

Abrupt changes in climate and ecosystems: automatic model selection

Rebecca Killick Joint work with Claudie Beaulieu (Southampton Oceanographic Centre) 20 Sept 2016

- Motivation
- Intro to changepoint detection
- Introduce the PELT (Pruned Exact Linear Time) method
- Automatic model selection
- Simulation Study
- North Pacific Example

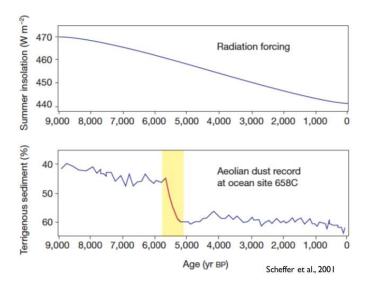
Motivation

Rebecca Killick

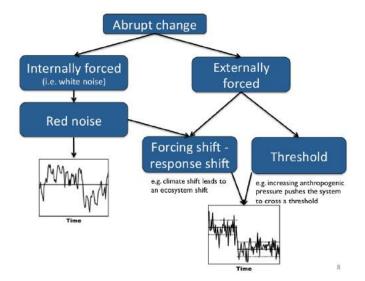
Changepoint Detection

20 Sept 2016 3 / 27

Sahara Desert

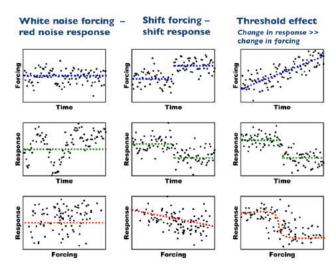


External forcing or random reorganization?cience



Forcing-Response relationship

Science

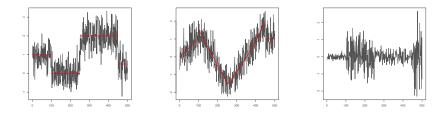


Adapted from Andersen et al., 2008; Bestelmeyer et al., 2011

Intro to changepoint detection

What are changepoints?

For data y_1, \ldots, y_n , a changepoint is a location τ where the statistical properties of y_1, \ldots, y_{τ} are different from $y_{\tau+1}, \ldots, y_n$.



20 Sept 2016 9 / 27

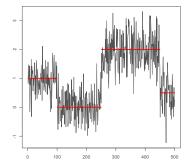
Lancaster 🖾

University

Assume we have time-series data where

 $Y_t|\theta_t \sim N(\theta_t, 1),$

but where the means, θ_t , are piecewise constant through time.



Data

Science

We want to infer the number and position of the points at which the mean changes. One approach:

Lancaster With University

Likelihood Ratio Test

To detect a single changepoint we can use the likelihood ratio test statistic:

$$LR = \max_{\tau} \{ \ell(y_{1:\tau}) + \ell(y_{\tau+1:n}) - \ell(y_{1:n}) \}.$$

We infer a changepoint if $LR > \beta$ for some (suitably chosen) β . If we infer a changepoint its position is estimated as

$$\tau = \arg \max\{\ell(y_{1:\tau}) + \ell(y_{\tau+1:n}) - \ell(y_{1:n})\}.$$

This can test can be repeatedly applied to new segments to find multiple changepoints.

Rebecca Killick	Changeneint Datastien	00 Cont 0010	10 / 27
Repecca Killick	Changepoint Detection	20 Sept 2016	10/2/
	3.1.		

The PELT Method to identify multiple changes

(Pruned Exact Linear Time)

Rebecca Killick

Changepoint Detection

20 Sept 2016

locations.

m

50

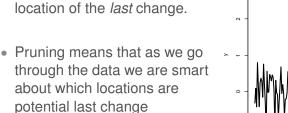
20 Sept 2016 12/27

150

200

100

Time

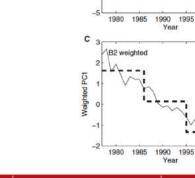


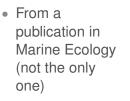
us to only worry about the

- Dynamic programming allows • location of the last change.

PELT in a nutshell

Model Selection





- Used the Rodionov (2004) method very popular.
- Cannot deal with trend or autocorrelation.

B2 unweighted

A 10

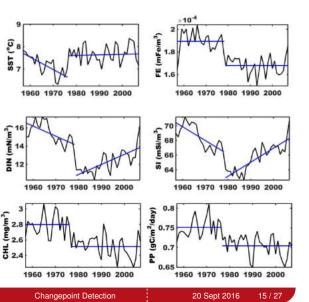
Unweighted PC1

2000 2005

2000 2005

Motivation - from Beaulieu et al. 2015

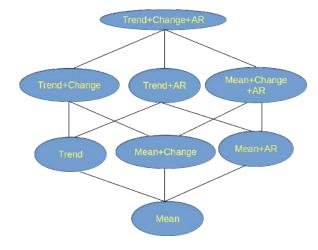
- potentially hundreds or thousands of series
- no time to consider the format of change for each
- need to include both the potential for trends and also red noise (autocorrelation).



Data Lancaster

Model Selection

AIM: select the most parsimonious but accurate model for the data.



