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1. Introduction

In numerous situations, an uninformed sender (she) wishes to influence an action
of a receiver (he) who privately knows his preference type but is uncertain about a
payoff-relevant state. The sender has full control over information disclosure about
the state but cannot use any other incentive tools such as monetary transfers. If
the sender knew the receiver’s type, she would tailor information disclosure to the
type. However, the sender can only ask the receiver to report his type, which the
receiver may misreport, to affect the information he receives. This begs the question
of whether the sender can benefit by designing a complex persuasion mechanism that
tailors information disclosure to the receiver’s report, as compared to an experiment
that provides the same information about the state, regardless of the receiver’s report.

In our model, the receiver must choose one of two actions. The sender’s and
receiver’s utilities depend linearly on the state and receiver’s type.1 The state and
receiver’s type are one-dimensional independent random variables. The sender and
receiver share a common prior about the state; the receiver privately knows his type.
The sender commits to a persuasion mechanism that asks the receiver to report his
type and returns a stochastic message that depends on the state and report. After
receiving the message, the receiver updates his beliefs about the state and takes an
action that maximizes his expected utility.

We start by characterizing the set of the receiver’s interim utilities implementable
by persuasion mechanisms.2 The upper and lower bounds are achieved by full dis-
closure and no disclosure of information about the state. For any mapping from
messages to actions under a persuasion mechanism, the receiver’s expected utility
is linear in his type. Because each type chooses an optimal mapping, the receiver’s
interim utility is an upper envelope of linear functions and, hence, is convex. To sum
up, an implementable interim utility is necessarily a convex function that lies between
the upper and lower bounds generated by full and no disclosure.

Our main theorem shows that (1) this necessary condition is also sufficient and that
(2) any implementable interim utility can be attained by an experiment. Moreover,
in our model the receiver’s interim utility uniquely determines the sender’s expected
utility. Therefore, there is no loss of generality in restricting attention to experiments.
In particular, the sender need not consider more complex persuasion mechanisms that
condition information disclosure on the receiver’s report.

We now outline the argument behind this result. Because the utilities are linear in
the state, the only relevant content of a message about the state is the posterior mean.
Therefore, an experiment can be fully described by the distribution of the posterior
mean state H that it generates. By Blackwell (1953), there exists an experiment that
generates H if and only if the prior distribution of the state is a mean-preserving
spread of H. By linearity, the receiver’s interim utility U can be represented as an

1For our analysis to apply, we only need to assume that the utilities are linear in some transfor-
mation of the state and are arbitrary functions of the receiver’s type.

2The receiver’s interim utility is the mapping from the receiver’s type to his expected utility given
optimal behavior under a persuasion mechanism.
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appropriate integral of H. Using the integral form of the mean-preserving spread
condition as in Blackwell (1951), we show that the prior is a mean-preserving spread
of H if and only if U is convex and lies between the upper and lower bounds generated
by full and no disclosure. Therefore, any U that satisfies the necessary conditions that
we identified above is implementable by an experiment.

This characterization allows us to formulate the sender’s problem as the maxi-
mization of a linear functional on a bounded set of convex functions. We derive a
general structure of optimal persuasion mechanisms and use it to simplify the sender’s
problem into a finite-variable optimization problem.

We then consider a special case in which the sender’s expected utility is a weighted
sum of the expected action and the receiver’s expected utility. In this case, cen-
sorship mechanisms are generally optimal. A persuasion mechanism is called an
upper-censorship mechanism if it reveals the states below some threshold and pools
the states above this threshold. We show that the optimal persuasion mechanism is
an upper-censorship mechanism, regardless of the prior distribution of the state and
regardless of the weight the sender puts on the receiver’s utility, if and only if the
probability density of the receiver’s type is log-concave.

If an upper-censorship mechanism is optimal, the comparative statics analysis is
particularly tractable. We show that the optimal censorship threshold increases, and,
thus, the sender discloses more information, if the sender’s and receiver’s utilities
become more aligned or if each type of the receiver experiences a preference shock
detrimental to the sender.

We apply our results to the problem of media control by the government. We
consider a stylized setting where the government wishes to influence people’s actions
by regulating the media content. We extend our model to allow for a continuum of
heterogeneous receivers. This extension permits the average action of the receivers to
affect their utility but not their optimal actions. For example, an election outcome
impacts all people but does not change their preferences over candidates. We provide
conditions under which the optimal media control policy prescribes to permit all
sufficiently loyal media outlets to broadcast and to prohibit all other media outlets.
Our main result of implementation equivalence between persuasion mechanisms and
experiments implies that the optimal media control policy does not depend on whether
the government can restrict people to follow only one media outlet of their choice.

We conclude the paper by exploring the limits of implementation equivalence be-
tween persuasion mechanisms and experiments. We show that the equivalence does
not hold if the receiver has more than two actions (Section 6) or if the receiver’s
utility is nonlinear in the state (Section 7).

Related Literature. Our model is a variation of Kamenica and Gentzkow (2011),
who show that an optimal experiment corresponds to a point on the concave closure
of the sender’s value function. This concavification approach does not rely on any
structure of the problem such as the linearity of utility functions or the two actions of
the receiver. However, as Gentzkow and Kamenica (2016d) point out, this approach
has limited applicability when the state space is infinite because it requires to calculate
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a concave closure on the infinite-dimensional space of distributions over the state
space.

Rayo and Segal (2010) impose more structure on the receiver’s utility and the dis-
tribution of the receiver’s type than our paper. At the same time, they allow the
sender’s utility to be nonlinear in the state. Rayo and Segal (2010) partially charac-
terize optimal experiments and represent the sender’s problem as the maximization
problem of a concave objective function subject to linear constraints. In our setting,
their assumptions about the receiver would imply that either full or no disclosure is
optimal.

Kolotilin (2016) allows for nonlinear sender’s and receiver’s utility functions and
an arbitrary joint distribution of the state and the receiver’s type. The linear-
programming approach in Kolotilin (2016) permits to verify whether a candidate
experiment is optimal. But this approach has limited applicability because it does
not allow to directly characterize the optimal experiments.

The three papers above study experiments.3 In contrast, we consider persuasion
mechanisms, which can tailor information disclosure to the receiver’s report.4 Linear
utility functions with two possible actions of the receiver enable us to use the enve-
lope representation of incentive compatibility as in Myerson (1981). However, the
characterization of implementable mechanisms in our setting differs from Myerson
(1981) because there are no transfers between the sender and receiver, and there are
obedience constraints instead of participation constraints.5 The equivalence between
persuasion mechanisms and experiments relies on the majorization theory of Hardy
et al. (1929) and thus relates to the equivalence between Bayesian and dominant-
strategy implementation in Manelli and Vincent (2010) and Gershkov et al. (2013).
The optimality of upper-censorship mechanisms relies on the single-crossing property
of the integrand in the optimization problem and, thus, relates to the optimality of
reserve-price auctions in Myerson (1981).

3There is a rapidly growing Bayesian persuasion literature that studies optimal experiments.
Bayesian persuasion with a privately informed sender is considered in Gill and Sgroi (2008, 2012),
Perez-Richet (2014), and Alonso and Câmara (2016b). Bayesian persuasion with multiple senders is
analyzed in Ostrovsky and Schwarz (2010), Board and Lu (2016), Gentzkow and Kamenica (2016a,
2016b), and Li and Norman (2016). Dynamic Bayesian persuasion is examined in Au (2015), Ely
et al. (2015), and Ely (2016). Information acquisition and the value of information in Bayesian
persuasion are explored in Gentzkow and Kamenica (2014, 2016c), Kolotilin (2015), Alonso and
Câmara (2016a), and Bergemann and Morris (2016).

4Focusing on experiments is not without loss of generality in settings with multiple receivers in
Bergemann and Morris (2013), Alonso and Câmara (2016c), Mathevet et al. (2016), and Taneva
(2016).

5Bayesian persuasion with monetary transfers is investigated in Bergemann and Pesendorfer
(2007), Esö and Szentes (2007), Bergemann et al. (2015, 2016a, 2016b), Li and Shi (2016), and
Hörner and Skrzypacz (2016).
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2. Model

2.1. Setup. There are two players: sender and receiver. The receiver makes a choice
a ∈ A = {0, 1} between action (a = 1) and inaction (a = 0). There are two payoff-
relevant random variables: the state of the world ω ∈ Ω and the receiver’s private
type r ∈ R, where Ω and R are intervals in the real line. Random variables ω and r
are independent and have distributions F and G.

Let the receiver’s and sender’s utilities be

u(ω, r, a) = a · (ω − r),
v (ω, r, a) = a+ ρ (r)u(ω, r, a),

(1)

where ρ is a bounded measurable function. In Appendix A, we extend the analysis
to the case in which the receiver’s and sender’s utility functions are linear in the
state ω. The intercepts and slopes of these linear functions constitute the private
multidimensional type of the receiver.

The receiver’s utility from inaction (a = 0) is normalized to zero, whereas his utility
from action (a = 1) equals the benefit ω less the private cost r. The sender’s utility
is a weighted sum of the receiver’s utility and action. The sender is biased towards
the receiver’s action but also puts a type-specific weight ρ(r) on the receiver’s utility.
In particular, if the weight ρ is large, then the sender’s and receiver’s interests are
aligned, but if the weight is zero, then the sender cares only about whether the receiver
acts or not.

We assume that the set of states is Ω = [0, 1] and E[ω] ∈ (0, 1). Because the optimal
action of the receiver of any type above 1 or below 0 is independent of the state, we
assume that the set of types is R = [0, 1]. These assumptions allow for elegance of
presentation; relaxing them poses no difficulty.

2.2. Persuasion Mechanisms and Experiments. In order to influence the action
taken by the receiver, the sender can design a mechanism that asks the receiver to
report his private information and sends a message to the receiver conditional on his
report and the realized state.

A persuasion mechanism π asks the receiver to report r̂ ∈ R and then recommends
him to take one of two actions: for every ω ∈ Ω, it recommends to act (â = 1) with
probability π (ω, r̂) and not to act (â = 0) with complementary probability 1−π (ω, r̂),
where π is a measurable function from Ω × R to [0, 1]. A persuasion mechanism is
incentive compatible if the receiver finds it optimal to report his true type and to
follow the mechanism’s recommendation.

In comparison, an experiment communicates the same messages to each type of the
receiver. An experiment σ sends to the receiver a random message that depends on
the realized state ω. Denote by σ(m|ω) the distribution of message m ∈ M = [0, 1]
conditional on state ω.

For a given experiment σ, each message m induces a posterior belief of the receiver
about the state. Because the receiver’s utility is monotonic in his type, we can identify
every message m with the cutoff type r who is indifferent between the two actions
conditional on receiving this message. An experiment is direct if its messages are
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equal to the cutoff types, m = E[ω|m]. Without loss of generality, we focus on direct
experiments (as in, e.g., Kamenica and Gentzkow, 2011).

