DUNADD ARCHIVE

SECTION 3: ANALYSIS AND SPECIALIST REPORTS

3.2 XRF results on crucibles and other material

By Justine Bayley

Table 1 records the metals detected on the crucibles by the initial energy dispersive x-ray fluorescence analysis (XRF). The results are all for the inner surface of the sherds unless otherwise stated. The elements naturally present in the clay fabric of the crucibles have been omitted from the table. Those crucibles with no entry in the 'XRF Results' column were not analysed. The elements of metallurgical interest are gold (Au), silver (Ag), copper (Cu), Zinc (Zn), tin (Sn) and lead (Pb). In general the elements are written in order of decreasing signal strength, i.e. the element that gave the strongest XRF signal comes first. Where an element is written within brackets it was only just detectable. Where 'Au*' appears in the table, gold droplets were visible under the microscope although not always detectable by XRF because of their small size.

Unfortunately, different elements fluoresce more or less strongly so their order in the table is not necessarily the same as that of the relative abundance of the elements present; in particular tin and silver only fluoresce weakly. Zinc often heads the list not because it was particularly abundant in the metal being melted but because of the way it behaves. It is a very volatile metal so its vapour penetrates into the fabric of the crucible where it gets trapped. It can also become included in the slaggy surface of the crucible where it is chemically bound while the other elements or their alloys are only present as metal droplets physically held by the roughness of the surface and easily dislodged by enthusiastic washing in the finds hut!

It can be seen from Table 1 that a variety of metals were being worked on the site. Most metals at this period were not pure but were mixed, either deliberately or accidentally, with other elements. The reuse of metal would tend to reinforce this mixing though scrap would not have been used indiscriminately; even new metal usually contained some impurities. Certainly gold often contains some silver and copper, and silver usually contains copper and often other elements too. These additional elements can be looked on as either accidental inclusions or deliberate alloying or debasement. Copper is rarely used in its pure form but is normally alloyed with either tin (to give bronze) or zinc (to give brass) or both (giving alloys known as gunmetals). Copper alloys, especially those not intended for wrought work, often contain considerable amounts of lead too.

By considering these comments on the likely additions to be found in any particular alloy together with the comments on XRF signal strengths the XRF results presented in Table 1 can be assessed to identify the metal each crucible once contained. These results for the crucibles of known type are presented in Table 1. In the table the type of sherd is designated as: B-body sherd, Ba - base, L - lid, R - rim, K - knob, All - complete.

Find No.	Sherd Type	T. mm	Extra Layers	Vessel Type	XRF results (inside)
105	В	4		?	
112/1	L	3-5		С	Zn
/2	В	6		?	
/3	В	5		?	Zn (Cu Pb ?Ag)
/8	В			В	
/9	R			?C	
/10	R			?	
163	Κ	3		?C (or ?D)	
187	В	2		D	
188	R+K	2		D	Au*
192	R	5	in,out	E	Zn Cu Sn Pb
193	В	4.5-6		?	Zn
195	R			?ingot mould	
196	R+Ba	12		B2	#
208	Κ	2		С	
211	Ba	5		?C	Cu Zn Sn Pb
220	R	6-7		B5	#
221/465	R+Ba	5-11		B4	#
230	R	9		?B2	Ag Cu Zn
281	В	2		?	
303	All	5-6		E	Cu Sn Pb
308	В	5	?		Zn (Cu ?Ag)
316	В	4-8		?E	
333	В	6	?		
379	R	3-4	?		
418	Κ			С	
425	В	2	out?	?	Zn Ag Cu Pb
429	Ba	3-4		С	Zn Pb (Cu Sn) outside = Cu Zn Sn
433	В	7		?B	
445	L	1-3		С	
447	Ba			B4	#
454	L	2-3		С	
459	All			D	outside = Cu Zn Sn Ag (Pb Au) Au*
465	R	4-9		B4	
466	R+L	3-5		С	Zn Ag (Cu Pb)
550/1	Ba+R	2		С	Zn Cu Sn Pb
/2-6	В	2-5		?	Zn Ag (Au Cu Pb)
600	R	3		А	Zn Cu Pb Ag outside = Cu Ag Zn Pb
621/1	Ba+R	8		B3	Ag Au Zn Pb (Cu)#
/2	?L	5		С	Nil
/3	В	2.5	out?	С	Zn
624	L			С	
630	Κ			С	
632	В	2.5		?	Zn Pb Ag Sn Cu
646/1	R	2.5	out?	С	Pb Zn (Ag Sn Cu)
/2	R	4		?C	Au* Zn Ag Cu (Pb Au)
/3	В	2		?D	Au*
666	В	7		B?4	
678	R	2		С	Zn Cu (Pb ?Ag)
681	Κ			С	· · · · · · · · · · · · · · · · · · ·
697	L	2.5		С	Zn (Cu ?Ag)

