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Abstract
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with SDFs that (i) are nonnegative, (ii) correctly price returns, and (iii) disallow “good deals.”
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1 Introduction

This paper proposes a framework for characterizing SDF pairs in incomplete international economies.

Instrumental to our developments are three features. First, the analysis is anchored to limited con-

sumption risk sharing. Second, one can accommodate a relatively large difference between the

unspanned components of the SDFs. Third, we can plausibly model the volatility of SDFs and

their correlations. Our new angle of incomplete markets and the depiction of the unspanned com-

ponents of the SDFs are relevant to the mechanism by which risks are shared – or not shared –

across international borders, potentially allowing us to shed light on the workings of international

finance puzzles.

How high are the correlations between SDFs in international economies? The bottom line view

is spearheaded by Brandt, Cochrane, and Santa-Clara (2006), who feature economies in which

mt+1(
St+1

St
) −m⋆

t+1 = 0 (mt+1 (respectively, m⋆
t+1) is the domestic (foreign) SDF, and St+1

St
is the

exchange rate growth with the foreign currency as the reference) and argue that correlations must

be high. In a potential paradigm shift, we propose an incomplete markets setting in which there

is an infinite number of mt+1 and m⋆
t+1 pairs that may or may not satisfy mt+1(

St+1

St
)−m⋆

t+1 = 0,

and show that the correlation between mt+1 and m∗
t+1 need not be high, consistent with the

empirical evidence on limited consumption-based risk sharing. Related to our motivation to study

incomplete markets, an evolving literature has treated the high correlation between mt+1 and m∗
t+1

as a salient feature to be modeled theoretically and reconciled empirically within the broader swath

of international finance puzzles.

What do we do differently? First, we consider a discrete-time economy with the understanding

that there is an infinite number of SDFs in incomplete markets. Second, unlike most others, we do

not assume that mt+1(
St+1

St
)−m⋆

t+1 = 0, and we develop a restriction that precludes “good deals”

in international economies with incomplete markets. Specifically, a good deal is the possibility

of forming a portfolio, which has an implausibly high reward-for-risk. We show that ruling out

an implausibly high reward-for-risk in an international economy places an upper bound on the

dispersion of SDFs. Third, we develop a new theoretical optimization problem (with a quadratic

objective and both quadratic and linear constraints) that solves for the lowest SDF covariances in
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the space of the two SDFs subject to the constraint that the two SDFs preclude good deals, the

SDFs price the returns on traded assets, and the SDFs be nonnegative.

A core derived feature of our model is an additive form of the SDFs in which the SDFs are

analytically decomposed into their spanned and unspanned components, and a low correlation

between mt+1 and m∗
t+1 can arise when the country-specific unspanned components are negatively

correlated. We describe how our theoretical approach offers a distinction from the work of Backus,

Foresi, and Telmer (2001) and can be consistent with the data on limited consumption risk sharing.

Three questions are the centerpiece of our research: What are the consequences of incomplete

markets for the SDF pairs (mt+1,m
∗
t+1) in international economies? What are the quantitative

attributes of volatilities and correlation between SDFs that are consistent with consumption and

asset return data, and consistent with an economically plausible lower bound on covariances? What

does our incomplete markets approach say about classic international finance puzzles?

A key input to the theoretical problem and empirical assessment is the market incompleteness

parameter Θ that quantifies an upper bound on the dispersion of the SDFs. The identifiable

restriction of incomplete markets and limited risk sharing is the positivity of Θ. We motivate an

algorithm to estimate Θ from consumption growth data, in conjunction with asset return data.

The algorithm encapsulates the idea that deviations from complete markets cannot be measured

from asset return moments alone. This feature arises not because of choice or theoretical design,

but by the nature of the incomplete markets problem in which there is an infinite number of SDFs.

With our new framework for characterizing (mt+1,m
∗
t+1) pairs, there exists a market incom-

pleteness parameter Θ for which values of international risk sharing, based on asset returns, can

be aligned with those from consumption growth, and our empirical analysis is backed by evidence

from 10 industrialized countries (45 country pairs) over 40 years. Under our empirical reconcilia-

tion, we consider returns of a risk-free bond and an equity index from each half of a country pair,

together with the returns of the U.S. 30-year Treasury bond and the world equity index that are

common to all country pairs. This amounts to a universe of six asset returns with multi-currency

and multi-country exposures. The approach can be tailored to consider expanded (or reduced) sets

of assets, and we show that our headline conclusions relating to SDF volatilities and correlations,

and the size of the unspanned components, are robust to the number of assets employed.
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Section 3.3 shows that our incomplete markets approach can prove useful in interpreting in-

ternational finance puzzles. More specifically, the additive form of the SDFs employed in our

paper refutes a notion that the degree of market incompleteness affects the expected excess return

of foreign exchange (the forward premium puzzle; Fama (1984) and Backus, Foresi, and Telmer

(2001)). Additionally, with respect to the Backus and Smith puzzle, we show that a regression of

log exchange rate growth on log relative SDFs synthesized under our theoretical approach produces

slope coefficients similar to those observed in implementations of the Backus and Smith regressions.

Finally, the question of low volatility of exchange rate growth (the volatility/risk sharing puzzle)

was addressed in Brandt, Cochrane, and Santa-Clara (2006) by arguing that the correlations be-

tween log SDFs must be high. In contrast, our tenet of incomplete markets furnishes relatively low

correlations, while producing plausible SDF volatilities and limited risk sharing.

Related Literature: Our work connects to a body of literature that is at the intersection of con-

sumption risk sharing, asset pricing, exchange rates, and incomplete markets. For example, Lewis

(1996) finds some supporting empirical evidence for the idea that the documented low consump-

tion growth correlations and, thus, low international risk sharing, may be explainable by incomplete

markets. The work of Burnside and Graveline (2014), Corsetti, Dedola, and Leduc (2008), Kim and

Schiller (2015), and Zhang (2015) further motivates us to formalize the implications of incomplete

markets for limited risk sharing and international puzzles.

While many scholars are beginning to expose the consequences of incomplete markets for puzzles

in international finance, the extant approaches are different from ours. In particular, the novelty

of our solution is that the unspanned components are analytically determined as a part of our

theoretical problem, and their properties are linked to the degree of market incompleteness. Thus,

methodologically, our approach is substantively distinct from Pavlova and Rigobon (2007), Maurer

and Tran (2015), and Stathopoulos (2015), in which the goal is not to model the properties of the

unspanned components of the domestic and foreign SDFs or their correlations.

How does our incomplete markets approach with “mt+1(
St+1

St
) − m⋆

t+1 ̸= 0” compare to the

multiplicative wedge approach proposed in Backus, Foresi, and Telmer (2001, equation (8)), and

developed further in Lustig and Verdelhan (2016, equations (7) and (8))? Specifically, the latter

characterizes the multiplicative wedge perturbation ηt+1 that satisfies mt+1 (
St+1

St
) = m∗

t+1e
ηt+1 , in
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conjunction with correct pricing and distributional assumptions about ηt+1 and the SDFs. We

defer a formal discussion of the multiplicative wedge approach to Section 2.7. Importantly, a key

economic distinction illustrated in our study is that our solution with additive form of the SDFs is

outside of the class of SDFs that are supportable through the multiplicative wedge approach.

Our results also stand in contrast to Lustig and Verdelhan (2016, Proposition 1 and Corollary

1 through 3) with respect to (i) the forward premium puzzle, (ii) the Backus and Smith puzzle,

and (iii) the volatility/risk sharing puzzle. First, Bakshi and Crosby (2016, Claim 1) also consider

the multiplicative wedge approach with incomplete spanning and show that the expected excess

return of foreign exchange (i.e., the currency risk premium) is detached from the multiplicative

wedge perturbation. This result is obtained in both a model-free and a distribution-free setting,

and contradicts Lustig and Verdelhan (2016, Corollary 2 and Corollary 5). Second, the analysis

of Bakshi and Crosby (2016, Claim 2) culminates in an additional result that log changes in the

exchange rate, and its quadratic variation, are uncorrelated with the multiplicative wedge pertur-

bation. Third, the incomplete spanning approach in Lustig and Verdelhan cannot, and does not,

impact the correlation between the SDFs, and can lower the risk sharing index only under stringent

restrictions on the distributional properties of the multiplicative wedge perturbation. Our theoret-

ical and empirical analysis in Section 3.3 further distills why the results in Lustig and Verdelhan

are conceptually different than those developed by us in the context of the additive form of SDFs.

The studies of Colacito and Croce (2011, 2013) consider a two-country asset pricing model with

long-run risk and recursive preferences to reconcile the correlation between asset returns and the

correlation between consumption growth. Their model, through the mechanism of a high correlation

of the long-run components of consumption growth, produces correlated SDFs, while maintaining a

low unconditional correlation between the consumption growth of the two countries. Additionally,

Favilukis, Garlappi, and Neamati (2015) employ restrictions in financial trade to induce market

incompleteness, and show that their framework could explain certain facts, including a positive

correlation between currency appreciation and consumption growth. The study of Gabaix and

Maggiori (2015) allows for incomplete markets in their work on international trade and exchange

rates. We develop a framework in which SDFs are not unique, and an incomplete markets setting

is at the center of a restriction that precludes extremely lucrative trading opportunities.
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2 A framework for analyzing incomplete international economies

This section formulates a theoretical problem that characterizes a lower bound on the covariance

between SDFs in incomplete international economies, subject to correct pricing. The problem is

further disciplined by the imposition of a constraint that precludes trading opportunities with un-

reasonable reward-for-risk. The key departure from others is that we can analytically decompose

domestic and foreign SDFs into spanned and unspanned components in such a way that the corre-

lation between the SDFs is lowered in an economically motivated fashion. The solution traits hinge

on the properties of the asset return data. We illustrate the relevance of our approach in address-

ing international finance puzzles, while recognizing that there is a multitude of SDFs in incomplete

markets. The developed theoretical links are instrumental to our empirical investigation.

2.1 The economic environment

We consider a discrete-time economy with two dates, namely, t, the current time, and t + 1, the

time one period ahead. There are J (finite or infinite) possible states of the world at time t+1. We

consider two countries, denoted domestic and foreign, and use a superscript ⋆ to denote quantities

in the foreign country.

The exchange rate, defined as the number of units of domestic currency per unit of foreign

currency, at time t, is denoted by St. The foreign currency is the reference. We assume that asset

markets are frictionless. For example, there are no bid-ask spreads and no short sale constraints.

We assume that there are N assets that can be traded by both domestic and foreign investors

and that none of the assets is redundant. Denote by Rt+1 and R⋆
t+1 the N -dimensional vector of

domestic and foreign gross returns. Included within the return vectors Rt+1 and R⋆
t+1 are risk-free

bonds in the domestic and foreign country with gross return Rf and R⋆
f , respectively.

More generally, we include all available asset returns, in either currency, in both Rt+1 and R⋆
t+1.

This means that Rt+1 and R⋆
t+1 are related by

Rt+1 = (St+1/St)R
⋆
t+1. (1)
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Hence, when we refer to domestic and foreign returns, “domestic” and “foreign” refer to the currency

in which the return is made – not, for example, to the country in which the equity index is based.

Let mt+1 and m⋆
t+1 denote the domestic and foreign SDFs. Importantly, we do not assume

complete markets, so mt+1 and m⋆
t+1 are not unique.

To rule out extreme counterexamples, assume that the first and second moments of all relevant

quantities, for example, mt+1, m
⋆
t+1, Rt+1, and R⋆

t+1, exist and are finite. In particular, Et[m
2
t+1] <

+∞ and Et[(m
⋆
t+1)

2] < +∞ and, hence,
∣∣Et[mt+1m

⋆
t+1]

∣∣ < +∞ by the Cauchy-Schwarz inequality,

where Et[ . ] indicates time t conditional expectation. Let Var[·] and Cov[·, ·] denote variance and

covariance, respectively.

2.2 Implications of incomplete markets

Since mt+1 and m⋆
t+1 price domestic returns Rt+1 and foreign returns R⋆

t+1, respectively,

Et[mt+1Rt+1] = 1 and Et[m
⋆
t+1R

⋆
t+1] = 1, (2)

where 1 denotes an N -dimensional vector of ones. However, since Rt+1 = (St+1

St
)R⋆

t+1, we also have

Et[mt+1(
St+1

St
)R⋆

t+1] = 1 and isomorphically Et[m
∗
t+1Rt+1/(

St+1

St
)] = 1.

Subtracting Et[m
⋆
t+1R

⋆
t+1] = 1 from Et[mt+1(

St+1

St
)R⋆

t+1] = 1, and Et[mt+1Rt+1] = 1 from

Et[m
∗
t+1Rt+1/(

St+1

St
)] = 1 implies:

Et[(mt+1(
St+1

St
) − m⋆

t+1)R
⋆
t+1] = 0 and Et[(mt+1 − m⋆

t+1/(
St+1

St
))Rt+1] = 0. (3)

Since equation (3) is true for all returns R⋆
t+1 and Rt+1, it is true for the foreign risk-free return

R⋆
f and the domestic risk-free return Rf , which leads to the implications:

Et[mt+1(
St+1

St
)−m⋆

t+1] = 0 and Et[mt+1 −m⋆
t+1/(

St+1

St
)] = 0. (4)

Consider the (class of) random variables (ξt+1, ξ
∗
t+1), defined by

ξt+1 ≡ mt+1(
St+1

St
) − m⋆

t+1 and ξ∗t+1 ≡ mt+1 − m⋆
t+1/(

St+1

St
). (5)
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Definition. (Incomplete markets problem) By choice of (mt+1,m
∗
t+1) solve

Et[ξt+1] = 0, Et[ξt+1R
⋆
t+1] = 0, (6)

Et[ξ
∗
t+1] = 0, Et[ξ

∗
t+1Rt+1] = 0, (7)

where the random variables (ξt+1, ξ
∗
t+1) defined in (5) are not unique. ♣

The incomplete markets problem agrees with a view that there are some states for which no

Arrow-Debreu security trades. More formally, with span(R) ≡ {w′R : w ∈ RN} denoting the set

of possible portfolio returns, it agrees with span(R) ̸= RJ, with N < J (e.g., Duffie (1992, page 8)).

