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1 Introduction

There is a considerable heterogeneity across OECD countries in the variance of annual GDP
growth rates. This variance ranges from 25% and 15% for Greece and Japan in the 1961
to 1983 period to 1.7% and 1.3% for France and Italy for 1984 to 2003. Empirical studies
show further that countries have breaks in their variance of growth rates over time (e.g. Kim
and Nelson, 1999; McConnell and Perez-Quiros, 2000; Stock and Watson, 2003). Do these
differences in volatility have only external causes such as terms of trade shocks, monetary or
exogenous productivity shocks? Or is growth volatility of a country an endogenous, natural
phenomenon of any growing economy and thereby also a function of various fundamentals
of the economy under consideration, including economic policy? Stock and Watson (2003),
surveying the literature on the “big moderation”, attribute (roughly and with caveats) one
quarter of the moderation in volatility in the US to improved policy, one quarter to good
luck (lower volatility of productivity and commodity price shocks) and 50% to “unknown
forms of good luck”.
This paper undertakes a theoretical and analytical investigation of determinants of eco-

nomic volatility. It is argued that cross-country differences in constant and time-invariant
tax rates are one possible source behind observed cross-country differences in volatility. Sim-
ilarily, a change in tax legislation at a given point in time can in principle explain increases
or decreases of volatility.
This analysis is based on the view that volatility of a country is something natural,

inherently linked to its growth process. Volatility is just as endogenous as is the GDP
growth rate. Volatility and long-run growth result primarily from the introduction of new
technologies. “Lower volatility of productivity” or “other unknown forms of good luck”
can therefore be explained by more fundamental changes in an economy. As both long-run
growth and short-run volatility are endogenous and therefore react to changes in policy,
we can analyze to what extent tax rates affect volatility and growth at the same time or
independently of each other. Analysing long-run growth and short-run volatility jointly is
important as understanding e.g. the “big moderation” in the US seems to require a break
in volatility without a break in the growth trend (McConnell and Perez-Quiros, 2000).
The model we employ is part of a small but rapidly growing literature that integrates

endogenous short-run fluctuations with endogenous long-run growth (e.g. Bental and Peled,
1996; Matsuyama, 1999; Wälde, 1999, 2005; Francois and Lloyd-Ellis, 2003; Maliar and
Maliar, 2004, Phillips and Wrase, 2005). These papers share the view that intentional
investment into R&D can not only explain long-run growth but also short-run fluctuations
- without invoking exogenous disturbances to the economy. More productive technologies
increase TFP in a discrete way, similar to a step function, and not smoothly and continuously
as in standard models.2 As a consequence, new technologies cause both short-run booms
(due to the discrete increase) and long-run growth.3 As our model has an explicit stochastic
foundation, it shares Beveridge and Nelson‘s (1981) econometric view that trend and cycle

2This step-wise increase of productivity is well-known from quality ladder models. See e.g. Grossman
and Helpman (1991), Aghion and Howitt (1992), Aghion et al. (2001) or Francois and Roberts (2003).

3Due to the explicit modelling of R&D processes, these models can be viewed to represent industrialized
economies. Aghion et al. (1999) use an AK-type economy which exhibits endogenous growth and fluctuations
as well. Their model exhibits strong imperfections on financial markets and can therefore be seen as an
analysis of developing countries. Jovanovic (2006) also presents a model with growth and cycles. He links
(unpredictable) skill needs to technological progress and focuses on the (a)symmetric properties of cycles. For
a broader background, see Gancia and Zilibotti (2005, ch. 7). An early contribution with similar properties
as Matsuyama (1999) is Zilibotti (1995).
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are driven by the same shock, i.e. (here) stochastic jumps in the technological frontier. We
will show below that due to the vintage-capital structure we employ here, there are no jumps
in TFP in our model as all technological change is embodied. This improves features of e.g.
Aghion and Howitt (1992) or Francois and Lloyd-Ellis (2003).
We relate our analysis of natural volatility to taxation as there is a considerable hetero-

geneity in tax systems across countries and over time. For the US, two major tax reforms,
the Tax Reform Act of 1986 and the Economic Recovery Tax Act of 1981 (see e.g. Auerbach
and Slemrod, 1997), took place around the point in time where the break in GDP volatility
is usually identified (between the 4th quarter of 1982 and 3rd quarter of 1985, according to
Stock and Watson, 2003). It is therefore natural to ask whether tax reforms or cross-country
differences in tax systems are candidates for understanding differences in volatility. It is
generally accepted that taxes can affect the growth rate of a country or its natural rate of
unemployment - they could therefore also affect its natural amount of volatility.4

One contribution of our paper is the derivation of two analytical measures of volatility in
a model characterized by “standard” properties: infinite planning horizon of the representa-
tive agent, standard intertemporal optimization decisions concerning savings and investment
under risk aversion, uncertainty from properties of technological progress and perfect com-
petition for all production processes. These two measures are the variance of the growth rate
of the economy, a widely used measure in empirical regression work, and the coefficient of
variation for cyclical components of time series, similar to those used in the RBC literature.
It turns out that the variance of the growth rate does not - due to its complexity - lend
itself to an intuitive theoretical analysis. Cyclical components have very simple moments,
however, that reveal insightful relationships between model parameters and volatility.
Analytical measures for volatility can be obtained by assuming a simple parameter re-

striction. Analyzing the behaviour of an economy for restrictions of this type has turned out
to be very useful (e.g. Long and Plosser, 1983; Xie, 1991; Benhabib and Rustichini, 1994;
Wälde, 2005). When looking at our results, it becomes clear that this restriction has no
major economic implications.5

The coefficient of variation shows that volatility is affected through three channels: The
speed of convergence, the expected length of a cycle and the degree how strongly cyclical
components are thrown back once a new technology arrives. All of these three channels can
be easily related to properties of transitional paths towards some steady state. As taxes
affect transitional paths of various economic variables, taxation affects volatility. For the
equilibrium we analyze, taxes on factor rewards and investment goods increase volatility,
taxes on R&D and wealth have a stabilizing effect, a tax on consumption goods is neutral.
We show then how one change of otherwise constant taxes can be used to build intuition
about potential sources of the “big moderation”.
We also ask whether higher or lower volatility should give rise to policy concerns. One

possible answer is a clear ‘no’. The RBC approach is built (at least initially) on the belief
that agents adjust optimally to a fluctuating world where factor allocations are efficient.
The present paper argues that volatility per se is not problematic for welfare indeed - as
long as one believes that the engines of growth of an economy work under the absence of

4First econometric evidence shows that about two third of the variation of output volatility in OECD
countries can be explained by various fundamentals including tax policy (Posch, 2006). An alternative
approach to our theoretical inquiry here is provided by the quantitative analysis of Arias et al. (2006).

5From a modeling perspective, the present paper extends the model developed in Wälde (2005) for various
tax rates and the government sector. The methods of Garcia and Griego (1994), on which most of our results
here are based, were not used in Wälde (2005).
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any imperfections. If, however, one believes that (empirically speaking: at least to some ex-
tent) fluctuations in an economy are the result of the same type of technological progress that
causes long-run growth, fluctuating economies are as efficient or inefficient as the process that
drives long-run growth. Hence, taking the lessons from the “new” growth theory seriously
where it might be difficult in R&D based models to justify that endogenous technological
progress comes along without any externalities, fluctuations go hand in hand with imper-
fections. This is true even in our setup where all firms operate under perfect competition,
including R&D firms.6

Our welfare results are based on the value function of the representative household.
We obtain a closed-form expression of the value function also due to our simple parameter
restriction. In deriving it, we obtain a deterministic differential equation that describes how
the economy evolves in an expected sense, i.e. how expected instantaneous utility evolves
for τ > t, where t is today. This differential equation shows that our economy behaves in
this expected sense exactly as a deterministic Solow growth economy behaves with a fixed
saving rate. Intuitively speaking, our stochastic economy turns out to be a Solow growth
economy where labour productivity increases at (endogenous and optimally chosen) random
points in time by discrete amounts.
Returning to the effect of taxes, our welfare analysis shows that taxes on investment

goods and R&D directly affect the source of volatility and growth, i.e. the portfolio choice
between capital accumulation and R&D, and can therefore be used to internalize external-
ities. All other taxes (on factor rewards, consumption and wealth) are welfare reducing,
given that they are used for some exogenous government expenditure (which, for simplicity,
is modelled to have no welfare or productivity effect). When we look at the effects of taxes
on volatility and welfare jointly, it turns out that stabilizing an economy is not necessarily
welfare increasing. Increasing a tax on wealth or factor income reduces welfare, but the tax
on factor income increases volatility while the tax on wealth reduces volatility. The objective
of government intervention should be to internalize external effects, as in standard public
finance approaches, but not to stabilize the economy. The efficient factor allocation would
then be characterized by a certain corresponding amount of volatility. The negative causal
link from volatility to welfare is therefore opened up under endogenous volatility. Volatility
and welfare are only (positively or negatively) correlated and more volatility can mean higher
welfare.

