How to apply
If you’re seeking full-time study, you must apply through the Universities & Colleges Admissions Service (UCAS). See ucas.com or call on 0371 468 0468 or +44 330 3330 230 if you live outside of the UK.

Ask a student
Chat to one of our current students about what life is like at Glasgow. See glasgow.ac.uk/askastudent.

Visit us
Our Open Days give you the chance to chat to our friendly staff and students, attend subject-specific presentations, visit our student residences and explore our beautiful campuses.

Open days
If you’re interested in visiting the University before you apply for a specific programme, we’d be happy to welcome you to one of our Open Days held in June, September and October.

Offer Holders’ Day
Once you have applied to and received an offer from the University, you will get another chance to visit us on our Offer Holders’ Day in the spring of 2020.

Other opportunities to visit
You are welcome to join one of our campus tours at any time during the year. You can also plan your own visit to the University at a time that suits you.

For more information see glasgow.ac.uk/visitus.
Astronomy is the study of the physical universe, from the Earth and the solar system to galaxies at the edge of the cosmos.

Astronomy

Astronomy can only be taken as a Joint Honours degree.

Entry requirements

Entry requirements for this programme are published in the University’s Undergraduate Prospectus 2020. You can also see gshog.ac.uk/undergraduate/entryrequirements for detailed entry information, including additional subject-specific entry requirements, for:

- A levels
- SQA Highers and Advanced Highers
- International Baccalaureate
- International qualifications.

What you will need

- SQA Highers and Advanced Highers
- International qualifications.
- International Baccalaureate
- Additional subject-specific entry requirements, if applicable.

What to expect

Programme structure

Year 1

You will survey the observable universe on all scales – from planets through stars and galaxies to cosmology – and gain a basic understanding of the core observational and theoretical principles of modern astronomy. Typical topics include: dynamical and positional astronomy, observational astronomy, the solar system, the stars, compact objects, and galaxies and cosmology.

You will also study other subjects in years 1 and 2.

Year 2

You will study key aspects of astronomy and astrophysics in greater depth and undergo further training in the use of astronomical instrumentation and software. Typical topics include: theoretical astrophysics, observational astrophysics, stars and their spectra, and relativity and cosmology.

Years 3, 4 and 5

If you progress to Honours (years 3 and 4) Astronomy can only be taken as a Joint Honours degree with either Physics or Mathematics. In Honours your studies will include modern observational methods and you will undertake project work using advanced astronomical instrumentation and data analysis techniques. Your core courses will be supplemented by options enabling you to follow your particular areas of interest. All courses include training in transferable skills such as teamwork, presentation and technical writing.

There is an opportunity to take an MSci degree, which explores astronomy topics in greater depth and includes an individually supervised project working at the cutting edge of international research.

Why choose Glasgow?

Astronomy lectures are complemented by our observatory, planetarium and telescope facilities.

What to expect

Entry requirements

Entry requirements for this programme are published in the University’s Undergraduate Prospectus 2020. You can also see gshog.ac.uk/undergraduate/entryrequirements for detailed entry information, including additional subject-specific entry requirements, for:

- A levels
- SQA Highers and Advanced Highers
- International qualifications.

What you will need

- SQA Highers and Advanced Highers
- International qualifications.
- Additional subject-specific entry requirements, if applicable.

Career prospects

The scientific knowledge and mathematical and analytical skills you acquire will equip you to work across a wide range of industries. Many of our graduates choose to continue their studies for a higher degree such as an MSc or a PhD in a specialised area of astronomy, or a related subject, before entering the job market.

Accreditation

This degree programme is accredited by the Institute of Physics.

Astronomy/Physics

Astronomy/Physics students were satisfied overall.

Chemical Physics

Chemical physics is concerned with electrons, nuclei, atoms and molecules in all states of matter, and how they interact with their environment. This degree programme covers the area in which chemistry and physics overlap.

Chemical Physics

Chemical physics is concerned with electrons, nuclei, atoms and molecules in all states of matter, and how they interact with their environment. This degree programme covers the area in which chemistry and physics overlap.

Chemical Physics

Chemical physics is concerned with electrons, nuclei, atoms and molecules in all states of matter, and how they interact with their environment. This degree programme covers the area in which chemistry and physics overlap.

