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Abstract

We document asymmetric and time-varying features of dependence between the credit

risks of global systemically important banks (G-SIBs) in the UK banking industry using a

CDS dataset. We model the dependence of CDS spreads using a dynamic asymmetric cop-

ula. Comparing our model with traditional copula models, we find that they usually under-

estimate the probability of joint (or conditional) default in the UK G-SIBs. Furthermore,

we show that dynamics and asymmetries between CDS spreads are closely associated with

the probabilities of joint (or conditional) default through the extensive regression analysis.

Especially, our regression analysis provides a policy implication that copula correlation or

tail dependence coefficients are able to be leading indicators for the systemic credit event.
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1 Introduction

The global financial crisis and EU sovereign debt crisis have caused great concern about the

credit risk of large financial institutions and sovereign entities. The central banks and financial

authorities have paid much more attention to the supervision of credit risk in large financial

institutions since then. Understanding the joint credit risk of financial institutions is of particular

important because their failures and losses can impose serious externalities on the rest of economy

(Acharya et al., 2010). Acharya et al. (2014) also document that the bailouts of large banks in

Eurozone triggered a significant increase of sovereign credit risk from 2007 to 2011.

Recent empirical literature shows that estimating the probability of joint default plays an

important role in banking supervision (see Pianeti et al., 2012; Erlenmaier and Gersbach, 2014).

This is because it can be viewed as the efficient measure of systemic risk, as the systemic default

arises from the simultaneous defaults of multiple large banks. Some giant banks are “too big to

fail” and the default of one bank can probably trigger a series of defaults in other banks and

financial companies; for instance, the collapse of Lehman Brothers in September 2008 triggered

turmoil in the financial markets and exacerbated the global financial crisis of 2007-2009.

From the perspective of practitioners, modeling the joint default probability of banks is also

of great interest for credit risk management. For instance, a protection contract (e.g. Credit

Default Swap (CDS)) written by one bank (CDS seller) to insure against the default of another

bank (debtor) is exposed to the risk that both banks default. In other words, CDS buyer also

takes the counterparty risk that CDS seller will fail to fulfill their obligations because of the

OTC nature of the CDS market.

Therefore, it is important to study how the default risk of banks are contemporaneously

correlated each other and the dynamic evolution of their correlation over time. This study is

able to help the risk mangers of banks get the deeper understanding of default risk structure in

the banking industry and properly model the credit risk considering various market scenarios

such as joint default or conditional default. For this reason, we study the correlated default of

global systemically important banks (G-SIBs) in the UK banking industry.

First, we model the dependence structure of CDS spreads in the UK G-SIBs and estimate the
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probability of joint default. In addition, the conditional default under “what if” circumstances

is also an interesting scenario for credit risk management. Inspired by Lucas et al. (2014), we

further investigate the default probability of one bank given a credit event occurring in another

bank. From the perspective of financial institutions and authorities, it is obviously useful to

quantify the interaction and contagions of corporate credit risks for a bad market scenario.

Second, we propose a dynamic asymmetric copula model combining the generalized hyper-

bolic skewed t (hereafter GHST) copula with the generalized autoregressive score (hereafter

GAS) model. Our proposed model is able to capture all the empirical features of univariate and

multivariate financial time series, such as heavy-tailedness, skewness, time-varying volatility and

dynamic asymmetric dependence. This framework is closely related to two strands of literature

on the copula modeling. One strand focuses on modeling the multivariate asymmetry using the

GHST copula, see for example Demarta and McNeil (2005), Smith et al (2012), Christoffersen

et al. (2012) and Christoffersen and Langlois (2013), among others. Another strand uses the

GAS model, pioneered by Creal et al. (2013), to capture the dynamics of dependence. It has

several attractive econometric properties and therefore has become increasingly popular in em-

pirical finance studies in recent years, see for instance, Creal et al. (2014a), Janus et al (2014),

Lucas et al. (2014) and Salvatierra and Patton (2015). There are two clear advantages of this

dynamic asymmetric copula framework. First, it allows for non-negligible tail dependence and

its asymmetry. Second, the time-varying nature of correlated credit risk can be captured well

by the GAS process.

Third, the ongoing debate on the source of banking credit risk also motivates us to investigate

if the dependence structure between the credit risks has explanatory and predictive power to

the probability of joint or conditional default in the UK G-SIBs. Although the determinants of

credit spreads have been extensively studied by both theoretical and empirical finance literature

(see Merton, 1974; Collin-Dufresne et al., 2001; Campbell and Taksler, 2003; Ericsson et al.,

2009; Christoffersen et al., 2013, among many others), research on the determinants of joint

and conditional default risk is very limited. This is important because understanding the deter-

minants of systematic credit risks of banks can not only help us explain the time-variation of

default risk, but also improve the predictive accuracy of joint or conditional default probability
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in the future.

We make five empirical contributions to the literature: First, differently from existing lit-

erature on the joint credit risk of UK banks, such as Li and Zinna (2014), we document two

important features of CDS: asymmetric and dynamic dependence between the CDS spreads.

Using a threshold correlation and a model free test proposed by Hong et al. (2007), we find

that there is no significant linear asymmetries. However, we find significant asymmetries by

performing a test based on the tail dependence in Patton (2012). In addition, we also apply

several widely used structure break tests and identify the presence of time-varying dependence.

These documented features provide us with strong motivation to consider an econometric model

which is able to accommodate them.

Second, we apply the GAS-based GHST copula to capture the time-varying asymmetric

dependence of credit risks in the UK G-SIBs. Differently from the copula literature on the CDS

market, such as Christoffersen et al. (2013) and Lucas et al. (2014), we consider not only a full

parametric method, but also a semiparametric one that relies on fewer amounts of distributional

assumptions, see Chen and Fan (2006a) and Chen and Fan (2006b). Surprisingly, we find that

the semiparametric copula slightly underperforms compared with a full parametric copula. We

attribute this result to the better fitness provided by the univariate skewed t distribution in

the full parametric model. In general, we find the dynamic asymmetric copula outperforms

the dynamic model based on the Gaussian or Student’s t copula, as our framework is able to

capture the multivariate asymmetry and dependence dynamics simultaneously. In addition,

from the copula implied default correlation, we find that correlated credit risk between banks

dramatically increases during times of stress and gradually decreases after 2013.

Third, we apply a copula-based simulation algorithm to estimating the joint default probabil-

ity of UK G-SIBs. Our empirical results show that the probability of joint default estimated by

the dynamic asymmetric copula is higher than that by the dynamic Gaussian or Student’s t cop-

ula in most of the time during our sample period. This indicates that the Gaussian or Student’s

t copula-based models may underestimate a potential risk as neither of them can accommo-

date the multivariate asymmetries between the credit risks of banks. Using the marginal and

joint probability, we also investigate the probability of conditional default under a hypothetical
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adverse market scenario.

Fourth, we find that the joint default probability of UK G-SIBs implied by the copula model

has dramatic variation during 2007-2015. It remarkably increases during the global financial

crisis, Eurozone debt crisis and after the downgrade of US sovereign debt. In addition, our

result also implies that the monetary policy implemented by the Bank of England and European

Central Bank also significantly affect the joint default probability.

Fifth, we perform an insightful regression analysis to investigate two questions: (1) Whether

the copula correlation and tail dependence of CDS spreads implied by dynamic copulas are

related to their probabilities of joint or conditional default; (2) Whether the copula correlation

and tail dependence can provide useful information to predict the future probabilities of joint or

conditional default. We find the copula correlation contains useful information which not only

measures the current probabilities of joint and conditional default but also predicts the future

probabilities in the banking industry. Our results also indicate that the modeling of asymmetric

tail dependence between credit risks can provide useful information of measuring and forecasting

the probabilities of joint and conditional default.

The remainder of this paper is organized as follows. Section 2 details the way how we

compute the joint default probability of UK G-SIBs. Section 3 presents the empirical study on

the correlated credit risk of UK G-SIBs using weekly corporate CDS spreads. Section 4 further

studies how the dependence structure (i.e. copula correlation or upper/lower tail dependence)

works for measuring and predicting the probability of joint or conditional default using insightful

regression analysis. Section 5 concludes.

2 Modeling of Joint Default Probability

In this section, we detail the way how we compute the joint default probability of UK G-SIBs. It

consists of four parts. First, we obtain a reliable default probability for individual bank. Given

the probability of default, we find the corresponding value of CDS spread return from its marginal

probability distribution.1 Hence, it is a threshold to determine the default event of individual
1We measure the CDS spread return by the log-difference of CDS spreads. It is not an asset return but the

change of credit risk in the bank. Without loss of generality, the CDS spread means the log-difference of CDS
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bank. Second, we model the marginal probability distribution of univariate return series for

each bank considering its distributional characteristics. Third, given the marginal probability

distributions, we model their dependence structure which is the key input for constructing the

joint probability distribution of multivariate return series across banks. Fourth, we apply Monte

Carlo simulation to computing the probability of joint default.