A persuasion mechanism can be interpreted as a menu of (non-direct) experiments
from which the sender can freely choose one experiment. For a given mechanism π,
the corresponding menu of experiments is {σr̂}r̂∈R, where, conditional on a state ω,
an experiment σr̂ sends messages 1 and 0 with probabilities π(ω, r̂) and 1 − π(ω, r̂).
Conversely, by the revelation principle, any equilibrium outcome induced by any
menu of direct or non-direct experiments offered to the receiver can be replicated by
a persuasion mechanism. In particular, the restriction to mechanisms that return
binary messages is without loss, because the receiver’s action is binary.

A persuasion mechanism π is equivalent to an experiment if, conditional on each
state, the behavior of the receiver as stipulated by π is a best-reply behavior to the
posterior beliefs generated by some direct experiment σ,

π(ω, r) ∈
[
1− σ(r|ω), 1− σ(r−|ω)

]
for all ω ∈ Ω and all r ∈ R, (2)

where σ(r−|ω) denotes the left limit of σ(.|ω) at r. To understand (2), note that,
upon receiving a direct message m, every type r < m strictly prefers to choose a = 1,
and type r = m is indifferent between a = 0 and a = 1 and may optimally choose
any lottery over the two actions. Consequently, the probability that type r acts
conditional on state ω can take any value in the interval [1− σ(r|ω), 1− σ(r−|ω)].

2.3. Benchmark With Known Types. Consider the benchmark case, studied in
Kolotilin (2015), in which the sender knows the receiver’s type. In this case, a per-
suasion mechanism can condition the information disclosed directly on the receiver’s
type, rather than on the receiver’s report about his type. Suppose, for simplicity,
that ρ(r) > 0 for all r and that F admits a density.

By (1), the sender would like the receiver of type r to act in each state ω that
satisfies 1 + ρ(r)(ω − r) > 0 or, equivalently, ω > r − 1/ρ(r). If the receiver who
is recommended to act whenever ω > r − 1/ρ(r) obtains a nonnegative payoff from
following the recommendation, then the sender achieves her first best outcome from
type r. Otherwise, the mechanism recommends the receiver to act on the largest
interval (x, 1] of states such that the receiver is willing to follow the recommendation
given his belief that the state is in (x, 1]. Thus, the optimal mechanism recommends
the receiver to act if ω > x∗(r) and not to act if ω < x∗(r), where x∗(r) is the

minimum x ∈ Ω that satisfies 1 + ρ(r)(x− r) ≥ 0 and
∫ 1

x
(ω − r)dF (ω) ≥ 0.

2.4. Envelope Characterization of Incentive Compatibility. Denote the ex-
pected utility of a receiver of type r ∈ R who reports r̂ ∈ R and takes actions
a0 ∈ {0, 1} and a1 ∈ {0, 1} after recommendations â = 0 and â = 1, respectively, by

Uπ(r, r̂, a0, a1) =

∫
Ω

(a0(1− π(ω, r̂)) + a1π(ω, r̂)) (ω − r)dF (ω).
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The expected utility of the truthful (r̂ = r) and obedient (a0 = 0 and a1 = 1) receiver
is equal to

Uπ(r) = Uπ(r, r, 0, 1) =

∫
Ω

π(ω, r)(ω − r)dF (ω).

We consider mechanisms that satisfy the incentive compatibility constraint

Uπ(r) ≥ Uπ(r, r̂, a0, a1) for all r, r̂ ∈ R and a0, a1 ∈ A. (3)

It is convenient to introduce the notation for the expected utility of the obedient
receiver of type r, who reports r̂ and then obeys the recommendation of the mecha-
nism:

Uπ (r, r̂) = Uπ(r, r̂, 0, 1) = pπ (r̂)− qπ (r̂) r,

where

qπ (r̂) =

∫
Ω

π(ω, r̂)dF (ω) and pπ (r̂) =

∫
Ω

ωπ(ω, r̂)dF (ω) .

With this representation of the utility function, we can draw the parallel to the
standard mechanism design problem with transfers, where r is a private value, r̂ is
a reported value, qπ(r̂) is the probability of transaction, and pπ(r̂) is the expected
monetary transfer. The classical envelope argument yields the following lemma.

Lemma 1. A mechanism π is incentive compatible if and only if

qπ is nonincreasing, (4)

Uπ (r) =

∫ 1

r

qπ(s)ds, (5)

Uπ (0) = E[ω]. (6)

The proof is in Appendix B.
Interestingly, the obedience constraints for the intermediate types are implied by

the boundary conditions, Uπ(1) = 0 and Uπ(0) = E[ω], and truth telling, Uπ(r) ≥
Uπ(r, r̂). To disobey by ignoring the recommendation, that is, to act (not to act)
irrespective of what is recommended, is not better than pretending to be the lowest
type r̂ = 0 (the highest type r̂ = 1, respectively). To disobey by taking the opposite
action to the recommended one is never beneficial due to the linearity of the receiver’s
utility.

In our model, there are no transfers, and there are obedience constraints instead
of individual rationality constraints. These differences between our and the standard
environment with transfers translate into the following differences in characterization.

First, there are two boundary conditions, Uπ(1) = 0 and Uπ(0) = E[ω]:

(a) We have ω − r ≤ 0 for all ω ∈ Ω = [0, 1] and r ≥ 1. Hence, type 1’s utility is
maximized by not acting for any belief about the state, implying Uπ(1) = 0.
This is (5) evaluated at r = 1.

(b) We have ω − r ≥ 0 for all ω ∈ Ω = [0, 1] and r ≤ 0. Hence, type 0’s utility
is maximized by acting for any belief about the state, implying Uπ(0) = E[ω].
This is (6).



8 KOLOTILIN, MYLOVANOV, ZAPECHELNYUK, LI

Second, not every pair (q, U) that satisfies conditions (4)–(6) is feasible, that is, a
mechanism π that implements such a pair need not exist. For example, if F assigns
probability 1 on ω = 1/2, then every nonincreasing q with

∫ 1

0
q(r)dr = 1/2 satisfies

(4)–(6). Among these functions, q is feasible if and only if it satisfies q(r) = 1 for
r < 1/2 and q(r) = 0 for r > 1/2.

3. Implementation Equivalence

In this section, we characterize the pairs of the interim utility U and action q
implementable by persuasion mechanisms, and show that the same pairs of the interim
utility and action are implementable by experiments.

This is a step towards solving the sender’s optimization problem, because the
sender’s interim utility Vπ(r) when the receiver’s type is r is a weighted sum of the
receiver’s interim utility and action,

Vπ(r) =

∫
Ω

(1 + ρ(r)(ω − r))π(ω, r)dF (ω) = qπ(r) + ρ(r)Uπ(r). (7)

3.1. Bounds on Receiver’s Interim Utility. Consider two simple mechanisms.
The full disclosure mechanism informs the receiver about the state, so the receiver
acts (π(ω, r) = 1) if ω > r and does not act (π(ω, r) = 0) if ω < r. Therefore, the
interim utility is

U (r) =

∫ 1

r

(ω − r) dF (ω) .

The no disclosure mechanism does not convey any information to the receiver, so the
receiver acts if E[ω] > r and does not act if E[ω] < r. Therefore, the interim utility is

U (r) = max {E[ω]− r, 0} .
Thus, U(r) is the receiver’s interim utility based on the prior information about ω as
given by F , whereas U(r) is the receiver’s interim utility if he observes ω.

Note that every mechanism π must satisfy

U(r) ≤ Uπ(r) ≤ U(r) for all r ∈ R. (8)

The left-hand side inequality of (8) is implied by incentive compatibility: the receiver
cannot be better off by ignoring the sender’s recommendation. The right-hand side
inequality of (8) is the feasibility constraint : the receiver’s utility cannot exceed the
utility attained under full disclosure of ω.

3.2. Implementable Interim Utility and Action. The receiver’s interim utility
U and action q are implementable if there exists an incentive-compatible persuasion
mechanism π such that U(r) = Uπ(r) and q(r) = qπ(r) for all r ∈ R. Moreover, U
and q are implementable by an experiment if π is equivalent to an experiment.

Let U be the set of all convex functions bounded by U and U (see Fig. 1).
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Figure 1. Set U contains every convex function between U and U .

Theorem 1. The following statements are equivalent:
(a) U is a convex function between U and U ;
(b) U is implementable;
(c) U is implementable by an experiment.

Proof. Observe that (a) states the necessary conditions for the implementation of U .
The incentive-compatibility constraint requires the convexity of U by Lemma 1, and
the feasibility constraint (8) requires U(r) ≤ U(r) ≤ U(r). Hence, (b) ⇒ (a). Also,
the implication (c)⇒ (b) is trivial by definition. It remains to show that (a)⇒ (c).

Let U ∈ U . Define H(r) = 1 +U ′(r+), where U ′(r+) denotes the right-derivative of
U at r, so that H is right-continuous. Since U(0) = U(0) = E[ω] and U ′(0+) = −1, we

have H(0) ≥ 0; since U(1) = U(1) = 0 and U ′(1+) = U
′
(1+) = 0, we have H(1) = 1.

Also, since U is convex, H is nondecreasing. Hence, H is a distribution function.
Next, observe that∫ 1

r

(1−H(s))ds = U(r) ≤ U(r) =

∫ 1

r

(1− F (s))ds (9)

for all r, with equality at r = 0, because U(0) = U(0) = E[ω]. That is, F is a mean-
preserving spread of H. By Blackwell (1953), there exists a joint distribution function
P (ω,m) such that the marginal distribution of ω is F , the marginal distribution of
m is H, and EP [ω|m] = m for all m.

Now, consider an experiment σ(m|ω) = P (m|ω). By construction, E[ω|m] = m for
all m of σ, and the probability that σ generates message m ≤ x, for any given value x,
is H(x). Thus, σ induces type r to act with probability qσ(r) ∈ [1−H(r), 1−H(r−)],
where indeterminacy arises at each discontinuity point r of H, because type r is
indifferent between the two actions and can, therefore, optimally choose any lottery
over these actions. Finally, (5) implies that σ implements U . �

Theorem 1 yields the following characterization of implementable interim actions.
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Corollary 1. The following statements are equivalent:
(a) q is a nonincreasing function that satisfies∫ 1

r

q(ω)dω ≤
∫ 1

r

(1− F (ω))dω for all r, with equality at r = 0; (10)

(b) q is implementable;
(c) q is implementable by an experiment.

The heart of these characterization results is that every implementable pair of U
and q is implementable by an experiment. This result relies on the following con-
nection between the Mirrlees (1971) representation of incentive compatibility and the
Blackwell (1953) representation of garbling. Incentive compatibility (5) and feasibil-
ity (8) imply that every implementable interim utility and action must satisfy the
requirements in parts (a) of Theorem 1 and Corollary 1. In turn, part (a) of Corol-
lary 1 implies that F is a mean-preserving spread of 1− q. Therefore, interim action
q can be implemented by an appropriate garbling of the full disclosure experiment.
Because every interim utility U is pinned down by interim action q through (5), we
obtain the result.