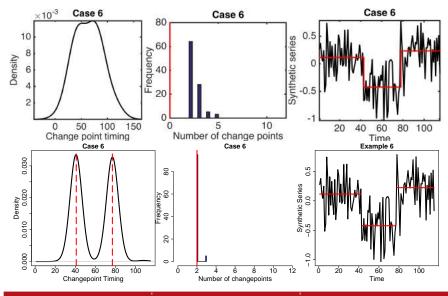
Simple to extend with other types of models.

Rebecca Killick	Changepoint Detection	20 Sept 2016	16 / 27

- Fast changepoint detection techniques gives us the ability to fit all models
- Choose the best model according to your favourite criterion (we use AIC here).
- If you are worried about computation time, you can fit stepwise.
- All routines are available in R and Matlab packages one function does it all.

Simulation Study

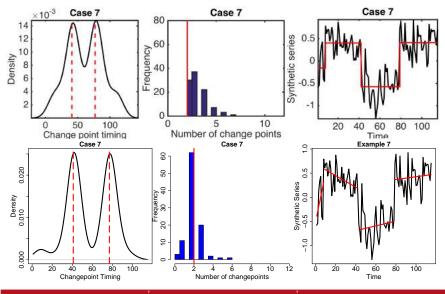
Mean+Change



Rebecca Killick

Changepoint Detection

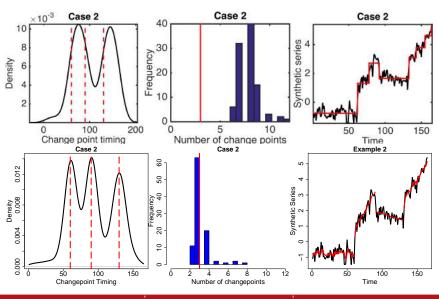
Mean+AR+Change



Rebecca Killick

20 Sept 2016 20 / 27

Trend+AR+change(trend)



Rebecca Killick

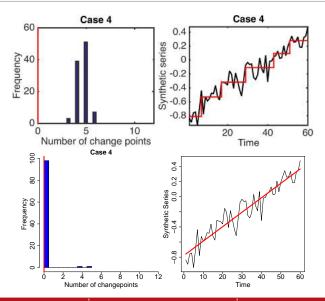
20 Sept 2016 21 / 27

Lancaster Sa University

Data

Science

Trend

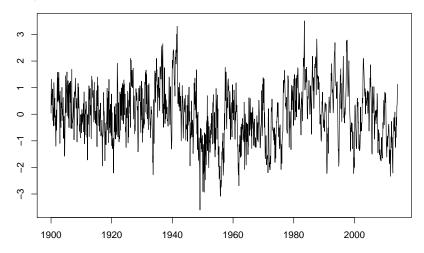


Rebecca Killick

Pacific Decadal Oscillation

North Pacific Ocean

Monthly PDO



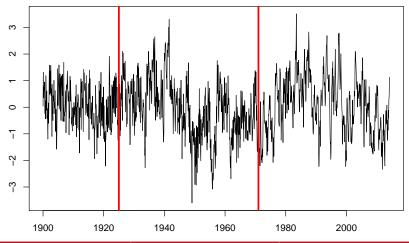
Rebecca Killick

Changepoint Detection

20 Sept 2016 24 / 27

North Pacific Ocean -Trend(Mean)+AR+change

Monthly PDO



Rebecca Killick

Changepoint Detection

20 Sept 2016 25 / 27

- · Being able to find changepoints quickly is important
- Being able to fit several models is useful
- Automatic decision making saves time and bias
- Code is available within an R package (EnvCpt) on Github.

- PELT algorithm: Paul Fearnhead and Idris Eckley (Lancaster)
- Change in Trend: Rob Maidstone and Paul Fearnhead (Lancaster)
- Model selection and climate examples: Claudie Beaulieu (Southampton)

- Independence between segments
- Additivity of the cost function over segments
- · Penalty that is linear in the number of changepoints

Theorem

Define θ^* to be the value that maximises the expected log-likelihood

$$\theta^* = \arg \max \int \int f(y|\theta) f(y|\theta_0) dy \pi(\theta_0) d\theta_0.$$

Let θ_i be the true parameter associated with the segment containing y_i and $\hat{\theta}_n$ be the maximum likelihood estimate for θ given data $y_{1:n}$ and an assumption of a single segment:

$$\hat{\theta}_n = \arg\max_{\theta} \sum_{i=1}^n \log f(y_i|\theta).$$

Theorem

Then if

(A1) denoting
$$B_n = \sum_{i=1}^n \log \left[f(y_i | \hat{\theta}_n) - \log f(y_i | \theta^*) \right]$$
, we have
 $\mathbb{E}(B_n) = o(n) \text{ and } \mathbb{E}([B_n - \mathbb{E}(B_n)]^4) = \mathcal{O}(n^2);$
(A2) $\mathbb{E}\left([\log f(Y_i | \theta_i) - \log f(Y_i | \theta^*)]^4 \right) < \infty;$
(A3) $\mathbb{E}(S^3) < \infty;$ and
(A4) $\mathbb{E}(\log f(Y_i | \theta_i) - \log f(Y_i | \theta^*)) > \frac{\beta}{\mathbb{E}(S)};$
the expected CPU cost of PELT for analysing n data points is
bounded above by L_n for expectator $L < \infty$

bounded above by Ln for some constant $L < \infty$.