In the case of complete markets, (ξt+1, ξ
∗
t+1) satisfying (6) and (7) are unique and identically zero

in every state. Correspondingly, there is an Arrow-Debreu security tradeable for every t+ 1 state

of the world, which implies, in the absence of arbitrage, that Stm
⋆
t+1 = St+1mt+1, or equivalently,

we obtain the relation (e.g., Backus, Foresi, and Telmer (2001, Proposition 1, equation (7))),

mt+1(
St+1

St
)−m⋆

t+1 = 0 in a complete markets setting. (8)

In incomplete markets, some mt+1 and m⋆
t+1 satisfy mt+1(

St+1

St
)−m⋆

t+1 = 0, and some do not.

The statement that “mt+1(
St+1

St
)−m⋆

t+1 need not equal zero” is intuitive, because, in incomplete

markets, there are some outcomes for which no Arrow-Debreu security trades, and different investors

will place different marginal utility on those outcomes. For example, if a representative agent exists

in each country and if, say, the domestic agent is more risk averse than the foreign counterpart,

then the former will assign greater marginal utility to unpleasant states.

We do stress that equations (3) and (4) always hold, regardless of whether the market is complete

or incomplete. Brandt, Cochrane, and Santa-Clara (2006, Section 1.2) highlight the potential

significance of incomplete markets, but in the end their analysis features mt+1(
St+1

St
)−m⋆

t+1 = 0.

It simplifies the exposition and analytical characterizations if we define (note St+1/St > 0) the

N -dimensional vector Zt+1 by

Zt+1 ≡
√
St+1/StR

⋆
t+1 = Rt+1/

√
St+1/St. (9)
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Further, we define

yt+1 ≡ mt+1

√
St+1/St , and y⋆t+1 ≡ m⋆

t+1/
√
St+1/St , (10)

which implies yt+1 y
⋆
t+1 = mt+1m

⋆
t+1. For later use, observe that yt+1 y

⋆
t+1 has a bounded expecta-

tion, since
∣∣Et[yt+1 y

⋆
t+1]

∣∣ = ∣∣Et[mt+1m
⋆
t+1]

∣∣ < +∞.

Furthermore, from equation (2), it must hold that

Et[yt+1 Zt+1] = 1 and Et[y
⋆
t+1 Zt+1] = 1. (11)

Equations (9) and (11) imply that Z can be interpreted as the gross returns in a hypothetical

economy in which the gross returns are the geometric average of R and R⋆ (since (9) implies

(RR⋆)
1
2 = Z). Further, yt+1 and y⋆t+1 can be interpreted as SDFs in this hypothetical economy.

The transformations in (9) and (10) are merely devices that allow cash flow pricing in a sym-

metric fashion, circumventing the need to duplicate calculations in different currency units.

If the market were to be complete, equation (8) would imply yt+1 = y⋆t+1. Further, if the market

were to be complete, without loss of generality, we can assume that Arrow-Debreu securities, for

every time t+1 state of the world, trade and then yt+1 = y⋆t+1 is equivalent to saying that domestic

investors and foreign investors agree on their prices.

How does our approach with “yt+1 not equal to y∗t+1,” or mt+1(
St+1

St
) − m⋆

t+1 need not equal

zero, compare to the multiplicative wedge approach in Backus, Foresi, and Telmer (2001) and Lustig

and Verdelhan (2016)? It suffices to say for now that our constructions (i) maintain symmetry,

(ii) facilitate an analytical solution that decomposes each SDF into its spanned and unspanned

components, and (iii) are tractable for studying the correlation between domestic and foreign SDFs.

The crucial takeaway from Section 2.7 is that our developed SDFs are not encompassed within the

class of SDFs that are possible with the multiplicative wedge approach.

Whether markets are complete or incomplete, domestic and foreign investors agree on the

prices of securities in the linear span of R (or R⋆). The takeaway is that in incomplete markets,

mt+1(
St+1

St
) −m⋆

t+1 need not equal zero, yt+1 need not equal y⋆t+1, and the valuations of domestic

and foreign investors need not coincide for securities that are not in the linear span of R (or R⋆).
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2.3 Motivating a constraint on reward-for-risk in the international economy

How different can those valuations be in incomplete markets? The purpose of this subsection is

to derive a restriction of the form Et[(y − y⋆)2] ≤ Θ2 for some constant Θ, by showing that it is

equivalent to placing an economically motivated bound on the differences in valuation of securities

that are not in the linear span of R (or R⋆).

The substantive content of an upper bound Et[(y − y⋆)2] ≤ Θ2 arises in incomplete markets

when y need not equal y⋆ and is related to the degree of market incompleteness.

Following Cochrane (2005, pages 94–95), we project y and y⋆ onto the space of gross returns Z

(omitting time subscripts for brevity):

y = yz +
1

2
q0 δ, and y⋆ = yz +

1

2
q⋆0 δ, (12)

where q0 and q⋆0 are constant scalars and yz and δ are random variables that satisfy

Et[yz Z] = 1, Et[yz δ] = 0, Et[δZ] = 0 for each element of Z, and Et[δ
2] = 1. (13)

The decomposition in equation (12) breaks y and y⋆ into two components. The first component

yz = 1
′
(
Et[ZZ

′
]
)−1

Z can be interpreted as the minimum second moment SDF in the hypothetical

economy in which gross returns are Z. The second components 1
2q0 δ and 1

2q
⋆
0 δ are orthogonal to

Z, where δ is normalized to have second moment equal to unity.

To illustrate that domestic and foreign investors disagree, in general, when q0 ̸= q⋆0, on their

valuations of securities outside the linear span of R (or R⋆), consider, for example, a synthetic

security that pays δ
√
St+1/St units of domestic currency, at time t + 1. This would be privately

valued, in domestic currency, at time t, at Et[mδ
√
St+1/St] = Et[y δ] =

1
2q0 by domestic investors

and at St Et[m
⋆ δ (

√
St+1/St)/St+1] = St Et[y

⋆ δ/St] =
1
2q

⋆
0 by foreign investors.

If q0 were to equal q⋆0, these valuations would be the same, but q0 = q⋆0 also implies that (i)

y = y∗, and (ii) m(St+1

St
)−m⋆ = 0.

The discrepancy between valuations of the synthetic security is greater when |q0 − q⋆0| is larger,

which implies that |y − y⋆| is larger and |m(St+1

St
)−m⋆| is larger. This is a situation that financial

9



intermediaries may, potentially, wish to exploit, and they can do this by creating a synthetic security

that offers payoffs outside the linear span of R (or R⋆).

Our approach, broadly speaking, is to ask: By how much can domestic investors and foreign

investors diverge on the valuation of securities outside the linear span of R (or R⋆) before financial

intermediaries would be presented with a “good deal”? The larger |q0 − q⋆0| is, the greater is the

potential profit for financial intermediaries.

Hence, we study the consequences of a class of “good deals” characterized by

q0 = − q⋆0 ≡ q ̸= 0. (14)

Specifically, equation (14), in conjunction with (12), translates into two restrictions on y and y∗:

Et[y − y∗] =
1

2
(q0 − q∗0)Et[δ] = q Et[δ], (15)

Et[(y − y∗)2] =
1

4
(q0 − q∗0)

2 Et[δ
2] = q2. (16)

We use equations (15) and (16) to rule out implausibly high reward-for-risk strategies in the inter-

national economy with incomplete markets.

Consider now a financial intermediary that considers the possibility of privately negotiating a

contract between itself and a domestic investor. We assume that the possible opportunity to enter

into this private contract does not materially alter m, m⋆, R, or R⋆.

If entered into, the private contract with the domestic investor would require the investor to

buy a synthetic security with payoff x[Z, St+1] in units of domestic currency, at time t + 1, from

the financial intermediary, where

x[Z, St+1] =
√
St+1/Stw

′Z + δ
√
St+1. (17)

Here, w is an N -dimensional vector of portfolio weights in the traded assets assumed to be of the

form w = −1
2

(
q
√
St

)
v, where v′1 = 1.
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The domestic investor computes the value, at time t, in units of domestic currency, of this

synthetic security as:

Et

[
m

(√
St+1/Stw

′Z+ δ
√
St+1

)]
= Et[m

(
w′R

)
] + Et[(yz +

1

2
q δ)δ

√
St],

= w′1 +
1

2
q
√
St = 0.

(18)

Thus, the cash flow postulated in (17) can be synthesized at zero cost.

If the financial intermediary were to enter into this private contract, it would have a short

exposure to the cash flow x[Z, St+1] at time t+1. Substituting w = −1
2(q

√
St)v into equation (17):

X ≡ −x[Z, St+1] =
1

2

(
q
√
St

)
v′R − δ

√
St+1, (in units of domestic currency) (19)

=
1

2
q v′Z − δ, (in currency units of the hypothetical economy, i.e.,

√
St+1) (20)

where in moving from equation (19) to (20), we have divided by
√
St+1 because, since there are, at

time t + 1, St+1 units of domestic currency per unit of foreign currency, there are
√
St+1 units of

domestic currency per unit of currency of the hypothetical economy (using equation (9)).

The financial intermediary faces a trade-off between the risks and rewards inherent in the cash

flows X. We evaluate this trade-off in the currency units of the hypothetical economy to emphasize

symmetry (without repeating the cash flow calculations in different currency units). Then,

Et[X] =
1

2
q Et[v

′Z] − Et[δ], (21)

Et[(X − Et[X])2] = Vart[
1

2
q v′Z] + Et[δ

2]− (Et[δ])
2 − q Et[v

′Z δ]︸ ︷︷ ︸
=0, from eq. (13)

+q Et[v
′Z]Et[δ], (22)

= Vart[
1

2
q v′Z] + Et[δ

2]− (Et[δ])
2 + q Et[v

′Z]Et[δ]. (23)

In Appendix A, we show two results. First, |Et[y − y⋆]| is always bounded above by an easily

computable quantity that we argue will, in practice, be small. Second, in the special case that m,

m⋆, and St+1/St are lognormally distributed, Et[y − y⋆] is identically equal to zero. Lognormality

will only be an approximation to reality, but both results suggest that |Et[y − y⋆]| will not be far

from zero. From equation (15), this implies Et[δ] ≈ 0 given that q ̸= 0.
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Using the approximation Et[δ] ≈ 0 in equation (21), the expected payoff, denoted by EP, to the

financial intermediary can be approximated as:

EP ≡ 1

2
q Et[v

′Z],

=
1

2
Et[v

′Z]

√
Et[(y − y⋆)2], (24)

where we have substituted for q, using equation (16). The expression for EP in equation (24) is a

measure of the potential reward to the financial intermediary. Analogously, by equation (23),

Vart[X]−Vart

[
1

2
q v′Z

]
≈ Et[δ

2] = 1. (25)

In words, the incremental variance of X over and above that of the payoff 1
2q v

′Z is unity.

The quantity EP/
√

Vart[X]−Vart[
1
2q v

′Z] = EP is a measure of the reward-for-risk potentially

available to the financial intermediary. It is equal to (or analogous to - definitions in the literature

vary) what is variously termed (Sharpe (1981), Roll (1992), and Grinold and Kahn (2007)) the

Information Ratio or the Appraisal Ratio (the latter being the term we will use), in that the

reward is an excess return and the risk is measured as the square root of the incremental variance

over and above that of a risky benchmark (in our setting, this risky benchmark is the portfolio with

return 1
2q v

′Z). This incremental variance is unity (by equation (25)).

If the reward-for-risk EP were high enough, a financial intermediary would have an incentive to

privately negotiate contracts with investors that exploit the fact that domestic and foreign investors

disagree on the valuations of securities outside the linear span of R (or R⋆).

We therefore place an upper bound on EP/
√

Vart[X]−Vart[
1
2q v

′Z], which has the effect of

ruling out a potential contract that is too good to be true (e.g., Cochrane and Saá-Requejo (2000)).

Specifically, for some Θ̂, satisfying 0 ≤ Θ̂ < +∞, the reward-for-risk is bounded:

|EP| =
∣∣∣∣12 E[v′Z]

√
Et[(y − y∗)2]

∣∣∣∣ ≤ Θ̂. (26)

12



Alternatively, defining Θ by Et[v
′
Z] Θ ≡ 2 Θ̂, and substituting into equation (26) and henceforth,

for brevity, dropping the subscript t from the expectation operator, we exclude good deals in the

international economy by placing an upper bound Θ as follows:

E[(y − y⋆)2] ≤ Θ2, (27)

for some economically- and empirically motivated choice of Θ (for 0 ≤ Θ < +∞). Equation (27)

places a restriction on y and y⋆ and, thus, on the set of admissible m and m⋆.

