Introduction: what's the problem?	Options available in statistical models	Non-statistical models	Conclusion

Model calibration with uncertain inputs

Richard E. Chandler and Zoi Apostolidi

Department of Statistical Science, University College London (r.chandler@ucl.ac.uk)

SECURE annual workshop, Glasgow, 20th September 2016

Introduction: what's the problem? ●0000000000000	Options available in statistical models	Non-statistical models	Conclusion O
Model calibration			
Models			

• Environmental change often studied using models / simulators that convert inputs X to outputs Y:

Parameters
$$(\theta)$$

 \downarrow
Inputs $(\mathbf{X}) \longrightarrow Model \longrightarrow Outputs (\mathbf{Y})$

• 'Parameters' control precise relationship between inputs and outputs: usually determined by calibrating model using available data

Introduction: what's the problem? ●0000000000000	Options available in statistical models	Non-statistical models	Conclusion O
Model calibration			
Models			

• Environmental change often studied using models / simulators that convert inputs X to outputs Y:

$$\begin{array}{c} \text{Parameters } (\theta) \\ \downarrow \\ \text{Inputs } (\mathbf{X}) \longrightarrow & \text{Model} \longrightarrow & \text{Outputs } (\mathbf{Y}) \end{array}$$

- 'Parameters' control precise relationship between inputs and outputs: usually determined by calibrating model using available data
- Deterministic models: $\mathbf{Y} = f(\mathbf{X}; \boldsymbol{\theta})$
- Models including stochasticity: $\mathbf{Y} \sim \pi(\mathbf{X}; \boldsymbol{\theta})$

Options available in statistical models

Non-statistical models

Conclusion 0

Model calibration

Example: calibrating a rainfall-runoff model (I)

 Rainfall-runoff models typically convert series of precipitation and evapotranspiration (input, X) to channel flow (output, Y)

Example: TOPMODEL

Specimen parameters

- Storage volumes: S₁, S₂, S₃
- Flow attenuation coefficients: q_{of}, q_o
- Etc. etc.

TOPMODEL schematic (from Beven and Kirkby, Hydrol. Sci. Bull., 1979)

Options available in statistical models 00000000000

Non-statistical models

Conclusion 0

Model calibration

Example: calibrating a rainfall-runoff model (I)

 Rainfall-runoff models typically convert series of precipitation and evapotranspiration (input, X) to channel flow (output, Y)

Example: TOPMODEL

Specimen parameters

- Storage volumes: S_1 , S_2 , S_3
- Flow attenuation coefficients: q_{of}, q_o
- Etc. etc.

TOPMODEL schematic (from Beven and Kirkby, Hydrol. Sci. Bull., 1979)

- Calibration usually by optimising objective function $Q(\theta, \mathbf{X}, \mathbf{Y})$ say
 - E.g. least-squares, Nash-Sutcliffe efficiency etc.

Options available in statistical models 00000000000

Non-statistical models

Conclusion 0

Model calibration

Example: calibrating a rainfall-runoff model (II)

- Calibrating 24 parameters in TOPMODEL for the Severn at Plynlimon using three years of daily data (precipitation, evapotranspiration, streamflow).
- Sample 1000 parameter sets from ranges defined by Clark et al. (*Hydrol. Proc.*, 2011)
- For each parameter set, simulate streamflows given observed precipitation and evapotranspiration; compare with observed flows using Nash-Sutcliffe efficiency

Software: Claudia Vitolo's "fuse" R package: https://github.com/ICHydro/r_fuse

Options available in statistical models

Non-statistical models

Conclusion 0

Model calibration

Calibration: considerations

What makes a "good" calibration procedure?

Prediction: Calibrated models deliver (a) outputs that are 'close' to actual values in situations outside calibration setting (b) credible, decision-relevant uncertainty assessments
Explanation / understanding: Calibrated parameters correspond to what you think they represent e.g. for data generated from model, calibration procedure should recover 'true' parameter values (minimum requirement) — asymptotically for stochastic models

Options available in statistical models 00000000000

Non-statistical models

Conclusion 0

Model calibration

Calibration: considerations

What makes a "good" calibration procedure?

