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1. Introduction and data

Air pollution has long been known to adversely affect
public health, in both the developed and developing world.

Recent reports by the UK government and the World
Health Organisation estimate that:

particulate matter reduces life expectancy by 6 months,
with a health cost of £19 billion per year.
there were estimated to be over 23,000 premature deaths
from air pollution in 2010.

Air pollution will remain a key health problem for some
time, as nitrogen dioxide emissions are predicted to exceed
European Union limits until after 2030 in the urban areas
of Greater London, West Midlands and West Yorkshire.
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Chronic studies

There are two main study designs when investigating the effects
of long-term exposure to air pollution.

Cohort studies e.g. The Six Cities study by Dockery et al
(1993) and the Escape study by Beelen et al
(2014), which relate average air pollution
concentrations to the health status of a large
pre-defined cohort of people.

Ecological studies e.g. Elliot et al (2007) and Lee et al (2009),
which relate average air pollution concentrations
in contiguous small areas (such as electoral
wards), against yearly numbers of health events
from the population living in that area.
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Ecological study design

In ecological studies the data relate to populations living in
a set of k = 1, . . . ,K non-overlapping areal units for
t = 1, . . . ,T time periods, rather than to individuals.

In this study we have K = 323 local and unitary authorities
(LUA) that make up mainland England, and data are
collected for T = 60 months between 2007 and 2011.

For LUA k and month t the observed number of hospital
admissions due to respiratory disease is denoted by Ykt,
while the expected number of admissions based on
population demographics is denoted by Ekt.

The standardised mortibidy ratio is given by
SMRkt = Ykt/Ekt, an exploratory measure of disease risk.
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Spatial pattern in SMR
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Temporal pattern in SMR
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Confounding factors

The SMR exhibit a strong seasonal pattern, and this was
accounted for by seasonally adjusting the expected disease
counts Ekt by a monthly correction factor.

The main confounding factor is socio-economic
deprivation, and this is accounted for using two proxy
variables, the percentage of people in each LUA and
month who are in receipt of Job Seekers Allowance (JSA),
and the average property price in each LUA and month.
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Pollution data

Recall from the previous talk that we consider concentrations of
the following pollutants:

Nitrogen dioxide (NO2).
Particulate matter measured as PM2.5 and PM10.
Ozone (O3).

For simplicity we only consider the first 3 here. Data on these
pollutants come from the AURN monitoring network and the
AQUM modelled concentrations provided by the Met Office.
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Air pollution model

Recall from the previous talk
that pollution concentrations
were predicted on a 12km by
12km regular grid across
England using a Bayesian
hierarchical model, resulting
in LUA k and month t having a
matrix of l = 1, . . . , 5000
pollution predictions
{z(l)(vkj, t)} at prediction
locations (vk1, . . . , vknk).
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Summarising pollution concentrations

For LUA k and month t we have 5000× nk predictions from the
pollution model, and the simplest approach is to average them,
that is

ẑkt =
1

Lnk

nk∑
j=1

L∑
l=1

z(l)(vkj, t)

This ignores two different sources of uncertainty in the
pollution concentrations:

Spatial variation in pollution within each LUA.
Posterior uncertainty in the pollution predictions at each
prediction location.

Introduction and data Methodology and results Conclusions 11/23



2. Methodology and results

A typical Bayesian hierarchical model for the disease data is

Ykt|Ekt,Rkt ∼ Poisson(EktRkt)

ln(Rkt) = β0 + ẑktβ + x>ktβx + φkt,

where

Ykt health counts Ekt expected cases
Rkt health risk φkt random effect
x>ktβx other covariate effects β0 intercept
ẑkt air pollution β pollution effect
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Statistical considerations

1. Unmeasured confounding: Air pollution and the other
covariates do not account for all variation. Adding a set of
spatio-temporal random effects, φkt can offer a solution.

How should φkt be structured in space and time?

2. Spatial Misalignment: The air pollution model estimates
the true exposure surface Z(vkj, t) at grid locations, {vkj} not as
LUA regional averages.

How can we reconcile these quantities?

3. Uncertainty: The posterior distribution of Z(vkj, t) is
available via MCMC samples, and therefore uncertainty in air
pollution is quantified.