Equation (27) is central to our analysis, and can be distinguished from the setting where

m(St+1

St
) − m⋆ = 0, which entails y − y⋆ = 0, which in turn, imposes E[(y − y⋆)2] = 0. One

may view Θ as quantifying deviations from market completeness.

We will refer to Θ as the market incompleteness parameter and outline its identification within

the context of our empirical work.

2.4 Operationalizing the framework when m(St+1

St
)−m⋆ need not equal zero

In complete markets,m(St+1

St
)−m⋆ = 0 tightly links exchange rate growth andm andm⋆. Moreover,

Brandt, Cochrane, and Santa-Clara (2006) show that the minimum variance m and m⋆ recovered

from asset return data, also satisfy m(St+1

St
) − m⋆ = 0 in an incomplete market. Their analysis

further reveals that with m(St+1

St
)−m⋆ = 0 imposed, the risk sharing index, based on asset return

data (defined in their equation (2)), is computed to be high, indicating a high degree of international

risk sharing, whereas risk sharing based on consumption growth data is low.

In contrast, we study a theory that allows for a multitude of SDFs in incomplete markets and

seeks to synthesize m and m⋆ that are restricted by a feasible set (outlined shortly) that may or

may not be consistent with m(St+1

St
) −m⋆ = 0, and simultaneously offers flexibility in producing

patterns of limited international risk sharing. Thus, we ask, if we restrict our attention to (m, m⋆)

pairs, which are economically plausible and consistent with equations (5), (6), and (7), how low

can the risk sharing index, based on asset return data, be?

Or, how low can Cov [m,m⋆] be? Is it low enough to be reconcilable with the realities of

international risk sharing based on consumption growth data?
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To proceed with our goal of deducing the implications of consumption and asset return data

for SDFs in incomplete markets, we work in discrete time, and consider specifying a risk sharing

index, analogous to that of Brandt, Cochrane, and Santa-Clara (2006, equation (2)), of the form

RSI ≡ 2Cov [m,m⋆]

Var [m] + Var [m⋆]
=

2E[mm⋆]− 2/(RfR
⋆
f )

Var [m] + Var [m⋆]
. (28)

In the setting of incomplete markets, there is an infinite number of m and m⋆ and, thus, an infinite

number of possible values of such a proposed risk sharing index, which leads us to possibly take

infimums, over m and m⋆, of a risk sharing index in equation (28).

Thus, in essence, we are asking what is a plausible, but economically justified, lower bound on

the covariances (correlations) between SDFs based on available data?

To operationalize our incomplete markets framework, we compute the RSI in (28). This calcula-

tion is important to our approach, as it allows us to estimate the market incompleteness parameter

Θ by aligning estimates of international risk sharing, based on asset returns, with those from

consumption growth, details of which are provided in Section 3.1.

Recalling from (10) that y ≡ m
√
St+1/St and y⋆ ≡ m⋆/

√
St+1/St, we consider the following

problem (which, since y y⋆ = mm⋆, is equivalent to the objective infm,m⋆ E[2mm⋆]):

Problem 1 Choose y and y⋆ to

inf
y,y⋆

E[2 y y⋆] (29)

subject to

E[(y − y⋆)2] ≤ Θ2, (relaxes the restriction that m(
St+1

St
)−m⋆ = 0) (30)

E[yZ] = E[y⋆Z] = 1, (correct pricing) (31)

y ≥ 0 and y⋆ ≥ 0. (nonnegativity constraints) (32)

In Problem 1, the inequality constraint (30) arises as a consequence of incorporating the incom-

plete markets assumption in the international economy, whereby m(St+1

St
)−m⋆ need not equal zero.
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Specifically, Θ2 is the upper bound on E[(y − y⋆)2]. The equality constraint E[yZ] = E[y⋆Z] = 1

in equation (31) is equivalent to E[mR] = 1 and E[m⋆R⋆] = 1 and enforces that m and m⋆ must

price the returns R and R⋆.

We are interested in analyzing what incomplete markets have to say about SDF volatilities

and international finance puzzles. At the same time, we are interested in inferring marginal utility

growth rates that are consistent with the data. The marginal utilities are nonnegative, so, follow-

ing Hansen and Jagannathan (1991), we focus on nonnegative SDFs in the admissible set. The

constraints y ≥ 0 and y⋆ ≥ 0 in equation (32) are equivalent to m ≥ 0 and m⋆ ≥ 0.

In the objective function (29), we essentially compute a lower bound on the value of the numer-

ator of equation (28) consistent with repricing the returns R and R⋆, consistent with the absence

of arbitrage, and consistent with the upper bound E[(y − y⋆)2] ≤ Θ2.

Still, the optimization problem could become ill-posed if one could find m and m⋆, where the

objective is unbounded. Such an outcome is disallowed with our constraints and via
∣∣E[yy∗]∣∣ < +∞.

The solution depends critically on E[(y − y⋆)2] ≤ Θ2.

Observe further that if, instead, we were to minimize the ratio 2Cov [m,m⋆] / (Var [m] + Var [m⋆])

subject to the constraints in equations (30) through (32), we would obtain a value of the risk sharing

index that is (weakly) lower than that obtained from Problem 1.

2.5 Solving the problem

Based on the problem in equations (29)–(32), we look for solutions for y and y⋆ of the form

y = yz +
1

2
dΘ δ, and y⋆ = yz +

1

2
d⋆Θ δ, (33)

where yz ≥ 0, δ, d, and d∗ are yet to be determined (the conjectured solution inherits the form in

equation (12), but with q0 = dΘ and q∗0 = d∗Θ).

For now, d and d⋆ are constant scalars satisfying |d− d⋆| ≤ 2. Further the random variables yz

and δ satisfy

E[yz δ] = 0, E[δZ] = 0 for each element of Z, and E[δ2] = 1. (34)
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Because y − y⋆ = 1
2 (d− d⋆)Θδ, the constraint E[(y − y⋆)2] ≤ Θ2 is automatically satisfied. The

constraint E[yZ] = E[y⋆Z] = 1 in equation (31) is satisfied, provided E[yzZ] = 1.

With the conjectured forms of y and y⋆ in equation (33), E[mm⋆] = E[y y⋆] = E[y2z] + 1
4d d

⋆Θ2.

Hence, the infimum infy,y⋆ E[y y⋆] in Problem 1 separates into two distinct problems:

inf
yz

{E[y2z]} + inf
d,d⋆

{1
4
d d⋆Θ2}, (35)

subject to E[yzZ] = 1, yz ≥ 0, y ≥ 0, and y⋆ ≥ 0.

Exploiting this feature of the solution, we sequentially solve for yz, then for δ and, finally, for d

and d⋆. We first determine yz by solving

inf
yz

E[y2z] such that E[yz Z] = 1, yz ≥ 0. (36)

Here, yz can be interpreted as the minimum second moment SDF with nonnegativity in the hypo-

thetical economy in which gross returns are Z.

Introduce an N -dimensional vector of Lagrange multipliers λ. Then the solution to the problem

in equation (36) is the solution to

max
λ

{ inf
yz≥0

{E[y2z] − 2λ
′
(E[yz Z]− 1)}}. (37)

The first-order condition implies 0 = 2yz − 2λ
′
Z. Both the first-order condition and the constraint

yz ≥ 0 will be satisfied if

yz = max(λ
′
Z, 0). (38)

Substituting yz from equation (38) into equation (37) λ solves

max
λ

{2λ′
1− E[(max(λ

′
Z, 0))2]}, or, equivalently, −min

λ
{E[(max(λ

′
Z, 0))2]− 2λ

′
1}. (39)

Next, to solve for δ, we note that δ is proportional to ez, where ez is the residual from the

projection of one onto the space of returns Z. Hence, ez can be computed from the Ordinary Least

Squares regression formula (e.g., Cochrane (2005, page 95)).
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Then δ is obtained by multiplicatively scaling ez in such a way that E[δ2] = 1. More formally,

ez = 1− E[Z]
′
(
E[ZZ

′
]
)−1

Z, and then δ = ez/
√

E[e2z]. (40)

In the degenerate case that ez = 0 in every state, we set δ = 0. Our characterization of δ presented

in equation (40) is aimed at partitioning the SDF into distinct portions that are spanned, and that

are unspanned, by the available set of asset returns.

Finally, we solve for d and d⋆. The second part of equation (35) minimizes 1
4d d

⋆Θ2, and the

minimum requires that d and d⋆ be of opposite signs. Hence, without loss of generality, we assume

d ≥ 0, d⋆ ≤ 0. The solution of Problem 1 must also accommodate y = yz + 1
2dΘδ ≥ 0 and

y⋆ = yz +
1
2d

⋆Θδ ≥ 0.

Let dp (respectively, dn) be the smallest positive value (respectively, largest negative, i.e., least

negative value) of −yz/
(
1
2Θδ

)
across the J possible states of the world. Then y ≥ 0, and y⋆ ≥ 0

requires that d ≤ dp and dn ≤ d⋆.

Taken together with the constraint d− d⋆ ≤ 2, the solution for d and d⋆ can be summarized as


If dp ≥ 1 and dn ≤ −1, then d = 1 and d⋆ = −1,

else d = min(dp,−dn) and d⋆ = −d.
(41)

These values for d and d⋆, together with equations (39) and (40), provide the values of y and y⋆

and, thus, of m = y/
√
St+1/St and m

⋆ = y∗
√
St+1/St, which solve Problem 1.

2.6 The big picture and characterizing the unspanned components of m and m∗

The advantage of the solution for y and y∗ in equation (33) is that it facilitates the characterization

of the spanned and unspanned components of the SDFs:

mt+1 = mz,t+1︸ ︷︷ ︸
spanned

+ ut+1︸︷︷︸
unspanned

, and m∗
t+1 = m∗

z,t+1︸ ︷︷ ︸
spanned

+ u∗t+1︸︷︷︸
unspanned

. (42)
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We recognize that the extraction of the spanned and unspanned components is consistent with the

objective infm,m⋆ E[2mm⋆], consistent with ruling out reward-for-risk perceived to be unacceptable

in international economies, and consistent with the nonnegativity of SDFs. More explicitly,

mz ≡ yz√
St+1/St

=
1

(St+1/St)
max(λ

′
R, 0), and u ≡ 1

2
(dΘ δ)

1√
St+1/St

, (43)

m∗
z ≡ yz

√
St+1/St = (St+1/St) max(λ

′
R∗, 0), and u∗ ≡ 1

2
(d⋆Θ δ)

√
St+1/St, (44)

where λ solves (39) and δ is determined via (40). We will establish that Et[u] = Et[u
∗] = 0.

We shall refer to the characterization in equation (42) as the additive form of the SDFs.

Our depiction of the spanned and unspanned components of SDFs in (43) and (44) – which are

consistent with the lower bound on SDF covariances – furnishes new insights:

• As derived, the properties of u and u∗ hinge critically on Θ. For instance, a higher value

of Θ has the effect of increasing the volatility of u and u∗ and, therefore, of m and m∗. In

contrast, the volatility of both mz and m∗
z is invariant to Θ.

• Next, Cov [u, u∗] = 1
4dd

⋆Θ2 ≤ 0 (we have used equation (34) along with E[u] = E[u∗] = 0),

which is negative given our objective infd,d⋆ {1
4d d

⋆Θ2} and the result that d and d∗ are of the

opposite sign. Moreover, the magnitude of Cov [u, u∗] is dictated by the data on international

risk sharing and asset returns. Hence, d d⋆ < 0 is not mechanically imposed.

These derived attributes of our solution provide the intuition for the ensuing quantitative assess-

ments regarding both the risk sharing index and the correlation between m and m∗:

RSI =
2Cov [m,m⋆]

Var [m] + Var [m⋆]
≈ 2Cov [mz,m

∗
z] + 2Cov [u, u∗]

Var[mz] + Var[m∗
z] + Var[u] + Var[u∗]

. (45)

Thus, a higher Θ attenuates RSI by making Cov [u, u∗] more negative. We note additionally that

imposing Θ = 0 translates into u = u∗ = 0 and is isomorphic to a high RSI.

One may be able to garner a better conceptual understanding of our solution mechanism by

drawing on the work of others. In Kim and Schiller (2015), for example, the economies are inhabited

by both stockholders and non-stockholders. Since the stockholders have access to capital markets,

they are able to achieve high risk sharing, with two consequences. First, the consumption growths
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of stockholders in the domestic and foreign countries are intrinsically linked. Second, the marginal

utilities are highly correlated. At the same time, market incompleteness is introduced because the

non-stockholders can only trade in a bond. Such a friction can hinder the ability of non-stockholders

to share adverse economic shocks. The salient outcome is that aggregate consumption (stockholder

plus non-stockholder) growth can be moderately correlated, whereas the stockholders consumption

growth and SDFs can be sizably correlated. In our paper, we have offered a different tractable

framework in which market incompleteness permeates throughout the economy.