Prediction: Calibrated models deliver (a) outputs that are 'close' to actual values in situations outside calibration setting (b) credible, decision-relevant uncertainty assessments
Explanation / understanding: Calibrated parameters correspond to what you think they represent e.g. for data generated from model, calibration procedure should recover 'true' parameter values (minimum requirement) — asymptotically for stochastic models

How might you screw up?

- Inappropriate choice of objective function Q(θ, X, Y) (more subtle than you might think!)
- Systematic errors in data on X or Y
- Other data issues ...?

Options available in statistical models 00000000000

Non-statistical models

Conclusion 0

Imperfect data

Imperfect inputs (and outputs)

- \bullet Data X* and Y* often do not correspond to X and Y in model
- Possible reasons:
 - Observations subject to measurement error;
 - Observations interpolated to model grid from irregular network of recording stations;
 - Data derived indirectly from measurements of related quantities using imperfect models (e.g. remote sensing technology);
 - etc.

Options available in statistical models 00000000000

Non-statistical models

Conclusion 0

Imperfect data

Imperfect inputs (and outputs)

- \bullet Data X^* and Y^* often do not correspond to X and Y in model
- Possible reasons:
 - Observations subject to measurement error;
 - Observations interpolated to model grid from irregular network of recording stations;
 - Data derived indirectly from measurements of related quantities using imperfect models (e.g. remote sensing technology);
 - etc.

Does this affect anything?

- If there are systematic errors e.g. X* systematically higher or lower than X: yes, obviously
- If there are no systematic errors e.g. $X^* \neq X$ but $\overline{X}^* \approx \overline{X} \dots$?

Imperfect data

Options available in statistical models

Non-statistical models

Conclusion 0

Three 'imperfect data' scenarios

- Measurement error in output: Y* = Y + ε where ε is zero-mean 'measurement error'
- **2** Measurement error in input: $X^* = X + \delta$ where δ is zero-mean 'measurement error'
 - Error δ independent of actual input X;
 - $\bullet\,$ Recorded input ${\bf X}^*$ more variable than actual input ${\bf X}$
- Imprecisely-administered input: X = X* + δ where δ is zero-mean 'dose error'
 - Error $\boldsymbol{\delta}$ independent of recorded input \mathbf{X}^* ;
 - $\bullet\,$ Recorded input \textbf{X}^* less variable than actual input X

Options available in statistical models

Non-statistical models

Simulation experiments, linear relationship

Example: linear relationship between scalar quantities

- Suppose $\mathbf{Y} = (Y_1 \dots Y_n)'$, $\mathbf{X} = (X_1 \dots X_n)'$ and model is $Y_i = \alpha + \beta X_i$ with parameters $\boldsymbol{\theta} = (\alpha \ \beta)'$
 - Deterministic linear relationship between input and output
- Consider calibration by least-squares regression

Simulation experiments, linear relationship

Example: linear relationship between scalar quantities

- Suppose $\mathbf{Y} = (Y_1 \dots Y_n)'$, $\mathbf{X} = (X_1 \dots X_n)'$ and model is $Y_i = \alpha + \beta X_i$ with parameters $\boldsymbol{\theta} = (\alpha \ \beta)'$
 - Deterministic linear relationship between input and output
- Consider calibration by least-squares regression

A simulation experiment

- Generate 10 000 datasets (X, Y, X*, Y*) under each of several imperfect data scenarios
- 1000 observations per dataset, $X_i \sim N(1,1)$
- Linear relationship as above with $\alpha = -0.5, \beta = 0.4$
- Estimate α and β for each dataset using least-squares regression of **Y**^{*} on **X**^{*}
- Calculate means of least-squares estimates over all datasets

Options available in statistical models

Non-statistical models

Conclusion 0

Simulation experiments, linear relationship

Simulations: linear relationship, scenario 1

True values $\alpha = -0.5, \beta = 0.4$: no problems here

Options available in statistical models 00000000000

Non-statistical models

Conclusion 0

Simulation experiments, linear relationship

Simulations: linear relationship, scenario 2

Measurement error in input: $X^* = X + \delta$

- $\delta_i \sim N(0, \sigma_{\delta}^2)$ for $\sigma_{\delta}^2 = 0, 0.1, 0.25, 1$
- Means of least-squares estimates over 10 000 simulated datasets: σ_{δ}^2

Options available in statistical models

Non-statistical models

Conclusion 0

Simulation experiments, linear relationship

Simulations: linear relationship, scenario 2

True values $\alpha = -0.5, \beta = 0.4$: something wrong ...

