cot 6 COt U2 801 )

1 0v®

(C.8)

20, Ov,



Appendix C. Higgs mass matrix in the Zz-breaking NMSSM 133

may = m4v1x£ {cos @p + sin Op cot(265)}
+m;x {cos(363) — sin(36;) cot(20;)}
—2A7v1v2 {cos Oy — sin O cot(2605) }
—)\un; {cos 03 — sin 63 cot(263)}

—)\5’0% - /\6’03 - 2)\81?2

1 (avm 1

1AY)
2z \ Oz )

+ 2z sin(2603) 06,

9 sin 9P

sin 012 sin 012
1 v\
2’1)1 V2 sin 012 601

(C.10)

sin O,r

v1vy Sinfp
= AUV —

my

(2 sin 03)
v1U9 Ssinfp
Tor sin(263)
1 oV

+m

+ 42 sin(203) 801

Koz (2sin6y)

lm xsin(303)
2" " sin(265)

(C.11)
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