The decomposition articulated in equations (43) and (44) allows us to study the implications

of incomplete markets for the behavior of exchange rate growth, as presented in equation (4):

0 = Et[m (St+1/St)−m⋆],

= Et[max(λ
′
R, 0)− (St+1/St)max(λ

′
R∗, 0)︸ ︷︷ ︸

=0, since Rt+1=(St+1/St)R
⋆
t+1

+

√
St+1/St
2

dΘ δ −
√
St+1/St
2

d∗Θ δ], (46)

=
1

2
(d− d∗)ΘEt[δ

√
St+1/St]. (note that d− d∗ ̸= 0 and Θ ̸= 0) (47)

Thus, we obtain Et[u
∗] = 0, and likewise 0 = Et[m−m⋆/(St+1

St
)] implies that Et[u] = 0.

Viewed in conjunction with the solution of δ from equation (40) and setting α ≡ (E[ZZ′
])−1E[Z],

the conditions Et[u] = 0 and Et[u
∗] = 0 manifest the following restrictions on exchange rate growth:

Et[(1−α′Zt+1)/
√
St+1/St] = 0, and also Et[(1−α′ Zt+1)

√
St+1/St] = 0. (48)

The implication is that (1−α′Zt+1)/
√
St+1/St and (1−α′ Zt+1)

√
St+1/St are orthogonal to time

t information variables, with zero regression coefficients (e.g., Hansen and Hodrick (1980)).

2.7 Exploring complementarities and differences from other approaches

Is our solution in equation (42) subsumed within the multiplicative wedge class?

To offer our rationale, consider Lustig and Verdelhan (2016, pages 8 and 9), where an econome-

trician commits to a model of “base case” SDFs. The foreign base case SDF is then “perturbed” by

a multiplicative wedge eηt+1 , satisfying mt+1

(
St+1

St

)
= m∗

t+1e
ηt+1 . In analogy, our base case SDFs

are mz,t+1 = yz√
St+1/St

(domestic) and m∗
z,t+1 = yz

√
St+1/St (foreign), defined in (43) and (44),
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since complete markets would correspond to the case when the only (i.e., unique) SDFs satisfying

(5)-(7) were of this form. Recall that yz is interpretable as a minimum second moment SDF.

Our analysis leads to consideration of domestic and foreign SDFs of the form m = y/
√
St+1/St

and m⋆ = y⋆
√
St+1/St, where y and y⋆ are of the form y = yz +

1
2 dΘ δ and y⋆ = yz +

1
2d

⋆Θ δ (see

equation (33)). Given the symmetric construction, it is clear that one would need to “perturb” not

only the base case foreign SDF, but also the base case domestic SDF.

However, even if one were to consider “perturbed” SDFs of the formmt+1e
−hηt+1 andm∗

t+1e
(1−h)ηt+1

(consistent with mt+1

(
St+1

St

)
= m∗

t+1e
ηt+1), for some constant scalar h, one still cannot obtain the

additive SDFs proposed in our paper. To obtain such SDFs, one would need e−hηt+1 mz,t+1 =(
yz +

1
2 dΘ δ

)
/
√
St+1/St and, simultaneously, e(1−h)ηt+1 m∗

z,t+1 =
(
yz +

1
2d

⋆Θ δ
)√

St+1/St. Or,

equivalently, e(1−h)ηt+1 =
((
yz +

1
2 dΘ δ

)
/yz

)−(1−h)/h
=

(
yz +

1
2d

⋆Θ δ
)
/yz. But the right-hand

side equality is not mathematically feasible except when dΘ = d⋆Θ = 0 (which leads back to the

base case SDFs).

In particular, with base case SDFs of the form mz,t+1 ≡ yz√
St+1/St

and m∗
z,t+1 ≡ yz

√
St+1/St,

the relation mt+1

(
St+1

St

)
= m∗

t+1e
ηt+1 implies yz√

St+1/St

(
St+1

St

)
= yz

√
St+1/Ste

ηt+1 or 1 = eηt+1 or

ηt+1 = 0. Thus, not all SDFs - and certainly not the SDFs that we synthesize - can be tailored to

be in line with the multiplicative wedge paradigm.

Expanding, the approach of Lustig and Verdelhan does not allow consideration of the class of

SDFs that we show are compatible with low correlations between the SDFs as well as limited risk

sharing. As noted in Bakshi and Crosby (2016), the multiplicative wedge with incomplete spanning

approach does not affect the correlation between the SDFs. These are essential matters from the

standpoint of our empirical conclusions.

Overall, the departure from the extant literature is our treatment that enables the closed-form

tractability of the spanned and unspanned components of the SDFs. Moreover, our analysis wards

off a possible misconception that multiplicative wedges subsume our additive form of the SDFs.

The additive form of the SDFs is implicit in the constructions of Hansen and Jagannathan (1991).

Finally, we solve a particularly parameterized economy with five states in the Internet Appendix

(Section I and Table Internet-I), which helps to synthesize, in a simplified setting, the various

elements of our approach, to study SDF correlations and volatilities under incomplete markets.
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3 What does our approach tell us about international economies?

Our empirical investigation employs data on consumption, bonds, and broad-based equity indexes

for 10 countries – namely, Australia (AUD), New Zealand (NZD), United Kingdom (STG), France

(FRA), Canada (CAD), United States (USD), Netherlands (NLG), Germany (GER), Japan (JPY),

and Switzerland (SWI). The sample period is January 1975 to June 2014 (474 observations).

When computing, for example, the volatilities and correlations of SDFs that are supported in

our incomplete markets framework, for Australia and Japan, the gross return vector Rt+1 includes

real returns on six assets, namely, on the Australian risk-free bond, on the Australian equity index,

on the Japanese risk-free bond, on the Japanese equity index, on the U.S. 30-year Treasury bond,

and on the MSCI world equity index, all denominated in Australian dollars, while R⋆
t+1 includes

returns on the same six assets, but now all the real returns are denominated in Japanese yen.

Moreover, the choice of assets in Rt+1 (or R∗
t+1) embed multi-currency and multi-country

exposures. Later, we assess the effect of enhancing (or reducing) the dimensionality of Rt+1 (or

R∗
t+1) on the properties of the SDFs pairs (mt+1, m

∗
t+1).

The country-specific data on the LIBOR interest-rate, equity index, exchange rates, consump-

tion growth, and inflation are described in Section II of the Internet Appendix.

3.1 Identification and admissible values of Θ

At the front and center of our theory is the feature that a higher market incompleteness parameter

Θ is associated with a greater volatility of the unspanned components of the SDFs. In this regard,

the constraint E[(y − y⋆)2] ≤ Θ2, in equation (27), is pivotal to our characterizations in incomplete

markets, but leaves open the question of how to identify and estimate Θ.

3.1.1 Motivating an algorithm for identifying Θ

Our identification strategy for Θ involves the consideration of two crucial theoretical objects and

one salient and pervasive attribute of international macroeconomic data.
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First, to establish the reasonableness of Θ, we exploit the closed-form tractability of
√

Var [mt+1],

which we compute via equations (42) and (43) as

Var [mt+1] ≈ Var [mz,t+1]︸ ︷︷ ︸
independent of Θ

+ E[u2t+1]︸ ︷︷ ︸
varies with Θ

(since E[ut+1] = 0, Cov [mz,t+1, ut+1] ≈ 0). (49)

Second, departures from complete markets can translate into less correlated SDFs, as in

ρm,m∗︸ ︷︷ ︸
correlation

≡
Cov

[
mz,t+1,m

∗
z,t+1

]
+ Cov

[
ut+1, u

∗
t+1

]√
Var[mt+1] Var[m∗

t+1]︸ ︷︷ ︸
varies with Θ

. (50)

The insight to garner is that there is a trade-off between the volatility of the SDFs and the corre-

lation ρm,m∗ , namely, a higher Θ increases the volatility of the unspanned component of the SDFs

but lowers the covariance and, typically, lowers the correlation between the SDFs.

Our theory argues that a financial intermediary would have an incentive to privately negotiate

contracts with investors that exploit the fact that domestic and foreign investors disagree on the

valuations of securities outside the linear span of Rt+1 (or R⋆
t+1), if the potential reward-for-risk

were to be high. The domestic and foreign SDFs become less correlated with larger divergence

between the valuations of securities outside the linear span of Rt+1 (or R⋆
t+1).

In contrast, a theory with Θ = 0 implies mt+1(
St+1

St
) = m⋆

t+1, and domestic and foreign investors

would place identical valuation on all Arrow-Debreu securities irrespective of whether they trade.

It also runs counter to the intuition that, if consumption growths are imperfectly correlated, then

unspanned states that are relatively unpleasant (favorable) for domestic (foreign) investors would

result in domestic investors placing greater marginal utility on them than foreign investors.

Third, germane to our identification strategy is the consensus that correlations between con-

sumption growth in industrialized countries are low. Exploiting this link, together with an analysis

of SDF volatilities and correlations, allows us to identify admissible values of Θ. Our aim is to ask

whether the identified Θ is consistent with the dimensions of consumption and asset return data. A

body of literature has sought to reconcile these two aspects of the data, as laid out, among others,

in Lewis (1996), Colacito and Croce (2011, 2013), Gavazzoni, Sambalaibat, and Telmer (2013),

Colacito, Croce, Gavazzoni, and Ready (2015), Stathopoulos (2015), and Zhang (2015).
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Fleshing out our identification strategy leads us to define the consumption-based risk sharing

index as

RSIC ≡
2Cov

[
log(ct+1/ct), log(c

⋆
t+1/c

⋆
t )
]

Var [log(ct+1/ct)] + Var
[
log(c⋆t+1/c

⋆
t )
] . (51)

To understand (51), assume a marginal rate of substitution consistent with isoelastic utility and

the same risk aversion γ in each country (as in Backus and Smith (1993) and Brandt, Cochrane, and

Santa-Clara (2006, equation (3))). Consider the approximation (ct+1/ct)
−γ = exp(−γ log(ct+1/ct)) ≈

1−γ log(ct+1/ct), so Var [(ct+1/ct)
−γ ] ≈ γ2Var [log(ct+1/ct)], Var

[
(c∗t+1/c

∗
t )

−γ
]
≈ γ2Var

[
log(c∗t+1/c

∗
t )
]
,

and Cov
[
(ct+1/ct)

−γ , (c∗t+1/c
∗
t )

−γ
]
≈ γ2Cov

[
log(ct+1/ct), log(c

⋆
t+1/c

⋆
t )
]
. Canceling γ2, we get RSIC .

One implication of incomplete markets is that RSIC will not be high, as noted and elaborated

in Backus and Smith (1993, page 298), Brandt, Cochrane, and Santa-Clara (2006), Lewis and Liu

(2015), and Zhang (2015). Across our sample of 45 country pairs, the average RSIC is 26%, with

a 5th (95th) percentile value of (−17%) 58%. Only seven country pairs exhibit RSIC above 50%.

Building on the above discussions, we consider the following algorithm to identify Θ.

1. Start with a benchmark close to complete markets (or mt+1(
St+1

St
) −m⋆

t+1 = 0) and a trial

value of Θ = 0.01. Solve Problem 1. The output is (λ, δ, d, d∗) and, hence, m and m∗.

2. Compute the RSI based on the asset market view in equation (28) and compare it to the

consumption-based RSIC in equation (51).

3. Iterate over the choice of Θ to minimize the discrepancy between the observed consumption-

based risk sharing and the corresponding one from asset returns.

The proposed methodology to identify Θ for country-specific pairs is, in part, an acknowledge-

ment that Θ cannot be directly computed from asset return data alone, unless a stand is taken on

the size of the unspanned components (i.e., Var[u]/Var[m] or Var[u∗]/Var[m∗]). Hampering identi-

fication from the mean equation, we further note from equation (47) that ΘEt[δ
√
St+1/St] = 0.

In the spirit of Hansen and Jagannathan (1991), we inquire whether the volatilities of the SDF

pairs (mt+1, m
∗
t+1), synthesized using the Θ estimates, are plausible, while being consistent with

the empirical regularity of low consumption risk sharing, and consistent with a lower bound on
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the covariance between the SDFs. Next, we compute the associated SDF correlations, and then

investigate if we can address international finance puzzles in our setting of incomplete markets.

In so doing, we strive to bridge some realities of international consumption and asset return

data and yet learn about the structure of supportable SDF pairs (mt+1, m
∗
t+1).

3.1.2 Discussion and rationale for the estimates of Θ

Table 1 presents a snapshot of the Θ estimates across all 45 country pairs, when Rt+1 (R∗
t+1)

contains six or four assets. The latter is a restricted version that omits the U.S. 30-year Treasury

bond and the MSCI world equity index by employing only the risk-free bonds and the equity indices

specific to a country pair.

Complementing this evidence, we first investigate whether the 45 Θ estimates obtained with six

assets closely correspond, in a statistical sense using the non-parametric Wilcoxon-Mann-Whitney

test statistic, to the counterparts with four assets. Our evidence reveals that the associated two-

sided p-value is 0.26, indicating that we cannot reject that the Θ estimates have the same underlying

distribution. Hence, we focus on the results obtained with six assets in Rt+1 (R∗
t+1).

With our procedure and six assets, we observe values of Θ that have an average 0.70, a standard

deviation of 0.18, and a 5th (95th) percentile value of 0.47 (0.99). We further note from equation

(49) that Θ > 0 implies that Var [mt+1] > Var [mz,t+1], where the latter represents the Hansen and

Jagannathan (1991) lower volatility bound with nonnegativity.