It is convenient to define the probabilities of joint and conditional default mathematically

before introducing each part in detail. Given the marginal default probability, pi,t, of bank i at

time t, the probability of joint default, pi,j,t, for bank i and j at time t is given by

pi,j,t = P
{
zi,t > F−1

i,t (1− pi,t) , zj,t > F−1
j,t (1− pj,t)

}
(1)

where zi,t denotes the filtered CDS spreads of bank i at time t and F−1
i,t (·) denotes its inverse

cumulative distribution function. The probability of bank i’s default conditional on the default

of bank j is therefore defined by

pi|j,t = P
{
zi,t > F−1

i,t (1− pi,t) , zj,t > F−1
j,t (1− pj,t) | zj,t > F−1

j,t (1− pj,t)
}

= pi,j,t

pj,t

(2)

2.1 Calibrating Marginal Default Probability

It is essential to obtain the reliable default probability and capture the default dynamics of a

single reference entity. A number of statistical and econometric models have been proposed to

obtain the term structure of default rates and they can be classified into three methods: (i)

Historical default rate based on the internal rating systems from rating agencies (e.g. Moody’s

publishes historical default information regularly); (ii) Structural credit pricing models based on

the option theoretical approach of Merton (1974); (iii) Reduced-form models. In our study, we

consider using one reduced-form model based on the bootstrapping method proposed by Hull

and White (2000a) and O’Kane and Turnbull (2003) to calculate the risk neutral probability of

default for each bank using CDS market quotes.2

spread unless there is a specific notice on it in this paper.
2CDS is essentially a protection contract to insure against the default of a reference entity. The CDS spread

can be viewed as a more direct measure of credit risk compared to bond or loan spreads. This is because the
bond or loan spread is also driven by other factors, such as interest rate movements and firm-specific equity
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The reasons we select this approach is as follows: Firstly, the rating information provided by

agencies is not able to change as fast as the market movement. Whereas, the market information

used in the approach of Hull and White (2000a) can reflect well the market agreed anticipation

of evolution for the future credit quality; Secondly, although the credit rating agencies such as

Moody’s regularly publish short-term and long-term credit ratings for firms, this rating infor-

mation normally lacks granularity. Different from the rating information provided by agencies,

CDS market quotes normally have different maturities (6 month, 1-year, 2-year, 3-year, 4-year.

5-year, 7-year and 10-year) and thus could imply the full term structure of default probability;

Thirdly, the bootstrapping procedure is a standard method for marking CDS positions to market

and has been widely used by the overwhelming majority of credit derivative trading desks in

financial practice, see Li (2000) and O’Kane and Turnbull (2003). Recently, this procedure has

also been applied in empirical financial studies, see Huang et al (2009), Creal et al. (2014b) and

Lucas et al. (2014), etc.

The reduced-form model defines the default probability function of bank i at time t by

Fi (t) = P (τ ≤ t) = 1− P (τ > t) = 1−Qi (t) , t ≥ 0 (3)

where τ denotes the time to default (survival time) and Qi (t) is a survival function, defined in

terms of a piecewise hazard rate by λ (t)3,

Qi (t) = exp
[
−
∫ tn

t
λ(s)ds

]
. (4)

In practice, we use the approximation of survival function (4) for the reference entity to time

volatility, see Campbell and Taksler (2003).
3More discussion on the hazard rate function can be found in Appendix A.1.
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T conditional on surviving to time t, defined by

Qi (t, T ) =



exp (−λ0,1τ) if 0 < τ < 1

exp (−λ0,1,−λ1,3 (τ − 1)) if 1 < τ < 3

exp (−λ0,1,−2λ1,3 − λ3,5 (τ − 3)) if 3 < τ < 5

exp (−λ0,1,−2λ1,3 − 2λ3,5 − λ5,7 (τ − 5)) if 5 < τ < 7

exp (−λ0,1,−2λ1,3 − 2λ3,5 − 2λ5,7 − λ7,10 (τ − 7)) if τ > 7

(5)

where τ = T − t is the time to default and λt0,tn denotes the hazard rate from time t0 to

tn. Given the market quotes of CDS spreads, S1, ..., SN , at dates t1, ..., tN , we can calibrate

the hazard rate and calculate the default probability by inverting the CDS pricing formula in

Equation (A.10)4. We construct a survival probability curve for a set of maturity dates using

the bootstrap algorithm5 proposed by Hull and White (2000a), O’Kane and Turnbull (2003) and

O’Kane (2008). A detailed bootstrapping algorithm is provided in Appendix A.4.

2.2 Modeling Returns of CDS Spread

Next, we need to model the returns of CDS spread. We model not only univariate distribution

for each bank but also joint one of several banks. Based on both probability distributions, we

compute the probabilities of joint and conditional default given the thresholds calibrated in

section 2.1.

First, we define the return of CDS spread as the log-difference of weekly CDS spread and

denote it by ri,t. Hereafter we use “CDS spread” replacing the log-difference of CDS spread or

return of CDS spread without loss of generality. We need the filtered CDS spreads for each bank

to calculate default probabilities using Equation (1) and (2). To this end we model individual
4More details of premium leg, protection leg and breakeven quotes of CDS can be found in Appendix A.2 and

A.3.
5 Here, “bootstrap” is different from one used in statistics. It is an iterative process to construct a default

probability curve using CDS market quotes. This method has been widely used in financial practice because of
its computational simplicity and stability.
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CDS spreads by ARMA(1,1)-GJR-GARCH(1,1,1) and obtain the filtered ones,

zi,t = yi,t − µi,t

σi,t

, (6)

where a conditional mean (µi,t) is modeled by ARMA(1,1)6 and a conditional volatility (σi,t) by

GJR-GARCH(1,1,1). The ARMA-GJR-GARCH family is one of the most popular models to

capture the dynamics of conditional mean and the asymmetric volatility clustering in finance

(see Glosten et al., 1993). For the parametric modeling, we assume that zi,t follows the univariate

skewed t distribution, Fskew−t, of Hansen (1994) to accommodate its skewed and heavy-tailed

features. For the semiparametric modeling, we use an empirical distribution function, F̂i. See

Appendix of Cerrato et al. (2015) for the details of parametric and semiparametric modeling.

Second, given the modelling of marginal probability distribution, we model the joint prob-

ability distribution. An empirically reliable model of correlated defaults between the reference

entities plays a central role in credit risk modeling and pricing. Various approaches have been

proposed to model correlated defaults and these models can be roughly classified into four cat-

egories: (i) CreditMetrics; (ii) Intensity-based models; (iii) Barrier-based firm’s value models;

(iv) Copula-based correlation models. We consider using the copula-based model in our study.

A copula function has several attractive mathematical properties in the modeling of default.

First, it allows more flexibility and heterogeneity in the marginal distribution modeling. It is

straightforward and convenient to link random variables with different marginal distributions

with one copula function. Second, there are various versions of copula function and that allows

us to fit different default dependence between the reference entities.7

There are two notable features of default correlation. Substantial evidences have been found

to show that the default correlation is non-Gaussian, see for instance, Christoffersen et al. (2013).
6 We first consider all the possible models nested within the ARMA(2,2) and choose the optimal order

according to the Bayesian Information Criterion (BIC). It turns out that for most banks, ARMA(1,1) gains the
smallest BIC.

7Before the 2007-2008 global financial crisis, the Gaussian copula was the most popular copula model in
derivatives pricing, especially the valuation of collateralized debt obligations (CDOs), because of its computational
simplicity. However, many financial media commentators believed that the abuse of aussian copula was one of
the major reasons contributing to this crisis, see for instance, “ Recipe for Disaster: The Formula That Killed
Wall Street” (Wired Magazine, 2009), “Wall Street Wizards Forgot a Few Variables” (New York Times, 2009),
and “The Formula That Felled Wall Street” (The Financial Times, 2009).
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Another important feature is the time variation of default correlation. It changes over time as

the credit quality of firms is dynamic. It also varies with systematic risk factors, such as the

state of economy in the business cycle and the financial market conditions (Crouhy et al., 2000).

The choice of copula is based on the empirical features of UK banks in our study. We test

for the asymmetry of linear correlation (Hong et al., 2007) and that of tail dependence (Patton,

2012). We also test for the time-varying nature of dependence structure between banks using

structural break tests in Patton (2012). There are the striking evidences of structure breaks

around credit events (e.g. the CDS big bang, the downgrading for Greek’s credit rating, etc.)

and the upper tail dependence is usually stronger than the lower one.8 We therefore select a

dynamic asymmetric copula. Following the study of Christoffersen et al. (2012) , Christoffersen

and Langlois (2013) and Lucas et al. (2014), we employ an asymmetric copula based on the

generalized hyperbolic skewed t (GHST) distribution discussed in Demarta and McNeil (2005).9

Since the joint default is defined in the upper tails of which dependence is stronger than the

lower one, the GHST copula is able to more accurately measure the probability of joint default

than a symmetric copula. Furthermore, the time varying nature of dependence structure is

implied by the generalized autoregressive score (GAS) model of Creal et al. (2013) and Lucas

et al. (2014). Cerrato et al. (2015) demonstrate the importance of modeling the dynamic and

asymmetric dependence of equity portfolio using the GAS-GHST copula in the risk management

application.

2.3 Computing Algorithm for Joint Default Probability

As the final step of our proposed approach, we introduce a practical algorithm how we compute

the probability of joint default by utilizing a Monte Carlo simulation method. The procedure is

as follows: Firstly, we obtain the marginal probabilities of default for bank i, pi,t, and bank j,

pj,t, from the bootstrap based calibration procedure. We also estimate a copula correlation at

time t by

δ̄i,j,t =

(
δP

i,j,t + δS
i,j,t

)
2 , (7)

8We discuss about empirical results more specifically in section 3.3 and 3.4.
9Cerrato et al. (2015) provide the mathematical details of the GHST copula.
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where δP
i,j,t and δS

i,j,t denote copula correlations implied by the GAS-based parametric and semi-

parametric copula model, respectively. Secondly, given the copula correlation and other param-

eters10, we simulate n random vectors zs
t =

(
zs

i,t, z
s
j,t

)
from the GAS-based GHST copula at each

time t. Finally, the probability of joint default for banks i and j at time t is given by

pi,j,t =
∑n

i=1 1
{
zs

i,t > F−1
i,t (1− pi,t) , zs

j,t > F−1
j,t (1− pj,t)

}
n

(8)

where F−1
t (·) denotes the inverse of marginal distribution function modeled by ARMA(1,1)-

GJR-GARCH(1,1,1) with skewed t distribution or empirical distribution.

3 Empirical Analysis of Credit Risk

In this section, we study the correlated credit risk of UK G-SIBs using weekly corporate CDS

spreads. Firstly, we investigate the distributional stylized facts of CDS spreads. Based on the

descriptive analysis, we search for the best univariate model for an individual CDS spread.