We now highlight a connection to the literature on the equivalence of Bayesian
and dominant-strategy incentive compatibility in linear environments with trans-
fers (Manelli and Vincent, 2010, and Gershkov et al., 2013). Using Gutmann et
al. (1991), Gershkov et al. (2013) show that for a given monotonic expected alloca-
tion (Bayesian incentive-compatible mechanism) there exists a monotonic ex-post al-
location (dominant-strategy incentive-compatible mechanism) that delivers the same
expected allocation. Relatedly, using Blackwell (1953), we show that for a given
nonincreasing q that satisfies (10) there exists an incentive-compatible π(ω, r) that is
nonincreasing in r for each ω ∈ Ω. Thus, this π is equivalent to an experiment (see
Proposition 2 in Section 7), and satisfies∫

Ω

π(ω, r)dF (ω) = q(r) for each r ∈ R.

Both Blackwell (1953) and Gutmann et al. (1991) are based on the majorization
theory initiated by Hardy et al. (1929).

We will discuss in Sections 6 and 7 how the equivalence between persuasion mech-
anisms and experiments changes when the receiver has more than two actions and
when the receiver’s utility is nonlinear in (any transformation of) the state.

4. Optimal Mechanisms

In this section, we use Theorem 1 to characterize the persuasion mechanisms that
are optimal for the sender under additional smoothness assumptions. We assume
that the weight ρ in the sender’s utility is continuous in the receiver’s type and that
the distributions F and G admit densities f and g, where g is strictly positive and
continuously differentiable.

In addition, we solve a special case. Assuming log-concave (log-convex) g and
type-independent ρ, we show that simple censorship persuasion mechanisms, which
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include the full and no disclosure mechanisms, maximize the sender’s expected utility.
We, thus, solve the sender’s problem for many commonly-used density functions (see
Tables 1 and 3 in Bagnoli and Bergstrom, 2005, for the list of log-concave and log-
convex density functions).

4.1. Sender’s Problem. The sender seeks an incentive-compatible persuasion mech-
anism π that maximizes ∫

R

Vπ(r)dG(r),

where Vπ(r) is the sender’s interim utility when the receiver’s type is r, as defined
by (7). The following lemma is a useful tool for finding optimal persuasion mecha-
nisms. It expresses the sender’s expected utility as a function of the receiver’s interim
utility.

Lemma 2. For every incentive-compatible mechanism π,∫
R

Vπ(r)dG(r) = g(0)E[ω] +

∫
R

Uπ(r)I(r)dr,

where

I(r) = g′(r) + ρ(r)g(r) for all r ∈ R.

This formulation of the sender’s objective is similar to the Myerson (1981) for-
mulation of the seller’s objective in terms of virtual valuations. Both formulations
account for the designer’s biased preferences and information rents left to the pri-
vately informed parties. Lemma 2 relies on the assumption that the sender’s utility
is a weighted sum of the receiver’s utility and action. By incentive compatibility
(Lemma 1), the receiver’s interim action is the derivative of his interim utility. The
lemma then follows by integration by parts.

Proof. Observe that, by (5) and (7), we have∫
R

Vπ(r)dG(r) =

∫
R

(qπ(r) + ρ(r)Uπ(r)) g(r)dr =

∫
R

(−U ′π(r+) + ρ(r)Uπ(r)) g(r)dr.

Using integration by parts, we obtain

−
∫
R

U ′π(r+)g(r)dr = −Uπ(r)g(r)
∣∣1
0

+

∫
R

Uπ(r)g′(r)dr.

Since −Uπ(r)g(r)
∣∣1
0

= E[ω]g(0) by (6), the lemma follows. �

By Theorem 1, the receiver’s interim utility is implementable by some persuasion
mechanism if and only if it is in U . Hence, the sender’s problem can be expressed as

max
U∈U

∫
R

U(r)I(r)dr. (11)

We say that U is optimal if it solves the above problem.
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4.2. Structure of Optimal Mechanisms. We characterize the structure of optimal
mechanisms under the assumption that function I is nonzero almost everywhere and
changes sign n ≥ 0 times.6 Let {r1, r2, . . . , rn} ⊂ (0, 1) be the set of types at which I
changes its sign, and let r0 = 0 and rn+1 = 1.

0
1

U(r)

r

U(r)

− + −

I(r)

0
1

U(r)

r

U(r)

− + −

I(r)

Tangency points
of U and U

Figure 2. The optimal interim utility on the interval where I(r) is positive.

Clearly, as follows from (11), on any interval (ri, ri+1) where I(r) is positive, for
any given values of U(ri) and U(ri+1), the optimality requires that U(r) is pointwise
maximized subject to feasibility (U ≤ U) and the convexity of U on [ri, ri+1]. That is,
the interim utility U on [ri, ri+1] is a straight line that passes through the endpoints
U(ri) and U(ri+1), unless U(r) = U(r) for some r ∈ [ri, ri+1], as shown in Fig. 2.
Formally,

(P1) On every interval (ri, ri+1) where I(r) is positive, U is the greatest convex
function that passes through the endpoints U(ri) and U(ri+1) and does not
exceed U .

Similarly, on any interval (ri, ri+1) where I(r) is negative, for any given pairs of
(U(ri), U

′(ri)) and (U(ri+1), U ′(ri+1)), the optimality requires that U(r) is pointwise
minimized subject to U ≥ U and the convexity of U on [ri, ri+1]. That is, the interim
utility U on [ri, ri+1] is an upper envelope of two straight lines that pass through the
endpoints U(ri) and U(ri+1) and have slopes U ′(ri) and U ′(ri+1), as shown in Fig. 3.
Formally,

(P2) On every interval (ri, ri+1) where I(r) is negative, U is piecewise linear with
at most one kink and satisfies

U(r) = max
{
U(ri) + U ′(ri)(r − ri), U(ri+1) + U ′(ri+1)(r − ri+1)

}
.

Therefore, we can reduce the sender’s problem (11) of optimization on the function
space U to an n-variable optimization problem. The optimal U is pinned down by

6If there are intervals where I(r) = 0, then on those intervals the sender is indifferent about the
choice of U . Hence, multiple solutions emerge in this case. Characterization of these solutions is a
straightforward but tedious extension of the result in this section.
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0
1

r

U(r)

+ +−

I(r)

Figure 3. The optimal interim utility on the interval where I(r) is negative.

properties (P1) and (P2) within each interval (ri, ri+1) where the sign of I is constant.
Thus, the optumal U is fully defined by the utility values at the points {r1, ..., rn}
where I changes its sign.

For every vector ȳ = (y1, ..., yn) ∈ Rn, consider the set of all U ∈ U that satisfy
U(ri) = yi for all i = 1, ..., n. If this set is nonempty, the properties (P1) and (P2)
uniquely determine the optimal U on this set, denoted by U∗ȳ . For completeness,
define U∗ȳ = U if this set is empty. Thus, we obtain

Theorem 2. The sender’s problem (11) is an n-variable optimization problem,

max
ȳ∈Rn

∫
R

U∗ȳ (r)I(r)dr.

Properties (P1) and (P2) imply that the optimal U is piecewise linear except for
the intervals where U(r) = U(r), as shown in Figs. 2–3. For a given optimal U , the
corresponding experiment’s distribution H of m is given by H(r) = 1 + U ′(r+) for
all r ∈ [0, 1]. Therefore, the intervals on which U is linear correspond to constant H
(i.e., zero density). The kinks of U correspond to the mass points of the distribution
equal to the difference between the right and left derivatives of U at those points. The
intervals on which U(r) = U(r) correspond to the full disclosure intervals, H(r) =
F (r).

4.3. Upper- and Lower-Censorship Mechanisms. An upper-censorship mecha-
nism is a mechanism that reveals the states below ω∗ and pools the states above ω∗

for some threshold ω∗ ∈ Ω. This mechanism sends the message m(ω) = ω if ω < ω∗

and m(ω) = E[ω|ω > ω∗] if ω > ω∗. A lower-censorship mechanism is defined sym-
metrically. This mechanism sends m(ω) = ω if ω > ω∗ and m(ω) = E[ω|ω < ω∗] if
ω < ω∗ for some ω∗ ∈ Ω.

The receiver’s interim utility under an upper-censorship mechanism is shown as a
kinked black curve in Fig. 4. A receiver of type r < ω∗ is fully informed whether ω
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1

U(r)U(r) U(r)

r

ω∗
0

Figure 4. The interim utility under an upper-censorship mechanism.

exceeds r or not, and hence receives the highest feasible utility U(r) by choosing to
act if ω > r. A receiver of type r > ω∗ is informed only of whether ω exceeds ω∗ or
not. Hence, he acts if E[ω|ω > ω∗]− r > 0. His utility is, thus, either E[ω|ω > ω∗]− r
or zero, whichever is greater, corresponding to the two linear segments of the utility
curve.

Theorem 3. Let ρ(r) = ρ ∈ R. An upper-censorship (lower-censorship) mechanism
is optimal for all F and all ρ ∈ R if and only if g is log-concave (log-convex) on Ω.

Proof. We prove Theorem 3 using the following lemma proved in Appendix B.

Lemma 3. An upper-censorship (lower-censorship) mechanism is optimal for all F
if and only if I crosses the horizontal axis at most once and from above (from below)
on Ω.

Function I(r) = g′ (r) + ρg (r) crosses the horizontal axis at most once and from
above (from below) on Ω for all ρ ∈ R if and only if g′ (r) /g (r) is nonincreasing
(nondecreasing) on Ω by Proposition 1 of Quah and Strulovici (2012). �

4.4. Comparative Statics. Theorem 3 allows for a sharp comparative statics anal-
ysis on the amount of information that is optimally disclosed by the sender.

Let ρ(r) be constant, ρ(r) = ρ ∈ R. We extend the definition of density function g
to the real line and assume that g is log-concave with g′ + ρg being nonzero almost
everywhere on R. Consider a family of densities gt of the receiver’s type

gt (r) = g (r − t) ,
where t ∈ R is a parameter. Because gt is log-concave on Ω for every t, an upper-
censorship mechanism is optimal by Theorem 3. Let ω∗ (ρ, t) ∈ Ω be the optimal
upper-censorship threshold.
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We now show that the sender optimally discloses more information when she is less
biased relative to the receiver, and when the receiver is more reluctant to act.

Corollary 2. For all ρ and t such that ω∗ (ρ, t) ∈ (0, 1),

(a) ω∗ (ρ, t) is strictly increasing in ρ,
(b) ω∗ (ρ, t) is strictly increasing in t.

The proof is in Appendix B.
The intuition for part (a) is that for a higher ρ, the sender puts more weight on

the receiver’s utility, so she optimally endows the receiver with a higher utility by
providing more information.