2 The model

The model will be presented in three parts: Technologies, the government and consumers.
As the technological setup of our economy is close to the one in Wälde (2005), the first part
will be relatively brief. The introduction of government activities and the implications for
household behavior are new and will be presented in more detail.

2.1 Technologies

Technological progress is labour augmenting and embodied in capital. All capital goods can
be identified by a number denoting their date of manufacture and therefore their vintage.

6There are by now various papers that stress that R&D and perfect competition does not contradict each
other. The first paper seems to be Funk (1996). Later work includes e.g. Boldrin and Levine (2002, 2004)
or Hellwig and Irmen (2001).
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A capital good Kj of vintage j allows workers to produce with a labour productivity Aj,
where A > 1 is a constant parameter. Hence, a more modern vintage j + 1 implies a labour
productivity that is A times higher than labour productivity of vintage j. The corresponding
production function reads Yj = Kα

j (A
jLj)

1−α, where the amount of labour allocated to that
vintage is denoted by Lj and 0 < α < 1 is the output elasticity of capital.
R&D is a risky activity. This is modelled by the Poisson process q where the probability

per unit of time dt of an innovation, i.e. of successful R&D, is given by λdt, where λ is the
arrival rate of q. At the level of an individual R&D firm f , there are constant returns to
scale and the firm arrival rate is λf = D−1h (R/D)Rf , where D captures the “difficulty”
of doing R&D, h (·) is an externality and Rf are resources used by the firm. The difficulty
function D and the externality h (·) are taken as given. As firm-level Poisson processes qf
can be added up, we obtain

λ =
R

D
h

µ
R

D

¶
≡
µ
R

D

¶1−γ
, 0 < γ < 1, (1)

at the sectoral level where h (·) implies decreasing returns to scale. The second equality
implicity defines the functional form of h (·) .
The exogenous function D captures the difficulty to make an invention. Following the

arguments in Segerstrom (1998), an economy that discovered already many innovations needs
to put more effort into a new innovation if this innovation is to come at the same rate λ.
While the amount of innovations in the past can be measured in different ways, we simply
capture it by the tax-independent current size Kobs

∗ of the capital stock of the economy,

D ≡ D0K
obs
∗ , D0 > 0. (2)

This measure of the capital stock will be defined in (12).
R&D resources R are used to develop a capital good that yields a higher labour produc-

tivity than existing capital goods. The currently most advanced vintage is denoted by q and
implies a labour productivity of Aq. The outcome of successful R&D is a first prototype of a
production unit of size κ (whose implied labour productivity is Aq+1). The production of κ
through R&D distinguishes our approach from standard modeling of R&D where successful
R&D is argued to lead to a blueprint only. As seems to be common in many cases (Rosen-
berg, 1994), only the development of a first “pioneer plant” that can be used for production
characterizes success of research. We can capture this creation of the first production unit
of vintage q + 1 by noting that the increment dq of the Poisson process q can either be 0 or
1. As successful research means dq = 1, we can write

dKq+1 = κdq. (3)

The “importance” of the prototype can be argued to increase in the amount of time and
resources R spent on developing κ. Longer research could imply a larger prototype. If capital
goods were not perfect substitutes as here (see e.g. (9) below), longer research would imply
that the prototype is more valuable at the moment of development as the old capital stock
will then be larger. We capture these aspects in a simple and tractable way by keeping κ
proportional to the tax-independent size Kobs

∗ of the total capital stock,

κ ≡ κ0K
obs
∗ , 0 < κ0 ¿ 1. (4)
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When resources are allocated to capital accumulation, the capital stock of vintage j
increases if investment in vintage j exceeds depreciation δ,

dKj = {Ij − δKj} dt, j = 0, ..., q. (5)

In contrast to R&D, this is a deterministic process as capital accumulation simply means
replicating existing machines.
Before we continue with the description of the model, some equilibrium properties are

useful as they simplify presentation of the government and household part. Each vintage of
capital allows to produce the same type of good,

Σq
j=0Yj = Y = C + I +R+G. (6)

Aggregate output Y is used for producing consumption goods C, investment goods I, as an
input R for doing R&D and for government expenditures G. The quantities C, I and R stand
for net resources used for these activities, i.e. after taxation. All activities in the economy
take place under perfect competition. The producer prices of the production, consumption,
investment and research good will therefore be identical,

pY = pC = pI = pR. (7)

Total exogenous labour supply in this economy is L. Allowing labour to be mobile across
all vintages such that wage rates equalize and assuming full employment, Σq

j=0Lj = L, total
output of the economy can be represented by a simple Cobb-Douglas production function,

Y = KαL1−α, (8)

where vintage specific capital stocks have been aggregated to an aggregate capital index K,

K = K0 +BK1 + ...+BqKq = Σq
j=0B

jKj, B ≡ A
1−α
α . (9)

This index can be thought of as counting the “number of machines” of vintage 0 that would
be required to produce the same output Y as with the current mix of vintages.
The evolution of the capital index K follows from (3) and (5) by applying the change of

variable formula (CVF)7 to (9),

dK = {BqI − δK} dt+Bq+1κdq. (10)

The capital index increases continuously as a function of effective investment BqI minus
depreciation. When an innovation takes place, the capital index increases by Bq+1κ.

2.2 Government

The government can levy taxes on factor income (τF ), wealth (τW ), consumption expenditure
(τC), investment expenditure (τ I) and R&D expenditure (τR). A positive tax implies a real
decrease in income or an increase in the effective price (consumer price), whereas a negative
tax is a subsidy. The government uses all tax income (and does not save or run a debt)

7In models with Brownian motion as a source of uncertainty, the “rules” for computing differentials are
based on Ito’s Lemma. In the presence of Poisson processes, the CVF is the appropriate "rule". See e.g.
Garcia and Griego (1994) and Sennewald (2006) for a rigorous background and Sennewald and Wälde (2006)
for an introduction.
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to provide basic government services G. In order to focus on the effects of taxation from
government expenditures, we assume that government expenditure does not affect household
utility or production possibilities of the economy.
Producer prices by (7) are identical for all three production processes. When consumption

and investment goods C and I or research services R are sold, they are taxed differently such
that consumer prices are (1 + τC) pC , (1 + τ I) pI , (1 + τR) pR. In order to rule out arbitrage
between different types of goods, we assume that once a unit of production is assigned for
a special purpose, it is useless for other purposes: once a consumption good is acquired, it
cannot be used for e.g. investment purposes.
Taxes that increase the producer price have no theoretical upper bound. A 300% tax on

the consumption good would imply that 3/4 of the price are taxes going to the state and
1/4 goes to the producer. Their lower bound is clearly −100%, where a good would be for
free for the purchaser. The upper bound for taxes on income is 100% (instant confiscation
of income), while there is no lower bound. Hence, −1 < τC , τ I , τR and τF , τW < 1.
Our capital stock index K in (9) measures the size of the capital stock in units of vintage

0. Measured in units of vintage q, its size is B−qK. This is also the value of the entire capital
stock in pre-tax units of the consumption good, as the relative pre-tax prices are unity from
(7). Measuring wealth in after-tax prices, i.e. in “purchasing power” terms, the price of the
capital good increases by the tax τ I and the price to be paid for one unit of the consumption
good increases by τC . Hence, total wealth in the economy is given by

Kobs = La =
1 + τ I
1 + τC

B−qK, (11)

where a is wealth of the representative household. The tax-independent measure of the
capital stock, used in (2) and (4), can then be defined by

Kobs
∗ ≡

1 + τC
1 + τ I

Kobs. (12)

2.3 Households

The economy is populated by a finite number of sufficiently small representative households.
They maximize expected utility U(t), given by the “sum” of instantaneous utilities u(·)
resulting from consumption flows c(τ), discounted at the rate of time preference ρ,

U(t) = Et

Z ∞

t

e−ρ[τ−t]u(c (τ))dτ, (13)

where instantaneous utility u(·) is characterized by constant relative risk aversion,8

u (c (τ)) =
c (τ)1−σ

1− σ
, σ > 0. (14)

The budget constraint reflects investment possibilities in this economy and the impact of
tax policy and shows how real wealth a evolves over time. Households can invest in a risky
asset by financing R&D and in an (instantaneously) riskless asset by accumulating capital.

8For analytical convenience and readability, we neglect the term − (1− σ)
−1

, which is sometimes included
in the instantaneous utility function.
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We measure wealth in units of the consumption good, priced at consumer prices. The budget
constraint can intuitively best be understood by starting from (A.13) in the appendix,

da =

½
1− τF
1 + τC

¡
Σq+1
j=0w

K
j kj/pC + w/pC

¢
− c− 1 + τR

1 + τC
i

¾
dt

−
½
1− τF
1 + τ I

δ + τW

¾
adt+

½
1 + τ I
1 + τC

κ
i

R
− B − 1

B
a

¾
dq.