On the other hand, we calibrate a marginal default probability implied by the CDS pricing

formula for the purpose of computing the probabilities of joint and conditional default. Next,

we investigate the asymmetric and dynamic dependence of credit risk using formal statistical

tests. This investigation is able to provide useful information on the choice of multivariate model

for computing the probability of joint default. Finally, we estimate the probabilities of joint and

conditional default of G-SIBs by GAS based GHST copula, T copula and Gasussian copula.

We demonstrate the importance of modeling dynamic and asymmetric dependence of credit risk

through the comparison of three copula models.

3.1 Data and Descriptive Analysis

We use a dataset of weekly corporate CDS spreads for five UK G-SIBs with different maturities

(6-month, 1-year, 2-year, 3-year, 4-year and 5-year). The UK G-SIBs include the Barclays,

HSBC Holdings (hereafter HSBC), Lloyds Banking Group (hereafter Lloyds), Royal Bank of
10We only allow the copula correlation to vary over time whilst fix the other parameters to be constant over

time. For the GHST copula, the degree of freedom and skewness parameter are constant.
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Scotland Group (hereafter RBS) and Standard Chartered (hereafter Standard).11 All the CDS

contracts are denominated in Euro. The London Interbank Offered Rate (henceforth Libor) data

with different maturities are also collected to calibrate the marginal default probability curve.

Our data cover the period from September 7, 2007 to April 17, 201512. We use weekly data to

avoid non-synchronicity and other problems with daily data. All the CDS market quotations

and financial variables data are collected from Bloomberg. For the dependence analysis, we

mainly focus on 5-year CDS contracts on all banks as these are the most liquid and take up the

largest percentage of the entire CDS market.

Table 1 reports descriptive statistics and time series test results for the log-differences of

weekly 5-year CDS spreads across five UK G-SIBs from September 7, 2007 to April 17, 2015.

The basic statistics in Panel A describe the main features of CDS spread, such as univariate

asymmetry, heavy-tailness and leptokurtosis. The non-zero skewness and large value of kurto-

sis clearly indicate the non-Gaussian features of CDS spreads. In particular, we find that the

Standard Chartered obtains the largest skewness (0.793) as well as the largest kurtosis (10.041).

Panel B reports that the results of Jarque-Bera test for normality, Ljung-Box Q-test for au-

tocorrelation and Engle’s Lagrange Multiplier test for the ARCH effect. Basic statistics and

p-values of JB test show the solid evidence against the assumption of normality. Also the results

for Ljung-Box Q-test and Engle’s Lagrange Multiplier test indicate the necessity for modeling

of conditional mean and volatility before specifying the dependence structure between the CDS

spreads of UK G-SIBs.

[ INSERT TABLE 1 ABOUT HERE ]

Table 2 reports the Pearson’s linear correlation coefficients and Spearman’s rank ones between

UK G-SIBs. The statistics indicate that the credit risk of banks are highly correlated with each

other. It is worth noting that the correlations of Standard Chartered with other banks are clearly

lower than the correlations between other four banks. This is possibly because the Standard

Chartered does not have retail banking business in the UK, and about 90% of its profit comes
11The first version of G-SIBs published by the Financial Stability Board in 2011 only includes Barclays, HSBC,

RBS and Lloyds. Standard Chartered has been added in this list since 2013. All these banks are also listed as
“Domestic Systemically Important Banks (D-SIBs)”, see Bank of England (2013).

12The CDS data of Standard Chartered is only available since June 27, 2008.
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from Asian, African and the Middle Eastern markets according to its annual report in 2013.

Althrough HSBC and Barclays are also multinational banking and financial services companies,

the UK market is still targeted as their “home market”.

[ INSERT TABLE 2 ABOUT HERE ]

Figure 2 plots the level of average CDS spread and the conditional volatility of average CDS

spread for five UK G-SIBs. It indicates some important patterns regarding the CDS spread in

our sample period. Panel A illustrates the trend of average CDS spread across five UK G-SIBs.

The arrows in each figure indicate several major events in the CDS market from 2007 to 2015.

We can see that the occurrence of major credit events is always accompanied with CDS spread’s

skyrocketing. For instance, after the S&P downgrades US sovereign debt, the average CDS

spread goes up to 285 in November 2011. Panel B plots the time series of conditional volatility

estimated by the GJR-GARCH (1,1,1). First, this shows that the CDS spread is extraordinarily

volatile during the financial crisis in 2008-2009. Second, it also indicates that the turbulence of

CDS spreads of UK banks is closely related to the credit events in the global financial market.

Another worth noting fact is that the conditional volatility stabilized since the end of global and

EU financial crisis. It is significantly smaller than the volatility during the crisis even when the

average CDS spread increased sharply after the S&P downgraded US government debt in August

2011. This may indicate that the CDS spread largely fluctuates during the global financial crisis

due to high market uncertainty.

[ INSERT FIGURE 2 ABOUT HERE ]

Table 3 presents the parameter estimation and the results of goodness-of-fit test for univariate

models: ARMA for conditional mean, GJR-GARCH for conditional volatility and skewed t

distribution for standardized residuals. First, we model the dynamics of conditional mean using

the ARMA model up to order (2,2) and use Bayesian Information Criterion (BIC) to select

the optimal order. It turns out that the ARMA(1,1) is the best candidate for all the cases

except Standard Chartered. Second, the conditional volatility is implied by the GARCH family.

We experiment with ARCH, GARCH and GJR-GARCH models up to order (2,2) and choose
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the best candidate according to BIC. It indicates that GJR-GARCH(1,1,1) provides the best

performance. All the leverage parameters of the GJR-GARCH(1,1,1) model are significantly

negative indicating asymmetric volatility clustering, i.e., large positive changes of CDS spreads

are more likely to be clustered than negative changes. This is consistent with the fact that the

CDS spreads increase sharply and continuously during the recent financial crisis of 2007-2009.

The bottom of Table 3 reports p-values from the Kolmogorov-Smirnov and Cramer-von Mises

goodness-of-fit tests for the modelling of conditional marginal distributions. The p-values are

obtained using the bootstrap approach in Patton (2012). All the p-values are clearly greater

than 0.05, so we fail to reject the null hypothesis that the filtered CDS spreads are well-specified

by the skewed t distribution of Hansen (1994).

[ INSERT TABLE 3 ABOUT HERE ]

3.2 Calibrating Marginal Default Probability

In this section, we calibrate the reduced-from model using the market quotes of CDS with

different maturities (6-month, 1-year, 2-year, 3-year, 4-year and 5-year) at each time t, and

bootstrap the term structure of default probability following the procedure proposed in Hull

and White (2000a) and O’Kane and Turnbull (2003). This mark-to-market default probability

of individual bank is derived from the observed spread of CDS contract by inverting the CDS

formula. Specifically, we use the Libor rate with different maturities as discount factors and

assume that the recovery rate is 40% suggested by (see O’Kane and Turnbull, 2003). Following

the recent finance literature, such as Huang et al (2009), Black et al. (2013), Creal et al. (2014b)

and Lucas et al. (2014), we consider no counter-party default risk. Given the assumption above,

we are able to obtain the intensity of default using the bootstrap algorithm in the Appendix A.4.

Given the default intensity, we are also able to compute the probability of default for different

maturities as this is just the function of default intensity. Note that in this case the probability

we obtain is a risk neutral as the bootstrap method assumes that the present value premium leg

should be exactly equal to the present value of the protection leg, see a detailed discussion in

Appendix A.3.
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Figure 3 illustrates the risk neutral default probabilities for individual banks inferred directly

from the market quotes of CDS spread. Panel A plots the bank-specific marginal probabilities

of default over a one year horizon and Panel B plots the bank-specific marginal probabilities

of default over a five year horizon. The market-implied default probabilities vary over time. It

significantly rises after the bankruptcy of Lehman Brothers and the downgrade of US sovereign

debt. After May 2012, the probabilities of default for all the banks decline dramatically and

remained at a low level in the last two years. Thus, empirical models of CDS spread should

account for this important feature. Our proposed methodology accomplishes this task.

[ INSERT FIGURE 3 ABOUT HERE ]

3.3 Asymmetric Dependence between CDS Spreads

While asymmetric dependence in equity, currency and energy markets have been extensively

studied in empirical finance literature, very little has been done for the credit market and the

banking sector. Hence, we investigate whether the dependence structure between the CDS

spreads is asymmetric. We consider two methods to test for the presence of asymmetric de-

pendence: a model-free test proposed by Hong et al. (2007) and a tail dependence-based test

described in Patton (2012).

Table 4 reports the test results on the bivariate asymmetry. Given the five banks, n = 5,

there are n(n − 1)/2 = 10 different pairwise combinations of two banks. Panel A reports the

test statistics and corresponding p-values of model-free test on the threshold correlation (Hong

et al., 2007). We find that there is no statistically significant asymmetry on the threshold

correlations.13

Panel B presents the estimates of lower and upper tail dependence coefficients for the filtered

CDS spreads based on the full parametric copula model. It also reports bootstrap based p-

values for the test on a null hypothesis that the dependence structure is symmetric (i.e. the

upper and lower tail dependence coefficients are equal). Differently from the test based on

the linear correlation, half of the pairs are rejected at 5% significance level showing evidence

of significant difference between upper and lower tail dependence coefficients. Interestingly,
13We compute the threshold correlations using the filtered CDS spreads.
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different from the asymmetries of other assets which exhibit greater correlation during market

downturns than market upturns, the CDS spread has higher upper tail dependence than lower

tail dependence. This may be explained by the nature of CDS spread as a credit derivative

contract to insure the protection buyer against any uncertainty on the reference name. The

higher upper tail dependence of CDS spreads may be due to the asymmetric reaction of CDS

spreads to negative and positive news. The CDS spreads normally incorporate negative news

much faster than positive news, see for instance Lehnert and Neske (2006). Thus, when the

credit market deteriorated sharply during the crisis, the CDS spreads (insurance costs) of firms

tend to increase rapidly.

Panel C presents the estimates of lower and upper tail dependence coefficients based on the

semiparametric copula model and the results also confirm the presence of asymmetric dependence

between CDS spreads for UK banks.