Table 1: XRF results for crucibles

					outside = Zn Ag (Cu)
753	K			C/D	
754	R	3-4		С	Zn Pb (Cu ?Ag ?Sn)
756	В	2-3		?	Zn Ag Cu (?Pb)
782	Ba	2	?D		Ag Zn Cu Au Au*
799	R	4		С	Au*
816	R	4		E	Cu Sn Zn Pb
839/1	R	2-3	out	С	
/2	R	3		С	
842	R	3-4		С	
846/851	L	4-5		С	Zn Pb
854	В	5		?C/D	Cu Sn Zn Pb
884	R	3-4		E	Cu Sn Pb (Zn)
885	Κ			D	
888	R	4.5		A/D	Cu Zn Sn Pb
895	Ba	9		В	#
911/1	R	2-3		С	Zn Ag Pb (Cu)
/2	В	3-4		С	Zn Ag Pb (Cu)
/3	L	-		Ċ	8 - ()
/4				Ċ	
/5	L			Č	
932/1	R	3-4		C	
/2	R	2		2D	
944/1	B	25		2 2	$C_{\rm II}$ $Z_{\rm II}$ $(S_{\rm II})$
/2	B	2.5 A		: ?	$Zn \Delta g Zn Cu (Ph)$
052/1	D I	+ 2		· C	$Z_{\rm II}$ Ag $Z_{\rm II}$ Cu (10) $Z_{\rm II}$ Pb (Cu)
/2	L D	2		2	ZII FU (Cu)
/2	K V	1		(C	
905	л р	4	:	C	
989	B	4	1n	C	
1004/2	В	3.5		? C	Cu Pb Sn Zn Ag
/1	В	4.5		C	Zn (?Ag)
/3	L	4		C	outside = $(?Cu Zn)$
/4	L			C	
1016	R+Ва Ъ			BI	#
1030/1	R	2.5		C	Pb Sn Zn Cu
/2	В	3		?	Ag Zn Cu Pb
/3	В	2.5		?	Zn Pb (Cu)
/4	В	3		?	Zn Cu Ag (Sn Pb)
1031	K			С	
1034	K			С	
1135	R			?C	
1164/1	L			С	outside = Zn Cu ?Ag
/2	В			?	Zn Ag (Cu Pb)
/3	В			?	Zn Ag (Cu Pb)
/4	В			?	Pb Cu Sn (Zn)
/5	В			?	Zn Ag (Cu Sn)
/6	В			?	Pb Cu Sn (Zn)
/7	R			С	
1200	?	4		?	
1221/1	R			?A/D	
/2-3	В			?	
1232	R			A/D	Zn Pb Cu Sn
1261	All	3.5		E	Cu Sn Pb
1282	L	3		С	Zn Ag (Cu)
1334	R			D/C	Zn
1346	В	3		?	Ag Zn Cu (Pb)
1352/1	R	5		B5	Cu Zn (Pb)
/2	R	3.5		?	Zn Ag Cu Pb
/3	R	2.5		?	Zn (Pb)
1378/1	R	5		Е	Cu Sn Pb (Zn)