The intuition for part (b) is that for a higher t, each type of the receiver has a
greater cost of action, so to persuade the same type of the receiver, the sender needs
to increase E[ω|ω > ω∗] by expanding the full disclosure interval [0, ω∗).

4.5. Full and No Disclosure Mechanisms. Theorem 3 also allows to characterize
the class of distributions of the receiver’s type under which the optimal choice of the
sender polarizes between the full and no disclosure mechanisms, as, for example, in
Lewis and Sappington (1994) and Johnson and Myatt (2006).7

Corollary 3. Let ρ(r) = ρ ∈ R. Either the full or no disclosure mechanism is optimal
for all F and all ρ if and only if there exist λ and c such that g(r) = ce−λr for all
r ∈ Ω.

Proof. The only two mechanisms that are both upper- and lower-censorship mecha-
nisms are full and no disclosure. By Theorem 3, both upper- and lower-censorship
mechanisms are optimal for all F and all ρ if and only if g is both log-concave and
log-convex on Ω. That is, g′(r)/g(r) is both nonincreasing and nondecreasing on Ω,
which holds if and only if g′(r)/g(r) is equal to a constant, −λ, on Ω. �

Using the same argument as in the proof of Lemma 3, we can also characterize the
conditions for the optimality of full and no disclosure for a type-dependent ρ.

Corollary 4. The full (no) disclosure mechanism is optimal for all F if and only if
I is positive (negative) on Ω.

7In the case of log-concave density g, the set of upper- and lower-censorship mechanisms is totally
ordered by the rotation order of Johnson and Myatt (2006). If we restrict attention to the set of
lower-censorship mechanisms (which are generally suboptimal under log-concave g), then the rotation
point is decreasing with respect to the rotation order. By Lemma 1 of Johnson and Myatt (2006),
the sender’s expected utility is quasiconvex and one of the extreme lower-censorship mechanisms (the
full or no disclosure mechanism) is optimal for the sender. But, if we restrict attention to the set
of upper-censorship mechanisms (which are optimal under log-concave g), then the rotation point is
not decreasing with respect to the rotation order. Therefore, Lemma 1 of Johnson and Myatt (2006)
does not apply, and an interior upper-censorship mechanism is generally optimal for the sender.
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5. Application: Media Censorship

In this section, we apply our model to the problem of media control by the govern-
ment. In the contemporary world, people obtain information about the government
state of affairs through various media sources such as television, newspapers, and
internet blogs. Without the media, most people would not know what policies and
reforms the government pursues and how effective they are. Media outlets have dif-
ferent positions on the political spectrum and differ substantially in how they select
and present facts to cover the same news. People choose their sources of informa-
tion based on their political ideology and socioeconomic status. This information
is valuable for significant individual decisions in migration, investment, occupation,
and voting, to name a few. Individuals do not fully internalize externalities that their
decisions impose on the society. Likewise, the government may not have the society’s
best interest at heart. To further its goals, the government then wishes to influence
individual decisions by manipulating the information through media. In autocracies
and countries with weak checks and balances, the government has power to control
the media content.8

The government’s problem of media control can be represented as the persuasion
design problem in Section 2. We apply Theorems 1 and 3 to provide conditions for
the optimality of simple censorship policies that shut down all media outlets except
the most supportive ones. In other words, to act optimally, the government needs no
sophisticated instruments of information disclosure other than censorship. An inter-
pretation of our comparative statics results in Corollary 2 is as follows. First, the gov-
ernment increases censorship if influencing society decisions becomes relatively more
important than maximizing individual welfare. Second, the government increases
censorship if the society experiences an ideology shock in favor of the government.

5.1. Media Censorship Problem. We present a stylized model with a government,
media outlets, and readers. Our model has standard ingredients from the theoretical
media literature. The novelty of the model is that the government can censor media
outlets.

8By measuring the frequency with which media outlets use key words and phrases that tend to
discredit government actions, a pro-Kremlin news site Politonline.ru on March 31, 2014, published
a list of top-20 most disloyal media outlets in Russia. A Russian political scientist and government
adviser, Aleksandr Dugin, suggested that this list should be the order in which the government shuts
down these media outlets. Using the broadly formulated legislation on combating extremism, the
government agency Roskomnadzor, responsible for overseeing the media and mass communications,
has taken actions to effectively shut down a number of media outlets at the top of the disloyalty
list. An opposition leader and former chess champion, Garry Kasparov, tweeted in response to
the crackdown: “These are huge news sites, not political groups. Giant Echo of Moscow site now
just gone. Grani, EJ, Navalny’s blog, all blocked in Russia.” Russia’s leading opposition television
channel, Dozhd, lost its main cable and satellite providers. In December 2014, the Guardian re-
ported: “Several news companies have had their editors fired while others have lost studio space.”
Before a Siberian TV channel, TV-2, was forced to shut down in December 2014, its owner said
to the Guardian: “We were under constant pressure to change our editorial policies. We’re not an
opposition channel; we simply give everyone an opportunity to speak.”
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The government’s state of affairs is a random variable ω drawn from [0, 1] according
to the distribution F that admits a density f . There is a continuum of media outlets
[0, 1]. A media outlet s ∈ [0, 1] has an editorial policy that endorses the government
(sends message ms = 1) if ω > s and criticizes it (sends message ms = 0) if ω < s.9,10

The cutoff s can be interpreted as a slant or political bias of the outlet against the
government and can be empirically measured as the frequency with which the outlet
uses anti-government language.11

There is a continuum of heterogeneous readers indexed by r ∈ [0, 1] distributed
with G that admits a log-concave density g. Each reader observes endorsements of all
available media outlets12 and chooses between action (a = 1) and inaction (a = 0).
A reader’s utility is equal to

u(ω, r, a, ā) = a(ω − r) + āξ(r),

where ā denotes the average action in the society, and āξ(r) is a type-specific exter-
nality term that contributes to the reader’s utility but does not affect the reader’s
optimal action.

The government’s utility is equal to∫
R

u(ω, r, ar, ā)dG(r) + āγ =

∫
R

(
ar(ω − r) + ā(ξ(r) + γ)

)
dG(r),

where ar denotes an action of type r, and āγ is the government’s intrinsic benefit
from the average action. We assume that

ρ =

(∫
R

(ξ(r) + γ)dG(r)

)−1

> 0,

meaning that the government is biased towards a greater average action in the society.
The government’s censorship policy is a measurable set of the media outlets S ⊂

[0, 1] that are prohibited to broadcast. Readers observe messages only from the per-
mitted media outlets in [0, 1]\S.

The timing is as follows. First, the government chooses a set of prohibited media
outlets. Second, the state of affairs is realized, and every permitted media outlet

9If the set of media outlets is finite, we can redefine the state to be the posterior mean of ω given
the messages of all media outlets. To characterize the optimal censorship policy, we will need to
adjust the analysis in Section 4 to allow for discrete distributions of the state.

10As in Suen (2004), Chan and Suen (2008), and Chiang and Knight (2011), binary media reports
that communicate only whether the state of affairs ω is above some standard s can be justified by a
cursory reader’s preference for simple messages such as positive or negative opinions and yes or no
recommendations.

11Gentzkow and Shapiro (2010) construct such a slant index for U.S. newspapers. Empirical
findings of their paper suggest that the editorial policies of media outlets are driven by reader
preferences, justifying our assumption of the existence of a large variety of editorial policies. The-
oretical literature has explored the determinants of media slant of an outlet driven by its readers
(Mullainathan and Shleifer, 2005, Gentzkow and Shapiro, 2006, and Chan and Suen, 2008) and its
owners (Baron, 2006, and Besley and Prat, 2006).

12This will be compared to Chan and Suen (2008) where each reader observes a single media
outlet and does not communicate with other readers.
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endorses or criticizes the government, according to its editorial policy. Finally, readers
observe messages of the permitted media outlets and decide whether to act or not.

There are various interpretations of the reader’s action a, such as refraining from
emigration, investing in domestic stocks, volunteering for military service, and voting
for the government. We can interpret a reader’s type r as his ideological position. A
reader who is more supportive of the government has a smaller r.13

5.2. Results. We now permit the government to use general persuasion mechanisms
and show that the optimal persuasion mechanism can be achieved by a censorship
policy.

As in Section 2.2, a persuasion mechanism π(ω, r̂) maps a realized state ω and a
reader’s report r̂ about his type to a probability with which action is recommended.
Each reader can observe only his own recommendation and cannot share information
with other readers. Persuasion mechanisms may be hard to implement in practice,
but they serve as a benchmark of what the government could possibly achieve if it
had full information control.

Consider an incentive-compatible persuasion mechanism π. Let āπ(ω) be the aver-
age action conditional on ω, and let qπ(r) be the interim action of type r,

āπ(ω) =

∫
R

π(ω, r)dG(r) and qπ(r) =

∫
Ω

π(ω, r)dF (ω).

Denote by Āπ the expected average action,

Āπ =

∫
R

qπ(r)dG(r).

It is convenient to consider the reader’s interim utility net of the externality term,

Uπ(r) =

∫
Ω

(ω − r)π(ω, r)dF (ω).

Lemma 1 implies that U ′π(r) = −qπ(r), and, hence,

Āπ = −
∫
R

U ′π(r)dG(r).

By integration by parts, the government’s expected utility is equal to

Vπ =

∫
R

(
Uπ(r) + 1

ρ
Āπ

)
dG(r) =

∫
R

(
Uπ(r)− 1

ρ
U ′π(r)

)
dG(r) =

1

ρ

∫
R

I(r)Uπ(r)dr,

where
I(r) = g′(r) + ρg(r).

13This media censorship problem can be applied to spatial voting models, as in Chiang and
Knight (2011). Consider the government party (p = G) and opposition party (p = O) competing in
an election. If party p wins, a voter with ideological position r gets utility wp − (r− rp)2, where wp
is the quality or valence of party p, and rp is the ideology or policy platform of party p. Voters know
the parties’ ideologies and obtain information about the parties’ qualities from all available media
outlets. Each voter supports the party that maximizes his expected utility. Our analysis applies,
because the voter’s utility difference between the government and opposition parties is proportional
to ω − r, where ω =

(
wG − wO + r2

O − r2
G

)
/2(rO − rG) represents the state.
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From Theorem 3, it follows that the optimal persuasion mechanism is an upper-
censorship mechanism with some threshold s∗.14

Corollary 5. The government’s optimal censorship policy is to prohibit all media
outlets s > s∗ and permit all media outlets s < s∗.

Note that a media outlet with a higher editorial policy cutoff is more disloyal to the
government, in the sense that it criticizes the government on a larger set of states.
Corollary 5 says that it is optimal for the government to prohibit all sufficiently
disloyal media outlets from broadcasting.

This government’s censorship policy is optimal among all persuasion mechanisms.
In particular, the government would not be better off if it could restrict each reader
to follow a single media outlet of his choice and ban readers from communicating with
one another, as in Chan and Suen (2008). Nor would the government be better off if
it could create more complex mechanisms that aggregate information from multiple
media outlets and add noise.