Why choose Glasgow?

Chemical Physics students were satisfied overall.

What you will need

Programme structure

Year 1

Initially you will study chemistry, physics and mathematics. In the following year you will study chemistry and physics.

Years 3, 4 and 5

If you progress to Honours (years 3 and 4) you will study:

- in physics: a range of courses including quantum mechanics, thermal physics, solid state physics, waves and diffraction, electromagnetism, nuclear and particle physics, and atomic systems.
- in chemistry: various aspects of physical and inorganic chemistry including catalysis, solid state chemistry, coordination chemistry, quantum mechanics and symmetry, spectroscopy, thermodynamics and diffraction.

You will gain an in-depth knowledge of chemistry, physics, mathematics and computing, and will be able to tackle most problems in chemistry and physics. In the final year, you will work closely with a member of staff on a research project. You can take Chemical Physics as an MSci degree, which may include an additional placement year. This is normally spent doing research in industry or some other organisation such as a research institute like CERN or an academic laboratory. Placements may be in the UK, but are often taken overseas. They happen between third year and the final year of the degree.

Why choose Glasgow?

- You will learn how to understand the laws of physics so that you can apply the latest technologies to control molecules and make new materials.

What to expect

Entry requirements

Entry requirements for this programme are published in the University’s Undergraduate Prospectus 2020. You can also see gshog.ac.uk/undergraduate/entryrequirements for detailed entry information, including additional subject-specific entry requirements, for:

- A levels
- SQA Highers and Advanced Highers
- International qualifications.

What you will need

- SQA Highers and Advanced Highers
- International qualifications.
- Additional subject-specific entry requirements, if applicable.

Career prospects

Our graduates are employed in industry, commerce, government research and education. Many graduates proceed to research leading to a higher degree. Some of our recent graduates have been employed by EDF Energy, Quotient Clinical, Rokett Bandiser, Sterling Medical Innovation, and Synergy Outsourcing, among many other companies.

Accreditation

These programmes are accredited by the Institute of Physics.
Physics is the experimental and theoretical study of matter and energy and their interactions, ranging from the domain of elementary particles, through nuclear and atomic physics, to the physics of solids and, ultimately, to the origins of the universe itself.

In this degree programme the study of physics is particularly focused on astrophysical phenomena: from stars and planets to galaxies and cosmology. Astrophysics provides a natural laboratory in which to explore the laws of physics, and in certain astrophysical objects – such as pulsars, quasars and black holes – to test those laws under extreme conditions.

What you will need

Degrees and UCAS codes
- **Physics BSc (Hons)** (F300): Four years
- **Physics MSci** (F301): Five years
- **Theoretical Physics BSc (Hons)** (F344): Four years
- **Theoretical Physics MSci** (F340): Five years

Entry requirements
- Entry requirements for this programme are published in the University’s Undergraduate Prospectus 2020.
- You can also see glasgow.ac.uk/undergraduate/entryrequirements for detailed entry information, including additional subject-specific entry requirements, for:
 - A-levels
 - SQA Highers and Advanced Highers
 - International Baccalaureate
 - International qualifications.

Glasgow International College
For international students entry to this programme is supported by courses from GIC.

What to expect

What to expect

Year 1
You will gain a basic understanding of the core topics in theoretical physics, receive an introduction to the methods of experimental physics and obtain a solid foundation for further study of the subject. Topics will include dynamics, wave motion, properties of matter, thermal physics, optics, electricity and magnetism, and quantum physics.

You will also study other subjects in years 1 and 2.

Year 2
You will undergo training in more specialised experimental techniques and expand your awareness of the latest developments in modern physics research. Topics will include physics of waves, dynamics, physics of solids, thermal physics, electricity and magnetism, nuclear and particle physics, physics of optics, and mathematical techniques.

Years 3, 4 and 5
If you progress to Honours (years 3 and 4) you will continue to study in greater depth core topics spanning all areas of physics, explore a range of specialist topics of your choice, and undertake project work, often within a world-leading research group.