/2	R	3		?	Cu Zn Pb Sn
1404	Κ			С	
1431	L+K			С	
1434	Κ	5	in	D	Zn Ag (Cu)
1435	R			B4	#
1506/1	R	5		С	Zn Pb Cu (?Ag)
/2	R	4-5.5		A/D	Zn
/3	R	3		С	Zn (Cu)
/4	B	4		?	Zn Ag (Cu)
/5	R	6		?	8(00)
/6	B	3-4		? ?	
1514	Ba+R	5 1		B1	Ph Zn Cu Ao#
1517	R			B1	10 Zh Cu Hg#
1518	Ra	5			7n Cu Ph Sn Aσ
1538/1	K	5		C	Zh cu i o bh rig
/2	R			C C	7n
/2	R			2	Zn Ag Ph
/3	D B/Ba			2	Zn Ag
/4 /5	D/Da D	4		· C	Zil Ag Zn Sn
15	R D	4		C	$Z_{\rm II} S_{\rm II}$
/0		Z		2D1	Zii Cu Ag Sii Fu
1551	R+Da D	2		2D1	Zn Cu Sn Dh
1576/1	D D	3		()	ZII Cu SII PO
15/0/1	K D			? 0	۸ ¥
12	В			? C	Au^{*}
/3	L			C	Zn Ag (Cu Pb)
/4	K			?	
/5	В			B	
1579	R			BS	#
1602/1	2-6			?	A .
/2	В	4		?	Zn Ag
/3-6	В	6		?	Zn Ag
1625	R	4	?4		Cu Pb Sn (Zn)
1630	R	6	in, out	?	(Sn Zn Pb Cu)
1632	R+Ba			B1	Au (Zn Cu)#
1650/1	В			?C	Zn Ag (Pb Cu)
/2	R		in, out	?	Zn Ag (Cu Pb)
1656	R			?B	
1665/1	R	3		E	Cu Sn Pb Zn
/2	R	2		С	Zn Cu (Pb)
/3	Κ			С	
/4	R	2-3		?	Zn
/5	В	4-5		?	Zn (Ag Cu)
1666	В	4		?	Zn Cu
1667	B/Ba	8		B3	Au Ag Zn (Cu Pb)#
1701	Ba			В	
1730/1	B/Ba	3		?	Pb Sn Cu Zn
/2	L	3.5		С	Zn Pb Cu
1731	В			?	
1748	В	4		?	Zn
1815/1	R			B2	#
/2	Ba	6		?E	Zn Cu (Pb)
/3	R	3-4		?C	Pb Zn Cu Ag
/4	R	4		С	Zn ?Ag (Cu)
/5	В			?	- · · ·
1830/1	Κ			С	
/2	K+L			С	
/3	Κ			D	0utside = (Zn Cn)
/4	?			?	(Zn)
1831	В	3.5	out	?	Pb Cu Zn Ag Sn
1847/1	R	4		?	Zn

/2	В	3		?	Zn Ag (Cu)
/3	В	3		?	Ag Zn Cu (Pb)
/4	В	6		?	Zn
/5	В	5		?	Cu Zn Sn Ag (Au Pb)
/6	Ba			В	-
/7	R			С	
/8	В			С	
/9	В			?	
/10	В			?	
1857	В	6	out	?	Pb Zn Ag (Cu)
1926	R	4		A/D	Cu Zn Ag Pb (?Sn)
1989	L			С	-
2024	R	4		A/D	Zn
2073	В	3		?	Ag Zn Cu Pb
2303	Κ			С	-

see additional comments below

Table 2:XRF Metal analyses

Object	Alloy
Ring-headed pin: ring	Brass
: pin*	Gunmetal (with some lead)
Pin (? for penannular)*	Bronze (with some lead)
	also containing a minor
	amount of silver.
Dribble*	Bronze/gunmetal
Repousse foil	Bronze (with a little lead)
Needle	Bronze
Lump*	Low tin bronze
Scrap*	Copper
	Object Ring-headed pin: ring : pin* Pin (? for penannular)* Dribble* Repousse foil Needle Lump* Scrap*

(see also text chapter 5 for Atomic Absorption Analyses of objects marked with asterix)

Table 3: Miscellaneous analyses by XRF

No.	XRF results	Interpretation/description
728	Calcium detected	White material. Needs further (XRF) analysis
		for identification.
874	Major elements: Fe,Mn,Ca	Part of a glass cane. The (Si, Na, K not
		detectable) colour is due to the presence of
		manganese.
981	Only iron detected	Red flecks probably haematite.
1305	Major:Pb, Cu Minor: Fe, Zn, Sb	Red glass inset. The colour is mainly due to
		the presence of copper.
	Trace: Mn (Si, Na, K not detectable)	
1362	Only iron detected	Yellow and liverish red lump - colour
		probably due to iron oxides.
1368	Iron and titanium detected	Pink material. Needs further (XRD) analyses
		for identification
1844	Only arsenic detected	Orpiment - a naturally occuring mineral.