Enikolopov et al. (2011) study the effect of voters’ access to NTV, the only indepen-
dent national TV channel, on the regional results of the 1999 Russian parliamentary
elections. They show that local access to NTV substantially decreased the regional
aggregate vote for the government party. Entertaining the possibility that access to
NTV is controlled by the government, rather than exogenous as argued by Enikolopov
et al. (2011), our paper suggests a different interpretation of their findings. By Corol-
lary 2, the government optimally permits access to NTV only in the regions with low
initial support of the government. Thus, access to NTV in these regions may be a
consequence, not a cause, of low electoral support of the government.

6. Multiple Actions

In this section, we allow the receiver to make a choice among multiple actions. We
characterize the implementable receiver’s interim utilities and show that the sender
can generally implement a strictly larger set of the receiver’s interim utilities by
persuasion mechanisms than by experiments. We also formulate the sender’s opti-
mization problem and show that the sender can achieve a strictly higher expected
utility by persuasion mechanisms than by experiments.

6.1. Preferences. Let A = {0, 1, ..., n} be a finite set of actions available to the re-
ceiver. The state ω ∈ Ω = [0, 1] and the receiver’s type r ∈ R = [0, 1] are independent
and have distributions F and G. We continue to assume that the receiver’s utility is
linear in the state for every type and every action.

14This result relies on the linearity of āξ(r) and āγ in ā. Suppose instead that the externality
term is ξ(ā, r) and the government’s intrinsic benefit is γ(ā), where ξ(ā, r) and γ(ā) need not be
linear in ā. Then, for any censorship policy S, we can still express the government’s expected utility
as
∫
R
Ĩ(r)US(r)dr, where US is the reader’s interim utility net of the externality term, and Ĩ is

a function independent of S. Therefore, we can use the results of Section 4 to characterize the
government’s optimal censorship policy. In particular, if the government’s intrinsic benefit γ(ā) is
reverse S-shaped, as under a majoritarian voting system, then the government’s optimal censorship
policy still corresponds to an upper-censorship mechanism.



20 KOLOTILIN, MYLOVANOV, ZAPECHELNYUK, LI

It is convenient to define the receiver’s and sender’s utilities, u(ω, r, a) and v(ω, r, a),
recursively by the utility difference between each two consecutive actions. For each
a ∈ {1, . . . , n},

u(ω, r, a)− u(ω, r, a− 1) = ba(r)(ω − xa(r)),
v(ω, r, a)− v(ω, r, a− 1) = za(r) + ρ(r)(u(ω, r, a)− u(ω, r, a− 1)),

and the utilities from action a = 0 are normalized to zero, u(ω, r, 0) = v(ω, r, 0) = 0
for all ω and all r.

For each a ∈ {1, . . . , n}, the receiver’s and sender’s utilities can be expressed as

u(ω, r, a) =
(∑a

i=1
bi(r)

)
ω −

(∑a

i=1
bi(r)xi(r)

)
v(ω, r, a) =

(∑a

i=1
zi(r)

)
+ ρ(r)u(ω, r, a).

We assume that ba(r) > 0 for all r and all a ∈ {1, . . . , n}. This assumption means
that every type r prefers higher actions in higher states. Note that xa(r) is the cutoff
state at which the receiver of type r is indifferent between two consecutive actions
a− 1 and a. Define x0(r) = −∞ and xn+1(r) =∞.

Denote by x̄a(r) the cutoff truncated to the unit interval,

x̄a(r) = max
{

0,min
{

1, xa(r)
}}
.

We assume that the cutoffs are ordered on [0, 1] such that

x̄1(r) ≤ x̄2(r) ≤ ... ≤ x̄n(r) for all r ∈ R.
Thus, type r optimally chooses action a on the interval of states (x̄a(r), x̄a+1(r)).15

6.2. Experiments. Because the receiver’s utility is linear in the state for every type
and every action, every experiment σ can be equivalently described by the probability
that the posterior mean state is below a given value x ∈ Ω,

Hσ(x) =

∫
Ω

σ(x|ω)dF (ω).

In fact, as in Blackwell (1951), Rothschild and Stiglitz (1970), and Gentzkow and
Kamenica (2016d), it is convenient to describe an experiment by a convex function
Cσ : R→ R defined as

Cσ(x) =

∫ ∞
x

(1−Hσ(m))dm.

Observe that by (9), for every experiment σ, we have Cσ(r) = Uσ(r) for all r, where
Uσ(r) is the receiver’s interim utility under σ in the problem of Section 2, with two
actions and u(ω, r, a) = a(ω − r). Hence, by Theorem 1, the set of all Cσ is equal to

C = {C : C ≤ C ≤ C and C is convex},
15This assumption ensures that the actions that can be optimal for type r are consecutive. If

actions a − 1 and a + 1 are optimal for type r under states ω′ and ω′′, then there must be a state
between ω′ and ω′′ where action a is optimal. This assumption simplifies the exposition. Relaxing
this assumption poses no difficulty: it will only require us for each type r to omit from the analysis
the actions that are never optimal for this type.
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where C and C correspond to the full and no disclosure experiments,

C(x) =

∫ ∞
x

(1− F (m))dm,

C(x) = max{E[ω]− x, 0}.

6.3. Implementable Interim Utilities. The expected utility of type r under ex-
periment σ is equal to

Uσ(r) =

∫
Ω

(
max
a∈A

u(m, r, a)

)
dHσ(m) for all r ∈ R.

Proposition 1. U is implementable by an experiment if and only if there exists C ∈ C
such that

U(r) =
n∑
a=1

ba(r)C(xa(r)) for all r ∈ R. (12)

The proof is in Appendix B.
A persuasion mechanism can be described by a (possibly, infinite) menu of exper-

iments, Σ. The receiver of type r chooses one experiment from the menu and then
observes messages only from this experiment. Obviously, the receiver chooses the
experiment that maximizes his expected utility,

UΣ(r) = max
σ∈Σ

Uσ(r) for all r ∈ R.

By Proposition 1, it is immediate that the receiver’s interim utility U is imple-
mentable if and only if there exists a menu CΣ ⊂ C such that

U(r) = max
C∈CΣ

{
n∑
a=1

ba(r)C(xa(r))

}
for all r ∈ R.

Theorem 1 shows that the sender can implement the same set of receiver’s interim
utilities by experiments as by persuasion mechanisms. With more than two actions,
however, the sender can generally implement a strictly larger set of interim utilities
by persuasion mechanisms than by experiments, as shown in Example 1.

Example 1. Let A = {0, 1, 2}, F admit a strictly positive density, and u(ω, r, a) be
continuous in r for all ω and all a. Furthermore, suppose that there exist two types
r′ < r′′, such that for all r ∈ (r′, r′′),

0 < x1 (r′) < x1 (r) < x1 (r′′) < x2 (r′) < x2 (r) < x2 (r′′) < 1.

Consider a persuasion mechanism consisting of the menu of two experiments repre-
sented by partitions {P ′, P ′′}, where P ′ and P ′′ are the first-best partitions for types
r′ and r′′,

P ′ = {[0, x1 (r′)) , [x1 (r′) , x2 (r′)) , [x2 (r′) , 1]} ,
P ′′ = {[0, x1 (r′′)) , [x1 (r′′) , x2 (r′′)) , [x2 (r′′) , 1]} .
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Figure 5. The utility of type r∗ in Example 1.

Types r′ and r′′ choose, respectively, P ′ and P ′′ and get their maximum possible
utilities U (r′) and U (r′′). By the continuity of u (ω, r, a) in r, there exists a type
r∗ ∈ (r′, r′′) who is indifferent between choosing P ′ and P ′′. By this indifference,

L1 (P ′) + L2 (P ′) = L1 (P ′′) + L2 (P ′′) ,

where, for each a ∈ {1, 2},

La (P ′) =

∫ xa(r′)

xa(r∗)

(
u(ω, r∗, a)− u(ω, r∗, a− 1)

)
dF (ω)

denotes the utility loss of type r∗ from using cutoff xa (r′) rather than his first-best
cutoff xa (r∗) to decide between actions a− 1 and a. Analogously, for each a ∈ {1, 2},
we define La (P ′′).

Fig. 5 illustrates this example. The three blue lines depict the utility of the receiver
of type r∗ from taking action a, u(ω, r∗, a), for each a = 0, 1, 2. The kinked solid blue
line is the utility of type r∗ from taking the optimal action, maxa∈{0,1,2} u(ω, r∗, a).
In Fig. 5, the loss of type r∗ from experiment P ′ relative to the first best, L1 (P ′) +
L2 (P ′), is the total area of the two shaded triangles (assuming that ω is uniformly
distributed). Similarly, the loss of type r∗ from experiment P ′′ relative to the first
best, L1 (P ′′) + L2 (P ′′), is the total area of the two hatched triangles. For type r∗,
these shaded and hatched areas are equal, so type r∗ is indifferent between the two
experiments.

An experiment that gives the maximum possible utilities U (r′) and U (r′′) to types
r′ and r′′ must at least communicate the common refinement of partitions P ′ and P ′′.
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Therefore, the utility of type r∗ under such an experiment is at least

U (r∗)−min {L1 (P ′) , L1 (P ′′)} −min {L2 (P ′) , L2 (P ′′)} ,
which is strictly larger than his utility under the persuasion mechanism,

U (r∗)− L1 (P ′)− L2 (P ′) ,

unless L1 (P ′) = L1 (P ′′) and L2 (P ′) = L2 (P ′′).

In Fig. 5, for type r∗, the loss L1 (P ′′) (left hatched triangle) is smaller than the
loss L1 (P ′) (left shaded triangle). Similarly, the loss L2 (P ′) (right shaded triangle)
is smaller than the loss L2 (P ′′) (right hatched triangle). Hence, the total loss is
smaller under the experiment that is the coarsest common refinement of P ′ and P ′′

(the area of the smaller shaded and hatched triangles) than under either experiment
P ′ or experiment P ′′.

6.4. Sender’s Problem. In this section, we impose the following additional assump-
tions. For each a ∈ {0, 1, . . . , n}, function xa(r) is strictly increasing, and its range
contains Ω. Let function ra(x) be the inverse of function xa(r). Moreover, for each
a ∈ {0, 1, . . . , n}, function za(r) is differentiable, and function G(ra(x)) is twice dif-
ferentiable.

For a given experiment σ, the sender’s expected utility conditional on the receiver’s
type being r is16

Vσ(r) = ρ(r)U(r) +
n∑
a=1

( a∑
i=1

zi(r)
)(
Hσ(xa+1(r))−Hσ(xa(r))

)
.

We now express the sender’s expected utility as a function of Cσ, and all the model
parameters are summarized in function I, the same way as in Lemma 2 in Section 4.