Table 2 presents our estimates of Θ across each of the 45 country pairs. To establish the reported

95% lower and upper confidence intervals on Θ displayed in square brackets, we randomly select,

with replacement, raw asset returns and recompute Z. We solve again for λ via (39), δ via (40),

and then yz. Then, we recompute m and m∗ and recompute the RSI in equation (45). Finally, we

recompute Θ using the algorithm in Section 3.1.1. We perform 5,000 bootstrap trials.

A particular observation is that our procedure is not tilted toward either low or high values

of Θ with considerable cross-sectional dispersion. Moreover, the average value of Θ is statistically

distinct from zero. We reach this conclusion from two perspectives. First, regressing the 45 values

of Θ onto a constant yields a two-sided p-value of 0.00. Next, the two-sided p-values from a t-test,

allowing for unequal variance, favors the same conclusion. The solution of Θ = 0 is never attained,
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attesting that the market incompleteness parameter is determined by the interplay between the

properties of the asset return moments and data on consumption risk sharing.

Some other patterns emerge from Table 2. For example, CAD/USD has the lowest Θ of 0.39,

while NZD/STG, STG/USD, and FRA/GER manifest below average Θ estimates of 0.45, 0.47

and 0.57, respectively. On the other hand, there are some country pairs that manifest above

average Θ estimates, notably, those involving high interest rate differentials, and where one of

the countries is Australia or New Zealand. For example, AUD/GER, AUD/JPY, AUD/SWI,

NZD/GER, NZD/NLG, and NZD/SWI all exhibit Θ values exceeding 0.84.

How sensible are the values of Θ that minimize the discrepancy between consumption-based

risk sharing and the corresponding one from asset returns? To offer a perspective, we set q = Θ in

equations (24) and (25), then EP = 1
2ΘE[v′Z] and Var[X] = Var[12Θv′Z]+1 = 1+ 1

4Θ
2Var[v′Z]. If

we use benchmark values of an excess return of 0.08 and standard deviation of 0.16, then E[v′Z] =

1.08 and Var[v′Z] = 0.162. Then a value of, for example, Θ = 0.70, the average in Panel A of

Table 1, (respectively, Θ = 0.47 (5th percentile) or Θ = 0.99 (95th percentile)) results in a reward-

for-risk EP/
√

Var[X] ≈ 0.38 (respectively, ≈ 0.25 (5th percentile), or ≈ 0.53 (95th percentile)).

Ruling out “good deals,” associated with a reward-for-risk EP/
√

Var[X] ≈ 0.38, on average,

lowers the risk sharing index, implied from asset return data, sufficiently to be able to align it

with that computed from consumption growth data. Put differently, one can align the observed

consumption-based risk sharing and the corresponding one from asset returns, on average, across

the 45 country pairs, if one believes that there might be sufficient divergence between the valuations

of securities outside the linear span of R (or R⋆) that a reward-for-risk of 0.38 is possible.

Cochrane and Saá-Requejo (2000, page 82) suggest eliminating good deals by ruling out Sharpe

ratios greater than twice the Sharpe ratio available on a broad-based equity index. Their choice is

not directly observable, but is instead based on introspection and common sense. Still, in search

of another benchmark, we bridge implementation and theory by considering empirical analogs. We

compute the Appraisal Ratio as the ratio of the mean to standard deviation of foreign equity index

returns over and above domestic equity index returns across all currency pairs. The most favorable

annualized Appraisal Ratio is 0.26 (NLG over and above JPY). Twice this figure is 0.52.
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The message is that there exist values of Θ not equal to zero, such that one can reconcile the evi-

dence on consumption-based risk sharing with that from asset returns. Further, the values of Θ are,

from several different angles, economically motivated and anchored around sensible benchmarks.

3.2 Gauging empirical plausibility: Volatilities and correlations among SDFs

One may surmise that non-zero values of Θ will increase the volatility of m and m⋆. Thus, an

important question is: Are the SDFs unrealistically volatile in our incomplete markets setting? An

equally relevant question is: What are the derived magnitudes of the correlation between the SDFs.

Finally, can our modeling of (mt+1, m
∗
t+1) pairs help to improve the understanding of economic

phenomena, as seen from the vantage point of international finance puzzles?

Our closed-form tractability enables us to provide quantitative guidance on the size of the

country-specific unspanned components, computed as Var[u]
Var[m] and Var[u∗]

Var[m∗] , thus, taking us beyond

Hansen and Jagannathan (1991), who provide insights about the spanned components of the SDFs.

To get a start on addressing some of the aforementioned questions, we compute the volatilities

of m and m∗, denoted by σ[m] and σ[m∗], together with the pairwise correlation between m and

m∗, denoted by ρm,m∗ . The results are reported in Table 2, and the snapshot is in Table 3.

In order to interpret these numbers, we consider the conceptually important benchmark of

Θ = 0.01, which corresponds to a situation in which Var[u]
Var[m] and

Var[u∗]
Var[m∗] are virtually zero.

Avg. SD Min. Max. 5th 25th 50th 75th 95th

σ[m]
∣∣
Θ=0.01

43 7 24 53 33 37 44 49 51

σ[m∗]
∣∣
Θ=0.01

45 6 30 54 36 39 45 50 52

ρm,m∗
∣∣
Θ=0.01

0.96 0.02 0.86 1.0 0.93 0.95 0.97 0.98 1.00

The values of ρm,m∗
∣∣
Θ=0.01

are between 0.86 and 1.00, establishing that, in the absence of an

unspanned component of SDFs, the SDF correlations across the 45 pairs are universally high.

Our quantitative evaluation, reported in Tables 2 and 3, zeros in on two aspects of the economic

environment. First, using the estimated values of Θ increases the volatility of m and m⋆, enabling

concrete insights about the nature of the unspanned component of SDFs that are supportable in

our system of incomplete markets.
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Second, our analysis quantifies the most pessimistic values of ρm,m∗ in incomplete economies

that are compatible with the lower bound on Cov[m,m∗]. In particular, the decline in ρm,m∗ is

pronounced, consistent with Cov[u, u∗] becoming more negative. The average ρm,m∗ is 0.26 (the

5th and 95th percentile value is −0.16 and 0.58, respectively), which contrasts the average value of

0.96 (the 5th and 95th percentile value is 0.93 and 1.00, respectively) when Θ = 0.01.

Our exercises elicit the observation that the size of Var[u]
Var[m] has a minimum value of 0.21 and a

maximum value of 0.65, with an average of 0.38 (as presented in Panel C of Table 3). Providing

an additional feel for the importance of the unspanned components among our sample of countries,

the average size of the unspanned component for the United States, measured against the other

nine industrialized countries, is 0.28 and ranges between 0.18 to 0.38.

The takeaway is that relaxing Θ = 0 (or, allowing m(St+1

St
) − m⋆ ̸= 0), translates into less

correlated m and m⋆ pairs and sizable Var[u]
Var[m] and

Var[u∗]
Var[m∗] , culminating into a consistency between

the risk sharing index from consumption and asset return data.

Expanding on these themes, the average values of σ[m] and σ[m∗] (consistent with our lower

bound on covariances), across the 45 country pairs, are 57% and 60%. These values are higher than

the corresponding values when Θ = 0.01 - as they must be (by equation (49)) - but the new insight

is that none of the SDF volatilities is so high as to be implausible. Specifically, the reported values

of σ[m] and σ[m∗] are not out of line with textbook benchmarks (e.g., Cochrane (2005, page 456)).

We consider two exercises that establish robustness:

Robustness Exercise A: What is the impact of expanding assets in Rt+1 (R∗
t+1)? We exper-

imented with several choices, and our conclusions remain robust. For example, we increased the

dimensionality of Rt+1 (R∗
t+1) to seven by augmenting the set of asset returns to include that of

the S&P commodity index. At the heart of our finding, as seen from Table Internet-II, is that the

average Θ estimated is 0.72, the average Var[u]
Var[m] is 0.40, with almost no effect on the average ρm,m∗ .

Robustness Exercise B: Instead of estimating values of Θ, necessarily different for each country

pair, we ask: Is there a value of Θ, common across the industrialized countries, at which the risk

sharing from consumption most closely corresponds, in a statistical sense using the non-parametric

Wilcoxon-Mann-Whitney test statistic, to the counterparts from asset returns? The associated

two-sided p-value with Θ = 0.60 (respectively, Θ = 0.65) is 0.32 (respectively, 0.58 ), indicating
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that we cannot reject that risk sharing extracted from consumption, and asset returns have the

same underlying distribution. The two-sided p-values for other values of Θ are all below 0.05.

Comparing Table Internet-III and Table 3 speaks to the consistency of our conclusions.

Closing, our theoretical and empirical results contain two messages for enriching international

finance models. First, our depiction of international consumption and asset market data calls

for modeling the composition of the SDFs, and in particular, incorporating nontrivial unspanned

components. Second, our exercises suggest that the correlations between domestic and foreign

SDFs (and, thus, international risk sharing) need not be high.

3.3 Framing of international finance puzzles in incomplete markets

This section considers the correspondence between incomplete markets and three puzzles of com-

plete markets: (i) the forward premium puzzle, (ii) the Backus and Smith puzzle, and (iii) the

volatility/risk sharing puzzle. Our interest lies in exploring whether these puzzles are amenable to

reconciliation through a route in which markets are deemed to be incomplete.

3.3.1 Incomplete markets and expected excess return of foreign exchange

How do deviations from market completeness, Θ, affect the expected excess return of foreign ex-

change (i.e., the currency risk premium)? The answer in our framework is: There is no effect.

Intuitively, raising Θ increases the contribution of the zero-mean unspanned components u and

u∗, which should not, and does not, warrant any additional compensation. Now we prove:

Result 1 Deviations from market completeness, Θ, are irrelevant for the expected excess return of

foreign exchange, given by

Et[er
fx
t+1] ≡ Et

[
St+1

St

]
− Ft

St︸ ︷︷ ︸
Et[1+rfxt+1]−Rf/R

∗
f

= −Rf Covt[mz,t+1, r
fx
t+1], where rfxt+1 ≡

St+1

St
− 1, (52)

and Ft ≡ StRf/R
∗
f is the forward exchange rate.

Proof: We know from the pricing of the foreign currency risk-free return (St+1/St)R
∗
f that

Et[mt+1 (St+1/St)R
∗
f ] = 1. Exploiting mt+1 = mz,t+1 + ut+1, and using the orthogonality con-
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dition Et[δ
√
St+1/St] = 0 in equation (48), we deduce Et[mz,t+1 (St+1/St)] = 1/R∗

f . Then, using

the definition of covariance implies Et[1 + rfxt+1] = Rf/R
∗
f −Rf Covt[mz,t+1, r

fx
t+1]. ♣

Result 1 is enormously important. For any value of Θ whatsoever, our framework is automati-

cally compatible with the expected excess return of foreign exchange.

It is worth emphasizing that our Result 1 is fundamentally different from Lustig and Verdelhan

(2016, Corollary 2), who argue that currency risk premiums are changed by the multiplicative wedge

perturbation under incomplete spanning. Ongoing questions about the validity of this result are

also the subject of Bakshi and Crosby (2016, Claim 1). They show that in the multiplicative wedge

approach (in which mt+1 (
St+1

St
) = m∗

t+1e
ηt+1), the currency risk premium does not depend on the

multiplicative wedge perturbation ηt+1. Thus, our Result 1 is not specific to models of incomplete

markets that give rise to additive form of the SDFs with spanned and unspanned components.

3.3.2 Incomplete markets and the Backus and Smith (1993) puzzle

Predicating on a two-country complete markets economy with non-traded goods, the theory of

Backus and Smith (1993, Proposition 2, equation (4.8)) restricts the slope coefficient to unity when

(log) changes in real exchange rates are regressed on relative (log) marginal utility growth, or

equivalently, (log) relative SDFs. The puzzle is the lack of empirical support for the hypothesized

relationship, gauged by the regression slope coefficients that are substantially different from unity.

How to interpret Backus and Smith (1993) puzzle in incomplete markets? We do so from two

perspectives. Departing from complete markets, we have endeavored to construct (mt+1, m
∗
t+1)

pairs by solving an optimization problem that minimizes the covariance between the SDFs, which

rules out trades with unacceptably large reward-for-risk, which enforces correct pricing and the

nonnegativity of SDFs, while being also consistent with limited risk sharing. The null hypothesis

of complete markets then translates into an empirical testing equation with identifiable restrictions:

log(St+1/St) = Π0 + Π1 log(m∗
t+1/mt+1) + et+1,

with the null hypothesis : Π0 = 0 and Π1 = 1.

(53)

The population regression coefficient Π1 = Cov(log(St+1/St), log(m
∗
t+1/mt+1))/Var(log(m

∗
t+1/mt+1))

is not analytical, but can be computed based on the constructed (mt+1, m
∗
t+1) pairs and the ob-
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served log(St+1/St). Table 4 presents our findings, focusing on country pairs in which the domestic

country is either the United States, Japan, or Switzerland (for space considerations).

Our results show that there is a relationship between the real exchange rate growth and the

(mt+1, m
∗
t+1) pairs but it is not one-for-one. The Π1 coefficients range between −0.00 and 0.08,

and the hypothesis of Π1 = 1 is overwhelmingly rejected based on the p-values from the Wald test.

The documented deviations of Π1 from unity in our incomplete markets setting is indicative of the

prevailing empirical evidence on the Backus and Smith regressions.