Nominal gross capital income Σq+1
j=0w

K
j kj from all vintages j is taxed at τF , yielding net

capital income. Dividing by the consumer price (1 + τC) pC of the consumption good gives
real net capital income in units of the consumption good. The same reasoning applies to
labour income w, consumption c and investment i into R&D. The expression on the first
line therefore captures the increase in wealth a, measured in units of the consumption good
at consumer prices. The first expression on the second line captures the wealth-reducing
effect of the after-tax depreciation rate and of the tax on wealth. The tax rates τF and τ I
in front of the depreciation rate ensure that taxes are partly refunded i.e. only net (and not
gross) investment will be taxed (cf. eqs. (A.14) and (A.2)). The second expression increases
an individual’s wealth in case of successful research by the “dividend payments” minus an
economic depreciation term. Dividend payments at the household level are given by the
share i/R of the successful research project the household financed times total dividend
payments 1+τI

1+τC
κ. Dividend payments are determined by the size κ of the prototype times its

after-tax price (1 + τ I) / (1 + τC) in units of the consumption good.9 The term 1+τ I implies
that research yields not only a capital good (which would have a value of pI) but already an
installed capital good (whose value is (1 + τ I) pI). Economic depreciation (B − 1) /B results
from the vintage capital structure as the most advanced capital good has a relative price of
unity (cf. (7)) and all other vintages then lose in value relative to the consumption good.
After some further steps and using the notation for values after taxation, the budget

constraint simplifies to

da = {r∗a+ w∗ − i∗ − c} dt+ {κ∗i/R− sa} dq, (15)

where i∗ ≡ 1+τR
1+τC

i, κ∗ ≡ 1+τI
1+τC

κ, s ≡ B−1
B
and factor rewards are

r∗ ≡ 1− τF
1 + τ I

r − τW , w∗ ≡ 1− τF
1 + τC

w

pC
, r = Bq ∂Y

∂K
− δ, w = pY

∂Y

∂L
. (16)

3 Natural volatility and growth

3.1 Equilibrium

Solving the model requires first order conditions for households for consumption and R&D ex-
penditure. These two conditions, together with the aggregate capital accumulation constraint
(10), the goods market equilibrium (6) and optimality conditions of perfectly competitive
firms provides a system consisting of 6 equations that determines, given initial conditions,
the time paths of K, C, R, Y, w and r.
Such a system can best be understood by introducing auxiliary variables that are similarly

used in many other models as well: In the classic Solow growth model, capital per effective
9We use the term dividend payments in a narrow sense, i.e. only for payments from successful R&D.

Data on dividend payments would also include part of factor rewards r for capital.
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worker K/ (AL) is shown to converge to a steady state and the analysis of e.g. convergence
can be separated from the analysis of long-run growth. In the present context, we define
K̂ (τ) and Ĉ (τ) as

K̂ (t) ≡ K (t) /Aq(t)/α, Ĉ (t) ≡ C (t) /Aq(t) (17)

which is almost identical to capital and consumption per effective worker as labor supply is
constant here. These variables also allow us to separate the analysis of cyclical properties
of the model from long-run growth. Most of the time, we will call K̂ (τ) and Ĉ (τ) cyclical
components of K (t) and C (t) , as Aq(t)/α and Aq(t) will turn out to be the stochastic trend
in our economy.
“Detrending” in (17) is undertaken by dividing by measures of the current technology

level that differs between capital and consumption. This is due to the fact that K (t) is a
capital index and not capital expressed in units of the consumption good. Capital measured
in units of the consumption good would be detrended byAq(t) as well. When detrending other
endogenous variables by Aq(t) as well, these detrended variables turn out to be stationary
and within a bounded range. Equilibrium properties can therefore best be illustrated by
studying an equilibrium in cyclical components which consists of a system in 6 equations
and 6 cyclical components as well.

3.2 An explicit solution

It would be interesting to analyze such a system in all generality. One would run the risk,
however, of losing the big picture and rather be overwhelmed by many small results. We
therefore restrict ourselves to a particular parameter set of the model that allows very sharp
analytical results. Parameter restrictions have proven useful to derive equilibrium properties
which otherwise would not be easily visible (e.g. Long and Plosser, 1983; Xie, 1991; Benhabib
and Rustichini, 1994; Wälde, 2005).

Theorem 1 If the preference parameter of the utility function σ equals the output elasticity
of the capital stock α, that is

σ = α, (18)

we obtain a linear solution for consumption and research

Ĉ = ΨK̂, R̂ = ΓK̂, (19)

where Ψ and Γ denote constant parameters given by

Ψ =
1 + τ I
1 + τC

Ã
ρ+ λ

¡
1− (1− s) ξ−σ

¢
σ

+
1− σ

σ

µ
1− τF
1 + τ I

δ + τW

¶
− 1 + τR
1 + τ I

Γ

!
, (20)

Γ =

µ
1 + τ I
1 + τR

κ0
D0

ξ−σ
¶ 1

γ

D0. (21)

The arrival rate is then constant and given by

λ =

µ
1 + τ I
1 + τR

κ0
D0

ξ−σ
¶1−γ

γ

, (22)

where we defined
ξ ≡ 1− s+ κ0. (23)
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Proof. App. B.1.4.
We will assume in what follows that ξ < 1 in (23), i.e. economic depreciation s due to

the innovation is larger than the relative size of dividend payments κ0 from (4).
The parameter restriction σ = α implies a relatively high intertemporal elasticity of

substitution σ−1 of above unity. While there is supporting evidence (see Vissing-Jørgensen,
2002, and Gruber, 2006), the relevance of our results depends only on whether one believes
that changes in σ will fundamentally change our insights. As will turn out further below,
this is not the case.

3.3 Cyclical growth

Exploiting the implications of theorem 1, we can summarize general-equilibrium behaviour
of agents in a way as simple as e.g. in the Solow growth model with exogenous growth
and a constant saving rate, even though we have forward-looking agents and an uncertain
environment. In terms of cyclical components, our economy follows (19) and (app. B.1.3)

dK̂ =
n
Ŷ − R̂− δK̂ − Ĉ − Ĝ

o
dt−

©
1−A−1ξ

ª
K̂dq (24)

=

½
b0

Ψ1−σ
K̂αL1−α − b1

1− σ
K̂

¾
dt−

©
1−A−1ξ

ª
K̂dq, (25)

where with Ψ and Γ from (20) and (A.36),

b0 ≡
1− τF
1 + τ I

Ψ1−σ, (26)

b1 ≡ (1− σ)

µ
1 + τC
1 + τ I

Ψ+
1 + τR
1 + τ I

Γ+
1− τF
1 + τ I

δ + τW

¶
=
1− σ

σ

µ
ρ+ λ

£
1− (1− s) ξ−σ

¤
+
1− τF
1 + τ I

δ + τW

¶
. (27)

The differential equation (24) is the capital accumulation constraint (10), expressed for
cyclical components and satisfying utility-maximizing behaviour of agents. Inserting (19)
and some further steps (app. B.2.1) give the one-dimensional stochastic differential equation
(25) in K̂.
Note that the expressions containing parameters b0 and b1 have an economic meaning:

The first term represents cyclical output of this economy, reduced by taxation. This is visible
from Ŷ = K̂αL1−α (app. B.1.3). The b1 term represents resource allocation to R&D and
consumption, in addition to physical capital depreciation, all corrected for taxation. As
(25) shows, b1 also captures the speed of convergence of K̂ relative to its steady state. The
differential equation (25) is illustrated in figure 1.
The figure on the left plots K̂ on the horizontal axis and the proportional (deterministic

part of the) change dK̂/K̂ on the vertical one. The steady state K̂∗ to which the economy
approaches without any jumps in technology is from (25) and (26)

K̂∗ =

µ
1− τF
1 + τ I

1− σ

b1

¶ 1
1−α

L =

Ã
1− τF
1 + τ I

σ

ρ+ λ
£
1− (1− s) ξ−σ

¤
+ 1−τF

1+τI
δ + τW

! 1
1−α

L, (28)

where we used (27) for the second equality.
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Figure 1: General equilibrium dynamics of the capital stock per effective worker and
GDP growth cycles

We can now start our analysis as we do in deterministic models. Assume an initial capital
stock K̂0. Agents invest part of their savings in R&D, the rest goes to capital accumulation.
Assuming a certain length of time without jumps, i.e. without successful innovation, the
economy grows due to more capital and converges to the steady state K̂∗. As in the Solow
model, growth is initially high and approaches zero. Once a jump occurs and q increases
by 1, the capital stock of the economy increases by the size κ of the prototype from (3). If
the capital stock K remained unchanged, capital per effective worker K̂ (τ) from (17) would
decreases by a discrete amount as the frontier technology increases by the discrete amount
A. When we assume that the size of the new machine is sufficiently small relative to the
technological improvement, A−1ξ < 1 (which is the only empirically plausible assumption
and which also follows from our assumption after (23)), the cyclical component K̂ (τ) falls
due to an innovation, i.e. the economy is thrown back towards the origin in fig. 1. With a
lower capital stock per effective worker, investment in capital accumulation becomes more
profitable as the marginal productivity of capital is higher. Growth rates jump to a higher
level and approach zero again unless a new innovation takes place.
The discrete increases of labour productivity by A imply a step function in vintage-

specific TFP. As investment takes place only in new vintages, each new vintage induces an
investment boom. This is in contrast to the smooth increase in TFP for investment goods
in balanced growth models. The implied evolution of GDP is shown in the right panel of
fig. 1. Fluctuations are natural in a growing economy. The step function from one vintage
to the next does not imply, however, that there are discrete jumps in TFP at the economy
wide level. Looking at the aggregate technology (8) shows that capital can be aggregated
to an index (9) which weights vintages according to their relative productivities. Prices of
vintages fully reflect differences in productivity and aggregate TFP is therefore constant and
equal to one.10