Options available in statistical models 00000000000

Non-statistical models

Conclusion 0

Simulation experiments, linear relationship

Simulations: linear relationship, scenario 3

Imprecisely-administered input: $X = X^* + \delta$

- $\delta_i \sim N(0, \sigma_{\delta}^2)$ for $\sigma_{\delta}^2 = 0, 0.1, 0.25, 1$
- Means of least-squares estimates over 10 000 simulated datasets: σ_{δ}^2

Options available in statistical models

Non-statistical models

Conclusion 0

Simulation experiments, linear relationship

Simulations: linear relationship, scenario 3

True values $\alpha = -0.5, \beta = 0.4$: everything OK here

Options available in statistical models 00000000000

Non-statistical models

Conclusion O

Simulation experiments, linear relationship

Linear relationship: lessons from simulation

- Non-differential measurement error on Y (i.e. Y* = Y on average): least-squares estimates unbiased
- Non-differential measurement error on X: least-squares estimates biased
 - Phenomenon called regression dilution bias
- Imprecisely-administered inputs X: least-squares estimates unbiased
 - Known as Berkson error model

Also:

- Imperfect data contributes to uncertainty in calibration.
- Differential measurement error (i.e. systematic biases in X* or Y*) usually induces bias

Introduction: what's the problem?	Options available in statistical models	Non-statistical models	Conclusion 0
Simulation experiments, nonlinear relation	ship		

Nonlinear models

A simple nonlinear simulation experiment

• Setup as before but using logistic regression: $Y_i = 0$ or 1, with $P(Y_i = 1) = p_i$ and

$$\log\left(\frac{p_i}{1-p_i}\right) = \alpha + \beta X_i \Rightarrow p_i = \left[1 + \exp\left(-\alpha - \beta X_i\right)\right]^{-1}$$

- Calibration using maximum likelihood estimation
- Other changes from 'linear' experiment:
 - $\alpha = -1.2, \ \beta = 1.7$
 - 'Measurement error in output' $\Rightarrow Y_i$ misclassified with probability π (**NB** differential error)

Options available in statistical models

Non-statistical models

Conclusion 0

Simulation experiments, nonlinear relationship

Simulation results: logistic regression

Me	ans of	maxim	num	likel	ihood	estin	nates	s over	10	000 d	latasets
	Measurement error in output (i.e. misclassification)										
						π					
				0	0.0	5	0.1	0.2			
		_	α	-1.21	-0.9	8 -0	.80	-0.53	_		
			β	1.71	1.3	81	.13	0.76			
	•										
N	/leasure	ment e	rror	in in	out	Im	preci	sely-a	dmir	ustere	ed input
		σ	r_{δ}^2						σ	δ	
	0	0.1	0.	25	1			0	0.1	0.25	5 1
α	-1.21	-1.00	-0.	78 -	-0.28	α	-1.2	21 -1	.14	-1.07	' -0.83
β	1.71	1.48	1.	23	0.68	β	1.7	'1 1	.62	1.51	1.17

Recall true values: $\alpha = -1.2$, $\beta = 1.7 \Rightarrow$ bias now exists in all scenarios

Introduction: what's the problem? ○○○○○○○○○○●	Options available in statistical models	Non-statistical models	Conclusion O
Does it matter?			
Does it matter?			

- No problem if aim is just to predict **Y**^{*} from **X**^{*} under identical conditions
- Problem if aim is to:
 - Predict Y from X* (possible bias in nonlinear settings; incorrect assessments of uncertainty);
 - $\bullet~\mathsf{Predict}~\mathbf{Y}~\mathsf{or}~\mathbf{Y}^*$ from \mathbf{X}
 - Quantify drivers of changes in output ${\bf Y}$
 - Quantify effects of changes in input **X** e.g. 'effect on streamflow of 20% increase in precipitation'
- Note also: biases can be propagated to other parameters not directly connected to components of X subject to measurement error (e.g. correlated covariates in regression models; intercepts in previous simulation examples)

Options available in statistical models •••••••• Non-statistical models 000

Conclusion 0

Possibilities

Confronting the problem: some possibilities

Method of moments: find explicit expression for bias (not always possible ⇒ limited applicability), estimate required correction

Orthogonal regression: for linear regression (\Rightarrow limited applicability again) with errors in covariates

• Also called Deming regression

Unbiased estimating equations SIMEX (SIMulation-based EXtrapolation) Bayesian methods

Options available in statistical models

Non-statistical models Conclusion

Unbiased estimating equations

Unbiased estimating equations

- Idea: calibration often done by solving estimating equation g(θ; X*, Y*) = 0.
 - $\mathbf{g}(\boldsymbol{\theta}; \mathbf{X}^*, \mathbf{Y}^*)$ is estimating function.