An important aspect of the Physics degree programmes is the emphasis on technological applications such as laser physics, semiconductor physics and devices, modern signal processing technology, and magnetic and superconducting materials. If you choose the Theoretical Physics degree you will focus on more advanced theoretical topics. Additionally, you will undertake specialised computational project work.

Why choose Glasgow?

Why choose Glasgow?

Many of our staff play leading roles in major international research projects, such as the Large Hadron Collider at CERN and the gravitational wave observatory LIGO.

What will you need

Degrees and UCAS codes
- **Physics BSc (Hons)** (F305): Five years
- **Physics MSci** (F301): Five years
- **Theoretical Physics BSc (Hons)** (F344): Four years
- **Theoretical Physics MSci** (F340): Five years

Entry requirements
- Entry requirements for this programme are published in the University’s Undergraduate Prospectus 2020.
- You can also see glasgow.ac.uk/undergraduate/entryrequirements for detailed entry information, including additional subject-specific entry requirements, for:
 - A-levels
 - SQA Highers and Advanced Highers
 - International Baccalaureate
 - International qualifications.

Glasgow International College
For international students entry to this programme is supported by courses from GIC.

What to expect

What to expect

Year 1
You will gain a basic understanding of the core topics in theoretical physics, receive an introduction to the methods of experimental physics and obtain a solid foundation for further study of the subject. Topics will include dynamics, wave motion, properties of matter, thermal physics, optics, electricity and magnetism, and quantum physics.

You will also study other subjects in years 1 and 2.

Year 2
You will undergo training in more specialised experimental techniques and expand your awareness of the latest developments in modern physics research. Topics will include physics of waves, dynamics, physics of solids, thermal physics, electricity and magnetism, nuclear and particle physics, physics of optics, and mathematical techniques.

Years 3, 4 and 5
If you progress to Honours (years 3 and 4) you will continue to study in greater depth core topics spanning all areas of physics, explore a range of specialist topics of your choice, and undertake project work, often within a world-leading research group.

An important aspect of the Physics degree programmes is the emphasis on technological applications such as laser physics, semiconductor physics and devices, modern signal processing technology, and magnetic and superconducting materials. If you choose the Theoretical Physics degree you will focus on more advanced theoretical topics. Additionally, you will undertake specialised computational project work.

Why choose Glasgow?

Why choose Glasgow?

Many of our staff play leading roles in major international research projects, such as the Large Hadron Collider at CERN and the gravitational wave observatory LIGO.

What will you need

Degrees and UCAS codes
- **Physics BSc (Hons)** (F305): Five years
- **Physics MSci** (F301): Five years
- **Theoretical Physics BSc (Hons)** (F344): Four years
- **Theoretical Physics MSci** (F340): Five years

Entry requirements
- Entry requirements for this programme are published in the University’s Undergraduate Prospectus 2020.
- You can also see glasgow.ac.uk/undergraduate/entryrequirements for detailed entry information, including additional subject-specific entry requirements, for:
 - A-levels
 - SQA Highers and Advanced Highers
 - International Baccalaureate
 - International qualifications.

Glasgow International College
For international students entry to this programme is supported by courses from GIC.

What to expect

What to expect

Year 1
You will gain a basic understanding of the core topics in theoretical physics, receive an introduction to the methods of experimental physics and obtain a solid foundation for further study of the subject. Topics will include dynamics, wave motion, properties of matter, thermal physics, optics, electricity and magnetism, and quantum physics.

You will also study other subjects in years 1 and 2.

Year 2
You will undergo training in more specialised experimental techniques and expand your awareness of the latest developments in modern physics research. Topics will include physics of waves, dynamics, physics of solids, thermal physics, electricity and magnetism, nuclear and particle physics, physics of optics, and mathematical techniques.

Years 3, 4 and 5
If you progress to Honours (years 3 and 4) you will continue to study in greater depth core topics spanning all areas of physics, explore a range of specialist topics of your choice, and undertake project work, often within a world-leading research group.

An important aspect of the Physics degree programmes is the emphasis on technological applications such as laser physics, semiconductor physics and devices, modern signal processing technology, and magnetic and superconducting materials. If you choose the Theoretical Physics degree you will focus on more advanced theoretical topics. Additionally, you will undertake specialised computational project work.