How should this source of uncertainty be incorporated into
the health model?
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Issue 1 - unmeasured confounding

Rushworth et al. (2014) propose the ‘global’ autoregressive
conditional autoregressive (CAR) model for the random effects
φt = (φ1t, . . . , φKt) at time t:

φ1 ∼ N
(
0, σ2Q(W, ρ)−1)

φt|φt−1 ∼ N
(
αφt−1, σ

2Q(W, ρ)−1) for t ≥ 2

where

Q(W, ρ) = ρ [diag(W1)−W] + (1− ρ)I
W = spatial (binary) neighbours matrix.
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W is a K × K matrix that encodes neighbourhood relationships
in the study region such that

wkj = 1 ⇐⇒ units k and j share a common border
wkj = 0 otherwise, or if k = j

If T = 1 then the conditional distribution for φk1 is

φk1|φ−k1 ∼ N

(
ρ
∑n

j=1 wkjφj1

1− ρ+ ρ
∑n

j=1 wkj
,

τ 2

1− ρ+ ρ
∑n

j=1 wkj

)
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A more flexible model for φkt

Q(W, ρ) restricts the range of surfaces that can be fitted, as ρ
controls the level of spatial autocorrelation globally across the
entire region.

Therefore we treat the non-zero elements of W as random
variables w+

kj ∈ [0, 1]. We control model complexity using a
normal shrinkage prior on the logit transformed w+

kj :

ln

(
w+

kj

1− w+
kj

)
∼ N

(
µ, τ 2)

If µ is positive then w+
kj are a-priori close to one reflecting prior

preference for spatial smoothness.
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English respiratory data results

Table: Posterior median relative risks and 95% credible intervals for a
1-standard deviation increase in each pollutant, which is 16.07, 4.90,
and 4.11 µgm−3 respectively.

Pollutant No random effects Non-adaptive φkt Adaptive φkt

NO2 1.151 (1.144, 1.158) 1.057 (1.045, 1.069) 1.048 (1.036, 1.060)
PM10 1.013 (1.007, 1.020) 1.007 (0.998, 1.015) 1.006 (0.995, 1.015)
PM2.5 1.013 (1.007, 1.019) 1.006 (0.997, 1.014) 1.006 (0.997, 1.016)

Simpler models have a tendency to have larger estimated air-pollution
effects.

Introduction and data Methodology and results Conclusions 17/23



φkt estimates and adjacency modelRespiratory:  P[ wij < 0.5 ] > 0.99
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Issue 2 - Spatial misalignment

The spatial misalignment between the pollution and
disease data means there is within LUA variation in
pollution which can result in ecological bias.

Wakefield and Shaddick (2006) among others derive an
appropriate aggregate model that overcomes this
ecological bias.

Under simplifying assumptions the bias term can be
derived to be of the order of β2, thus as β is small here the
effect of this bias is likely to be negligible.

This negligible effect was confirmed empirically by Lee
and Sarran (2015) in this air pollution and health context,
and the naive ecological model and aggregate model
similar to Wakefield and Shaddick (2006) give identical
results.
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Issue 3 - Posterior uncertainty

The pollution model yields predictive distributions, based on
5,000 MCMC samples, for average air pollution in each LUA
and month.

This uncertainty should be fed into the health model so that the
resulting health estimates account for this variation.

3 possible strategies:
(1) Treat posterior mean pollution concentrations as true

values (no uncertainty).
(2) Directly feed samples from the posterior air pollution

density through the health model.
(3) Treat the posterior pollution densities as prior distributions

in the health model (e.g. using a Gaussian approximation).
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Results – uncertainty

Table: Posterior median relative risks and 95% credible intervals for a
1-standard deviation increase in each pollutant, which is 16.07, 4.90,
and 4.11 µgm−3 respectively.

Pollutant No uncertainty Posterior Prior
NO2 1.048 (1.036, 1.060) 1.001 (0.999, 1.003) 1.035 (1.030, 1.041)

PM10 1.006 (0.995, 1.015) 1.000 (0.998, 1.003) 1.025 (0.999, 1.043)
PM2.5 1.006 (0.997, 1.016) 1.001 (0.997, 1.004) 1.008 (0.995, 1.062)
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3. Conclusions

Choices for handling spatio-temporal autocorrelation have
important consequences for the estimated effects of air
pollution.

It is important to treat air pollution exposure as uncertain,
as it is rarely realistic to assume exposure is observed (or
predicted) without error.

From our study it appears that NO2 poses the greatest
ongoing health risks, and a 3.5% increased risk
corresponds to around 21,500 more admissions per year.

Given that large parts of England are expected to exceed
EU emissions targets for the next 15 years, NO2 continues
to be a major health problem.
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Future work

Air pollution effect estimates are small and can be volatile, so
we will conduct a large sensitivity analysis of our study results
looking at how sensitive the estimated pollution effects are to:

the pollution model described in the previous talk.

the use of monthly mean concentrations rather than
monthly extremes or exceedences of a threshold level.

the choice of variables used to control for the confounding
effects of socio-economic deprivation.

The choice of random effects model to account for
spatio-temporal autocorrelation.
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