Options available in statistical models

Non-statistical models Conclusion

Unbiased estimating equations

Unbiased estimating equations

- Idea: calibration often done by solving estimating equation g(θ; X*, Y*) = 0.
 - $\mathbf{g}(\boldsymbol{\theta}; \mathbf{X}^*, \mathbf{Y}^*)$ is estimating function.
- If 'target' value of θ is θ_0 e.g. if $\mathbf{Y} = f(\mathbf{X}, \theta_0)$ then unbiased estimating equation has $\mathbb{E}[\mathbf{g}(\theta_0; \mathbf{X}^*, \mathbf{Y}^*)] = \mathbf{0}$
 - Necessary (but not sufficient) for decent estimation of θ in large samples (Jesus & Chandler, 2011, *Interface Focus*).
 - NB expectation implies probability distribution uncontroversial if multiple sets of observations (X*, Y*) are possible given same set of model quantities (X, Y).

Options available in statistical models

Non-statistical models Conclusion

Unbiased estimating equations

Unbiased estimating equations

- Idea: calibration often done by solving estimating equation g(θ; X*, Y*) = 0.
 - $\mathbf{g}(\boldsymbol{\theta}; \mathbf{X}^*, \mathbf{Y}^*)$ is estimating function.
- If 'target' value of θ is θ_0 e.g. if $\mathbf{Y} = f(\mathbf{X}, \theta_0)$ then unbiased estimating equation has $\mathbb{E}[\mathbf{g}(\theta_0; \mathbf{X}^*, \mathbf{Y}^*)] = \mathbf{0}$
 - Necessary (but not sufficient) for decent estimation of θ in large samples (Jesus & Chandler, 2011, *Interface Focus*).
 - NB expectation implies probability distribution uncontroversial if multiple sets of observations (X*, Y*) are possible given same set of model quantities (X, Y).
- So bias-correct the estimating equation, and corrected calibration follows.

Options available in statistical models

Non-statistical models

Conclusion 0

Unbiased estimating equations

Example: bias-correcting the linear regression model

• Consider $Y_i = \alpha + \beta X_i + \varepsilon_i$ (i = 1, ..., n) with measurement error in input: $X_i^* = X_i + \delta_i$, $\delta_i \sim N(0, \sigma_{\delta}^2)$.

Options available in statistical models

Non-statistical models

Conclusion 0

Unbiased estimating equations

Example: bias-correcting the linear regression model

- Consider $Y_i = \alpha + \beta X_i + \varepsilon_i$ (i = 1, ..., n) with measurement error in input: $X_i^* = X_i + \delta_i$, $\delta_i \sim N(0, \sigma_{\delta}^2)$.
- Least-squares estimates solve $M'(Y^* M\theta) = 0$ where

$$\mathbf{M}' = \left(\begin{array}{ccc} 1 & \cdots & 1 \\ X_1^* & \cdots & X_n^* \end{array}\right).$$

- Solution is $\hat{\theta} = (M'M)^{-1}M'Y^*$
- Estimating function is $\mathbf{g}(\theta; \mathbf{X}^*, \mathbf{Y}^*) = \mathbf{M}'(\mathbf{Y}^* \mathbf{M}\theta)$.