[ INSERT TABLE 4 ABOUT HERE ]

3.4 Time-varying Dependence between CDS Spreads

Figure 2 shows that the CDS spread and its volatility are time-varying. Could it be that

the dependence structure between the CDS spreads also vary through time? We address this

important issue in this section. We consider three tests widely used in literature: (i) A simple

test that examines a structure break in the rank correlation at some specified point in the

sample period, see Patton (2012); (ii) A test for unknown break points in the rank correlation,

see Andrews (1993); (iii) A generalized break test without an a priori point, see Andrews and

Ploberger (1994).

We implement these tests for time-varying dependence using the filtered CDS spreads of

5-year maturity. Summary results are reported in Table 5. First, without a priori knowledge of

breaking points, we consider using naïve tests for breaks at three chosen points in sample period,

at t*/ T ∈{0.15, 0.50, 0.85}, which corresponds to the dates 24-Oct-2008, 24-Jun-2011, 21-Feb-

2014. Second, the “Any” column reports the results of test for dependence break of unknown

timing proposed by Andrews (1993). The p-values in column “QA” are based on a generalized

break test without an a priori point in (Andrews and Ploberger, 1994). In order to detect
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whether the dependence structures between the CDS spreads of different banks significantly

changed after the US and EU crisis broke out, we use 15-Sep-2008 (the collapse of Lehman

Brothers) and 01-Jan-2010 (EU sovereign debt crisis) as two break points in rank correlation

and “US” and “EU” panels report the results for this test. Overall, the test results indicate that

for all the bank pairs, except for Lloyds and Standard Chartered, the null hypothesis (that there

is no break point in rank correlation over the sample period) is significantly rejected by at least

one test at 5%. These results strongly support the choice of our model.

[ INSERT TABLE 5 ABOUT HERE ]

3.5 Probability of Joint Default in UK G-SIBs

Our previous empirical results show the strong evidence of multivariate asymmetry and time-

varying dependence between the CDS spreads of UK G-SIBs. We thus select the GAS-based

GHST copula employed by Cerrato et al. (2015) for estimating the dependence structure between

banks. We further use the estimated dependence to simulate the joint default probability of UK

G-SIBs.

We estimate the time-varying correlation coefficients for the 10 pairs of banks using the GAS-

based GHST copula. For the sake of comparison, we also use the GAS-based Gaussian copula and

t copula. Table 6 and Table 7 report the estimates for parametric and semiparametric dynamic

copula models, respectively. We find that their estimates are very close and the parametric

copula models are able to provide relatively higher log-likelihood in general. This is probably

due to the better fit of univariate models (see the skewed t distribution in Hansen (1994)).

[ INSERT TABLE 6 AND 7 ABOUT HERE ]

Figure 4 shows the dynamic evolution of average correlation. We average the 10 pairs of

correlations implied by the GAS-Gaussian copula, GAS-Student’s t copula and GAS-GHST

copula at each time and plot the average correlation. For each model specification, we use the

same filtered CDS spreads. The figure shows that the average correlation significantly increases

during the crisis. It goes up to over 0.9 during the global financial crisis in 2008 and has a sharp
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decrease after 2013. Notice that the sharp decrease on June 27, 2008 is due to the inclusion of

Standard Chartered, which has a much lower average correlation with other banks.

[ INSERT FIGURE 4 ABOUT HERE ]

Figure 5 shows the difference of estimated average correlations by the three copulas. To

simplify the comparison, we take average of differences for each year. The solid line plots the

difference between the GHST copula and the Student’s t copula and the dash line plots the

difference between the GHST copula and the Gaussian copula. We find that both the Gaussian

copula and Student’s t copula relatively underestimate the correlation compared to the GHST

copula whilst they overestimate it in 2015. This result is in line with the properties that both

copulas cannot capture the asymmetric tail dependence. We can see that both differences are

close to each other. The slight difference is only explained by the fact that Student’s t copula

is able to take into account the tail dependence. However, both the copula fail to capture the

asymmetric tail dependence (this produces the significant difference with respect to the GHST

copula). Thus, the GHST copula is a more general framework which is able to capture not only

tail dependence but also its asymmetry.

[ INSERT FIGURE 5 ABOUT HERE ]

Given the calibrated marginal probability of default for each bank, the estimated time-

varying correlation matrix and the copula parameters, we can simulate the probability that two

or more credit events occur in five UK G-SIBs during the sample period. Figure 6 shows the

market-implied joint probability of default (i.e. two or more credit events occurring) among five

UK G-SIBs over a five year horizon. The probabilities are estimated based on three different

multivariate models: GAS-Gaussian copula, GAS-Student’s t copula and GAS-GHST copula.

The arrows indicate time points of several major events in the global financial market. First, the

probability of joint default sharply rises during the crisis or after the major credit events took

place. The highest default probability happens after the S&P downgraded the US sovereign

debt. The joint probability is also affected by the monetary policy implemented by the Bank of

England and European Central Bank, and gradually decreases after the cut of interest rate.
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[ INSERT FIGURE 6 ABOUT HERE ]

Figure 7 shows the difference of joint default probabilities estimated by the three copulas. To

simplify the comparison, we take averages of differences for each year. The solid line plots for the

difference between the GHST copula and the Student’s t copula and the dash line plots for the

difference between the GHST copula and the Gaussian copula. We find that both the Gaussian

copula and the Student’s t copula relatively underestimate the joint probability compared to the

GHST. In particular, we can see that there is significant underestimation of the joint probability

by the Gaussian copula compared to the Studnet’s t copula. This result is in line with the fact

that Gaussian fails to take into account tail dependence. Finally, this figure also shows that the

GHST copula is a more general framework which is able to capture the tail dependence as well

as the asymmetric dependence.

[ INSERT FIGURE 7 ABOUT HERE ]

3.6 Probability of Conditional Default in UK G-SIBs

Given the marginal default probability and the probability of joint default, we further investigate

the probability of conditional default under a hypothetical adverse market scenario. Recently,

the Bank of England published a new document to list all the key elements of stress testing for

UK banks. A counterparty default is considered as the key risk of many traded risk scenarios in

this document, because a large amount of risk exposures to individual counterparties is contained

in the banks’ trading books (Bank of England, 2015). We consider a hypothetical scenario that a

credit event happens in RBS and estimate the default probabilities of other banks conditional on

this adverse market scenario. The reason why we choose RBS instead of other banks is because

it has the highest average market-implied default probability (0.1287) among five G-SIBs.

Figure 8 shows the probability of conditional default for four UK G-SIBs assuming a credit

event of RBS. The conditional probabilities are estimated by the Gaussian copula, Student’s

t copula and GHST copula. The estimates of conditional default probability sharply increase

during the financial crisis. In addition, those also remarkably increases after S&P downgrades

the US sovereign debt. These findings are consistent with the empirical results reported with

19



the probability of joint default.

[ INSERT FIGURE 8 ABOUT HERE ]

Figure 9 shows the difference of conditional default probabilities estimated by the three

copulas. To simplify the comparison, we take averages of differences for each year. We find

that the Gaussian copula model usually underestimates the conditional default probabilities

compared to other two copulas. Furthermore, we find that the Student’s t copula frequently

underestimates the conditional default probabilities compared to the GHST copula. This is

because the Student’s t copula cannot take into account the asymmetric tail dependence that

the upper tail dependence is stronger than the lower tail dependence. It clearly shows that

the modelling of asymmetric tail dependence is closely related to the accurate estimation of

conditional default probability.

[ INSERT FIGURE 9 ABOUT HERE ]

4 Relation between Correlated Default and Dependence

Structure of CDS spreads

In the previous section, we find that the dependence structure between the CDS spreads of UK

G-SIBs is time-varying and asymmetric. Furthermore, these features are closely associated with

the probability of joint (or conditional) default. For this reason, it is important for risk managers

to understand a systematic relation between the probability of joint (or conditional) default and

the dependent structure of CDS spreads. Thus we further study how the dependence structure

(i.e. copula correlation or upper/lower tail dependence) works for measuring and predicting the

probability of joint (or conditional) default using insightful regression analysis.

4.1 Dependence

It is our apparent reasoning that the dependence structure of CDS spreads is closely related

with the probability of joint (or conditional) default from the empirical analysis in section 3. To
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test this, we use a copula correlation as a dependence measure. Its advantage is that it can be

easily incorporated with time-varying nature and asymmetry of dependence structure via copula

modeling. We investigate not only a contemporaneous relationship but also the predictability

of copula correlation for the default probability. Hence, this analysis is able to provide the risk

managers of bank with insight on the use of dependence structure for the credit risk management.

4.1.1 Probability of Joint Default

Let the joint default probability of bank i and j be pi,j,t and their copula correlation be δi,j,t at

time t. We estimate the probability of joint default by parametric and semiparametric GAS-

based GHST copula models. We compute an average probability as Equation (7), p̄i,j,t =(
pP

i,j,t + pS
i,j,t

)
/2. Analogously, an average correlation, δ̄i,j,t, is computed by taking the average

of time-varying pairwise correlations in Equation (7). We regress p̄i,j,t on δ̄i,j,t and test for a

contemporaneous relationship between the probability of joint default and the correlation. We

specify the following linear regression equation

p̄i,j,t = α + βδ̄i,j,t + εi,j,t (9)

for i > j and t = 1, . . . , T . If β is significant and positive, the probability of joint default would

increase as the correlation becomes stronger.

Panel A of Table 9 presents the regression results. We consider three possible estimators:

(i) pooled OLS (POLS); (ii) fixed effects (FE); (iii) random effects (RE). First, we test the

existence of fixed effects by comparing POLS and FE. We perform the F -test under the null of

no fixed effects and it is rejected. Hence, we should consider the fixed effects in the regression

to get consistent and efficient results. Second, we test if regressors are correlated with the fixed

effects using the Hausman test. Since the test statistic is not rejected, RE is consistent and

more efficient than FE. Hence, we interpret the estimation results based on RE.