Lemma 4. For every experiment σ,∫
R

Vσ(r)dG(r) = K +

∫
Ω

Cσ(x)I(x)dx,

where K is a constant independent of σ and

I(x) =
n∑
a=1

(
d

dx

(
za(ra(x)) d

dx
G(ra(x))

)
+ ρ(ra(x))ba(ra(x)) d

dx
G(ra(x))

)
.

The proof is in Appendix B.
The sender’s optimal experiment is described by a function C ∈ C that solves

max
C∈C

∫
Ω

C(x)I(x)dx.

The solutions to this problem are characterized by Theorem 2.

16For each r where Hσ(xa+1(r)) is discontinuous, this formula assumes that type r breaks the
indifference in favor of action a if the posterior mean state is xa+1(r). This assumption is innocuous
because G admits a density, and there are at most countably many discontinuities of Hσ.
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As shown in Section 6.3, when the receiver has more than two actions, the sender
can implement a strictly larger set of receiver’s interim utilities by persuasion mech-
anisms than by experiments. We now show that the set of implementable interim
actions is also strictly larger under persuasion mechanisms. Therefore, even if the
sender cares only about the receiver’s action, and not his utility, ρ(r) = 0 for all r,
the sender can achieve a strictly larger expected utility under persuasion mechanisms.

Example 1 (Continued). In addition, let there exist x∗2 ∈ (x1 (r′′) , x2 (r′)) such that
E [ω|ω ≥ x∗2] = x2 (r′′) and E [ω|ω < x∗2] < x1 (r′).

An experiment that maximizes the probability of action a = 2 for type r′′ must
send message x2 (r′′) if and only if ω ∈ [x∗2, 1]. Under any such experiment, type r′

takes action a = 2 if and only if ω ∈ [x∗2, 1], because for ω < x∗2, this experiment must
generate messages distinct from x2 (r′′) and, thus, below x∗2, which is in turn below
x2 (r′).

Consider now a persuasion mechanism consisting of the menu of two experiments
represented by the following partitions:

P ′ = {[0, x∗2 − ε) \[x1 (r′) , x1 (r′′)), [x1 (r′) , x1 (r′′)), [x∗2 − ε, 1]} ,
P ′′ = {[0, x∗2 − ε) , [x∗2 − ε, x∗2) , [x∗2, 1]}

where ε > 0 is sufficiently small. Type r′ strictly prefers P ′ (to P ′′) because, for
a sufficiently small ε, the benefit of taking action a = 1 (rather than a = 0) on
[x1 (r′) , x1 (r′′)) exceeds the cost of taking action a = 2 (rather than a = 1) on
[x∗2 − ε, x∗2). Type r′′ is indifferent between P ′′ and P ′, because under both partitions
he weakly prefers to take action a = 0 on [0, x∗2 − ε) and action a = 1 on [x∗2 − ε, 1].
Therefore, under this mechanism, type r′′ takes action a = 2 if and only if ω ∈ [x∗2, 1],
but type r′ takes action a = 2 if and only if ω ∈ [x∗2 − ε, 1]. As shown above, these
probabilities of a = 2 for types r′ and r′′ cannot be achieved by any experiment.

Finally, an optimal persuasion mechanism need not be an experiment. Suppose
that the sender cares only about action a = 2, i.e., ρ(r) = z0(r) = z1(r) = 0 and
z2(r) = 1 for all r. Also suppose that the support of G contains only r′ and r′′

with r′′ being likely enough, so that the sender’s optimal experiment maximizes the
probability of action a = 2 for type r′′. The persuasion mechanism constructed above
gives a strictly larger expected utility to the sender than any experiment.

7. Nonlinear Utility

In this section we allow the receiver’s utility to be nonlinear in the state ω.

7.1. Preferences. As in Section 2, the receiver has two actions, A = {0, 1}, the set
of states is Ω = [0, 1], and the set of receiver’s types is R = [0, 1]. The receiver’s
utility, however, is

u(ω, r, a) = au(ω, r),

where u(ω, r) is differentiable, strictly increasing in ω, and strictly decreasing in r.
We also normalize the utility such that, for each ω ∈ Ω,

u(ω, ω) = 0.
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The sender’s utility is
v(ω, r, a) = av(ω, r),

where v(ω, r) is differentiable. State ω and type r are independent and have distri-
butions F and G.17

7.2. Characterization of Experiments. We start with the characterization of per-
suasion mechanisms that are equivalent to experiments.

Proposition 2. An incentive-compatible persuasion mechanism π is equivalent to an
experiment if and only if π(ω, r) is nonincreasing in r for every ω ∈ Ω.

The proof is in Appendix B.
Intuitively, because for each experiment σ, the distribution σ(r|ω) of r conditional

on each state ω is nondecreasing in r, each π(ω, r) ∈
[
1 − σ(r|ω), 1 − σ(r−|ω)

]
(see

(2)) is nonincreasing in r.

7.3. Cutoff Mechanisms. Consider a special class of persuasion mechanisms called
cutoff mechanisms. A cutoff mechanism is described by a menu of cutoff experiments,
each of which communicates to the receiver whether the state is above some value or
not.

Because a cutoff experiment is identified by its cutoff value x, a cutoff mechanism
is defined by a compact set of cutoff values X ⊂ Ω = [0, 1]. Type r chooses a cutoff
x(r) ∈ X, so the selected experiment informs the receiver of whether the state is above
x(r) or not. Obviously, different types of the receiver may prefer different cutoffs.

Each upper-censorship (lower-censorship) mechanism defined in Section 4.3 is cutoff
mechanism. The upper-censorship mechanism with censorship threshold ω∗ can be
represented as a set of all cutoff values that are below ω∗.

Proposition 2 allows us to make the following statement.

Corollary 6. Every cutoff mechanism is equivalent to an experiment.

The proof is in Appendix B.
For a given cutoff mechanism X, the corresponding experiment is the monotone

partition of the state space generated by the observation of all experiments X. For
example, if X consists of two elements x′, x′′ ∈ (0, 1), then the corresponding partition
reveals whether the state ω is below x′, between x′ and x′′, or above x′′.

7.4. Binary State. Here we apply Proposition 2 to show that if there are only two
states in the support of the prior F , then every incentive-compatible mechanism is
equivalent to an experiment.

Corollary 7. Let the support of F consist of two states. Then every incentive-
compatible mechanism π is equivalent to an experiment.

17Note that if ω and r are correlated, the analysis below applies if we impose strict monotonicity on
function ũ (ω, r) = u (ω, r) g (r|ω) /g (r) rather than on u, where g(r) and g(r|ω) denote, respectively,
the marginal density of r and the conditional density of r for a given ω. This is because the receiver’s
interim utility under a mechanism π can be written as U(r) =

∫
Ω
ũ(ω, r)π(ω, r)dF (ω).
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The proof is in Appendix B.
Note that if F has a two-point support, then the receiver’s utility is linear in the

state without loss of generality, and, hence, Theorem 1 applies. However, Corollary
7 makes a stronger statement, because it asserts that every incentive-compatible
mechanism is equivalent to an experiment, not just implements the same receiver’s
interim utility.

7.5. Beyond Binary State. Suppose now that the support of the prior F consists
of three states ω1 < ω2 < ω3 and let fi = Pr (ωi) > 0 for i = 1, 2, 3.

When there are at least three states and the utility of the receiver is nonlinear in
(any transformation of) the state, then the posterior distribution of the state induced
by an experiment can no longer be parametrized by a one-dimensional variable—such
as the posterior mean state in the case of linear utilities, the posterior probability of
one of the states in the case of binary-valued state, and the cutoff value in the case
of cutoff mechanisms.

As a consequence, the interim action q(r) and, hence, the sender’s interim utility
V (r) are no longer pinned down by the receiver’s interim utility U(r).

Proposition 3. Let π1 and π2 be two mechanisms that are distinct for each r ∈
(ω1, ω3) but implement the same differentiable receiver’s interim utility U . Then, the
interim action q is the same for π1 and π2 if and only if there exist functions b, c,
and d such that u (ω, r) = c (r) + b (r) d (ω) for each (ω, r) ∈ {ω1, ω2, ω3} × (ω1, ω3).

The proof is in Appendix B.
When the receiver’s utility is nonlinear, the sender can implement a strictly larger

set of the receiver’s interim actions by persuasion mechanisms than by experiments.
Therefore, the sender can achieve a strictly higher expected utility by persuasion
mechanisms, even if her utility v is state-independent.

Example 2. Let there be three states, ω1 < ω2 < ω3, and two types of the receiver,
r′ > r′′. Denote u′i = u (ωi, r

′) and u′′i = u (ωi, r
′′) for i ∈ {1, 2, 3}. Assume u′′2 < 0 <

u′3. Moreover, assume u′1/u
′′
1 > u′2/u

′′
2, which means that point (ω1, u

′′
1) lies above the

dashed line in Fig. 6. Finally, assume that the probability masses (f1, f2, f3) on the
states satisfy f1u

′
1 + f3u

′
3 < 0 and f2u

′
2 + f3u

′
3 < 0.

Let Σ′ be the set of all experiments that maximize the probability of action for
type r′. It is easy to check that any σ′ ∈ Σ′ induces type r′ to act with probability 1
if ω = ω3, with probability −f3u

′
3/(f2u

′
2) if ω = ω2, and with probability 0 if ω = ω1.

Observe that by the monotonicity of u in r, each message of σ′ ∈ Σ′ that induces
type r′ to act also induces type r′′ < r′ to act. Moreover, by the definition of Σ′, each
message of σ′ ∈ Σ′ that induces type r′ not to act can be sent only in states ω1 or ω2

where the utility of type r′′ is negative by assumption, u′′1 < u′′2 < 0, so type r′′ does
not act either. Thus, for each experiment σ under which type r′ acts with probability
f3 (1− u′3/u′2) (i.e., σ ∈ Σ′), type r′′ acts with the same probability as type r′.

We now construct a persuasion mechanism that also maximizes the probability
that type r′ acts, but induces type r′′ to act with a different probability. Let Σ′′ be
the set of all experiments σ′′ that induce type r′ to act with probability 1 if ω = ω3,
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Figure 6. The utilities of types r′ (blue) and r′′ (black) in Example 2.

with probability 0 if ω = ω2, and with probability −f3u
′
3/(f1u

′
1) if ω = ω1. Consider

a persuasion mechanism that consists of a menu of two experiments {σ′, σ′′} with
σ′ ∈ Σ′ and σ′′ ∈ Σ′′. Notice that type r′ is indifferent between σ′ and σ′′ as he
obtains zero expected utility in either case. However, type r′′ strictly prefers σ′′ to σ′,
because u′1/u

′′
1 > u′2/u

′′
2 by assumption. Therefore, under this persuasion mechanism,

type r′ acts with probability f3 (1− u′3/u′2), but type r′′ acts with different probability
f3(1− u′3/u′1).

Finally, when the receiver’s utility is nonlinear, the set of receiver’s interim utili-
ties implementable by persuasion mechanisms (as compared to experiments) can be
strictly larger.

