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. . . Data
External forcing or random reorganization?-icrce
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Abrupt change

Internally forced

(i.e. white noise)

Red noise

Time

Externally
forced

Forcing shift -
response shift

e.g. climate shift leads to
an ecosystem shift

Threshold

e.g-increasing anthropogenic
pressure pushes the system
to cross a threshold
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Intro to changepoint detection
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What are changepoints?

For data y1, ..., yn, a changepoint is a location 7 where the statistical
properties of y1, ..., y, are different from y, . 1,..., ¥n.
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Example: Change in mean .2 Hahasas

Assume we have time-series data
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We want to infer the number and position of the points at which the
mean changes. One approach:

Likelihood Ratio Test
To detect a single changepoint we can use the likelihood ratio test
statistic:

LR = mgx{f(y1;7) + U(Yrt1:n) — L(Y1:n) }-

We infer a changepoint if LR > [ for some (suitably chosen) g. If we
infer a changepoint its position is estimated as

T =arg max{‘g(yhT) + e(y7+1:n) o €(y1n)}

This can test can be repeatedly applied to new segments to find
multiple changepoints.

Rebecca Killick Changepoint Detection 20 Sept 2016 10/27



_ Data Lancaster-
Science UmverSlty

The PELT Method to identify multiple
changes

(Pruned Exact Linear Time)

Rebecca Killick Changepoint Detection 20 Sept 2016 11/27



Lancaster -
University ¢

PELT in a nutshell S

e Dynamic programming allows
us to only worry about the
location of the /ast change.

e Pruning means thataswe go - -
through the data we are smart
about which locations are o
potential last change
locations. T,
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Model Selection
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Motivation - from bad practice

Science
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e From a
publication in
Marine Ecology
(not the only
one)

e Used the
Rodionov
(2004) method
very popular.

e Cannot deal
with trend or
autocorrelation.
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Motivation - from Beaulieu et al. 2015 sub;;c Um\%argfgf
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AIM: select the most parsimonious but accurate model for the data.

Trend+Change+AR

Mean+Change
+AR

<

Trend+Change Trend+AR

Mean+Change Mean+AR

Simple to extend with other types of models.
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e Fast changepoint detection techniques gives us the ability to fit
all models

e Choose the best model according to your favourite criterion
(we use AIC here).

e |f you are worried about computation time, you can fit stepwise.

e All routines are available in R and Matlab packages - one
function does it all.
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Simulation Study
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Mean+AR+Change
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Pacific Decadal Oscillation
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Being able to find changepoints quickly is important

Being able to fit several models is useful

Automatic decision making saves time and bias

Code is available within an R package (EnvCpt) on Github.
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¢ Independence between segments

o Additivity of the cost function over segments

e Penalty that is linear in the number of changepoints
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Theorem
Define 6* to be the value that maximises the expected log-likelihood

0" = argmax / / f(y10)f(y|60)dym(60)dbo.

Let 0; be the true parameter associated with the segment containing
y; and 0, be the maximum likelihood estimate for 6 given data yy.p
and an assumption of a single segment:

n
0, = arg max 21: log f(y;16).
=
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Then if
(A1) denoting B, = Y"1, log [f(y,-\én) —log f(y,-\@*)}, we have
E (Bp) = o(n) andE ([B, — E(By)]*) = O(n?);

(A2) E ([log f(Yil6y) — log f(Yl07)]*) < oo;
(A3) E (S®) < oc; and
(A4) E(log f(Yi[6;) — log £(Y|6")) > g(s):

the expected CPU cost of PELT for analysing n data points is
bounded above by Ln for some constant L < ~c.

Rebecca Killick Changepoint Detection 20 Sept 2016 30/27