We find that β̂ is significantly positive, implying that a higher contemporaneous correlation

is positively associated with the higher probability of joint default. We find that the correlation

is able to explain the variation of the joint default probability by 14.5%. Overall, the regression
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results show that the correlation plays an important role in measuring the probability of joint

default.

Next, we test the predictability of correlation. To this end we included a lagged correlation

as a regressor in the regression equation:

p̄i,j,t = α + βδ̄i,j,t−k + εt,j,t. (10)

We estimate Equation (10) by RE for k = 1, . . . , 5.

Panel B presents the regression results. We find that β̂ is significant and positive for all

lags and the size of estimated coefficient decreases as the lag increases. R2 also slowly decreases

from 0.143 (first lag) to 0.131 (fifth lag). This implies that the correlation is able to explain the

variation of joint default probability in five weeks by 13.1%. Thus both the current and lagged

correlations contain an evident signal for predicting the probability of joint default. This may

tell us that if we continuously observe a high copula correlation, it would signal the high risk of

joint default in the UK G-SIBs.

[INSERT TABLE 9 ABOUT HERE]

4.1.2 Probability of Conditional Default

Next, we investigate a relation between the probability of conditional default and the correlation.

Given the probability of joint default, we are able to obtain the conditional probability (see

Equation (2)). Let the conditional default probability of bank i given the default of bank j be

pi|j,t at time t. Analogous to the joint default, we also compute the average of conditional default

probability, p̄i|j,t. We then regress p̄i|j,t on δ̄i,j,t and test a contemporaneous relationship between

the probability of conditional default and the correlation. The linear regression equation is thus

specified by

p̄i|j,t = α + βδ̄i,j,t + εi,j,t. (11)

Panel A of Table 10 presents the regression results. We perform the F -test under the null of

no fixed effects and it is rejected. On the other hand, the Hausman test statistic is not rejected.
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Hence, RE is consistent and more efficient than FE. For this reason, we interpret the estimation

results based on RE.

We find that β̂ is significantly positive, indicating that a higher dependence between the

CDS spreads of banks is positively associated with a higher conditional default risk. We find

that the correlation is able to explain the variation of conditional default probability by 23.6% .

Next, we test if the correlation has any predictive power for the probability of conditional

default. To this end we included a lagged correlation in the regression equation:

p̄i|j,t = α + βδ̄i,j,t−k + εt,j,t. (12)

We estimate (12) by RE for k = 1, . . . , 5 and report results in Panel B.

We find that β̂ is significant and positive for all lags and its magnitude slowly decreases as

the lag increases. This suggests that the higher dependence usually leads to the higher risk of

conditional default. R2 also slowly decreases as the lag increases from 0.228 (first lag) to 0.194

(fifth lag). Hence, both the current and lagged correlations contain a significant and strong

signal for the future conditional default risk.

[INSERT TABLE 10 ABOUT HERE]

In sum, the (copula) correlation contains useful information which not only explains the

current joint default probability but also predicts the future risk of joint default in the banking

industry. Thus the modeling of dynamic dependence between the CDS spreads can improve the

accuracy of measuring and forecasting the joint default risk of banks. Furthermore, it could be

a key input for practical credit risk management. Hence, the risk managers of bank are able to

utilize it as an leading indicator for the systemic credit event in the UK G-SIBs.

4.2 Asymmetry

The empirical results in section 3.3 show that the asymmetric tail dependence is statistically

significant and we should incorporated this feature in the multivariate modeling. In this section

we investigate if the asymmetry is also economically important and therefore if it contains infor-
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mation which is useful for the credit risk management. Thus this analysis is able to provide risk

managers with insight on how the asymmetric tail dependence works for credit risk management.

4.2.1 Probability of Joint Default

Following McNeil et al. (2005), we define the lower tail dependence (LTD) by

λLL
i,j,t = lim

q→0+

Ct (q, q)
q

, (13)

and the upper tail dependence (UTD) by

λUU
i,j,t = lim

q→1−

1− 2q + Ct (q, q)
1− q . (14)

We estimate the parametric and semiparametric GAS-based GHST copula models for all pairs

of banks. For each pair, we compute average tail dependences, λ̄LL
i,j,t and λ̄UU

i,j,t. Then, we regress

p̄i,j,t on λ̄LL
i,j,t and λ̄UU

i,j,t, and test the impact of LTD and UTD on the probability of joint default

using the following linear regression equation

p̄i,j,t = α + βLL
i,j λ̄

LL
i,j,t + βUU

i,j λ̄
UU
i,j,t + εi,j,t. (15)

Panel A of Table 11 presents the regression results. We perform the F -test under the null

of no fixed effects and it is rejected. The Hausman test statistic is also rejected. Thus FE is

consistent while RE is inconsistent. We interpret the estimation results based on FE.

We find that β̂LL is insignificant while β̂UU is significantly positive and β̂UU > β̂LL. Thus the

higher UTD from credit deterioration is closely associated with the higher risk of joint default.

This may be explained by the nature of CDS spread as a credit derivative contract to insure the

protection buyer against any uncertainty on the reference name. Hence, the upper tail of CDS

spread indicates the credit deterioration of bank. We also find that both tail dependences are

able to explain the variation of joint default probability by 12.1%. Overall, the regression results

show that UTD is more informative than LTD for measuring the probability of joint default.

Next, we test the predictability of tail dependence. To this end, we include the lagged tail
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dependences as regressors in the regression equation:

p̄i,j,t = α + βLLλ̄LL
i,j,t−k + βUU λ̄UU

i,j,t−k + εt,j,t. (16)

We estimate (16) by FE for k = 1, . . . , 5.

Panel B reports the regression results. Only β̂UU is significant and positive for all lags and

its magnitude slowly decreases as the lag increases. On the other hand, β̂LL is insignificant for

all lags. R2 also slowly decreases as the lag increases from 0.119 (first lag) to 0.116 (fifth lag).

Hence, both the current and lagged UTD contain a significant and strong signal for the future

risk of joint default.

[INSERT TABLE 11 ABOUT HERE]

4.2.2 Probability of Conditional Default

We regress p̄i|j,t on λ̄LL
i,j,t and λ̄UU

i,j,t and test the impact of LTD and UTD between bank i and j

on the probability of conditional default using the following regression

p̄i|j,t = α + βLL
i,j λ̄

LL
i,j,t + βUU

i,j λ̄
UU
i,j,t + εi,j,t. (17)

Panel A of Table 12 presents the regression results. We perform the F -test under the null

of no fixed effects and it is rejected. The Hausman test statistic is also rejected. Thus FE is

consistent while RE is inconsistent. We interpret the estimation results based on FE.

Both β̂LL and β̂UU are significant and positive. Thus the higher dependence under extreme

circumstances is closely associated with the higher risk of conditional default. We apply the

equality test to H0 : βLL = βUU to investigate the asymmetric effect. Although quantitatively

β̂LL < β̂UU , the null of equality is statistically not rejected. We find that both tail dependences

are able to explain the variation of conditional default probability by 17.4%. The estimation

results therefore show that UTD is quantitatively more informative than LTD while it is not

statistically validated. Hence, we conclude that the tail dependence plays an important role for

measuring the probability of conditional default.
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Next, we test the predictability of tail dependence. To this end, we included lagged tail

dependence coefficients as regressors in the regression equation:

p̄i|j,t = α + βLLλ̄LL
i,j,t−k + βUU λ̄UU

i,j,t−k + εt,j,t. (18)

We estimate (18) by FE for k = 1, . . . , 5.

Panel B reports the regression results. Both β̂LL and β̂UU are significant and positive for

all lags and its magnitude slowly decreases as the lag increases. Thus the higher dependence

under extreme circumstances leads to the higher risk of conditional default. Quantitatively,

β̂LL < β̂UU for all lags but the inequality is not statistically validated. R2 also slowly decreases

as the lag increases from 0.170 (first lag) to 0.156 (fifth lag). These results indicate that both tail

dependence coefficients contain a significant and strong signal for the future conditional default

risk.

[INSERT TABLE 12 ABOUT HERE]

In sum, UTD contains useful information which not only explains the current joint default

probability but also predicts the future one. Furthermore, both tail dependences contain useful

information for measuring and predicting the probability of conditional default. Thus the mod-

eling of asymmetric tail dependence between the CDS spreads is able to improve the accuracy of

measuring and predicting the probability of conditional default. These results contain important

economic implications. First, the ignorance of asymmetric features could lead to underestimate

the probability of joint default in the banking industry. Second, risk managers are able to utilize

tail dependence measures as good leading indicators for the systemic credit event. Especially,

if they continuously observe that UTD is significantly higher than LTD, it could be a strong

warning about coming credit crash in the banking industry.

5 Conclusion

We document the time-varying and asymmetric dependence between the CDS spreads using a

dataset in the UK G-SIBs. We find substantial evidence that the upper tail dependence of CDS
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spreads is significantly higher than the lower tail dependence. Also, the results from structure

break tests are strongly against the constant dependence structure over the sample period. Our

findings highlight the importance of modelling the dynamics and asymmetries of dependent

structure simultaneously. We calibrate a marginal model using the market quotes of CDS to

obtain the market-implied risk neutral default probability for each bank using the bootstrap

algorithm and apply the GAS-based GHST copula to model the dependence between the credit

risks of banks. We find that the dependence dramatically increases during times of stress and

gradually decreases after 2013. Using marginal default probability and estimated copula model,

we perform the simulation algorithm to obtain the probabilities of joint and conditional default

in the UK G-SIBs. Our empirical results show that the probability of joint default estimated

by the dynamic asymmetric copula is higher than one estimated by the dynamic Gaussian or

Student’s t copula in most of the time during our sample period indicating that the Gaussian

or Student’s copula-based models may underestimate the potential risk as neither of them can

accommodate the multivariate asymmetries between credit risks of banks. Furthermore, we

perform the insightful cross-sectional regression analysis and find the clear evidence that the

dependence and tail dependence implied by copula models are closely related to the probabil-

ities of joint and conditional default in the banking industry. Also, we empirically show that

both dependence and tail dependence are very informative to predict future risks of joint and

conditional default. Overall, our empirical findings have important implications for credit risk

management in financial practice and a possible extension for further studies is to apply our

framework to the firms in other sectors or markets or find the economic sources of asymmetric

dependence of credit risks.
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A Appendix

A.1 Hazard Rate Function

The hazard rate function λ (t) is the conditional instantaneous default probability of reference

entity, given that it survived until time t.