Example 2 (Continued). In addition, let r∗ ∈ (r′, r′′) be such that u′1/u
∗
1 < u′2/u

∗
2,

where u∗i = u (ωi, r
∗) for i ∈ {1, 2, 3}.

It is easy to check that Σ′ and Σ′′ are the sets of experiments σ′ and σ′′ that
maximize the utility of types r∗ and r′′, respectively, subject to the constraint that
type r′ gets utility U (r′) = 0. Because Σ′ and Σ′′ do not intersect, no experiment
can achieve the interim utility induced by a persuasion mechanism that consists of
the menu of two experiments σ′ ∈ Σ′ and σ′′ ∈ Σ′′.

Appendix A. Linear Utilities

This appendix extends our main results to the class of linear utility functions. The
receiver’s and sender’s utilities are normalized to zero if the receiver does not act,
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a = 0, and are linear in the state if the receiver acts, a = 1,

u(ω, r, a) = a · b(ω − t),
v(ω, r, a) = a · (c(ω − t) + d),

where r = (b, c, d, t) ∈ R4 denotes the receiver’s type. The type has distribution G
that admits a differentiable density g, which is strictly positive on a compact set in
R4 and zero everywhere else. The state ω ∈ Ω = [0, 1] is independent of r and has
distribution F .

Let Hσ be the distribution of the posterior mean induced by an experiment σ. As
in Section 6.2, it is convenient to describe σ by

Cσ(t) =

∫ ∞
t

(1−Hσ(m))dm.

Proposition 4. For each experiment σ, the receiver’s interim utility is

Uσ(r) = |b|Cσ(t) + min{0, b}(E[ω]− t). (13)

There exist K ∈ R and I : R→ R such that for each σ the sender’s expected utility is

Vσ = K +

∫
t∈R

Cσ(t)I(t)dt. (14)

Proposition 4 allows us to extend Theorems 1 and 2 to this setting. Recall from
Section 6 that the set of all Cσ is equal to

C = {C : C ≤ C ≤ C and C is convex},
where C and C correspond to the full and no disclosure experiments. Each persuasion
mechanism can be described by a (possibly, infinite) menu of experiments, Σ, which
the receiver chooses from. By (13), for a given menu Σ, the receiver’s interim utility
is

max
σ∈Σ

Uσ(r) = |b|
(

max
σ∈Σ

Cσ(t)

)
+ min{0, b}(E[ω]− t).

Notice that maxσ∈ΣCσ is the upper envelope of convex functions Cσ ∈ C and hence it
is in C. Therefore, by Proposition 4, any implementable pair of the sender’s and re-
ceiver’s expected utilities is implementable by an experiment. Moreover, the sender’s
problem can be expressed as

max
C∈C

∫
R
C(t)I(t)dt,

and Theorem 2 holds with U replaced by C.

Proof of Proposition 4. Fix a type r = (b, c, d, t) ∈ R4 and evaluate

Uσ(r) =

∫ 1

0

max{0, b(m− t)}dHσ(m).

Clearly, if b = 0, then Uσ(r) = 0. We now consider two cases, b > 0 and b < 0.
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Case 1: b > 0. Given a posterior mean m, the receiver acts if and only if t < m.
By integration by parts, the receiver’s interim utility is

Uσ(r) =

∫ 1

t

b(m− t)dHσ(m) = bCσ(t).

Again, by integration by parts, the sender’s interim utility is

Vσ(r) =

∫ 1

t

(c(m− t) + d)dHσ(m) = cCσ(t)− dC ′σ(t).

Case 2: b < 0. Given a posterior mean m, the receiver acts if and only if t ≥ m.
By integration by parts, the receiver’s interim utility is

Uσ(r) =

∫ t

0

b(m− t)dH(m) = −bC(t) + b(E[ω]− t).

Again, by integration by parts, the sender’s interim utility is

Vσ(r) =

∫ t

0

(c(m− t) + d)dH(m) = −cC(t) + dC ′(t) + d+ c(E[ω]− t).

We, thus, obtain (13).
We now show that the sender’s expected utility is given by (14). Let g(b, c, d|t)

be the density of (b, c, d) conditional on t, and let gt(t) be the marginal density of t.
Define

c+(t) =

∫
cg(b, c, d|t)1b>0d(b, c, d),

and

c−(t) =

∫
cg(b, c, d|t)1b<0d(b, c, d).

Similarly, define d+(t) and d−(t).
Fix t and take the expectation with respect to (b, c, d) on the set of b > 0:∫

(b,c,d)

Vσ(b, c, d, t)1b>0g(b, c, d|t)d(b, c, d) = c+(t)Cσ(t)− d+(t)C ′σ(t).

Now, integrating with respect to t,∫
(b,c,d,t)

Vσ(b, c, d, t)1b>0dG(b, c, d, t) =

∫
t

(c+(t)Cσ(t)− d+(t)C ′σ(t))gt(t)dt

=

∫
t

(c+(t)gt(t) + d
dt

[d+(t)gt(t)])Cσ(t)dt.

Similarly, for b < 0,∫
(b,c,d)

Vσ(b, c, d, t)1b<0g(b, c, d|t)d(b, c, d) = −c−(t)Cσ(t)+d−(t)C ′σ(t)+d−(t)+c−(t)(E[ω]−t).
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Now, integrating with respect to t,∫
(b,c,d,t)

Vσ(b, c, d, t)1b<0dG(b, c, d, t) = −
∫
t

(c−(t)Cσ(t)− d−(t)C ′σ(t))gt(t)dt+K

= −
∫
t

(c−(t)gt(t) + d
dt

[d−(t)gt(t)])Cσ(t)dt+K,

where

K =

∫
t

(
d−(t) + c−(t)(E[ω]− t)

)
gt(t)1b<0dt

is a constant independent of Cσ.
Since the measure of types with b = 0 is zero, we obtain∫

r

Vσ(r)dG(r) =

∫
r

Vσ(r)(1b>0 + 1b<0)dG(r) =

∫
t

I(t)Cσ(t)dt+K,

where

I(t) = (c+(t)− c−(t))gt(t) + d
dt

[(d+(t)− d−(t))gt(t)].

�

Appendix B. Omitted Proofs

Proof of Lemma 1. Necessity. Incentive compatibility (3) requires that for each
r̂ > r, both r and r̂ prefer truth telling

Uπ(r) ≥ Uπ(r, r̂) = Uπ(r̂) + qπ(r̂)(r̂ − r),
Uπ(r̂) ≥ Uπ(r̂, r) = Uπ(r) + qπ(r)(r − r̂).

Therefore,
−qπ(r)(r̂ − r) ≤ Uπ(r̂)− Uπ(r) ≤ −qπ(r̂)(r̂ − r),

which implies (4). Letting r̂ → r and then integrating from r to 1 gives

Uπ(1)− Uπ(r) = −
∫ 1

r

qπ(s)ds.

Also, observe that type r = 1 can secure his maximal attainable utility of 0 by always
acting (irrespective of a recommendation); so Uπ(1) = 0 and (5) follows. Finally,
the maximal attainable utility of type r = 1 is E[ω], which can be secured by never
acting; so (6) follows.

Sufficiency. It remains to show that (4)–(6) imply (3). If either r̃ ≥ r̂ ≥ r or
r̃ ≤ r̂ ≤ r, then (4) and (5) imply that

Uπ(r, r̂) = Uπ(r) + qπ(r̂)(r̂ − r) =

∫ 1

r̂

qπ(s)ds+ qπ(r̂)(r̂ − r)

≥
∫ r̃

r̂

qπ(r̃)ds+

∫ 1

r̃

qπ(s)ds+ qπ(r̃)(r̂ − r)

=

∫ 1

r̃

qπ(s)ds+ qπ(r̃)(r̃ − r) = Uπ(r, r̃),
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meaning that Uπ(r, r̂) is single-peaked in r̂, with the peak located at r̂ = r. Therefore,

Uπ(r) ≥ Uπ(r, r̂) = Uπ(r, r̂, 0, 1) for all r, r̂ ∈ R.
Moreover, letting r̂ = 1 and r̂ = 0 gives

Uπ(r) ≥ Uπ(r, 1) = Uπ(1) + qπ(1)(1− r) ≥ 0 = Uπ(r, r̂, 0, 0) for all r, r̂ ∈ R,
Uπ(r) ≥ Uπ(r, 0) = Uπ(0)− qπ(0)r ≥ E[ω]− r = Uπ(r, r̂, 1, 1) for all r, r̂ ∈ R.

Thus, we are left to show that Uπ(r) ≥ Uπ(r, r̂, 1, 0) for all r, r̂ ∈ R. Notice that

Uπ(r, r̂, 1, 0) =

∫
Ω

(1− π(ω, r))(ω − r)dF (ω) = E[ω]− r − Uπ(r, r̂).

Since Uπ(r, r̂) is single-peaked, we have

Uπ(r, r̂, 1, 0) = E[ω]− r −min{Uπ(r, 0), Uπ(r, 1)} ≤ max{0,E[ω]− r}
= max{Uπ(r, r̂, 0, 0), Uπ(r, r̂, 1, 1)} ≤ Uπ(r) for all r, r̂ ∈ R.

Proof of Lemma 3. The ‘if’ part follows from properties (P1) and (P2) in Section
4.2.

Suppose that it is not the case that I crosses the horizontal axis at most once and
from above on Ω. Then there exist 0 ≤ r1 < r2 < r3 ≤ 1 such that I is negative
on (r1, r2) and positive on (r2, r3) (since by assumption I is continuous and nonzero
almost everywhere). Therefore, by the ‘if’ part of this lemma, for any F that has
support only on [r1, r3] a lower-censorship mechanism is optimal. Moreover, by (11)
every upper-censorship mechanism is strictly suboptimal. The analogous argument
applies for I that does not cross the horizontal axis at most once and from below on
Ω.

Proof of Corollary 2. Types r < 0 always act, and types r > 1 never act; so we
omit these types from the analysis. The sender’s expected utility under experiment
σ can be written as:

Vσ = K +

∫ 1

0

Jt (r) dHσ (r) , (15)

where K is a constant independent of σ, Hσ is the distribution of posterior values
Eσ [ω|m], and

Jt (r) =

∫ r

0

(gt (s) + ρGt (s)) ds.

Consider ρ and t such that ω∗ (ρ, t) ∈ (0, 1). Under an upper-censorship mechanism
with threshold ω∗, Hσ(x) = F (x) for x ∈ [0, ω∗), Hσ(x) = F (ω∗) for x ∈ [ω∗, ω∗∗),
and Hσ(x) = 1 for x ∈ [ω∗∗, 1], where ω∗∗ = E [ω|ω > ω∗].