The second perspective is that incomplete markets imply a multitude of SDFs. In this case,

equation (5) implies Et[ξt+1] = 0, Et[ξt+1R
⋆
t+1] = 0, Et[ξ

∗
t+1] = 0, and Et[ξ

∗
t+1Rt+1] = 0. This

prompts us to formulate a hypothesis about (mt+1,m
∗
t+1) pairs and exchange rate growth as

mt+1(
St+1

St
)−m⋆

t+1 = ψ0 + εt+1, mt+1 − m⋆
t+1/(

St+1

St
) = ψ∗

0 + ε∗t+1, (54)

where (εt+1, ε
∗
t+1) are zero-mean regression residuals. The testable hypothesis is ψ0 = 0 and ψ∗

0 = 0.

One may view (54) as the analogue to Backus and Smith (1993, Proposition 2) in incomplete

markets, but with the testing equation rearranged and in non-log form.

In moving from theory to implementation, we cast (54) as a SUR estimation. When (mt+1,m
∗
t+1)

are based on the country-specific Θ estimates, the ψ0 and ψ∗
0 estimates are uniformly close to zero

and individually and jointly insignificant. These estimates are not reported to save on space.

So what is the bottom line? In line with Backus and Smith (1993), we have tested relations that

link the moments of the triplet (mt+1, m
∗
t+1,

St+1

St
). The first one in (53) is empirically inspired,

while the other one in (54) is exact, but in expectations form. Our estimation results offer a contrast

to Lustig and Verdelhan (2016, Section 2.3), who are agnostic on whether low slope coefficients in

the Backus and Smith regressions can be obtained through the mechanism of incomplete markets.

3.3.3 Reinterpretation of the volatility/risk sharing puzzle in incomplete markets

The volatility/risk sharing puzzle, as framed and exposed in Brandt, Cochrane, and Santa-Clara

(2006), is that when log(St+1

St
) = log(m⋆

t+1) − log(mt+1) holds state-by-state in complete markets,
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one can rationalize the relatively low volatility of (log) exchange rate growth observed in the data

only if log(mt+1) and log(m∗
t+1) are highly correlated, or if the risk sharing index in (28) is high.

Matters are conceptually different in incomplete markets. Some SDFs satisfy mt+1(
St+1

St
) −

m∗
t+1 = 0 or mt+1 − m∗

t+1/(
St+1

St
) = 0, while others do not. In particular, when Et[ξt+1] = 0, or

Et[mt+1(
St+1

St
) −m⋆

t+1] = 0, there is no longer a tractable functional relationship that allows one

to take logs and apply the operations of expectation or variances. Instead, we take the exchange

rate dynamics, along with other asset returns, as fixed by the data, and solve for the SDFs. Thus,

there is no unique mapping between mt+1, m
∗
t+1, and

St+1

St
in incomplete markets, suggesting that

the volatility puzzle may not be well posed.

Elaborating on the above, we note that Et[ξt+1] = 0 and Et[ξ
∗
t+1] = 0 always hold, regardless

of whether the market is complete or incomplete. For instance, Et[ξt+1] = 0 is isomorphic to Ft
St

=

Et[m∗
t+1]

Et[mt+1]
, whereas Et[ξ

∗
t+1] = 0 is isomorphic to

F−1
t

S−1
t

= Et[mt+1]
Et[m∗

t+1]
. These restrictions are equivalent

to testing Ψ0 = Ψ∗
0 = 0 (as outlined in equation (54)) and are not rejected with our synthesized

(mt+1, m
∗
t+1). The essential point is that the SDFs are consistent with the time series of (St+1

St
).

To examine empirical plausibility, and at the same time comment on the consistency of our

approach with the volatility of exchange rate growth, we propose a result that holds under all

martingale measures, irrespective of whether markets are complete or incomplete. Now we state:

Result 2 Each mt+1 satisfies

Et[(r
fx
t+1 − Et[r

fx
t+1])

2] = vrpfxt+1 + Et

[
mt+1

Et[mt+1]
(rfxt+1)

2

]
− (

Ft

St
− 1)2︸ ︷︷ ︸

risk-neutral currency variance

, (55)

where vrpfxt+1 ≡ −Covt[
mt+1

Et[mt+1]
, (rfxt+1−Et[r

fx
t+1])

2]+(Et[r
fx
t+1]−(Ft

St
−1))2 is the currency variance risk

premium. Moreover, deviations from market completeness, Θ, can be relevant for vrpfxt+1 whenever

Covt[ut+1, (r
fx
t+1 − Et[r

fx
t+1])

2] = 1
2dΘEt[δ (St+1/St)

3/2] ̸= 0.

Proof: See Appendix B. ♣

We can convert equation (55) into a testing equation by considering the cross-sectional regression

vpn = Ω0+Ω1 vqn+en, for n = 1, . . . ,N , where the variance vp2 ≡ E[(rfxt+1−E[rfxt+1])
2] is computed

from the time series of exchange rate growth. With mt+1 synthesized from Problem 1, we compute
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the model risk-neutral variance vq2 ≡ E[ mt+1

E[mt+1]
(rfxt+1)

2] − (E[ mt+1

E[mt+1]
rfxt+1])

2 and report the OLS

regression results with standard errors corrected for heteroscedasticity (for each of USD, JPY, and

SWI as the domestic currency against the remaining nine currencies following Table 4):

Ω0 Ω1 Wald p-val.

coeff. p-val. coeff. p-val. Ω1 = 1 N

All 27 pairs -0.114 0.037 1.009 0.000 0.083 27

Two conclusions can be drawn from our analysis. First, as reflected in Ω1 close to unity, the

average risk-neutral currency volatilities generated in our incomplete market setting (and Prob-

lem 1) appear anchored to the average unconditional currency volatilities. Second, the finding

Ω0 < 0 points to the presence of a negative (average) currency variance risk premium. The latter

is consistent with the evidence from currency options markets (e.g., Ammann and Buesser (2013,

Table 1)).

Closing, we have shown that the most pessimistic estimates of correlations between the domestic

and foreign SDFs need not be high. This attribute of our analysis in incomplete markets counteracts

the intuition that SDFs, implied by asset return data when mt+1(
St+1

St
) − m∗

t+1 = 0 is assumed,

must be highly correlated to reproduce the low volatility of (log) exchange rate growth. Moreover,

the SDFs constructed from Problem 1 point to negative (average) currency variance risk premiums,

even though we did not incorporate currency options return data in their construction.

4 Conclusions

We present a framework for characterizing domestic and foreign SDF pairs in international economies

and incomplete markets, with novel ingredients. Importantly, we do not assume that exchange rate

growth equals the ratio of SDFs. Moreover, we develop a restriction that precludes “good deals”

in international economies with incomplete markets. We show that ruling out “good deals - the

possibility to form a portfolio with an implausibly high reward-for-risk - places an upper bound on

the dispersion of the domestic and foreign SDFs.

A derived feature of our model is an additive form of the SDFs in which the SDFs are analyt-

ically decomposed into their spanned and unspanned components, and a low correlation between
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the domestic and foreign SDFs can arise when the country-specific unspanned components are neg-

atively correlated. We show that our solution, with an additive form of the SDFs, lies outside of

the class of SDFs that are possible under the multiplicative wedge approach of Backus, Foresi, and

Telmer (2001) and considered further in Lustig and Verdelhan (2016).

At the core of our analysis is the market incompleteness parameter that quantifies the upper

bound on the dispersion of the SDFs through its role as the maximum reward-for-risk. We consider

an algorithm to estimate the market incompleteness parameter from consumption growth data,

in conjunction with asset return data. The resulting framework of incomplete markets is both

tractable and versatile: It can be aligned to patterns of limited international risk sharing, can

accommodate a relatively large difference between the unspanned components of the SDFs, and

can realistically model the volatility of SDFs and their correlations.

Additionally, we show that our incomplete markets approach is useful for thinking about inter-

national finance puzzles. Considering first the forward premium puzzle, our framework, through

the channel of the spanned components of the SDFs, reproduces a currency risk premium consistent

with the data. Going further, our model of incomplete markets remedies shortcomings of complete

market models with respect to the Backus and Smith (1993) puzzle: we show that a regression of

log exchange rate growth on log relative SDFs constructed from our model generate slope coeffi-

cients (and correlations) in line with observable patterns. Finally, we show that it is possible to

generate low correlations between the domestic and foreign SDFs. This feature of our model merits

attention in the context of the volatility/risk sharing puzzle, and offers a source of differentiation

from Brandt, Cochrane, and Santa-Clara (2006), who argue that the correlations between the SDFs

and the level of international risk sharing, imputed from asset return data, must be high.

This paper has provided an improved and economically motivated framework for modeling

SDFs, and their correlations, in a system of incomplete international economies. The approach is

consistent with the evidence on limited international risk sharing.
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A Appendix A: |E[y − y⋆]| should, in practice, be very small and proof that

E[y − y⋆] = 0 when m, m⋆ and St+1/St are lognormally distributed

Our objective is to show that (i) |E[y − y⋆]| should, in practice, be very small, and (ii) E[y − y⋆] is

identically zero when m, m⋆ and St+1/St are lognormally distributed.

We focus first on the case in which log(m), log(m⋆), and log(St+1/St) are jointly normally

distributed, and prove an exact result. We have

E[m] = 1/Rf , E[m⋆] = 1/R⋆
f , and E[St+1/St] ≡ exp (µs) , (A1)

and the variances are Var [log(m)], Var [log(m⋆)], and Var [log(St+1/St)] ≡ σ2s , respectively.

Using standard results on moment generating functions, E[(St+1/St)
1/2] = exp

(
1
2µs −

1
8σ

2
s

)
and

E[(St+1/St)
−1/2] = exp

(
−1

2µs +
3
8σ

2
s

)
. Equation (4), namely, Et[m(St+1

St
)−m⋆] = 0, implies

1

R⋆
f

=
1

Rf
exp (µs +Cov [log(m), log(St+1/St)]) , (A2)

while E[m−m⋆/(St+1

St
)] = 0 implies (i.e., Balakrishnan and Lai (2009, equation (11.69), page 526)):

1

Rf
=

1

R⋆
f

exp
(
−µs + σ2s − Cov [log(m⋆), log(St+1/St)]

)
. (A3)

Further,

E[y] = E[m(St+1/St)
1/2] = (1/Rf ) exp

(
1

2
µs +

1

2
Cov [log(m), log(St+1/St)]−

1

8
σ2s

)
, (A4)

= 1/
√
RfR

⋆
f exp

(
−1

8
σ2s

)
, (using (A2)) (A5)

and also,

E[y∗] = E[m⋆(St+1/St)
−1/2] =

(
1/R⋆

f

)
exp

(
−1

2
µs −

1

2
Cov [log(m⋆), log(St+1/St)] +

3

8
σ2s

)
= 1/

√
RfR

⋆
f exp

(
−1

8
σ2s

)
, (using (A3)), (A6)

or E[y − y⋆] = 0. Our assertion is proved. �
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Next, we show |E[y − y⋆]| ≈ 0, in general. With y = m
√
St+1/St and y

⋆ = m⋆/
√
St+1/St, the

analog to equation (4) is

E[(y − y⋆) (St+1/St)
1/2] = 0 and, likewise, E[(y − y⋆)

1

(St+1/St)1/2
] = 0. (A7)

More generally, defining g[ϕ] ≡ (ϕSt+1/St)
1/2 + 1/(ϕSt+1/St)

1/2, for any ϕ, satisfying 0 < ϕ <

+∞, we have

E[(y − y⋆)(ϕSt+1/St)
1/2 + (y − y⋆)/(ϕSt+1/St)

1/2] ≡ E[(y − y⋆) g[ϕ]] = 0. (A8)

Hence, Cov [y − y⋆, g[ϕ]] = −E[y − y⋆]E[g[ϕ]]. Thus, |E[y − y⋆]|2(E[g[ϕ]])2 ≤ Var [y − y⋆] Var [g[ϕ]].

Or,

|E[y − y⋆]|2 {(E[g[ϕ]])2 −Var [g[ϕ]]} ≤ E[(y − y⋆)2]Var [g[ϕ]] . (A9)

We further note that Var [g[ϕ]] = E[((ϕSt+1/St) + 1/(ϕSt+1/St))− 2]− E[g[ϕ]− 2]E[g[ϕ] + 2].

In practice, for ϕ ≈ 1, Var [g[ϕ]] may be very small. For example, empirical data suggests

St+1/St is close to a martingale, so E[St+1/St] ≈ 1. Moreover, St+1/St has relatively low volatility,

suggesting E[1/(St+1/St)] may also be close to unity. Hence, E[((St+1/St) + 1/(St+1/St))− 2] ≈ 0,

E[g[1]] ≈ 2, and E[g[1]− 2] = E[(St+1/St)
1/2+1/(St+1/St)

1/2− 2] ≈ 0, and, thus, Var [g (1)] should

typically be close to zero. Hence, in practice, equation (A9), evaluated in the special case of ϕ = 1,

should imply a tight bound on |E[y − y⋆]|. �

B Appendix B: Proof of Result 2

For brevity of equation presentation, let µfxt ≡ Et[r
fx
t+1], where r

fx
t+1 ≡

St+1

St
− 1.