10There is an ongoing debate in the literature whether models of the natural volatility type are useful to
think about business cycles. Andolfatto and MacDonald (1998) argue that diffusion waves of 7 new tech-
nologies can be identified since WWII in the US. According to this view, new technologies cause fluctuations
at business cycles frequencies. A shortcoming of most existing papers is the lack of recessions (see, however,
Francois and Lloyd-Ellis, 2003). Our model can in principle account either for high- or for low-frequency
fluctuations. It remains an open empirical question whether new technologies alone cause business cycles or
whether exogenous shocks (like oil-price shocks) are needed for convincing empirical "cycle accounting".
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4 Measuring welfare and volatility

4.1 The value function

Our measure of welfare is the value function which, by definition, is V (t) ≡ max{c(τ),i(τ)}
Et

R∞
t

e−ρ[τ−t]u (c (τ)) dτ. Pulling the expectations operator into the integral gives11

V (t) = max
{c(τ),i(τ)}

Z ∞

t

e−ρ[τ−t]Etu (c (τ)) dτ. (29)

Obviously, the value of the optimal program depends on the evolution of expected instanta-
neous utility, Etu (c (τ)).

4.1.1 Evolution of expected instantaneous utility

Let us now analyze how expected instantaneous utility,

m1 (τ) ≡ Etu (c (τ)) , (30)

evolves. For notational simplicity, we denote

Θ ≡ A1−σ, Ξ = ξ1−σ. (31)

Computing expected quantities as in (30) can be done in two ways. Either, a stochastic
differential equation is expressed in its integral version, expectations operators are applied
and the resulting deterministic differential equation is solved. Or, the stochastic differential
equation is solved directly and then expectation operators are applied. The background for
either approach is in Garcia and Griego (1994). We follow the first way here.
The evolution of u (c (τ)) , denoted by u (t) for simplicity, is described by the differential

equation (app. C.1.1),

du(t) =
©
b0Θ

q(t) − b1u(t)
ª
dt− b2u(t)dq(t), (32)

where b0 and b1 are as in (26) and (27) and

b2 ≡ 1− Ξ (33)

can be understood as a measure of the “novelty” of a new technology. When A is high, b2
is high as well as a high degree of novelty increases b2 through high economic depreciation
s, defined before (16). Note that we assume b2 > 0 which holds due to the plausibility
assumption of ξ < 1 made after (23). This differential equation shows that u (t) behaves
similarly to K̂ illustrated in fig. 1. Starting from some u0, u (t) moves towards the current
steady state b0Θq(t)/b1 as long as no technology jump takes place, i.e. as long as dq = 0. When
q jumps, u (t) reduces by a small amount as agents postpone consumption12 and as a fraction

11The integral and the expectations operator can be exchanged when, under a technical condition, both
the expected integral, i.e. our objective function (13), and the integral of the expected expression exist. The
expected integral exists by assumption as otherwise the maximization problem of the household would be
meaningless. The existence of the integral of the expected expression will be shown by computing it. The
existence proof is therefore an ex-post proof. We are grateful to Ken Sennewald for discussions of this issue.
12This is due to σ = α and the implied intertemporal elasticity of substitution. Under an alternative

condition and closed form solution, consumption would not decrease (Wälde, 2005, footnote 20). The
behavior of the utility level after a technological jump is not important for subsequent results.
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of their wealth depreciates economically. The difference to K̂ consists in the behaviour of the
current steady state. As u (t) is the level of utility and not its cyclical component or utility
per representative worker, the steady state moves to the right with each new technology.
After an innovation and the subsequent reduction in u (t) , instantaneous utility approaches
this new steady state until the next jump occurs - similar to GDP in fig. 1.
Given the stochastic differential equation (32) and forming expectations about u (τ) for

τ > t leads to a deterministic ordinary differential equation in m1 (τ) . Defining g as the
growth rate and β as the convergence rate of expected utility m1(τ) (and keeping the differ-
ence to b1 in (27), the speed of convergence of K̂, in mind),

g ≡ (Θ− 1)λ, (34)

β ≡ g + b1 + b2λ = b1 + λ[Θ− Ξ], (35)

respectively, we obtain (app. 7.1) an explicit expression for (30),

m1(τ) = e−(β−g)[τ−t] (u(t)− µ) + eg[τ−t]µ, (36)

where
µ ≡ Θq(t)b0/β. (37)

The second term of this equation, eg[τ−t]µ, says that expected utility, starting in t where
q (t) and K (t) and thereby u (t) are given as initial conditions, grows exponentially at the
innovation rate g. From (34), the innovation rate is basically driven by the arrival rate λ. In
the long run, g is the average growth rate of instantaneous utility. The first term says that
u (t) converges to µ at the convergence rate β. The term µ is the expected value, today in t,
of instantaneous utility in τ →∞, when instantaneous utility is deterministically detrended.
This follows immediately from rewriting (36) as e−g[τ−t]m1(τ) = e−β[τ−t] (u(t)− µ) + µ.13

Somewhat imprecisely but nevertheless useful, µ could be called “average instantaneous
utility”.
Apart from showing growth of expected quantities in our setup, equation (36) illustrates

the similarity of the evolution of expected quantities in this setup to the evolution of quan-
tities in the Solow growth model. When we replace µ by the Solow steady state utility level,
the expected evolution here is identical to the certain evolution in Solow’s model (where g
and β would then stand for the growth and convergence rate in the Solow sense, respec-
tively). In contrast, the role played by short-run convergence is ambiguous: while in the
Solow model one usually assumes a capital stock that lies to the left of the steady state and
convergence implies higher average growth rates between today and some future point in
time τ , the capital stock here (and the implied consumption and utility level) may lie left as
well as right to the mean µ. Convergence then implies higher or lower average growth rates
than g, respectively.

13Obviously, detrending is possible in at least two ways here: The “stochastic detrending” in (17) looks at
past realizations of q (t) and removes the stochastic trend Aq(t)/α or Aq(t) of some stochastic trended variable
X (t). “Deterministic detrending” removes an expected growth trend by dividing expected expressions by its
growth component eg[τ−t]. In either case, by definition, the resulting cyclical component has a finite constant
long-run mean. Stochastic detrending also implies finite and constant higher long-run moments (app. 7.3),
which, however, is not necessarily the case for deterministic detrending (app. 7.2).
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4.1.2 Computing the value function

We can now insert the expression for utility under optimal behaviour from (36) into (29)
and get, after computing deterministic integrals (app. C.1.2),

V (t) =
µ

ρ− g
− µ− u(t)

ρ− g + β
. (38)

The derivation assumed ρ > g which makes the integral in (13) bounded.14 While in de-
terministic models the growth rate of utility must not be larger than the time preference
rate, in this stochastic model, the boundedness condition requires that the growth rate g of
expected instantaneous utility must not exceed the time preference rate.
The value function can best be understood by going back to equation (36): The value

to which the expected value of deterministically detrended utility converges is µ. This value
appears in (38) as µ/ (ρ− g) , i.e. the present value of utility that amounts to µ today,
grows at rate g and where the discount factor is ρ. In addition, welfare today depends on
a convergence term. If utility today is lower than µ, there will be convergence towards this
long-run mean and utility will be lower compared to a situation where u(t) equals or exceeds
µ. However, the difference µ− u(t) is not as important as µ in the other term, as this effect
is transitory only. Hence, the present value of the convergence process is computed subject
to the convergence rate β.
Note that an identical expression for the value function would result in an analysis of the

Solow model. The only difference would consist in the meaning of µ. While here, µ stands
for “average instantaneous utility”, it would stand for steady state utility in Solow’s model.
Summarizing, the value of the optimal program V (t) basically depends on four crucial

determinants: “average instantaneous utility” µ, utility today u (t), the innovation rate g and
the convergence coefficient β. Studying welfare effects of taxation can therefore be broken
down into effects on these four elements that determine the value function.

4.2 The cyclical component

While the measure for welfare was straightforward, there is an almost infinite number of
possible measures of volatility. The empirically oriented literature provides two examples:
The variance of growth rates (e.g. of GDP) and the variance of cyclical components. App.
7.2 analyses the variance of the growth rate of instantaneous utility u in detail. It turns out
that the resulting expression and therefore variances of all other time-series like e.g. GDP,
do not lend themselves to a straightforward analysis. This is due to two facts. First, growth
rates for long time horizons, i.e. for τ → ∞, do approach a constant mean but do not
have finite variance or finite higher moments. Second, while annual growth rates have finite
moments, they are extremely complex (cf. eq. (51)) and a comparative static analysis is
close to intractable. We therefore base our measure of volatility on cyclical components.

