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Summary of Talk

• Motivation
• Intro to changepoint detection
• Introduce the PELT (Pruned Exact Linear Time) method
• Automatic model selection
• Simulation Study
• North Pacific Example
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Motivation
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Sahara Desert
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External forcing or random reorganization?
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Forcing-Response relationship
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Intro to changepoint detection
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What are changepoints?

For data y1, . . . , yn, a changepoint is a location τ where the statistical
properties of y1, . . . , yτ are different from yτ+1, . . . , yn.
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Example: Change in mean

Assume we have time-series data
where

Yt |θt ∼ N(θt ,1),

but where the means, θt , are
piecewise constant through time.
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Example: Inferring Changepoints

We want to infer the number and position of the points at which the
mean changes. One approach:

Likelihood Ratio Test
To detect a single changepoint we can use the likelihood ratio test
statistic:

LR = max
τ
{`(y1:τ ) + `(yτ+1:n)− `(y1:n)}.

We infer a changepoint if LR > β for some (suitably chosen) β. If we
infer a changepoint its position is estimated as

τ = arg max{`(y1:τ ) + `(yτ+1:n)− `(y1:n)}.

This can test can be repeatedly applied to new segments to find
multiple changepoints.
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The PELT Method to identify multiple
changes

(Pruned Exact Linear Time)
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PELT in a nutshell

• Dynamic programming allows
us to only worry about the
location of the last change.

• Pruning means that as we go
through the data we are smart
about which locations are
potential last change
locations.
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Model Selection
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Motivation - from bad practice

• From a
publication in
Marine Ecology
(not the only
one)

• Used the
Rodionov
(2004) method
very popular.

• Cannot deal
with trend or
autocorrelation.
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Motivation - from Beaulieu et al. 2015

• potentially
hundreds or
thousands of
series

• no time to
consider the
format of
change for each

• need to include
both the
potential for
trends and also
red noise (auto-
correlation).
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Model Selection

AIM: select the most parsimonious but accurate model for the data.

Simple to extend with other types of models.
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Model Selection

• Fast changepoint detection techniques gives us the ability to fit
all models

• Choose the best model according to your favourite criterion
(we use AIC here).

• If you are worried about computation time, you can fit stepwise.

• All routines are available in R and Matlab packages - one
function does it all.
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Simulation Study
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Mean+Change
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Mean+AR+Change
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Trend+AR+change(trend)
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Trend

Case 4
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Pacific Decadal Oscillation
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North Pacific Ocean
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North Pacific Ocean -
Trend(Mean)+AR+change
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Summary

• Being able to find changepoints quickly is important

• Being able to fit several models is useful

• Automatic decision making saves time and bias

• Code is available within an R package (EnvCpt) on Github.
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Assumptions of PELT

• Independence between segments

• Additivity of the cost function over segments

• Penalty that is linear in the number of changepoints
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Theorem

Theorem
Define θ∗ to be the value that maximises the expected log-likelihood

θ∗ = arg max
∫ ∫

f (y |θ)f (y |θ0)dyπ(θ0)dθ0.

Let θi be the true parameter associated with the segment containing
yi and θ̂n be the maximum likelihood estimate for θ given data y1:n
and an assumption of a single segment:

θ̂n = arg max
θ

n∑
i=1

log f (yi |θ).
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Theorem cont.

Theorem
Then if

(A1) denoting Bn =
∑n

i=1 log
[
f (yi |θ̂n)− log f (yi |θ∗)

]
, we have

E (Bn) = o(n) and E
(
[Bn − E (Bn)]

4) = O(n2);

(A2) E
(
[log f (Yi |θi)− log f (Yi |θ∗)]4

)
<∞;

(A3) E
(
S3) <∞; and

(A4) E (log f (Yi |θi)− log f (Yi |θ∗)) > β
E(S) ;

the expected CPU cost of PELT for analysing n data points is
bounded above by Ln for some constant L <∞.
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