Define the risk-neutral (martingale) measure such that the expectation EQ
t [.] satisfies

EQ
t [(r

fx
t+1)

2] = Et[
mt+1

Et[mt+1]
(rfxt+1)

2], and, (B1)

EQ
t [r

fx
t+1] = Et[

mt+1

Et[mt+1]
rfxt+1] =

Ft

St
− 1. (B2)
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The risk-neutral mean in equation (B2) follows, since Et[mt+1(
St+1

St
− Ft

St
)] = 0. Using the covariance

operator,

Et[mt+1(r
fx
t+1 − µfxt )

2] = Covt[mt+1, (r
fx
t+1 − µfxt )

2] + Et[mt+1]Et[(r
fx
t+1 − µfxt )

2]. (B3)

Rearranging and simplifying,

Et[(r
fx
t+1 − µfxt )

2]− EQ
t [(r

fx
t+1 − µfxt )

2] = − 1

Et[mt+1]
Covt[mt+1, (r

fx
t+1 − µfxt )

2]. (B4)

We may reexpress the left hand side of equation (B4) by adding and subtracting the risk-neutral

mean Ft
St

− 1 in the second term as

Et[(r
fx
t+1 − µfxt )

2]− EQ
t [(r

fx
t+1 − (

Ft

St
− 1)− {µfxt − (

Ft

St
− 1)})2] = −Covt[

mt+1

Et[mt+1]
, (rfxt+1 − µfxt )

2].(B5)

The expression for the currency variance risk premium is

Et[(r
fx
t+1 − µfxt )

2]− EQ
t [(r

fx
t+1 − (

Ft

St
− 1))2]︸ ︷︷ ︸

Currency variance risk premium

= {µfxt −(
Ft

St
−1)}2−Covt[

mt+1

Et[mt+1]
, (rfxt+1−µfxt )2]. (B6)

We have the proof of (55) of Result 2, noting that EQ
t [(r

fx
t+1 − (Ft

St
− 1))2] = EQ

t [(r
fx
t+1)

2]− (Ft
St

− 1)2.

Additionally, the additive form of the SDF implies mt+1 = mz,t+1 + ut+1, where ut+1 =

1
2dΘ δ 1√

St+1/St
from equation (43). Moreover, (rfxt+1 − µfxt )

2 = (rfxt+1)
2 + (µfxt )

2 − 2(µfxt )r
fx
t+1. Then

the currency variance risk premium depends on the market incompleteness parameter Θ via

Covt[ut+1, (r
fx
t+1 − µfxt )

2] =
1

2
dΘEt[δ (St+1/St)

3/2], (B7)

since Et[δ
√
St+1/St] = 0. It is already established that the currency risk premium Et[r

fx
t+1]−(Ft

St
−1)

is independent of Θ. �
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Table 1: A snapshot of the estimates of market incompleteness parameter Θ

The estimation of Θ is performed for each of the 45 country pairs of industrialized countries.
The countries in our sample are Australia (AUD), New Zealand (NZD), United Kingdom (STG),
France (FRA), Canada (CAD), United States (USD), Netherlands (NLG), Germany (GER), Japan
(JPY), and Switzerland (SWI). Reported are the mean, the standard deviation, the minimum, the
maximum, and the percentiles of the Θ estimates. Our estimation algorithm incorporates the
argument that there exists a value of Θ that minimizes the discrepancy between the risk sharing
index from consumption and asset returns (as detailed in Section 3.1.1). We consider different sets
of asset returns, allowing for multi-currency and multi-country exposures. Consider the Australia
versus Japan (AUD/JPY) country pair, where the gross return vector Rt+1 contains six assets:

Rt+1︸ ︷︷ ︸
6×1

=



Return of the Australian risk-free bond (in AUD)

Return of the Australian equity index (in AUD)

Return of the Japanese risk-free bond (in AUD)

Return of the Japanese equity index (in AUD)

Return of the U.S. 30-year Treasury bond (in AUD)

Return of the MSCI world equity index (in AUD)

Symmetrically, R∗
t+1 = Rt+1/(

St+1

St
) contains the same set of gross returns denominated in Japanese

yen, where St+1

St
is the exchange rate growth with the Japanese yen as the reference currency. The

return vector Rt+1 (R∗
t+1) with four assets is a restricted version of that with six assets with

returns of (i) the Australian risk-free bond, (ii) the Australian equity index, (iii) the Japanese
risk-free bond, and (iv) the Japanese equity index. The sample period considered is January 1975
to June 2014 (474 observations).

Percentiles
Mean SD Min. Max. 5th 25th 50th 75th 95th

Panel A: The dimensionality of Rt+1 (R∗
t+1) is six.

Six Assets 0.70 0.18 0.39 1.13 0.47 0.56 0.68 0.84 0.99

Panel B: The dimensionality of Rt+1 (R∗
t+1) is four.

Four Assets 0.66 0.17 0.39 1.10 0.43 0.54 0.60 0.73 0.94
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Table 2: Estimates of Θ, SDF volatilities, correlation between SDFs, and the size of the
unspanned component of the SDFs, when Rt+1 (R∗

t+1) contains six assets

Reported are the Θ estimates, the SDF volatilities, the correlation between the SDFs, and the size of the unspanned
components of the SDFs. There are 10 countries in our sample: Australia (AUD), New Zealand (NZD), United
Kingdom (STG), France (FRA), Canada (CAD), United States (USD), Netherlands (NLG), Germany (GER), Japan
(JPY), and Switzerland (SWI). The results are displayed in the order of decreasing average interest-rates (so Australia
(AUD) has the highest average interest-rates, while Switzerland (SWI) has the lowest average interest-rates). The
95% lower and upper bootstrap confidence intervals are in square brackets.

Panel A Panel B: Properties of the domestic and foreign SDFs
Bootstrap

Θ 95% CI σ[m] σ[m∗] ρm,m∗
Var[u]
Var[m]

Var[u∗]
Var[m∗]

AUD/NZD 0.50 [0.32 0.75] 42 43 0.26 0.39 0.33
AUD/STG 0.73 [0.48 0.91] 56 61 0.20 0.38 0.40
AUD/FRA 0.63 [0.42 0.84] 51 55 0.24 0.37 0.36
AUD/CAD 0.50 [0.32 0.71] 46 49 0.42 0.29 0.27
AUD/USD 0.71 [0.45 0.90] 59 64 0.30 0.35 0.33
AUD/NLG 0.97 [0.69 1.15] 69 74 0.05 0.47 0.46
AUD/GER 0.96 [0.71 1.18] 63 68 -0.11 0.56 0.52
AUD/JPY 0.96 [0.79 1.21] 61 67 -0.19 0.59 0.55
AUD/SWI 0.84 [0.59 1.03] 63 69 0.14 0.49 0.43

NZD/STG 0.45 [0.23 0.65] 48 51 0.55 0.21 0.21
NZD/FRA 0.73 [0.52 0.97] 48 53 -0.09 0.58 0.53
NZD/CAD 0.49 [0.26 0.73] 44 51 0.40 0.29 0.28
NZD/USD 0.61 [0.33 0.80] 51 58 0.32 0.34 0.32
NZD/NLG 1.00 [0.71 1.18] 67 72 -0.06 0.59 0.58
NZD/GER 0.98 [0.80 1.24] 59 66 -0.28 0.65 0.60
NZD/JPY 0.85 [0.68 1.20] 54 60 -0.16 0.59 0.53
NZD/SWI 1.13 [0.83 1.33] 73 78 -0.15 0.57 0.56

STG/FRA 0.62 [0.42 0.80] 54 55 0.35 0.31 0.33
STG/CAD 0.46 [0.21 0.65] 49 50 0.54 0.26 0.22
STG/USD 0.47 [0.22 0.63] 52 55 0.61 0.23 0.18
STG/NLG 0.76 [0.47 0.92] 64 67 0.32 0.33 0.34
STG/GER 0.72 [0.47 0.91] 56 59 0.20 0.45 0.41
STG/JPY 0.57 [0.34 0.77] 52 56 0.36 0.31 0.30
STG/SWI 0.97 [0.72 1.14] 71 75 0.10 0.44 0.44

FRA/CAD 0.65 [0.43 0.85] 54 56 0.26 0.37 0.35
FRA/USD 0.56 [0.32 0.74] 53 56 0.45 0.28 0.25
FRA/NLG 0.71 [0.47 0.86] 63 65 0.39 0.30 0.30
FRA/GER 0.57 [0.27 0.75] 54 56 0.46 0.27 0.26
FRA/JPY 0.55 [0.38 0.78] 48 51 0.33 0.32 0.31
FRA/SWI 0.56 [0.31 0.73] 58 60 0.53 0.23 0.22

CAD/USD 0.39 [0.14 0.57] 47 49 0.66 0.21 0.18
CAD/NLG 0.68 [0.42 0.86] 60 61 0.34 0.34 0.31
CAD/GER 0.71 [0.47 0.94] 57 59 0.22 0.40 0.36
CAD/JPY 0.94 [0.66 1.16] 64 67 -0.06 0.52 0.52
CAD/SWI 0.67 [0.35 0.85] 59 61 0.36 0.44 0.37

USD/NLG 0.64 [0.40 0.80] 64 64 0.49 0.25 0.25
USD/GER 0.56 [0.35 0.75] 53 53 0.42 0.29 0.30
USD/JPY 0.73 [0.48 0.91] 59 61 0.24 0.37 0.38
USD/SWI 0.80 [0.51 0.97] 65 66 0.24 0.38 0.37

NLG/GER 0.52 [0.31 0.67] 57 57 0.59 0.23 0.22
NLG/JPY 0.87 [0.62 1.05] 67 69 0.15 0.41 0.42
NLG/SWI 0.76 [0.48 0.92] 67 69 0.36 0.31 0.32

GER/JPY 0.47 [0.28 0.71] 47 48 0.47 0.24 0.25
GER/SWI 0.59 [0.30 0.76] 59 60 0.51 0.24 0.25

JPY/SWI 0.99 [0.71 1.17] 72 72 0.03 0.49 0.46
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Table 3: A snapshot of SDF volatilities, correlation between SDFs, and the size of the
unspanned components

Reported is a snapshot of (i) SDF volatilities σ[m] and σ[m∗], (ii) correlation between SDFs ρm,m∗ ,

and (iii) the size of the unspanned components of the SDFs Var[u]
Var[m] and Var[u∗]

Var[m∗] . Rt+1 with six

assets, in the case of AUD/JPY, contains the returns of (i) the Australian risk-free bond, (ii) the
Australian equity index, (iii) the Japanese risk-free bond, (iv) the Japanese equity index, (v) the
U.S. 30-year treasury bond, (vi) the MSCI world index, where each of the returns are denominated
in Australian dollars, while R∗

t+1 contains the same set of assets denominated in Japanese yen. The
Rt+1 (R∗

t+1) with four assets is a restricted counterpart of that with six assets, with the returns of
(i) the Australian risk-free bond, (ii) the Australian equity index, (iii) the Japanese risk-free bond,
and (iv) the Japanese equity index.

Percentiles
Mean SD Min. Max. 5th 25th 50th 75th 95th

Panel A: SDF volatilities
σ[m] Six assets 57 8 42 73 46 52 57 63 71

Four assets 54 8 38 70 41 48 53 60 67

σ[m∗] Six assets 60 8 43 78 49 55 60 67 74
Four assets 57 9 42 77 43 51 57 63 71

Panel B: Correlation between SDFs
ρm,m∗ Six assets 0.26 0.24 -0.28 0.66 -0.16 0.14 0.32 0.42 0.58

Four assets 0.26 0.24 -0.28 0.66 -0.16 0.14 0.32 0.42 0.58

Panel C: Size of the unspanned component of the SDFs
Var[u]
Var[m] Six assets 0.38 0.12 0.21 0.65 0.23 0.29 0.35 0.45 0.59

Four assets 0.36 0.12 0.17 0.64 0.21 0.27 0.33 0.43 0.58

Var[u∗]
Var[m∗] Six assets 0.36 0.11 0.18 0.60 0.21 0.27 0.33 0.43 0.56

Four assets 0.35 0.11 0.16 0.60 0.21 0.26 0.33 0.43 0.53
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Table 4: Regressions of (log) real exchange rate growth on (log) relative SDFs

The U.S. (USD), Japan (JPY), or Switzerland (SWI) is the domestic country versus all other remaining
foreign countries. Reported are the results for the following time-series regression:

log

(
St+1

St

)
= Π0 + Π1 log

(
m∗

t+1

mt+1

)
+ et+1,

where St is the exchange rate (the domestic currency price per 1 unit of the foreign currency) and et+1 is
the regression disturbance. Complete markets imply Π0 = 0 and Π1 = 1. The SDF pairs (mt+1, m

∗
t+1)

are synthesized from Problem 1. We report the coefficient estimates and the corresponding t-statistics. The
t-statistics are based on the procedure in Newey and West (1987) with optimal lag selected as in Newey and

West (1994), and the adjusted R2 (in %) is denoted by R
2
. We perform the Wald test for the hypothesis

Π1 = 1 and report the p-values in square brackets. CORR is the correlation between log(St+1

St
) and log(

m∗
t+1

mt+1
).

The sample period is January 1975 to June 2014 (474 observations).