4.2.1 The evolution of the cyclical component

Cyclical components of time series can be defined and therefore computed in many ways
and the literature offers a large number of filters. None of these filters, given their computa-
tional complexity, would allow us to derive cyclical components that would yield an explicit
analytical expression for volatility. We therefore use a very simple filter, the Solow-type

14Hence, the integral of the expected expression exists. See footnote 11.
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detrending rule used in (17), to compute our cyclical components. Usual filters, think of the
Hodrick-Prescott filter, detrend by removing a smooth trend from a time series. Our filter
captures the trend by a step function Aq(t), caused by the discrete increases of q (t) . In spirit,
however, these filters are very close as both remove past realizations of growth processes to
obtain the cyclical components.
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Figure 2: Detrended instantaneous utility

In order to understand the detrending method proposed here, we look at the evolution
of detrended utility.15 We define detrended individual utility, in analogy to (14), as the
component of utility that stems from the cyclical component of consumption in (17),

û =
(Ĉ/L)1−σ

1− σ
. (39)

With
b̂2 ≡ 1− Ξ/Θ, (40)

detrended utility follows (app. 7.3)

dû (t) = {b0 − b1û (t)} dt− b̂2û (t) dq(t). (41)

This law of motion is basically identical to (32), only that the Θq(t) term is missing and b̂2
slightly differs from b2. Again, we can gain an intuitive understanding by plotting in fig. 2
the deterministic part (b0 − b1û (t)) with û (t) on the horizontal axis.
Obviously, the cyclical component of utility has a range between 0 and b0/b1, pro-

vided that û0 lies within this range. Starting from û0 and as long as no innovation takes
place, the cyclical component approaches its upper bound. Each innovation reduces û (t)

to
³
1− b̂2

´
û (t), i.e. Ξ/Θ percent of its level before the innovation. As the reduction is

proportional, û (t) is always positive.

4.2.2 The coefficient of variation

Exploiting again the methods in Garcia and Griego (1994), we can compute moments of this
cyclical component. This follows similar step as above for (36). In fact, denoting the ith
moment, in analogy to (30), by

m̂i(τ) ≡ Etû (τ)
i , (42)

15In Lucas-type approaches, the measure of volatility is based on consumption. For analytical tractability,
we work with detrended utility. There are approximation rules which allow to compute e.g. the coefficient of
variation (cv) of consumption once the cv of utility (a monotone transformation of consumption) is known.
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the first and second moment are given in the long run by (app. 7.3.2)16

m̂1 (∞) =
b0

b1 + λb̂2
, (43)

m̂2 (∞) =
2b0

2b1 + λ
h
1− (1− b̂2)2

im̂1 (∞) . (44)

Using these moments, computing the variance would be straightforward. As a measure of
volatility, the variance seems less suitable in our context, however, as it is scale dependent.
We therefore prefer the coefficient of variation (cv). Given that the variance of a random
variable is the difference between its second moment and the square of its mean, we obtain

cv2 ≡ limτ→∞ vartû (τ)

(limτ→∞Etû (τ))
2 =

m̂2 (∞)
(m̂1 (∞))2

− 1. (45)

When computing the second moment in all generality, an expression similarly complex
as for the variance of the growth rate, presented in the appendix in (51) appears. When
we focus on the long run where the convergence of the initial value û0 to m̂1 (∞) in (41) is
ignored, however, this measure simplifies. This would be the case for the variance of growth
rates as well, see (52). Studying the long run with this measure of volatility is not at all as
problematic as using growth rates, however. In the latter case, we analyze the variance of
multi-annual growth rates. Those could never be observed. In the former case, looking at
the long run simply means studying the volatility of some stationary long-run distribution.
This corresponds to studying the variance of the cyclical component of a time series that is
very long. This being said, our cv is (app. C.3.2)

cv2 =
b̂22

2b1/λ+ 1− (1− b̂2)2
. (46)

To obtain a feeling for this measure, we go back to fig. 2. The first moment m̂1 (∞)
lies between 0 and the steady state b0/b1. This is intuitively clear, given the permanent
convergence towards b0/b1 and the occasional being thrown back. As the process û (t) is
completely described by (41), given an arrival rate λ, only the parameters of this process,
b0, b1, b̂2 and λ, can show up in its moments. A larger b0 and a smaller b1 shifts the mean
m̂1 (∞) to the right; this is clear from fig. 2 as a larger b0 and a smaller b1 shift the dû line
to the right. When b̂2 or λ increase, the mean shifts to the left as either jumps to the left
are larger or more frequent.
The second moment has the same properties as the first moment m̂1 (∞) with respect to

b0, b1 and λ, as can be directly seen in (44). As the term 1− (1− b̂2)
2 increases in b̂2, it also

behaves as m̂1 (∞) with respect to b̂2, i.e. it decreases in b̂2. Simply speaking, a larger range
and more frequent jumps increase the second moment, a measure of dispersion.
Computing the cv then shows that it is independent of b0. This is not surprising as b0 is a

scaling parameter and the cv is by construction scale independent. This can intuitively also
be understood from fig. 2 where the effect of b0 on the cyclical component could be removed
by scaling both axes with 1/b0. The effect of other parameters will be discussed below.

16The structure of the moments is remarkable as it shows that the distribution of û exists, is unique and
represents a generalization of the β-distribution. We are grateful to Christian Kleiber for pointing this out
to us. For more discussion see app. 7.3.2.
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4.2.3 Random walks and stationary cyclical components

Following the work of Nelson and Plosser (1982), many economists now argue that macroeco-
nomic time series exhibit difference-stationarity rather than trend-stationarity. This implies
that theoretical models should predict difference stationary time paths as well, i.e. trends
and cyclical components should both be stochastic as opposed to models where only cyclical
components are stochastic and the trend is deterministic.
We now show that our model exhibits indeed a stochastic trend and stochastic stationary

cyclical components.17 We can write (17) as lnK (t) = q (t) (lnA) /α+ ln K̂ (t) , i.e. we split
our time series lnK (t) into a trend component q (t) (lnA) /α and into a stationary cyclical
component ln K̂ (t) , in the sense of Beveridge and Nelson (1981). Both the trend component
and the stationary component are stochastic. Even though we are in continuous time, we
can easily relate our trend component to a discrete time random walk as we can describe
it by the pure random walk with drift: q (t) = q (t− 1) + λ + ε (t) , where ε (t) ∼ (0, λ).18
Hence, our trend component has a unit root and our cyclical component K̂ (t) is stationary
as just shown for û.

5 Volatility, welfare and taxation

Given our measures of welfare and volatility derived in the last section, we can now ask how
taxation affects these quantities.

5.1 Volatility and taxation

5.1.1 The volatility channels

Our central measure of volatility in (46) is affected through three channels: The speed of
convergence b1, the altitude of the slump b̂2 and the arrival rate λ. The interpretation of
these parameters is based on (41) but other interpretations are possible. When we plot an
arbitrary realization of our cyclical components in fig. 3, this becomes more transparent.
The range of our cyclical components is ]0, b0/b1[. The upper limit corresponds to the

steady state K̂∗ for the cyclical component of capital in fig. 1. Hence, b1 is at the same
time a measure of the range of the cyclical component (cf. fig. 2, remembering that b0 is
only a scaling parameter) and thereby of its amplitude. The arrival rate λ also measures the
expected number of jumps or (the inverse of) the expected length of a cycle. The simple
reason why volatility depends on taxation is therefore the same reason why the steady state
capital stock (28) (i.e. the speed of convergence), the novelty of a new technology or the
arrival rate depend on taxation.

17Other models of endogenous fluctuations and growth, all cited in the introduction, are of a deterministic
nature. The only exception is Bental and Peled (1996) who were the first to study endogenous fluctuations
and growth. Unfortunately, their model is fairly complex which makes an explicit analysis of stochastic
properties of trends and cycles a very hard task.
18The fact that the expectation and variance of q (t) − q (t− 1) are both equal to λ results from the

distributional properties of a Poisson process. If the increment of the trend term was not constant, i.e. if
e.g. A was vintage dependent and stochastic, the expectation and variance would differ. This would be an
interesting extension for future work and should help in empirical applications. See Sennewald and Wälde
(2006, sect. 3.4.2) on how to disentangle the expected value and variance of a Poisson driven process.
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Figure 3: The cyclical components and their determinants b1, b̂2 and λ

When we want to understand the effects of taxation, we can restrict attention to b1 and
λ as b̂2 is independent of taxation. The independence of b̂2 (and of b2) from taxes follows
from their definitions in (33) and (40) and the fact that ξ from (23), with s from (16) and
κ0 from (4), is independent of tax rates. Economically, this independence of b̂2 follows from
the fact that dividend payments κ are not taxed and that economic depreciation s does not
imply tax-exemption as does physical depreciation δ.
The tax effects on the arrival rate λ are straightforward from looking at (22) and are

summarized in table 1. As the growth rate g of expected utility has λ as its only tax-
dependent determinant, it has the same qualitative properties and is also included in the
table. The composite parameter b1 in (27) depends on taxes both directly and indirectly
through the arrival rate. When we insert (22) into (27), we obtain unambiguous results,
except for τ I (app. D.1.1).