P (t < τ ≤ t+4t | τ > t) = F (t+4t)− F (t)
1− F (t) ≈ f (t)4t

1− F (t) (A.1)

The association of hazard rate function λ (t) at time t with the default probability F (t) and

survival probability S (t) is as follows

λ (t) = f (t)
1− F (t) = −Q

′ (t)
Q (t) (A.2)

The survival function Q (t) can be defined in terms of hazard rate function λ (t)

Q (t) = exp
(
−
∫ tn

t
λ (s) ds

)

Proof:

S
′ (t) = d (Q (t))

dt
= d (1− F (t))

dt
= −f (t)

λ (t) = −d (Q (t))
dt

1
Q (t) = f (t)

Q (t) = −d log (Q (t))
d (Q (t)) · d (Q (t))

dt
= −d log (Q (t))

dt

Taking integral on both sides

− log (Q (t)) =
∫ tn

t
λ (s) ds

and taking exponentials of both sides, we get

Q (t) = exp
(
−
∫ tn

t
λ (s) ds

)
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A.2 Valuing the Premium Leg and Protection Leg

The premium leg is a stream of the scheduled fee payments of CDS made to maturity if the

reference entity survivies or to the time of first credit event occurs. The present value of the

premium leg of an existing CDS contract is given by

PVpremium (t, tN) = S0 · RPV01 (t, tN) (A.3)

RPV01 (t, tN) =
N∑

n=1
∆ (tn−1, tn, B)Z (t, tn)Q (t, tn) (A.4)

+
N∑

n=1

∫ tn

tn−1
∆ (tn−1, s)Z (t, s) (−dQ (t, s)) , n = 1, ..., N,

where t, tn, tN denotes the effective date, the contractual payment dates, and the maturity date

of the CDS contract, respectively. S (t0, tN) represents the fixed contractual spread of CDS with

maturity date tN at time t0, ∆ (tn−1, tn, B) represents the day count fraction between premium

date tn−1 and tn in the selected day count convention B, Z (t, tn) is the Libor discount factor

from the valuation date t to premium payment date tn and Q (t, tn) is the arbitrage-free survival

probability of the reference entity from t to tn. O’Kane (2008) show that in practice, the integral

part can be approximated by

∫ tn

tn−1
∆ (tn−1, s)Z (t, s) (−dQ (t, s)) w 1

2∆ (tn−1, tn)Z (t, tn) (Q (t, tn−1)−Q (t, tn)) (A.5)

Thus, it can be simplified as

RPV01 (t, tN) = 1
2

N∑
n=1

∆ (tn−1, tn, B)Z (t, tn) (Q (t, tn−1) +Q (t, tn)) (A.6)

The protection leg is the compensation that the protection seller pays to the buyer for the

loss associated to a given reference entity at the time of default. It is a contingent payment of

(100%−R) on the par value of the protection when the credit event occurs. R is the expected

recovery rate of the cheapest-to-deliver (CTD) obligation into the protection at the time of credit
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event. So the expected present value of protection payment is given by

PVprotection (t, tN) = (1−R)
∫ tN

t
Z (t, s) (−dQ (t, s)) (A.7)

The computation of the integral part is normally tedious. Nevertheless, following O’Kane and

Turnbull (2003) and O’Kane (2008), we could assume that the credit event only happens on a

finite numberM of several specific discrete points per year without much loss of accuracy. We can

discrete the time between t and tN into K equal intervals, where K = int (M × (T − t) + 0.5).

Defining ε = (T − t) /K, we can calculate the approximation of expected present value of the

protection payment as

PVprotection = (1−R)
K∑

k=1
Z (t, kε) (Q (t, (k − 1) ε)−Q (t, kε)) (A.8)

Clearly, more accurate results can be obtained by increasing discrete points M .

A.3 Relationship between Market Quotes and Survival Probability

In order to compute the survival probabilities from the market quote of CDS spread, it is

important to understand their relationship. For a fair market trade, the present value premium

leg should be exactly equal to the present value of protection leg

PVpremium=PVprotection

New quotes for CDS contracts at time t0 can be obtained by substituting and rearranging

Equation A.3 and A.8

S (t0, tN) = (1−R)
2

∑K
k=1 (Z (t0, tk−1) + Z (t0, tk)) (Q (t0, tk−1) +Q (t0, tk))

RPV01 (t0, tN) (A.10)

where the RPV01 is given by

RPV01 (t0, tN) = 1
2

N∑
n=1

∆ (tn−1, tn, B)Z (t0, tn) (Q (t0, tn−1) +Q (t0, tn))
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A.4 Bootstrapping a Survival Probability Curve

The bootstrap is a fast and stable curve construction approach, which has been widely used in

financial practice as a standard method for constructing CDS survival curves. The bootstrap

algorithm works by starting with shortest maturity contract and works out to the CDS contract

with the longest maturity. At each step it uses the spread of next CDS contract to solve for the

survival probability of next maturity and to extend the survival curve (see Hull andWhite, 2000a;

O’Kane and Turnbull, 2003; Schönbucher, 2003; O’Kane, 2008, etc.). The default probability

can be easily obtained by calculating the complement of survival probability.

First, we define the market quotes of CDS as a set of maturity dates T1, T2, ..., TM and

corresponding CDS spread S1, S2, ..., SM . All the CDS quotes are sorted in order of increasing

maturity. Second, we need to extrapolate the survival curve below the shortest maturity CDS

by assuming that the forward default rate is flat at a level of 0, and we also extrapolate the

survival curve beyond the longest maturity TM by assuming that the forward default rate is flat

at its latest interpolated value.

The bootstrap algorithm to calculate the survival probability from CDS market quotes is as

follows: (i) We initialize the first point of survival curve by defining Q (T0 = 0) = 1 and m = 1.

(ii) The survival probability Q (Tm) can be calculated by solving Equation (A.10). Note that

the no-arbitrage bound on Q (Tm) is 0 < Q (Tm) ≤ Q (Tm−1). (iii) Given the value of Q (Tm)

which reprices the CDS with maturity Tm, we can extend the survival curve to time Tm. (iv)

Set m = m+ 1 and go back and repeat step (ii) - (iv) iteratively until m ≤M . (v) Given M + 1

points values of survival probability 1, Q (T1) , Q (T2) , ..., Q (TM) at time 0, T1, T2, ..., TM .
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Figure 2: Dynamics of CDS Spread from 2007 to 2015

A. Average CDS Spread
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B. Conditional Volatility of Average CDS spread
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Notes: This figure shows the levels and conditional volatility of average 5-year CDS spread of
five UK top tier banks from September 7, 2007 to April 17, 2015. The conditional volatility of
average CDS spread changes is estimated by the GJR-GARCH(1,1,1) of Glosten et al. (1993).
The arrows in each figure indicate several major events in CDS market during the sample period.
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Figure 3: CDS-implied Marginal Risk Neutral Default Probabilities

A. Probability of Default over One Year Horizon
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B. Probability of Default over Five Year Horizon
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Notes: This figure plots risk neutral marginal probabilities of default for five top tier banks in
UK. These probabilities are directly inferred from weekly CDS prices with different maturities
using bootstrap algorithm described in Appendix A.4. The sample period is from September 7,
2007 to April 17, 2015. 40



Figure 4: Average Correlation Impiled by GAS Over Time
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Notes: This figures shows the estimated average correlation implied by three GAS-based copula
models from September 7, 2007 to April 17, 2015. The copula correlations are obtained by taking
average of estimated correlation series between 10 pairs of banks. The correlation coefficients
are estimated by both parametric copula and semiparametric copula. The solid line represents
the time-varying correlation estimated by the GAS-GHST copula. The dashed line and dash-dot
line represent the time-varying correlation estimated by the GAS-Student’s t copula and GAS-
Gaussian copula. The sudden decreases of correlations on June 27, 2008 are caused by the fact
that we include the data of the Standard Chartered, which has much lower average correlation
with other banks.
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Figure 5: Difference of Average Correlations of UK Top-tier Banks from 2008 to 2015

Note: This figure shows the difference of the estimated average correlations implied by three
GAS-based copula models from September 7, 2007 to April 17, 2015. For simplifying compari-
son, it plots the average difference for each year. The solid line plots for the difference between
the GAS-GHST copula and GAS-Student’s t copula, GHST −T , and the dash line plots for the
difference between the GAS-GHST copula and the GAS-Gaussian copula, GHST −Gaussian.
The figure clearly shows that both the Gaussian copula and Student’s t copula relatively under-
estimate the correlation compared to the GHST copula while they overestimate it in 2015.
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Figure 7: Difference of Joint Credit Risk of UK Top-tier Banks from 2007 to 2015

Note: This figure shows the difference of the estimated time-varying probabilities of two or more
credit events over the five year horizon from September 7, 2007 to April 17, 2015. For simplifying
comparison, it plots the average difference for each year. The probabilities are estimated based
on three different multivariate models: GAS-Gaussian copula, GAS-Student’s t copula and
GAS-GHST copula. The solid line plots for the difference between the GAS-GHST copula and
GAS-Student’s t copula, GHST−T , and the dash line plots for the difference between the GAS-
GHST copula and the GAS-Gaussian copula, GHST −Gaussian. The figure clearly shows that
both the Gaussian copula and Student’s t copula relatively underestimate the joint probability
compared to the GHST copula.
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Table 1: Descriptive Statistics and Time Series Tests on 5-year CDS Spreads

Barclays HSBC Lloyds RBS Standard

A. Descriptive Statistics
Mean 0.079 0.200 0.256 0.211 0.054
Median -0.243 -0.012 0.141 0.432 0.000
Std. 11.857 10.466 10.872 11.968 8.707
Skewness -0.176 0.122 0.287 -0.055 0.793
Kurtosis 6.443 5.305 6.112 8.783 10.041
Max 49.320 48.432 51.173 57.738 48.906
Min -55.131 -36.795 -44.802 -68.245 -38.349