Options available in statistical models

Non-statistical models

Conclusion 0

Unbiased estimating equations

Example: bias-correcting the linear regression model

- Consider Y_i = α + βX_i + ε_i (i = 1,..., n) with measurement error in input: X_i^{*} = X_i + δ_i, δ_i ~ N(0, σ²_δ).
- Least-squares estimates solve $M'(Y^* M\theta) = 0$ where $M' \begin{pmatrix} 1 & \cdots & 1 \end{pmatrix}$

$$\mathbf{r} = \left(\begin{array}{ccc} X_1^* & \cdots & X_n^* \end{array} \right)^{-1}$$

- Solution is $\hat{\theta} = (M'M)^{-1} M'Y^*$
- Estimating function is $\mathbf{g}(\boldsymbol{\theta}; \mathbf{X}^*, \mathbf{Y}^*) = \mathbf{M}'(\mathbf{Y}^* \mathbf{M}\boldsymbol{\theta}).$
- Can show $\mathbb{E}\left[\mathbf{g}\left(\theta_{0};\mathbf{X}^{*},\mathbf{Y}^{*}\right)\right] = -\begin{pmatrix} 0 & 0\\ 0 & n\sigma_{\delta}^{2} \end{pmatrix} \theta_{0} = -\mathbf{V}\theta_{0},$ say — biased unless $\sigma_{\delta}^{2} = 0.$
- So modify estimating equation to M' (Y* Mθ) + Vθ = 0
 Corresponding estimator is θ̃ = (M'M V)⁻¹ M'Y*

Options available in statistical models

Non-statistical models

Conclusion 0

Unbiased estimating equations

Estimating equations: comments

- Easily implemented but possibly limited to fairly simple statistical models / calibration techniques in practice:
 - $\bullet\,$ Linear models with weighted least squares $\checkmark\,$
 - Generalised linear models with iterative (re)weighted least squares — requires approximations, bias is quadratic in θ, solution not straightforward [©]
 - Other nonlinear least-squares techniques ... ?

Options available in statistical models

Non-statistical models

Conclusion 0

Unbiased estimating equations

Estimating equations: comments

- Easily implemented but possibly limited to fairly simple statistical models / calibration techniques in practice:
 - $\bullet\,$ Linear models with weighted least squares $\checkmark\,$
 - Generalised linear models with iterative (re)weighted least squares — requires approximations, bias is quadratic in θ, solution not straightforward [©]
 - Other nonlinear least-squares techniques ... ?
- Uncertainty assessments also available (standard errors etc.)
- Simulation experiments indicate good calibration performance and accurate uncertainty assessments where method is feasible

Options available in statistical models

Non-statistical models

Conclusion 0

Unbiased estimating equations

Estimating equations: comments

- Easily implemented but possibly limited to fairly simple statistical models / calibration techniques in practice:
 - $\bullet\,$ Linear models with weighted least squares $\checkmark\,$
 - Generalised linear models with iterative (re)weighted least squares — requires approximations, bias is quadratic in θ, solution not straightforward [©]
 - Other nonlinear least-squares techniques ... ?
- Uncertainty assessments also available (standard errors etc.)
- Simulation experiments indicate good calibration performance and accurate uncertainty assessments where method is feasible
- Elegant way to discover whether you have a problem

Options available in statistical models

Non-statistical models

Conclusion 0

SIMEX

Simulation-based extrapolation (SIMEX)

- Idea (Cook & Stefanski, 1994, J. Amer. Statist. Assoc.): add extra error to available data, recalibrate model and extrapolate back to zero error
- Various extrapolation schemes available: linear, quadratic etc.
- Uncertainty assessments using bootstrap & jacknife procedures

Schematic of idea

- Designed for measurement error in inputs, but (presumably) more widely applicable
- Implemented for various statistical models in simex library in R

Options available in statistical models

Non-statistical models

Conclusion 0

SIMEX

SIMEX example: seismic fragility curve estimation

Estimated probabilities of buildings exceeding specific damage states as a function of peak ground acceleration (PGA), derived using logistic regression from survey data following the 1980 Irpinia earthquake in southern Italy (source: UCL MSc dissertation by Qiwei Zhang, September 2012)

Left: naïve estimates. Right: SIMEX-based estimates

Introduction:	what's	the	problem?

Options	available	in	statistical	models
00000	000000			

SIMEX: comments

- Intuitive and easily implemented for wide variety of models
 - simex library provides 'off-the-shelf' implementation for linear models and GLMs
- Several choices required, not always obvious:
 - Appropriate extrapolation method;
 - # of 'pseudo-data' points to use;
 - # of simulated data sets for each pseudo-data point
- Can be relatively expensive computationally
- Simulation experiments indicate reasonable performance with relatively small measurement error but poor performance when errors are larger (also expected on theoretical grounds)

Conclusion

Introduction:	what's	the	problem?