Why choose Glasgow?

Why choose Glasgow?

Many of our staff play leading roles in major international research projects, such as the Large Hadron Collider at CERN and the gravitational wave observatory LIGO.

What will you need

Degrees and UCAS codes
- **Physics BSc (Hons)** (F305): Five years
- **Physics MSci** (F301): Five years
- **Theoretical Physics BSc (Hons)** (F344): Four years
- **Theoretical Physics MSci** (F340): Five years

Entry requirements
- Entry requirements for this programme are published in the University’s Undergraduate Prospectus 2020.
- You can also see glasgow.ac.uk/undergraduate/entryrequirements for detailed entry information, including additional subject-specific entry requirements, for:
 - A-levels
 - SQA Highers and Advanced Highers
 - International Baccalaureate
 - International qualifications.

Glasgow International College
For international students entry to this programme is supported by courses from GIC.

What to expect

What to expect

Year 1
You will gain a basic understanding of the core topics in theoretical physics, receive an introduction to the methods of experimental physics and obtain a solid foundation for further study of the subject. Topics will include dynamics, wave motion, properties of matter, thermal physics, optics, electricity and magnetism, and quantum physics.

You will also study other subjects in years 1 and 2.

Year 2
You will undergo training in more specialised experimental techniques and expand your awareness of the latest developments in modern physics research. Topics will include physics of waves, dynamics, physics of solids, thermal physics, electricity and magnetism, nuclear and particle physics, physics of optics, and mathematical techniques.

Years 3, 4 and 5
If you progress to Honours (years 3 and 4) you will continue to study in greater depth core topics spanning all areas of physics, explore a range of specialist topics of your choice, and undertake project work, often within a world-leading research group.

An important aspect of the Physics degree programmes is the emphasis on technological applications such as laser physics, semiconductor physics and devices, modern signal processing technology, and magnetic and superconducting materials. If you choose the Theoretical Physics degree you will focus on more advanced theoretical topics. Additionally, you will undertake specialised computational project work.

Why choose Glasgow?

Why choose Glasgow?

Many of our staff play leading roles in major international research projects, such as the Large Hadron Collider at CERN and the gravitational wave observatory LIGO.

What will you need

Degrees and UCAS codes
- **Physics BSc (Hons)** (F305): Five years
- **Physics MSci** (F301): Five years
- **Theoretical Physics BSc (Hons)** (F344): Four years
- **Theoretical Physics MSci** (F340): Five years

Entry requirements
- Entry requirements for this programme are published in the University’s Undergraduate Prospectus 2020.
- You can also see glasgow.ac.uk/undergraduate/entryrequirements for detailed entry information, including additional subject-specific entry requirements, for:
 - A-levels
 - SQA Highers and Advanced Highers
 - International Baccalaureate
 - International qualifications.

Glasgow International College
For international students entry to this programme is supported by courses from GIC.

What to expect

What to expect

Year 1
You will gain a basic understanding of the core topics in theoretical physics, receive an introduction to the methods of experimental physics and obtain a solid foundation for further study of the subject. Topics will include dynamics, wave motion, properties of matter, thermal physics, optics, electricity and magnetism, and quantum physics.

You will also study other subjects in years 1 and 2.

Year 2
You will undergo training in more specialised experimental techniques and expand your awareness of the latest developments in modern physics research. Topics will include physics of waves, dynamics, physics of solids, thermal physics, electricity and magnetism, nuclear and particle physics, physics of optics, and mathematical techniques.

Years 3, 4 and 5
If you progress to Honours (years 3 and 4) you will continue to study in greater depth core topics spanning all areas of physics, explore a range of specialist topics of your choice, and undertake project work, often within a world-leading research group.

An important aspect of the Physics degree programmes is the emphasis on technological applications such as laser physics, semiconductor physics and devices, modern signal processing technology, and magnetic and superconducting materials. If you choose the Theoretical Physics degree you will focus on more advanced theoretical topics. Additionally, you will undertake specialised computational project work.

Why choose Glasgow?

Why choose Glasgow?

Many of our staff play leading roles in major international research projects, such as the Large Hadron Collider at CERN and the gravitational wave observatory LIGO.