τF τC τR τ I τW

b1 − 0 − +(1) +

b2, b̂2 0 0 0 0 0
g, λ 0 0 − + 0
volatility + 0 − + −
welfare − − ± ± −
(1) for high τ I or τF and low δ

Table 1: Taxation effects on composite parameters, the arrival rate, volatility and welfare

5.1.2 Comparative statics

Let us now combine the effects of these three channels on volatility. As we have only two
tax-dependent channels, b1 and λ, taxation can affect volatility by either changing λ or b1
(without the λ in b1), or both. Clearly, when a tax has no effect on b1 and λ, the cv is not
affected by this tax either. This is the case for taxation of consumption.
When taxing wealth, the arrival rate and the “slump parameter” b̂2 are not affected,

while the (inverse) range parameter b1 increases and, as a consequence, volatility goes down.
Economically speaking, a tax on wealth decreases the households’ return r∗ in (16) on savings
and thereby implies a lower steady-state cyclical capital stock and utility level û. Holding
constant the length of a cycle but “squeezing” the cyclical components in fig. 3, the relative
dispersion must be lower.
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An increase in the income tax on capital and labour reduces the range parameter b1 but
not the arrival rate λ. As a consequence, volatility unambiguously increases in this tax.
How can this result be understood? The speed of convergence b1 in (27) reduces for two
reasons: (i) only net investment is taxed (as discussed before (15)), i.e. a higher tax on
capital increases the positive effect of the refunding policy and reduces the impact of the
depreciation rate δ as visible in (27). A lower (effective) depreciation rate increases incentives
for capital accumulation and the steady-state capital stock increases. (ii) Due to our σ = α
restriction, direct effects of joint changes in capital and labour taxation just cancel out and
only this indirect refunding effect is left over. Clearly, this second effect would not survive
for α 6= σ and should potentially overcompensate the first effect. Hence, currently, the effect
of income taxation is the opposite of wealth taxation but should go in similar directions for
more general cases.
When analyzing R&D and investment taxes τR and τ I , results are at first sight less clear-

cut as these taxes affect the arrival rate which affects the cv directly positively and indirectly
negatively through λ. Computing the derivatives, however, we get unambiguous results as
presented in table 1 above (app. D.1.2). The analytics for τR say in words: a higher tax on
research depresses the arrival rate. When the arrival rate falls, the ratio b1/λ increases and
the cv falls. Intuitively, a higher τR makes investment in research less profitable and the
arrival rate λ falls. Less frequent jumps in technology imply a lower volatility. A lower λ also
decreases b1 which by fig. 3 implies a larger range b0/b1 and higher volatility. This is because
b1 represents physical depreciation but also consumption and expenditure for research. A
lower λ therefore implies ceteris paribus a lower b1. This second indirect effect, however, is
not large enough such that the direct volatility decreasing effect of higher taxes on research
dominates.
Given the explanations for the previous finding, understanding the result for τ I is also

easy: a higher tax on investment increases the arrival rate which again has a direct and an
indirect effect on volatility. The direct effect via the frequency of jumps overcompensates
the indirect effect on the range and volatility increases. The additional effect of taxation on
investment via the depreciation rate δ makes the range increasing effect of a higher λ less
strong such that the indirect effect is even weaker than under a change of τR. Consequently,
volatility falls more when τ I increases as when τR falls.
If growth and volatility were exogenous, i.e. if there was an exogenous arrival rate λ

without any resources R being used for R&D, the model would from its basic structure
resemble a simple RBC model. Any activity takes place under perfect competition and
labour productivity improves by discrete amounts at random points in time. Volatility
would still be affected by taxation as the arrival rate is only one out of three channels in our
measure of volatility (46).19 As McConnell and Perez-Quiros (2000) argue, however, there
was a break in volatility in the US in 1984 without a break in the trend of GDP. Hence, we can
meaningfully investigate whether taxes can explain a break in volatility without affecting the
growth rate only with an endogenous arrival rate. As our results in table 1 show, this model
predicts indeed that a falling income tax τF and a rising wealth tax τW reduce volatility
without affecting trend growth.

19The amount of volatility would therefore remain endogenous even in this exogenous shock economy.
Volatility could, however, no longer be called “natural” as its source is exogenously imposed on the economy.
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5.2 Volatility and welfare

5.2.1 The welfare channels and comparative statics

When we look at our measure of welfare (38), it is affected by taxation through four quan-
tities, average instantaneous utility µ, current utility u (c (t)), and g and β, the growth and
convergence rate. These four quantities in turn depend on four channels, b0, b1, λ and Ψ.
We could now, following the approach from our measure of volatility, analyze the effects
of taxation on these channels first and then combine the results and derive conclusions for
welfare. As this does not yield additional insight, we directly link welfare to taxation by the
following

Theorem 2 (Taxation and welfare) A tax reduces welfare (38) when the permanent com-
ponent of welfare µ/(ρ− g) falls faster or increases less fast than the transition component
(µ− u(t))/(ρ− g + β). Computing the derivatives, we get³

∂b0
∂τ i

1
b0
− ∂β

∂τ i
1
β

´
(ρ− g) + ∂λ

∂τ i
(Θ− 1)

(ρ− g)2

<

³
∂b0
∂τ i

1
b0
− ∂β

∂τ i

1
β
− u(t)

µ
1−σ
Ψ

∂Ψ
∂τ i

´
(ρ− g + β)−

³
∂b1
∂τ i
+ ∂λ

∂τ i
b2
´³
1− u(t)

µ

´
(ρ− g + β)2

.

Proof. app. D.2
The left-hand side is the derivative of the permanent component of welfare, the right-

hand side is the derivative of the transition component (where both sides are divided by µ).
Both derivatives can be both negative or positive.
Going through these derivatives for individual taxes shows that (compare table 1 and

app. D.2) taxes on factor income, consumption and wealth have unambiguous negative ef-
fects on welfare while taxes on investment and R&D can increase welfare. Taxes τF , τC
and τW decrease welfare as resources are taken away from households and G has in the
model no productivity- or utility-enhancing effect. The potentially welfare increasing effect
of τ I and τR can best be understood when looking at the first order condition for invest-
ment in research: in our decentralized setup, the first order condition (1 + τR)Va (a(t), q)

= λVã (ã, q + 1)
(1+τI)κ

R
from (A.17) shows that individuals invest in R&D because of divi-

dend payments κ∗, a higher wealth level ã after successful R&D and the better technology
q+1. Optimal investment in a planner economy, where the planner maximizes the Bellman
equation (A.15) with respect to R rather than i and where Σa (t) stands for wealth in the
economy as a whole, would satisfy VΣa (Σa(t), q) = ∂λ

∂R
[V (Σã, q + 1)− V (Σa, q)] . Incentives

to do research therefore results from ∂λ/∂R, the effect of more resources on the probability
λ to find a new technology, and the difference in well-being between a situation with more
wealth and a better technology, V (Σã, q + 1) , and today, V (Σa, q) . While there are cer-
tainly various opposing effects, externalities are strongest for this trade-off between capital
accumulation and R&D. It is therefore not surprising, that taxes τ I and τR which are directly
affecting this first order condition are best suited to potentially internalize externalities.
As the first order conditions for consumption is identical for the planner and the repre-

sentative household, there are no externalities or imperfections present in the model apart
from those visible in the difference between the first order conditions for R&D. Put differ-
ently, if the arrival rate equalled λ exogenously without any resources R being allocated to
R&D, the decentralized economy would be efficient. This RBC-type version of our model
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would then predict that fluctuations allow for an optimal adjustment by individuals to ex-
ogenous disturbances. If one believes, however, that the process of finding and developing
new technologies implies certain externalities (and that new technologies at least partially
induce fluctuations), factor allocations in an economy “growing through cycles”, to use Mat-
suyama’s (1999) words, are inefficient.

5.2.2 The tax-link between volatility and welfare

Given the inefficiency of fluctuations, should taxes be used to stabilize the economy? In the
literature, more volatility is usually associated with lower welfare: In perfect-market models
(Lucas, 1987 or, more recently, Barlevy, 2004), exogenous volatility implies fluctuations
of consumption and the curvature of the utility function implies lower welfare than in an
economy without fluctuations but identical average growth. Gali et al. (2003) focus on
inefficiencies and argue - due to the inefficiency of the steady state and the larger welfare
losses in recessions than welfare gains in booms - that fluctuations on average cause welfare
losses.
This is not necessarily the case when fluctuations are endogenous: While the curvature of

the utility function à la Lucas and the asymmetry as in Gali (and others) is welfare-reducing
in our setup as well, volatility is only the result of the more fundamental factor allocation
in an economy. Asking whether volatility is welfare reducing and by how much is therefore
meaningful only if one believes that the sources of fluctuations are exogenous to an economy
(which, in the real world, they are - to a certain extent). The welfare effects of endogenous
fluctuations, however, can only be understood when understanding the welfare properties of
the underlying factor allocation that causes these fluctuations. When this is done, it becomes
clear that more or less fluctuations can be associated (and are not causal as in the exogenous
fluctuation case) with higher or lower welfare. Tax policy should therefore not be used in all
cases to stabilize the economy.
This association between welfare and volatility, illustrated for taxes with unambiguous

welfare effects, is depicted in the following figure.
6

- Volatility
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©©¼τF
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Figure 5: The effect of taxation on welfare and volatility