Additional note on Type B crucibles from Dunadd By Justine Bayley

These notes should be read in conjunction with the earlier report (above) on the metalworking finds from Dunadd (Bayley 1984). A review of the notes made in 1984 suggested that the unidentified process carried out in the type B crucibles was probably parting, the separation of silver from gold by heating thin sheets of the mixed alloy below its melting point while packed into a vessel interleaved with a salt-containing mixture (Bayley 1991). The Dunadd crucibles were thus re-examined in an attempt to confirm this identification.

All the type B crucibles that were seen in 1984 (with the exception of 1667) were made available for re-examination, together with a number of sherds that had not previously been identified as crucibles. All were analysed by XRF (see Table 4); the results are comparable with those previously obtained. With a larger number of pieces available, it could be seen that not all came from the shallow (c 20-25mm high), flat-bottomed vessels previously described (type B1 here). The majority of the new pieces were from deeper vessels (up to 60mm high) with an external diameter of c 100mm (type B2 here). (Editor's Note: these B1 and B2 categories differ from those used in the finds report and the list above; the categories used in the main report are noted in the table below in brackets).

Table 4: the analysed sherds

Bag No	Form	Elements Detected	Previous XRF
621	B1(B4)	Ag Au (Pb)	Ag Au Zn Pb (Cu)
1016*	B1	Sn (Ag)	
1514 +	B1	Pb (Ag)	Pb Zn Cu Ag
1632 +	B1	Au (Ag)	Au (Zn Cu)
1667 +	B(B4)	not seen/analysed	Au Ag Zn (Cu Pb)
196	B2?(B2)	-	-
220	B2?(B5)	-	Poorly fired added inner and outer lay layers. ? unused
221	B2(B4)	Ag	Rim previously seen but not analysed
447	B2(B4)	Ag	·
895	B2?(not B)	-	
1435	B2?(B4)	Ag	
1579	B2?(B5)	Ag Au (Pb)	
1815/1	B2?(B?0	Ag (Pb)	

* = extracted from this bag no

+ = previously analysed

{NB 621 joins 1667; 221, 447, 465 & 1435 are from one vessel. B4 is a high-walled variant of B1(editor)}

All samples had detectable, but very low levels of zinc and copper present; these are not included in the Table. Elements written in brackets are present in minor amounts.

All the pieces listed in the table are oxidised-fired, generally appearing buff in colour, and most have traces or iron-rich straining on either inner or outer surfaces. This discoloration runs from red (eg 1632) to maroon (eg 447) and purplish-grey (eg 895). Some pieces show more than one of these colours which are produced by iron from within the clay fabric being mobilised and then re-deposited on the surface as a by-product of the parting process (Bayley 1991).

It can be seen that the deeper, B2 vessels have silver as the main, or only element detectable, like the majority of other parting vessels previously identified. The range of elements present in the shallow B1 vessels is wider and may represent a variety of precious metalworking processes or just variants of the parting process. On the basis of the analytical results, 1667 is probably a B1 type. There was no good evidence for the presence of a lid on any of these vessels, which is surprising as one would have

been necessary to present the loss of most of the silver; with a lid the silver would be trapped in the mixture packing the vessels and could be retrieved by smelting it. In this, the Dunadd parting vessels find parallels with the apparently lidless, early Roman parting vessels from Chichester (Bayley 1978; 1991), which are also their closest parallels for form.

Four pieces seen are not thought to be from parting vessels (666: red-slipped pottery, 1517: ? clay mould fragment, 1656: rim sherd, possibly from type B2 vessel but thinner walled than the rest, 1701: clay luting from mould or crucible). None of them had significant traces of metals, except for 1701 where a minor amount of lead was detected.

References

Bayley, J (1978) The Roman crucibles from Chapel Street. In; A Down, Chichester Excavations 3. Chichester: Phillimore, 254-5.

Bayley, J (1984) Crucibles and clay moulds from Dunadd, Agyll, Ancient Monuments Laboratory Report No 4237.

Bayley, J (1991) Archaeological evidence for parting. In: E Pernicka and G A Wagner (eds), Archaeometry '90. Basel: Birh, user Verlag, 19-28.