

Kit list

You will need:

- Rocket template
- Alka Seltzer or Effervescent Vitamin tablet
- Water
- Scissors
- Tape
- Film canister (use the type where the lid fits inside the canister)
- Paint/crayons (Optional)

How to:

- 1. Cut out the rocket body template (Optional colour the pieces)
- 2. Remove the lid from the film canister and roll the rectangle of paper round the main part to form the rocket body with the canister at the base
- 3. Securely attach the paper to the canister with tape
- 4. Cut out the triangle from the nosecone template and form the remaining piece into a cone securing in shape with tape

Glasgow Science Festival, Room 229 Kelvin Building, University of Glasgow, University Ave, Glasgow, G12 8QQ, 0141 330 5370, www.glasgowsciencefestival.org.uk

- 5. Attach the nosecone to the rocket body, at the opposite end to the film canister, using tape
- 6. Cut out the rocket fins and fold along the dotted lines
- 7. Using tape stick the fins evenly around the bottom of the rocket
- 8. You are now ready for take off!

How to launch...

1. Fill the film canister about two thirds full of water

NB Ensure that when the tablet is added everyone is standing well back and that no one is directly in line with the ends of the rocket

- 2. Add **half** an tablet to the water and quickly attach the canister lid
- 3. Place the rocket on the ground and **stand well back.** Your rocket should launch in a few seconds

You can experiment with different shaped fins etc. to see what effect this has on the flight.

Roll around the film canister to form the rocket body

.

Fizzy Rockets: the Science

To make a rocket fly upwards into space, we need a force in the opposite direction that is strong enough to propel it upwards.

For the fizzy rocket experiment we are using a **vitamin tablet** as rocket fuel. When the tablet is mixed with water it fizzes and releases bubbles of **carbon dioxide** (CO₂).

The bubbles build up enough pressure to push down onto the film canister lid and force it off. It is this **downwards** action that pushes the rocket **upwards** in the opposite direction.

Glasgow Science Festival Risk Assessment Form

Activity Title	Fizzy Rockets		
Potential Hazard:	Who's at risk?	Risk: High, Medium, Low	Measures to prevent hazard
Flying rocket hitting face	Everybody	Low	Participants should stand well back after tablet has been aded
Flying rocket hitting light fitting	Everybody	Low	Conduct workshop outside or in room with high ceiling, away from light fittings