Arrows indicate in which direction to move on the line when the tax is increased. Fig. 5
shows that there is no association between volatility and welfare in general. It all depends
on the source of the change in volatility. While certain taxes increase volatility and reduce
welfare (τF ), others reduce volatility but still decrease welfare (τW ). Lowering the tax on
wealth increases welfare as fewer resources are taken away from the economy as argued
above. At the same time, volatility increases as the steady state capital stock (28) increases.
Hence, despite the curvature of the utility function and the asymmetric effect of volatility
on efficiency, more volatility implies higher welfare.
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6 Conclusion

Growth rates above and below long-run trends are a common feature of all real-world
economies. The present paper used a model that perceives endogenous fluctuations as a
natural phenomenon of all endogenously growing economies by stipulating that new tech-
nologies increase labour productivity in a discrete way. Agents in this setup are not solely
responding to shocks but rather are the source of shocks, i.e. jumps in technologies, due to
their financing of innovation and growth. This framework was used to analyze the effects of
taxation on volatility and the associated welfare effects. The motivation for this is provided
by the sharp decrease of volatility in the US around 1983 and an almost simultaneous strong
tax reform.
We used the coefficient of variation of the cyclical component of a typical time series as

our measure of volatility. It was shown that this measure is most tractable from a theoretical
perspective and that three economically meaningful channels affect this measure: potential
range of cyclical components, slumps and frequency of new technologies. Taxes affect these
channels in various ways which allows, inter alia, to understand a change in volatility without
requiring a simultaneous change in the growth rate of the economy.
Welfare effects associated with changes in volatility can be manifold. In a special case

of our model where the source of long-run growth and short-run fluctuations is exogenous,
factor allocation is efficient and volatility does not signal the need for stabilization. With
endogenous growth and fluctuations, however, inefficiencies enter the economy and fluctua-
tions hint at the possibility of welfare-increasing policy measures, even though all production
and R&D activities were modelled to take place under perfect competition.
Stabilization is not necessarily welfare increasing, however: Lower volatility can imply

higher or lower welfare, depending on whether the tax change reducing volatility implies
higher or lower welfare. Analyzing the link between volatility and welfare should therefore
not be restricted to the usual mono-causal link from an exogenous source of volatility and
an endogenous welfare reaction but expanded to exogenous change in fiscal policy (or other
exogenous changes) and how natural volatility and welfare react to this.
An important extension of the present analysis (and other papers in the literature on

endogenous fluctuations and growth) would combine endogenous and exogenous sources of
fluctuations. It appears reasonable to start an analysis of fluctuations of any real word
economy by allowing for both endogenous jumps of and exogenous shocks to the technol-
ogy as well as nominal sources of fluctuations. Labour market participation decisions and
unemployment should also be included in future work. The implications of our analysis for
the growth and volatility debate could also be worked out more precisely. With endogenous
volatility, taxes (or other policy parameters) affect both long-run growth and volatility. As
in our welfare argument, the causal link from volatility to growth becomes a correlation. The
implied endogeneity of volatility in regression analyses could be tested. Finally, quantitative
implications of this approach can be explored.

7 Appendix

This appendix contains derivations that are interesting from a theoretical perspective beyond
this specific paper. Section 7.1 derives the evolution of expected instantaneous utility. It uses
methods that were developed in the applied mathematical literature, e.g. Garcia and Griego
(1994). These methods are potentially useful also in other areas where Poisson processes are
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used (e.g. all search and matching models in monetary or labour economics). Section 7.2
computes an explicit expression for the variance of the growth rate. Again, various methods
are borrowed from Garcia and Griego (1994). Finally, section 7.3 computes the moments of
our basic random variable. This forms the basis for our measure of volatility. Interestingly,
we obtain a generalized β-distribution from this analysis.
Further derivations are included in the Referees’ appendix which is available upon request.

7.1 Evolution of expected instantaneous utility

This section computes the expected value of instantaneous utility, conditional on the current
state in t, given by q (t) and K (t). The results provide information about expected growth
but are especially needed for computing the value function.

7.1.1 A lemma for E
¡
ckNτ

¢
We first compute some simple expectations that are used later.

Lemma 3 Assume that we are in t and form expectations about future arrivals of the Poisson
process. The expected value of ckq(τ), conditional on t where q (t) is known, is

Et(c
kq(τ)) = ckq(t)e(c

k−1)λ(τ−t), τ > t, c, k = const.

Note that for integer k, these are the raw moments of cq(τ).
Proof. We can trivially rewrite ckq(τ) = ckq(t)ck[q(τ)−q(t)]. At time t, we know the realiza-

tion of q(t) and therefore Etc
kq(τ) = ckq(t)Etc

k[q(τ)−q(t)]. Computing this expectation requires
the probability that a Poisson process jumps n times between t and τ . Formally,

Etc
k[q(τ)−q(t)] = Σ∞n=0c

kn e
−λ(τ−t)(λ(τ − t))n

n!
= Σ∞n=0

e−λ(τ−t)(ckλ(τ − t))n

n!

= e(c
k−1)λ(τ−t)Σ∞n=0

e−λ(τ−t)−(c
k−1)λ(τ−t)(ckλ(τ − t))n

n!

= e(c
k−1)λ(τ−t)Σ∞n=0

e−c
kλ(τ−t)(ckλ(τ − t))n

n!
= e(c

k−1)λ(τ−t),

where e−λτ (λτ)n

n!
is the probability of q (τ) = n and Σ∞n=0

e−c
kλ(τ−t)(ckλ(τ−t))n

n!
= 1 denotes the

summation of the probability function over the whole support of the Poisson distribution
which was used in the last step.

Lemma 4 Assume that we are in t and form expectations about future arrivals of the Poisson
process. Then the number of expected arrivals in the time interval [τ , s] equals the number
of expected arrivals in an unknown time interval of the length τ − s and therefore

Et(c
k[q(τ)−q(s)]) = E(ck[q(τ)−q(s)]) = e(c

k−1)λ(τ−s), τ > s > t, c, k = const.

Proof. This proof is in appendix C.1.1, it simply applies lemma 3.
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7.1.2 Expected instantaneous utility

We will use in what follows the martingale property of various expressions. These expressions
are identical to or special cases of

R τ
t
f (q (s) , s) dq (s)− λ

R τ
t
f (q (s) , s) ds, of which Garcia

and Griego (1994, theorem 5.3) have shown that it is a martingale indeed, i.e.

Et

∙Z τ

t

f (q (s) , s) dq (s)− λ

Z τ

t

f (q (s) , s) ds

¸
= 0, (47)

where λ is the (constant) arrival rate of q (s).
The integral version of (32) for τ > t is u (τ) = u (t) +

R τ
t
b0Θ

q(s)−b1u (s) ds−
R τ
t
b2u (s) dq (s) .

Applying (conditional) expectation operators givesEtu (τ) = u (t) +Et

R τ
t
b0Θ

q(s)ds−Et

R τ
t
b1u (s) ds

−Et

R τ
t
b2u (s) dq (s) . When we pull expectations into the integral (as in eq. (29)), use

lemma 3 and the martingale result (47), we get Etu (τ) = u (t) +Θq(t)
R τ
t
b0e

(Θ−1)λ[s−t]ds
−
R τ
t
b1Etu (s) ds −λ

R τ
t
b2Etu (s) ds.With m1 (τ) ≡ Etu (τ) from (30), we get m1 (τ) = u (t)

+
R τ
t
Θq(t)b0e

(Θ−1)λ[s−t]ds −
R τ
t
b1m1 (s) ds −

R τ
t
b2λm1 (s) ds and differentiating with respect

to time τ gives
ṁ1 (τ) = Θq(t)b0e

(Θ−1)λ[τ−t] − (b1 + λb2)m1 (τ) . (48)

The solution of this deterministic linear differential equation is

m1 (τ) = m1(t)e
−(b1+λb2)(τ−t) +

Z τ

t

Θq(t)b0e
(Θ−1)λ[s−t]e−(b1+λb2)(τ−s−τ+t)e−(b1+λb2)(τ−t)ds

= e−(b1+λb2)(τ−t)
µ
m1(t) +Θq(t)b0

Z τ

t

e(b1+λb2+(Θ−1)λ)(s−t)ds

¶
= e−(β−g)(τ−t)

µ
u (t) +Θq(t)b0

eβ[τ−t] − 1
β

¶
,

where the last line used m1 (t) = Etu (t) = u (t) and (35) for β. Rearranging gives (36) in
the text.