B. Time Series Tests
JB test 0.000 0.000 0.000 0.000 0.000
LB Q(12) 0.101 0.047 0.083 0.011 0.077
LB Q(12)^2 0.000 0.000 0.000 0.000 0.000
LM ARCH 0.000 0.000 0.001 0.001 0.000

Notes: This table reports descriptive statistics and time series test results for log-differences of
5-year weekly CDS spreads across five top tier UK banks in FTSE 100 index from September 7,
2007 to April 17, 2015, which correspond to a sample of 398 observations for Barclays, HSBC,
Lloyds and RBS and a sample of 356 Standard Chartered (Note: The CDS data of Standard
Chartered is available from June 27, 2008.). Note that the means, standard deviations, minima,
and maxima are reported in %. JB test denotes the Jarque–Bera test for normal distribution.
LB test lag 5 and 10 denote the p-values of the Ljung-Box Q-test for autocorrelation at lags 5
and 10, respectively. In addition, we report the p-values of Engle’s Lagrange Multiplier test for
the ARCH effect on the residual series.
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Table 2: Correlation Matrix of Weekly Log-differences of CDS spreads

A. Linear Correlation
Barclays HSBC Lloyds RBS Standard

Barclays 1.000
HSBC 0.854 1.000
Lloyds 0.873 0.847 1.000
RBS 0.897 0.855 0.862 1.000
Standard 0.762 0.803 0.711 0.781 1.000

B. Rank Correlation
Barclays HSBC Lloyds RBS Standard

Barclays 1.000
HSBC 0.835 1.000
Lloyds 0.879 0.837 1.000
RBS 0.885 0.840 0.879 1.000
Standard 0.746 0.785 0.710 0.727 1.000

Notes: This table reports the correlation matrix for log-differences of 5-year weekly CDS spreads
across five top tier UK banks in FTSE 100 index from September 7, 2007 to April 17, 2015,
which correspond to a sample of 398 observations for Barclays, HSBC, Lloyds and RBS and a
sample of 356 Standard Chartered (The CDS data of Standard Chartered is available from June
27, 2008.). Panel A reports the Pearson’s linear correlation coefficients and Panel B reports the
Spearman’s rank correlation coefficients.
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Table 3: Summary of ARMA-GJR-GARCH Estimation on Weekly Log-Differences

Barclays HSBC Lloyds RBS Standard
ARMA
φ1 -0.671*** -0.848*** -0.794*** -0.697*** -0.094*

(0.238) (0.114) (0.173) (0.203) (0.053)
φ2 0.580** 0.791*** 0.757*** 0.593*** _

(0.261) (0.132) (0.187) (0.228) _
GARCH
ω 3.168*** 3.28*** 2.663*** 3.361*** 7.089***

(0.099) (1.761) (1.683) (1.599) (0.149)
α 0.096*** 0.101** 0.078* 0.067* 0.106***

(0.026) (0.047) (0.040) (0.036) (0.000)
δ -0.096*** -0.080 -0.027 -0.044 -0.107***

(0.031) (0.054) (0.059) (0.049) (0.007)
β 0.916*** 0.894*** 0.905*** 0.915*** 0.850***

(0.022) (0.041) (0.036) (0.033) (0.003)
SkT
υ 5.511*** 7.385*** 7.179*** 5.269*** 3.159***
η 0.017* 0.079*** 0.001 -0.012* 0.016*
KS p-value 0.83 0.94 0.22 0.23 0.16
CvM p-value 0.58 0.91 0.15 0.41 0.25

Note: This table presents the estimated parameters with p-values from the ARMA model for the
conditional mean and GJR-GARCH(1,1) models for the conditional variance of log-differences
of 5-year weekly CDS spread. We estimate all parameters using the sample from September
7, 2007 to April 17, 2015, which correspond to a sample of 398 observations for Barclays,
HSBC, Lloyds and RBS and a sample of 356 Standard Chartered (The CDS data of Standard
Chartered is available from June 27, 2008.). The values in parenthesis represent the standard
errors of the parameters. We also report the p-values of two goodness-of-fit tests for the skewed
Student’s t distribution. KS and CvM denote Kolmogorov-Smirnov test and Cramer-von Mises
test, respectively.
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Table 5: Structural Break Test for Time-varying Dependence Structures

0.15 0.5 0.85 Any US EU QA
B-H 0.053 0.310 0.369 0.110 0.035 0.360 0.020
B-L 0.040 0.106 0.296 0.080 0.019 0.282 0.152
B-R 0.021 0.087 0.190 0.040 0.014 0.250 0.030
B-S 0.837 0.767 0.357 0.500 0.951 0.247 0.048
H-L 0.026 0.154 0.485 0.020 0.015 0.226 0.595
H-R 0.024 0.227 0.407 0.070 0.012 0.225 0.005
H-S 0.542 0.403 0.571 0.720 0.806 0.161 0.048
L-R 0.043 0.062 0.320 0.090 0.013 0.241 0.010
L-S 0.721 0.965 0.540 0.460 0.945 0.319 0.521
R-S 0.993 0.840 0.280 0.240 0.883 0.490 0.014

Notes: This table reports the p-values from tests for time-varying dependence between 5-year
weekly CDS spreads changes of different banks. “B”, “H”, “L”, “R” and “S” denote Barclays,
HSBC, Lloyds, RBS and Standard Charted, respectively. Without a priori knowledge of break-
ing points, we consider using naïve tests for breaks at three chosen points in sample period, at
t*/ T ∈{0.15, 0.50, 0.85}, which corresponds to the dates 24-Oct-2008, 24-Jun-2011, 21-Feb-
2014. The “Any” column reports the results of test for dependence break of unknown timing
proposed by Andrews (1993). The p-values in column “QA” is based on a generalized break
test without priori point in (Andrews and Ploberger, 1994). In order to detect whether the
dependence structures between CDS spreads changes of different banks significantly changed
after the US and EU crisis broke out, we use 15-Sep-2008 (the collapse of Lehman Brothers) and
01-Jan-2010 (EU sovereign debt crisis) as two break points in rank correlation and the “US” and
“EU” panels report the results for this test. We use * and ** to indicate significance at the 5%
and 1%, respectively.
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Table 6: Full Parametric Dynamic Copula Parameter Estimation

B-H B-L B-R B-S H-L H-R H-S L-R L-S R-S Joint

A. GAS-Gaussian
ω 0.377 0.410 0.401 0.290 0.376 0.389 0.262 0.367 0.268 0.301 0.347
α 0.058 0.070 0.058 0.136 0.068 0.043 0.149 0.190 0.175 0.225 0.117
β 0.852 0.857 0.860 0.838 0.849 0.843 0.877 0.878 0.851 0.826 0.854
log L 259 309 317 149 249 250 181 338 143 140 1238

B. GAS-T
ω 0.382 0.403 0.417 0.274 0.371 0.398 0.279 0.376 0.268 0.317 0.348
α 0.075 0.083 0.098 0.174 0.091 0.108 0.190 0.196 0.200 0.242 0.145
β 0.850 0.860 0.856 0.854 0.852 0.837 0.866 0.881 0.854 0.833 0.856
η−1 0.215 0.200 0.186 0.168 0.201 0.200 0.166 0.178 0.211 0.166 0.189
log L 268 318 324 155 256 257 190 350 155 154 1296

C. GAS-GHST
ω 0.390 0.402 0.406 0.269 0.364 0.382 0.285 0.380 0.269 0.330 0.348
α 0.047 0.072 0.038 0.026 0.060 0.142 0.199 0.192 0.155 0.168 0.109
β 0.866 0.858 0.840 0.854 0.852 0.890 0.908 0.871 0.825 0.890 0.867
η−1 0.210 0.200 0.185 0.164 0.192 0.190 0.168 0.177 0.192 0.165 0.184
λ 0.122 0.216 0.120 -0.043 0.105 0.117 -0.179 0.104 0.138 -0.119 0.127
log L 298 343 341 174 279 281 210 361 180 163 1412

Notes: This table reports parameter estimates for three different parametric dynamic copula
models: Gaussian copula, Student’s t copula and GHST copula. The sample period is from
September 7, 2007 to April 17, 2015. ω, α and β denote the parameters of GAS model,
η−1denotes the inverse of degree of freedom of t and GHST copula, λ denotes the skewness
parameter of GHST copula and log L denotes the log-likelihood of estimated copula model. The
“Joint” column reports the estimates of parameters for five-dimensional copula models. Notice
that we estimate this high-dimensional copula following the method described in Lucas et al.
(2014).
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Table 7: Semiparametric Dynamic Copula Parameter Estimation

B-H B-L B-R B-S H-L H-R H-S L-R L-S R-S JOINT

A. GAS-Gaussian
ω 0.369 0.410 0.400 0.290 0.379 0.389 0.261 0.360 0.269 0.301 0.344
α 0.064 0.069 0.050 0.132 0.061 0.045 0.150 0.200 0.168 0.220 0.115
β 0.858 0.859 0.862 0.850 0.850 0.844 0.880 0.881 0.851 0.843 0.858
log L 255 310 312 150 248 247 183 329 140 144 1209

B. GAS-T
ω 0.376 0.404 0.428 0.282 0.375 0.401 0.279 0.376 0.268 0.310 0.350
α 0.072 0.087 0.098 0.180 0.088 0.105 0.190 0.194 0.196 0.250 0.146
β 0.855 0.862 0.859 0.849 0.852 0.841 0.870 0.875 0.854 0.837 0.855
η−1 0.218 0.209 0.186 0.161 0.201 0.200 0.166 0.178 0.215 0.161 0.190
log L 266 321 326 155 252 254 186 342 150 148 1251