Foreign currency is the reference against the domestic
Domestic AUD NZD STG FRA CAD USD NLG GER JPY SWI

USD Π0 0.00 0.00 0.00 -0.00 -0.00 - 0.00 -0.00 0.00 0.00
(t-stat) ( 0.11) (0.42) (0.19) (-0.06) (-0.16) (-0.05) (-0.09) (0.28) (0.34)

Π1 0.03 0.03 0.03 0.07 0.02 0.02 0.03 0.02 0.02
(t-stat) (3.41) (3.16) (1.85) (5.60) (2.55) (2.76) (2.78) (2.02) (2.52)

R
2
(%) 3.0 2.7 1.1 3.1 1.3 1.6 1.7 1.00 1.6

Π1 = 1 [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]
[p-val.]
CORR 0.18 0.17 0.11 0.19 0.12 0.14 0.14 0.11 0.13

JPY Π0 -0.00 0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 - 0.00
(t-stat) (-0.09) (0.16) (-0.09) (-0.27) (-0.29) (-0.25) (-0.20) (-0.30) (0.08)

Π1 0.04 0.06 0.04 0.07 0.03 0.03 0.02 0.08 0.02
(t-stat) (4.73) (5.18) (3.33) (5.60) (4.36) (4.09) (4.06) (6.11) (3.43)

R
2
(%) 4.5 6.9 3.0 7.7 3.6 4.4 2.0 7.9 2.1

Π1 = 1 [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]
[p-val.]
CORR 0.22 0.27 0.18 0.28 0.20 0.21 0.15 0.28 0.15

SWI Π0 -0.00 0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -
(t-stat) (-0.18) (0.13) (-0.21) (-0.80) (-0.38) -0.33 (-0.70) (-0.99) (-0.06)

Π1 0.02 0.01 0.00 0.01 0.03 0.02 -0.00 0.00 0.01
(t-stat) (3.33) (1.71) (0.22) (2.23) (3.37) (2.97) (-0.06) (0.05) (1.87)

R
2
(%) 2.6 0.6 0.0 1.1 2.4 2.2 0.0 0.0 0.50

Π1 = 1 [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]
[p-val.]
CORR 0.17 0.09 0.01 0.11 0.16 0.15 -0.00 0.00 0.08
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Studying the Implications of Consumption and Asset Return Data

for Stochastic Discount Factors in Incomplete International

Economies

Gurdip Bakshi Mario Cerrato John Crosby

Internet Appendix: Not for Publication

Abstract

This internet appendix provides additional theoretical elaboration and data documentation.

The thrust of Section I is an example economy in which m (St+1/St)−m⋆ need not be zero in

each state of the world, and the domestic country has low interest-rates, while the foreign country

has high interest-rates. We describe the parameterized economy with five states and present the

results on the properties of (m,m∗) in Table Internet-I.

Section II outlines the data sources.

Table Internet-II illustrates the properties of (m,m∗) pairs when Rt+1 (R∗
t+1) contains seven

assets. Finally, Table Internet-III displays the results of a robustness exercise when the Θ estimate

is constrained to be the same across all industrialized countries.



I An incomplete markets model parameterized by five states

In Table Internet-I, we present a particularly parameterized two-country economy with five states

of the world, featuring that m (St+1/St)−m⋆ need not be zero in each state.

The economy is constructed to capture some relevant features. First, the domestic country

supports a low risk-free interest-rate (say, Japan), whereas the foreign country (say, Australia) a

high risk-free interest-rate. Second, the returns of the risky asset (i.e., equity) display positive

correlation.

Our objective is to illustrate the solution technique and highlight the volatilities and correlation

between m and m⋆. We further show that the problem is well-posed with a finite objective and

well-defined Lagrange multipliers, and the solution supports m > 0 and m⋆ > 0 over a wide range

of values of Θ.

We compute ez by solving equation (40) and then d and d⋆, as described in equation (41). The

solution method for computing ez is to regress one on Z. Armed with yz, δ, d, and d
⋆, we compute

y and y⋆ using equation (33). We verify our solution and check if E[δZ] = 0, for each element of Z.

As in Subsection 2.3, we verify that E[y − y⋆] is not far from zero.

With the computed values of y and y⋆, we obtain m and m⋆ across the five states using equation

(10). Prompted by the specifics of our solution, we compute (i)
√

Var[m] and
√

Var[m⋆], and (ii)

the correlation ρm,m∗ .

The question is: If the market incompleteness parameter Θ were to be assumed close to zero,

how would the properties of (m, m∗) change by ruling out “good deals,” that is, E[(y − y⋆)2] ≤ Θ2

in comparison with E[(y − y⋆)2] ≈ 0. As seen, the economy supports a lower correlation ρm,m∗ but

with the added effect of raising the volatility of m and m⋆.

We also check our solution by directly minimizing the objective in (29), subject to the constraints

in (30)–(32).

In summary, we construct a discrete-time, five-state economy in which m (St+1/St)−m⋆ need

not be zero and the domestic and foreign country pairs have low and high risk-free interest-rates,

respectively. We show that the nonnegativity constraints do not bind, and m and m⋆ are strictly
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positive in each state. Crucially, increasing the market incompleteness parameter reduces the

correlation between m and m⋆, while increasing the volatility of m and m⋆. �

II Data description and sources

The nominal returns of bonds, equity indexes, and currencies are converted into real returns by

adjusting by ex-post realized inflation. The sources of the data are described below:

Interest rates and bonds: Risk-free bond prices are constructed from LIBOR quotes as 1/(1 +

τ LIBOR), where τ is the day count fraction, that is, τ = 1/12 for monthly. When LIBOR is not

available, we use the nearest substitute, such as 30-day Bank Bill rates (which are money market

rates). At the start of the historical time period considered, interest-rate data for JPY, AUD, and

NZD was not available from Datastream, so we collect data from the respective central banks.

The data on the returns of 30-year U.S. Treasury bond is from WRDS.

Equity returns: The equity index return data (including that for the world equity index) is

MSCI data from Datastream, and we employ total returns (including dividends). MSCI data is not

available for New Zealand prior to 1988, so for the period 1975–1987, we use returns data supplied

by Martin Lally and Alastair Marsden.

Exchange rates: The spot exchange rate data for all country pairs is the midpoint of the bid and

ask quotes (from Datastream). The exchange rates for France, Germany, and Netherlands from

January 1999 (the introduction of the Euro) onward are taken to be the relevant fixed conversion

rate to the Euro (e.g., DM 1.95583 = 1 Euro).

Inflation: Country-specific inflation data is from Datastream and is CPI data. For the United

Kingdom and France, we splice the CPI data with retail price index data for the periods 1975 to

1988 and 1975 to 1989, respectively.

Consumption: We use annual real consumption growth data from Barro and Ursua (2008),

updated using World Development Indicators.

Commodities: S&P commodity index data is from Datastream (ticker: OFCL). �
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Table Internet-I: Properties of m and m∗ in an example economy with five states and
where m (St+1/St)−m⋆ ̸= 0

In our illustrative calculations, the domestic country is Japan (with a low risk-free interest-rate),
and the foreign country is Australia (with a high risk-free interest-rate). The exchange rate growth
St+1/St is denominated in U|AD. We follow the steps in Subsection 2.5 and compute ez by solving
equation (40) and then d and d⋆ via equation (41). The computer code for obtaining the solution
by minimizing the objective in (29), subject to the constraints in equations (30)–(32), is available
from the authors (in C++ and in an Excel spreadsheet setting). σ[m] and σ[m∗] are the volatilities
of m and m∗, and ρm,m∗ is the correlation between m and m∗.

Panel A: Parametrization of the economy
States of the world

j = 1 j = 2 j = 3 j = 4 j = 5

Probability 0.07 0.20 0.45 0.21 0.07
Risk-free (domestic) 1.01 1.01 1.01 1.01 1.01
Risk-free (foreign) 1.04 1.04 1.04 1.04 1.04
Risky (domestic) 0.87 1.01 1.04 1.05 1.08
Risky (foreign) 0.87 1.01 1.08 1.04 1.42
Exchange rate growth 0.90 0.89 1.00 1.11 1.10

Panel B: Properties of m and m∗ obtained by varying Θ
States of the world

j = 1 j = 2 j = 3 j = 4 j = 5 Mean σ[m] ρm,m∗

(σ[m∗])

Θ = 0.05
m 1.9887 1.3949 0.9410 0.5724 0.4036 0.9901 41
m⋆ 1.7763 1.2975 0.8889 0.6841 0.4858 0.9615 (32)

0.99

Θ = 0.40
m 2.0415 1.1745 1.1232 0.4188 0.2706 0.9901 44
m⋆ 1.7288 1.4937 0.7068 0.8547 0.6321 0.9615 (37)

0.55

Θ = 0.60
m 2.0716 1.0485 1.2273 0.3309 0.1946 0.9901 49
m⋆ 1.7017 1.6058 0.6027 0.9522 0.7157 0.9615 (43)

0.19

Θ = 0.80
m 2.1017 0.9225 1.3314 0.2431 0.1186 0.9901 56
m⋆ 1.6746 1.7179 0.4986 1.0496 0.7993 0.9615 (50)

−0.11

3



Table Internet-II: A snapshot of Θ estimates, SDF volatilities, correlation between SDFs,
and the size of the unspanned components when Rt+1 (R∗

t+1) contains seven assets

Estimation algorithm incorporates the argument that there exists a value of Θ that minimizes the
discrepancy between the risk sharing index from consumption and asset returns (as detailed in
Section 3.1.1). We focus on a set of asset returns that allows for multi-currency, multi-country,
and commodity index exposures. Consider the Australia versus Japan (AUD/JPY) country pair,
in which the the gross return vector Rt+1 contains seven assets:

Rt+1︸ ︷︷ ︸
7×1

=



Return of the Australian risk-free bond (in AUD)

Return of the Australian equity index (in AUD)

Return of the Japanese risk-free bond (in AUD)

Return of the Japanese equity index (in AUD)

Return of the U.S. 30-year Treasury bond (in AUD)

Return of the MSCI world equity index (in AUD)

Return of the S&P commodity index (in AUD)

Symmetrically, R∗
t+1 = Rt+1/(

St+1

St
) contains the same set of gross returns denominated in Japanese

yen, where St+1

St
is the exchange rate growth with the Japanese yen as the reference currency.

Reported is a snapshot of (i) Θ estimates, (ii) SDF volatilities, (iii) correlation between SDFs, and
(iv) the unspanned components of the SDFs. The sample period considered is January 1975 to
June 2014 (474 observations).

Percentiles
Mean SD Min. Max. 5th 25th 50th 75th 95th

Panel A: Θ estimates
Θ 7 assets 0.72 0.18 0.43 1.13 0.49 0.56 0.71 0.85 1.03

Panel B: SDF volatilities
σ[m] 7 assets 59 7 48 73 48 53 58 64 71

σ[m∗] 7 assets 62 8 49 78 51 56 60 67 75

Panel C: Correlation between SDFs
ρm,m∗ 7 assets 0.26 0.24 -0.28 0.66 -0.16 0.14 0.32 0.42 0.58

Panel D: Size of the unspanned component of the SDFs
Var[u]
Var[m] 7 assets 0.40 0.13 0.21 0.67 0.23 0.29 0.37 0.47 0.65

Var[u∗]
Var[m∗] 7 assets 0.37 0.12 0.18 0.62 0.21 0.30 0.35 0.44 0.59
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Table Internet-III: A snapshot of SDF volatilities, correlation between SDFs, and the size
of the unspanned components when Θ is constrained to 0.65 across all industrialized
countries

Reported is a snapshot of SDF volatilities σ[m] and σ[m∗], correlation between SDFs ρm,m∗ , and

the size of the unspanned components of the SDFs Var[u]
Var[m] and Var[u∗]

Var[m∗] . Rt+1 with six assets, in

the case of AUD/JPY, contains the returns of (i) the Australian risk-free bond, (ii) the Australian
equity index, (iii) the Japanese risk-free bond, (iv) the Japanese equity index, (v) the U.S. 30-
year Treasury bond, (vi) the MSCI world index, where each of the returns are denominated in
Australian dollars, while R∗

t+1 contains the same set of assets denominated in Japanese yen. The
Rt+1 (R∗

t+1) with four assets is a restricted counterpart of that with six assets, with the returns of
(i) the Australian risk-free bond, (ii) the Australian equity index, (iii) the Japanese risk-free bond,
and (iv) the Japanese equity index. The sample period considered is January 1975 to June 2014
(474 observations).

Percentiles
Mean SD Min. Max. 5th 25th 50th 75th 95th

σ[m]
∣∣
Θ=0.65

Six assets 56 5 46 65 47 52 55 59 62

Four assets 54 5 40 62 46 49 54 59 60

σ[m∗]
∣∣
Θ=0.65

Six assets 58 4 48 66 53 56 58 62 64

Four assets 56 5 46 63 49 53 57 60 62

ρm,m∗
∣∣
Θ=0.65

Six assets 0.31 0.12 0.01 0.49 0.10 0.26 0.30 0..41 0.46

Four assets 0.25 0.15 -0.26 0.45 0.02 0.14 0.29 0.38 0.42

Var[u]
Var[m]

∣∣
Θ=0.65

Six assets 0.38 0.08 0.27 0.63 0.29 0.32 0.36 0.43 0.51

Four assets 0.37 0.08 0.27 0.63 0.29 0.31 0.35 0.42 0.48

Var[u∗]
Var[m∗]

∣∣
Θ=0.65

Six assets 0.36 0.06 0.27 0.53 0.28 0.30 0.36 0.40 0.46

Four assets 0.35 0.07 0.27 0.53 0.28 0.30 0.34 0.40 0.46
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