7.2 The variance of the growth rate

This section derives an alternative expression for volatility, the variance of the growth rate.
This measure is more common in empirical work (e.g. Ramey and Ramey, 1995 or McConnell
and Perez-Quiros, 2000) than the variance of cyclical components, which in turn is used more
intensively in the RBC literature.
It is not immediately clear, however, how this variance should be computed. Is it the

variance of some long-run stationary distribution, limτ→∞vart [gτ,t], is it the variance of some
“annual” growth rate of some long-run distribution, limτ→∞vart [gτ+1,τ ] , or is it the variance
of the next “period” in this model, vart [gt+1,t]? In a way, the choice of measure of variance is
arbitrary. We therefore choose the one that comes closest to the estimation of the variance
of observed growth rates. The counterpart to an observed annual growth rate for a “year” t
in our model is gt+1,t. Taking many drawings, there is a set of annual growth rates {gt+1,t}
for which the variance can be estimated. Noting that annual growth rates are computed
given the knowledge on t, the analytical expression corresponding to this is the t-contingent
variance of gt+1,t, i.e. vart [gt+1,t] .
Now, we can take advantage of the following straightforward relationship: The t-contingent

variance of the growth rate of some random variable is the same as the t-contingent variance
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of the random variable divided by some constant. In our case,

vart

∙
u (τ)− u (t)

u (t)

¸
=
vartu (τ)

u (t)2
. (49)

While this is trivial in a sense, it has the huge advantage that we can just compute the
second moment of u (τ) and thereby obtain the theoretical counterpart of the variance of
observed growth rates.
The variance of u (τ) is computed by first computing its second moment. To this end,

the evolution of squared utility needs to be understood. It follows (app. C.2.2)

du(t)2 = 2
©
b0Θ

q(t)u (t)− b1u (t)
2ª dt− ©1− (1− b2)

2ªu (t)2 dq.
Comparing it to (32) shows that the main difference, apart from the square term u2 instead
of u, is the interaction Θqu between Θq and u.When forming expectations, we therefore have
to compute the expected interaction term, i.e. look at ψ (s) ≡ EtΘ

q(s)u (s). After “some
steps” (filling 6 pages in app. C.2), denoting

gψ ≡ (Θ2 − 1)λ > 0,
βψ ≡ gψ + b1 + (1−Θ [1− b2])λ = b1 + (Θ

2 −ΘΞ)λ > 0,

β2 ≡ gψ + 2b1 +
¡
1− (1− b2)

2¢λ, (50)

the variance from (A.49) is

vart(u(τ)) = µ2

"
e−(β2−gψ)(τ−t)

Ã
u (t)2

µ2
− 2β2

β2βψ

!
+
2β2

β2βψ
egψ[τ−t]

¡
e−(βψ−gψ)(τ−t) − e−(β2−gψ)(τ−t)

¢ 2β

β2 − βψ

µ
u (t)

µ
− β

βψ

¶
−e2g[τ−t]

∙
e−β[τ−t]

µ
u (t)

µ
− 1
¶
+ 1

¸2 #
. (51)

The structure of the variance is similar to previous structures in e.g. (36) for expected utility.
There are growth and convergence rates (50) and there are expected long-run quantities. As
a measure of volatility, however, the variance of the growth rate is less suitable for a variety
of reasons: First, when we let τ become very large, i.e. when we look at the “long run”
T À t, we do get a simpler expression as all convergence terms disappear (appendix C.2.3),

vart(u(T ))

u(t)2
=

µ2

u(t)2

µ
2β2

β2βψ
egψ [T−t] − e2g[T−t]

¶
. (52)

This expression, however, represents the variance of the growth rate between t and T, i.e.
we would not compute the variance of annual growth rates but of T − t-year growth rates.
Clearly, such a variance can never be estimated in reality. Second, the expression for the
variance for annual growth rates, i.e. growth rates from t to t+1, is the complete expression in
(A.50) for τ = t+1. Understanding properties of this expression, like derivatives with respect
to certain tax rates appears analytically hopeless. Third, as a potential theoretical way out,
one could try and deterministically detrend u (τ) as discussed on page 13. Computing the
variance of the growth rate of deterministically detrended u (τ) (and not of u (τ) as done
here), however, does not yield a finite expression either as the variance grows at gψ while
inserting e−g[τ−t] in front of u (τ) in (49) would not compensate for gψ.
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7.3 The cyclical component

7.3.1 The basic differential equation (41)

As û = (Ĉ/L)1−σ/ (1− σ) from (39), we have dû = (1/L)1−σ

1−σ dĈ1−σ.With Ĉ = ΨK̂ from (19),
(25) and the change of variable formula (CVF), we obtain

dĈ1−σ = Ψ1−σdK̂1−σ

=

½
b0

Ψ1−σ K̂
αL1−α − b1

1− σ
K̂

¾
(1− σ)Ψ1−σK̂−σdt+

n¡
1−

¡
1−A−1ξ

¢¢1−σ − 1oΨ1−σK̂1−σdq

=
n
b0K̂

α−σL1−α (1− σ)− b1Ĉ
1−σ
o
dt+

n¡
A−1ξ

¢1−σ − 1o Ĉ1−σdq

=
n
b0K̂

α−σL1−α (1− σ)− b1Ĉ
1−σ
o
dt− {1− Ξ/Θ} Ĉ1−σdq.

Using σ = α from (18), inserting and simplifying yields

dû =
(1/L)1−σ

1− σ

hn
b0K̂

α−σL1−α (1− σ)− b1Ĉ
1−σ
o
dt− {1− Ξ/Θ} Ĉ1−σdq

i
= {b0 − b1û} dt− {1− Ξ/Θ} ûdq.

7.3.2 Computing moments

The integral version of (41) for τ > t is û (τ) = û (t)+
R τ
t
(b0 − b1û(s)) ds−

R τ
t
b̂2û(s)dq(s).

Using the martingale result (47), the expected value of û (τ) is Etû (τ) = û (t)+R τ
t
(b0 − b1Etû(s)) ds− λ

R τ
t
b̂2Etû (s) ds. This describes the evolution of the first moment of

û. Expressed as a differential equation and using the definition in (42), we obtain ˙̂m1 (τ) =
b0−(b1+λb̂2)m̂1 (τ) . The solution of this deterministic linear differential equation is m̂1 (τ) =

e−(b1+λb̂2)(τ−t)
³
m̂1(t) +

R τ
t
e(b1+λb̂2)(s−t)b0ds

´
= e−(b1+λb̂2)(τ−t)

³
m̂1(t) + b0

e(b1+λb̂2)(τ−t)−1
b1+λb̂2

´
, which

can be simplified to

m̂1 (τ) = e−(b1+λb̂2)(τ−t)
µ
m̂1 (t)−

b0

b1 + λb̂2

¶
+

b0

b1 + λb̂2
. (53)

As b1+λb̂2 > 0, the first moment of û is in the long run given by m̂1 (∞) ≡ limτ→∞ m̂1 (τ) =
b0

b1+λb̂2
, as presented in (43).

For higher moments, the basic differential equation determining the evolution of ûn is
from (41)

dûn = nûn−1 {b0 − b1û} dτ −
n
1− (1− b̂2)

n
o
ûndq

= n
©
b0û

n−1 − b1û
n
ª
dτ −

n
1− (1− b̂2)

n
o
ûndq. (54)

Using the integral version, applying expectations and the martingale result (47), we obtain

dEtû
n =

n
nb0Etû

n−1 −
³
nb1 + λ

h
1− (1− b̂2)

n
i´

Etû
n
o
dt. Using again (42),

˙̂mn = nb0m̂n−1 −
³
nb1 + λ

h
1− (1− b̂2)

n
i´

m̂n. (55)
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It can now be shown that all moments are constant for τ → ∞. This follows from (53)
for the first moment and from appendix C.3.1 for the 2nd moment. This proof simply inserts
(53) into (54) and solves the differential equation. Proofs for higher moments would follow
an identical approach. Hence, for the long run where ˙̂mn = 0, we have from (55)

m̂n (∞) =
nb0

nb1 + λ
h
1− (1− b̂2)n

im̂n−1 (∞) . (56)

By inserting n = 2, this directly implies (44), with n = 1, it becomes (43), remembering that
m̂0 = 1 by definition.
A well-known theorem states that a distribution with limited range is completely char-

acterized by its integer moments (e.g. Casella and Berger, 1990, th. 2.3.3.). As our
long-run moments are constant and the range of û is finite, the distribution of û exists,
is unique and stationery. Looking at the structure of moments in (56) further shows that
the distribution of û is some generalized β-distribution: If b̂2 = 1, (56) can be written as
mc

n(∞) = nb0
nb1+λ

mc
n−1(∞). Starting from m̂0 = 1, repeated inserting yields

mc
n(∞) =

bn0n!Qn
i=1(ib1 + λ)

=

µ
b0
b1

¶n
Γ(n+ 1)Qn
i=1(i+ λ/b1)

=

µ
b0
b1

¶n
Γ(n+ 1)Γ(1 + λ/b1)

Γ(n+ 1 + λ/b1)
,

where Γ (·) is the gamma-function. The last expression represents, apart from the scaling
factor (b0/b1)n, the nth moment of a β-distribution with parameters 1 and λ/b1. Since the
β-distribution is determined by its moments, we conclude that, for b̂2 = 1, û has the as-

ymptotic representation û =
³
b0
b1

´n
X, where X ∼ Beta(1, λ/b1). With b̂2 6= 1, we obtain

a generalized β-distribution which, to the best of our knowledge, has not been encountered
before. Analyzing its properties in detail will have to be done in future research.20
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