C. GAS-GHST
ω 0.390 0.396 0.410 0.281 0.364 0.373 0.284 0.380 0.274 0.320 0.348
α 0.090 0.073 0.039 0.199 0.069 0.194 0.199 0.192 0.155 0.166 0.137
β 0.860 0.857 0.858 0.841 0.851 0.836 0.851 0.875 0.852 0.886 0.857
η−1 0.210 0.209 0.185 0.165 0.199 0.190 0.163 0.177 0.206 0.165 0.187
λ 0.119 0.177 0.141 -0.050 0.115 0.132 -0.198 0.100 0.141 -0.136 0.125
log L 296 351 340 171 282 287 208 358 183 168 1390

Notes: This table reports parameter estimates for three different semiparametric dynamic cop-
ula models: Gaussian copula, Student’s t copula and GHST copula. The sample period is
from September 7, 2007 to April 17, 2015. ω, α and β denote the parameters of GAS model,
η−1denotes the inverse of degree of freedom of t and GHST copula, λ denotes the skewness
parameter of GHST copula and log L denotes the log-likelihood of estimated copula model. The
“Joint” column reports the estimates of parameters for five-dimensional copula models. Notice
that we estimate this high-dimensional copula following the method described in Lucas et al.
(2014).
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Table 9: Joint Default Probability and Dependence

A. Contemporaneous Relationship
POLS FE RE

Corr 0.110*** 0.125** 0.124***
(0.005) (0.046) (0.045)

Cons -0.052*** -0.064 -0.063*
(0.004) (0.038) (0.036)

R2 0.145 0.145 0.145
T-test [0.000] [0.004] [0.003]
F-test [0.000]
Hausman [0.409]

B. Predictability
Lag(1) Lag(2) Lag(3) Lag(4) Lag(5)

Corr(-1) 0.121*** 0.118*** 0.115*** 0.110** 0.106**
(0.045) (0.045) (0.045) (0.044) (0.044)

Cons -0.061* -0.058* -0.056 -0.052 -0.048
(0.036) (0.035) (0.035) (0.035) (0.034)

R2 0.143 0.141 0.139 0.135 0.131
T-test [0.004] [0.004] [0.005] [0.007] [0.008]

Notes: This table reports the regression analysis of the impact of dependence (copula correlation)
on the joint default probability. We estimate the average dependence and average joint default
probability by taking average of correlations and joint default probabilities estimated from six
time-varying copula models (parametric and semiparametric Gaussian, Student’s t and GHST
copulas). In Panel A, we regress the joint default probability on the correlation in Equation (9).
We consider three panel data estimators; pooled OLS (POLS), fixed effects (FE), and random
effects (RE), and choose a consistent and efficient estimator. We test the existence of fixed
effects by F -test and apply Hausman approach to test if regressors are correlated with the fixed
effects. T -test tests the null of β = 0 against β > 0. In Panel B, we regress the joint default
probability on the lagged correlation in Equation (10). We estimate regression equations by
one selected from Panel A. In both panels, [·] reports the p-value of the test and (·) reports the
standard error of the estimate, respectively. We use *, ** and *** to indicate the significance
levels at 10%, 5% and 1%.
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Table 10: Conditional Default Probability and Dependence

A. Contemporaneous Relationship
POLS FE RE

Corr 0.669*** 0.848*** 0.846***
(0.011) (0.159) (0.158)

Cons -0.194*** -0.340** -0.337***
(0.009) (0.131) (0.127)

R2 0.236 0.236 0.236
T-test [0.000] [0.000] [0.000]
F-test [0.000]
Hausman [0.160]

B. Predictability
Lag(1) Lag(2) Lag(3) Lag(4) Lag(5)

Corr 0.816*** 0.786*** 0.754*** 0.720*** 0.685***
(0.158) (0.157) (0.157) (0.156) (0.155)

Cons -0.312** -0.288** -0.261** -0.233* -0.205*
(0.126) (0.126) (0.126) (0.125) (0.124)

R2 0.228 0.220 0.211 0.203 0.194
T-test [0.000] [0.000] [0.000] [0.000] [0.000]

Notes: This table reports the regression analysis of the impact of dependence (copula correlation)
on the conditional default probability of bank i given the default of bank j. We estimate the
average dependence and average conditional default probability by taking average of correlations
and conditional default probabilities estimated from six time-varying copula models (parametric
and semiparametric Gaussian, Student’s t and GHST copulas). In Panel A, we regress the
conditional default probability on the correlation in Equation (11). We consider three panel
data estimators; pooled OLS (POLS), fixed effects (FE), and random effects (RE), and choose
a consistent and efficient estimator. We test the existence of fixed effects by F -test and apply
Hausman approach to test if regressors are correlated with the fixed effects. T -test tests the null
of β = 0 against β > 0. In Panel B, we regress the conditional default probability on the lagged
correlation in Equation (12). We estimate regression equations by one selected from Panel A. In
both panels, [·] reports the p-value of the test and (·) reports the standard error of the estimate,
respectively. We use *, ** and *** to indicate the significance levels at 10%, 5% and 1%.
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Table 11: Joint Default Probability and Asymmetry

A. Contemporaneous Relationship
POLS FE RE

LTD 0.022*** 0.020 0.054***
(0.003) (0.054) (0.011)

UTD 0.049*** 0.174* 0.118***
(0.002) (0.087) (0.010)

Cons 0.013 -0.035 -0.023
(0.001) (0.028) (0.004)

R2 0.125 0.121 0.125
T-test (LTD) [0.000] [0.361] [0.000]
T-test (UTD) [0.000] [0.038] [0.000]
F-test [0.000]
Hausman [0.000]

B. Predictability
Lag(1) Lag(2) Lag(3) Lag(4) Lag(5)

LTD 0.013 0.010 0.008 0.009 0.008
(0.053) (0.054) (0.053) (0.053) (0.053)

UTD 0.177** 0.176* 0.174* 0.165* 0.160*
(0.088) (0.090) (0.090) (0.092) (0.092)

Cons -0.034 0.090 -0.031 -0.028 -0.026
(0.028) (-0.033) (0.028) (0.029) (0.029)

R2 0.119 0.118 0.118 0.117 0.116
T-test (LTD) [0.403] [0.427] [0.442] [0.433] [0.437]
T-test (UTD) [0.022] [0.025] [0.026] [0.036] [0.041]

Notes: This table reports the regression analysis of the impact of tail dependence on the joint
default probability. We estimate the bivariate dynamic GHST copula models across all possible
pairs of banks. For each pair, we compute average tail dependence by taking average of para-
metric and semiparametric tail dependence coefficients. The average joint default probability is
computed by taking average of joint default probabilities estimated from six time-varying copula
models (parametric and semiparametric Gaussian, Student’s t and GHST copulas). In Panel
A, we regress the joint default probability on the lower tail dependence (LTD) and the upper
tail dependences (UTD) in Equation (13). We consider three panel data estimators; pooled
OLS (POLS), fixed effects (FE), and random effects (RE), and choose a consistent and efficient
estimator. We test the existence of fixed effects by F -test and apply Hausman approach to test
if regressors are correlated with the fixed effects. T -test (LTD) (T -test (UTD)) tests the null of
βLL = 0 against βLL > 0 (βUU = 0 against βUU > 0). In Panel B, we regress the joint default
probability on the lagged tail dependences in Equation (16). We estimate regression equations
by one selected from Panel A. In both panels, [·] reports the p-value of the test and (·) reports
the standard error of the estimate, respectively. We use *, ** and *** to indicate the significance
levels at 10%, 5% and 1%.
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Table 12: Conditional Default Probability and Asymmetry

A. Contemporaneous Relationship
POLS FE RE

LTD 0.269*** 0.506*** 0.532***
(0.011) (0.152) (0.143)

UTD 0.216*** 0.639*** 0.592***
(0.008) (0.159) (0.138)

Cons 0.190*** -0.045 -0.032
(0.004) (0.062) (0.061)

R2 0.179 0.174 0.177
t-test (LTD) [0.000] [0.002] [0.000]
t-test (UTD) [0.000] [0.001] [0.000]
F-test [0.000]
Hausman [0.000]

B. Predictability
Lag(1) Lag(2) Lag(3) Lag(4) Lag(5)

LTD 0.477*** 0.460*** 0.446*** 0.438*** 0.422***
(0.153) (0.154) (0.150) (0.149) (0.143)

UTD 0.630*** 0.610*** 0.588*** 0.557*** 0.534***
(0.162) (0.168) (0.171) (0.179) (0.177)

Cons -0.032 -0.019 -0.006 0.009 0.022
(0.062) (0.063) (0.064) (0.065) (0.065)

R2 0.170 0.166 0.162 0.159 0.156
t-test (LTD) [0.001] [0.001] [0.001] [0.002] [0.002]
t-test (UTD) [0.000] [0.000] [0.000] [0.001] [0.001]

Notes: This table reports the regression analysis of the impact of tail dependence on the con-
ditional default probability. We estimate the bivariate dynamic GHST copula models across
all possible pairs of banks. For each pair, we compute average tail dependence by taking av-
erage of parametric and semiparametric tail dependence coefficients. The average conditional
default probability is computed by taking average of conditional default probabilities estimated
from six time-varying copula models (parametric and semiparametric Gaussian, Student’s t and
GHST copulas). In Panel A, we regress the conditional default probability on the lower tail
dependence (LTD) and the upper tail dependences (UTD) in Equation (17). We consider three
panel data estimators; pooled OLS (POLS), fixed effects (FE), and random effects (RE), and
choose a consistent and efficient estimator. We test the existence of fixed effects by F -test and
apply Hausman approach to test if regressors are correlated with the fixed effects. T -test (LTD)
(T -test (UTD)) tests the null of βLL = 0 against βLL > 0 (βUU = 0 against βUU > 0). In Panel
B, we regress the conditional default probability on the lagged tail dependences in Equation
(18). We estimate regression equations by one selected from Panel A. In both panels, [·] reports
the p-value of the test and (·) reports the standard error of the estimate, respectively. We use
*, ** and *** to indicate the significance levels at 10%, 5% and 1%.
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