Options available in statistical models

Non-statistical models

Conclusion O

Bayesian methods

Bayesian methods

- Idea: represent all interrelationships in the system via conditional probability distributions, and use probability calculus to infer values of unobserved quantities with assessments of uncertainty.
- Most easily done using Bayesian computational machinery also allows incorporation of expert judgement.

Options available in statistical models

Non-statistical models

Bayesian methods

Example: unified earthquake catalogue for the UK (I)

- Preferred measure of earthquake magnitude is related to overall energy release, usually denoted M_W & estimated since 1970s using modern instrumentation as \tilde{M}_W with rough assessment of uncertainty $\tilde{\sigma}_{\varepsilon}^2$
- Earlier (post-1900) magnitudes estimated from networks of seismometers providing information on different scale M_L . Estimates \tilde{M}_L could depend on network characteristics, so $\tilde{M}_L \neq M_L$.

Seismograph trace

• Aim to use recent events for which both \tilde{M}_W and \tilde{M}_L are available, to develop calibration relationship that enables M_W to be estimated from \tilde{M}_L

Options available in statistical models

Non-statistical models

Conclusion O

Bayesian methods

Example: unified earthquake catalogue for the UK (II)

 Build graphical model showing relationships between all quantities required to describe problem

- Use Markov Chain Monte Carlo (MCMC) techniques in Bayesian framework to infer uncertainties based on all observations and expert judgements ('prior distributions')
- Key output: posterior predictive distribution for M_W for all events

Options available in statistical models

Non-statistical models

Conclusion O

Bayesian methods

Example: unified earthquake catalogue for the UK (III)

- Output from Bayesian methodology includes uncertainty distributions for M_W as function of measured \tilde{M}_L , for use with pre-1970 events where no observation \tilde{M}_W is available.
- Accounts for measurement error and other features of data e.g. catalogue incompleteness due to non-detection of small events

Predictive distributions of M_W given observation \tilde{M}_L for UK

• **NB** smaller uncertainties in predicting M_W than in predicting imperfect observations \tilde{M}_W .

Software: OpenBUGS and R2OpenBUGS

Options available in statistical models

Non-statistical models

Conclusion O

Bayesian methods

Bayesian methods: comments

- Completely flexible can handle complex data structures
- Simulation experiments indicate good performance when set up carefully, but ...
- Considerable skill needed for effective implementation, even with packages like OpenBUGS
 - Need priors for X and Y; also hyperpriors to allow inference to adapt to data
 - Care needed over independence judgements in informative prior specifications
 - Also with initialisation of MCMC algorithms
- Computationally expensive

Options available in statistical models 00000000000

Non-statistical models Conclusiv

Introduction

Calibration of non-statistical models

- Most techniques reviewed above are developed primarily for statistical models
- Some additional issues for non-statistical models / simulators:
 - Calibration often more computationally expensive
 - More diverse model / simulator structures hard to develop general-purpose algorithms
 - Lack of off-the-shelf software for wide-ranging applications

Options available in statistical models 00000000000

Non-statistical models

Conclusion 0

Introduction

Example: calibrating a rainfall-runoff model

Hypothetical example

- Want to calibrate for catchment with flow gauge but no raingauge
- Standard practice: interpolate precipitation records from neighbouring raingauges
- Result: interpolated precipitation
 X* less variable than true precipitation X ⇒ similar to 'imprecisely-administered input' situation
- How to account for this in calibration?

Options available in statistical models

Non-statistical models

Introduction

Non-statistical models: options for calibration with X^*, Y^*

Bayesian methods including statistical emulation of complex simulators

• Powerful but non-trivial and often computationally challenging

SIMEX-type approach? Not attempted to my knowledge ... Anything else?

Introduction:	what's	the	problem?

Options available in statistical models 00000000000

Non-statistical models

Conclusion

Concluding questions

- Is this a problem or a red herring?
- If it's a problem, does it worry anybody else?
- If it worries anybody else, does anyone know of **relatively straightforward** options for dealing with it?

 $\ensuremath{\textcircled{}}$ Thank you for your attention $\ensuremath{\textcircled{}}$

A useful reference:

Carroll, R.J., D. Ruppert, L.A. Stefanski & C. Crainiceanu (2006). *Measurement Error in Nonlinear Models: A Modern Perspective*. Chapman and Hall / CRC Press.