Part (a). The derivative of the sender’s expected utility (15) under an upper-
censorship mechanism with respect to threshold ω∗ is

dV

dω∗
= f (ω∗)

∫ ω∗∗

ω∗
(J ′t (ω∗∗)− J ′t (s)) ds

= f (ω∗)

[∫ ω∗∗

ω∗
(gt (ω∗∗)− gt (s)) ds+ ρ

∫ ω∗∗

ω∗
(Gt (ω∗∗)−Gt (s)) ds

]
.
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This derivative is strictly increasing in ρ; so ω∗ is strictly increasing in ρ by Theorem
1 of Edlin and Shannon (1998).

Part (b). Notice that

d2V

dt dω∗
= −f (ω∗)

∫ ω∗∗

ω∗
(J ′′t (ω∗∗)− J ′′t (s)) ds

= −f (ω∗) J ′′t (ω∗∗) (ω∗∗ − ω∗) + f (ω∗) (J ′t (ω∗∗)− J ′t (ω∗)) .

At the optimal interior threshold, we have dV/dω∗ = 0; so

J ′t (ω∗∗) (ω∗∗ − ω∗) =

∫ ω∗∗

ω∗
J ′t (s) ds. (16)

Since J ′′t (r) is nonzero almost everywhere, J ′t is not constant on (ω∗, ω∗∗). Moreover,
by Theorem 3, It (r) = J ′′t (r) crosses the horizontal axis at most once and from above;
so J ′t (r) is quasiconcave. Therefore, (16) implies that J ′′t (ω∗∗) < 0 and J ′t (ω∗∗) >
J ′t (ω∗); so d2V/dtdω∗ > 0 and ω∗ is strictly increasing in t by Theorem 1 of Edlin
and Shannon (1998).

Proof of Proposition 1. The receiver’s interim utility under experiment σ is

Uσ(r) =
n∑
a=0

∫ xa+1(r)

xa(r)

u(m, r, a)dHσ(m) =
n∑
a=1

∫ ∞
xa(r)

ba(r)(m− xa(r))dHσ(m),

where we used u(m, r, 0) = 0. For each a ∈ {1, . . . , n}, integration by parts yields∫ ∞
xa(r)

ba(r)(m− xa(r))dHσ(m) = −ba(r)(m− xa(r))(1−Hσ(m))
∣∣∣∞
xa(r)

+ ba(r)

∫ ∞
xa(r)

(1−Hσ(m))dm = ba(r)Cσ(xa(r)).

Summing up the above over a ∈ {1, . . . , n} yields (12).
It follows from Section 6.2 that the set of the receiver’s interim utilities imple-

mentable by experiments is equal to the set of functions that satisfy (12) for every
C ∈ C.

Proof of Lemma 4. We have

n∑
a=1

( a∑
i=1

zi(r)
)(
Hσ(xa+1(r))−Hσ(xa(r))

)
=

n∑
a=1

za(r)(1−Hσ(xa(r)))

= −
n∑
a=1

za(r)C
′
σ(xa(r)),
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where we used xn+1(r) =∞ (hence, Hσ(xn+1(r)) = 1) and 1−Hσ(x) = −C ′σ(x). By
Proposition 1, we, thus, obtain

V (r) = ρ(r)U(r) +
n∑
a=1

( a∑
i=1

zi(r)
)(
Hσ(xa(r))−Hσ(xa+1(r))

)
= ρ(r)U(r)−

n∑
a=1

za(r)C
′
σ(xa(r)) =

n∑
a=1

(
ρ(r)ba(r)Cσ(xa(r))− za(r)C ′σ(xa(r))

)
.

Fix a ∈ {1, . . . , n} and define the variable x = xa(r). Hence, r = ra(x). Using this
variable change, we have∫

R

(
ρ(r)ba(r)Cσ(xa(r))− za(r)C ′σ(xa(r))

)
dG(r)

= K̂a +

∫
Ω

(
ρ(ra(x))ba(ra(x))Cσ(x)− za(ra(x))C ′σ(x)

)
dG(ra(x)),

where K̂a is a constant independent of σ because Ω = [0, 1] ⊂ [xa(0), xa(1)], and, for
all σ and all x /∈ Ω, we have Cσ(x) = max{0,E[ω]− x}. Now we integrate by parts∫

Ω

za(ra(x))C ′σ(x)dG(ra(x)) = K̃a −
∫

Ω

Cσ(x) d
dx

(
za(ra(x)) d

dx
G(ra(x))

)
dx

= K̃a −
∫

Ω

C(x) d
dx

(
za(ra(x)) d

dx
G(ra(x))

)
dx,

where K̃a is a constant independent of σ because, for all σ, we have Cσ(0) = E[ω]
and Cσ(1) = 0. Thus, we obtain∫

R

(
ρ(r)ba(r)Cσ(xa(r))− za(r)C ′σ(xa(r))

)
dG(r)

= Ka +

∫
Ω

(
ρ(ra(x))ba(ra(x))

dG(ra(x))

dx
+ d

dx

(
za(ra(x)) d

dx
G(ra(x))

) )
Cσ(x)dx,

where Ka = K̂a + K̃a. Summing the above over a ∈ {1, . . . , n}, we obtain K +∫
Ω
Cσ(x)I(x)dx, where K =

∑
aKa, and I is defined in Lemma 4.

Proof of Proposition 2. Consider a mechanism π that is equivalent to an exper-
iment σ. Since σ(r|ω) is a distribution function of r conditional on ω, it is nonde-
creasing in r for each ω. Then, by (2), π(ω, r) is nonincreasing in r for each ω.

Conversely, let π(r, ω) be nonincreasing in r for all ω. For every ω and r define
σ(r|ω) = 1 − π(r+, ω), where π(r+, ω) denotes the right limit of π(., ω) at r. Since
π(r+, ω) ∈ [0, 1] is nonincreasing and right-continuous in r, the function σ(r|ω) is
a distribution, which describes the distribution of messages for every given state ω.
Thus, σ is an experiment. It remains to verify that the constructed experiment is
direct and induces the same action by the receiver as mechanism π, i.e., when the
experiment sends a message r, then type r is indifferent between the two actions. For
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all r,

Uπ(r) =

∫
Ω

u(ω, r)π(ω, r)dF (ω) =

∫
Ω

u(ω, r+)π(ω, r+)dF (ω)

=

∫
Ω

u(ω, r)π(ω, r+)dF (ω) =

∫
Ω

u(ω, r)(1− σ(r|ω))dF (ω) = Uσ(r),

where the first equality holds by the definition of Uπ, the second by the absolute
continuity of Uπ (Theorem 1 of Milgrom and Segal, 2002), the third by the continuity
of u in r, the fourth by the definition of σ, and the last by the definition of Uσ for
direct experiments. There exist left and right derivatives of Uπ for all r (Theorem 3
of Milgrom and Segal, 2002) that satisfy:

U ′π(r+) =

∫
Ω

∂u(ω, r)

∂r
π(r+, ω)dF (ω),

U ′π(r−) =

∫
Ω

∂u(ω, r)

∂r
π(r−, ω)dF (ω).

Since Uπ(r) = Uσ(r) and σ(r|ω) = 1− π(r+, ω) for all r, we have

U ′σ(r+) =

∫
Ω

∂u(ω, r)

∂r
(1− σ(r|ω))dF (ω),

U ′σ(r−) =

∫
Ω

∂u(ω, r)

∂r
(1− σ(r−|ω))dF (ω),

showing that type r is indifferent between the two actions upon receiving message r.

Proof of Corollary 6. Consider a cutoff mechanism with the set of cutoff values
X. The receiver’s choice to ignore the mechanism messages and always act (never
act) can be described by the auxiliary cutoff x = −ε (x = 1 + ε, respectively), where
ε > 0. Define X̃ = X ∪ {−ε, 1 + ε}. Since the receiver’s utility is increasing in ω, for
every type r, an optimal cutoff is

x∗(r) ∈ arg max
x∈X̃

∫ 1

x

u(r, ω)dF (ω),

and the corresponding mechanism is

π(ω, r) =

{
0, if ω < x∗(r),

1, if ω > x∗(r).

Since the receiver’s utility is decreasing in r, x∗(r) is nondecreasing in r; hence π(ω, r)
is nonincreasing in r for every ω. By Proposition 2, π is equivalent to an experiment.

Proof of Corollary 7. Consider F whose support consist of two states, without loss
of generality, {0, 1}, and let π be an incentive-compatible persuasion mechanism. By
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Proposition 2, it is sufficient to show that π is nonincreasing in r for all r ∈ (0, 1).
Incentive compatibility implies that for all r, r̂ ∈ (0, 1),∑

ω=0,1

u (ω, r) (π (ω, r)− π (ω, r̂)) Pr (ω = 1) ≥ 0. (17)

Rewriting (17) twice, with (r, r̂) = (r2, r1) and (r, r̂) = (r1, r2), yields the inequalities

− u (0, r2)

u (1, r2)
δ (r2, r1, 0) ≤ δ (r2, r1, 1) ≤ −u (0, r1)

u (1, r1)
δ (r2, r1, 0) (18)

where δ (r2, r1, ω) = (π (ω, r2)− π (ω, r1)) Pr (ω = 1). Because u (0, r) < 0 and u (1, r) >
0 for r = r1, r2, the monotonicity of u in r implies that

0 < −u (0, r2)

u (1, r2)
≤ −u (0, r1)

u (1, r1)
for r2 ≤ r1. (19)

Combining (18) and (19) gives π (ω, r2) ≥ π (ω, r1) if r2 ≤ r1 for each ω = 0, 1.

Proof of Proposition 3. For all r ∈ (ω1, ω3) and j = 1, 2, we have

U(r) =
3∑
i=1

u (ωi, r) πj (ωi, r) fi,

U ′(r) =
3∑
i=1

∂u (ωi, r)

∂r
πj (ωi, r) fi,

where the first line holds by the definition of U , and the second line by the incentive
compatibility of π.

The expected action, qπj(r) =
∑3

i=1 πj (ωi, r) fi is the same across j = 1, 2 for each

r if and only if the vectors u (ω, r), ∂u(ω,r)
∂r

, and 1 are linearly dependent for each r.
That is, for each (ω, r) ∈ {ω1, ω2, ω3} × (ω1, ω3), there exist functions γ(r) and µ(r)
such that

∂u (ω, r)

∂r
+ µ (r)u (ω, r) = γ (r) . (20)

The solution of differential equation (20) is given by

u (ω, r) = e
−

∫ r
ω1
µ(x)dx

(
η (ω) +

∫ r

ω1

γ (x) e
∫ x
ω1
µ(y)dy

dx

)
,

where function η (ω) satisfies the (initial) normalization condition u(ω, ω) = 0. This
completes the proof with b (r) , c (r) , and d (ω) given by

(b (r) , c (r) , d (ω)) =

(
e
−

∫ r
ω1
µ(x)dx

∫ r

ω1

γ (x) e
∫ x
ω1
µ(y)dy

dx, e
−

∫ r
ω1
µ(x)dx

, η (ω)

)
.
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