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Content

> The European Transonic Windtunnel ETW

> Why flight Reynolds number testing?

> CFD versus wind tunnel testing

> Specific benefits of testing in ETW

> What type of test techniques are available at flight conditions?

> AIRBUS is taking the full ETW capacity in the design process of
new aircrafts
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ETW Working Principle

turning vanes internally insulated compressor (50MW)
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stilling second throat insulated stainless steel
chamber pressure shell

> Flow temperature & pressure level are controlled
by injection of liquid nitrogen and exhaust of gaseous nitrogen
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ETW is a Unique, Worldwide Leading Facility

Take-off
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4. Security and Client Confidentiality
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The NASA CRM-model in the
slotted wall test-section of ETW (EU-ESWIRP project)
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Reynolds-Number Effect on Pressure Distribution

Ja | 15 Jul 2004 | Pressure Distribution Clean Wing
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High-Lift Performance

> Measuring settings
performance and failures

> ldentification of optima
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Aircraft Design Challenge: Performance (1/3)

> Competitive A/C performance is one top level A/C requirement
since it is key to marketability and achievable price of the product

> Early accurate prediction of A/C performance is essential as
performance guarantees are part of every A/C sales contract and
iInvolve significant financial stakes

> Performance assessment activities start early in a programme and
performance optimisation accompanies the products lifetime

> Due to safety implications, regulations pose boundaries, and
compliance to it has to be demonstrated for certification

> Associated challenges are:
— Optimise design performance in compliance with regulations
— Provide airlines with the means to exploit this optimum performance
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Flight Envelope — ETW complements CFD

A MMO MDD peyuegarees
: FAR

Altitude

ETW uniquely provides
reliable prediction for

> High-Lift Design
> Stall Behaviour

> MD Dive Properties
> Cruise / Dive Separation
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Cruise Performance — Comparison with flight-test data

Ma, L/D

Flight-test data

1%

ETW based pre-
! flight prediction

Unclassified

> ETW provides reliably
accurate prediction

> For cruise CFD provides
accuracy, but reliably?

> ETW verifies CFD
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ETW and CFD Complement Each Other

ETW strengths:

> Real flow at flight Re

> Complex configurations
> Separated flow
>

Reliable performance-risk
identification

> Productivity to acquire

vast amounts of data

In reasonable time Available data
CFD strength: >

> Responsiveness to shape changes

—> Best work share: CFD optimizes the design by screening &
refining, ETW provides physical data, validates & verifies

Note: Energy and personnel are strong costs drivers for both tools!

1

\

Time, Costs

L
HS WTT provides ~2900 data points, 2012’s CFD provides ~1 data point per 8h day
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ETW Enables First-Time-Right Design for Flight-Re

A Aero-model accuracy & confidence

Conventio
Wind Tunt

<

Convergence Check-Out Integration Tests

Design

Tooling , Manufacturing
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ETW Enables First-Time-Right Design for Flight-Re

A Aero-model accuracy & confidence /

> Reduced lead time
> Higher accuracy before AtO

> Higher confidence before FT

— Significantly reduced risks
CFD

® ® o o

Tooling , Manufacturing
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Aircraft Design Challenge: Performance (2/3)

> Essentially, A/C performance is the result of
— Weight
— Propulsion
— Aerodynamics
— Other parameter
> The other parameter are amongst others dependent
— on regulation interpretation, and
—on the quality of the tests performed and used for certification
—=Test quality can significantly impact performance
> Regulations affect A/C performance through
— Airworthiness of the design in relation to CS 25/ FAR 25
— Technical operating rules in relation to JAR-OPS 1/ FAR 121
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Benefits from ETW testing

Velocity Lift Fuel Weight
Range = — —. n| 1+ _
Specific Fuel Consumption Drag Load + Empty Weight
Engines Aerodynamics Structures
> UHBR / OR > Flight-Re Design > Lightweight

= Engine Integration > Lift-induced Drag = Aeroelastic Tailoring
> Flow Control, e.g. > New configurations
Plus understanding/prediction |-aMinarty = Lack of Tool Calibration
of cruise safety margins

Vital need for ETW Capabilities
In Research & Development
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Aircraft Design Challenge: Performance (3/3)

High Reynolds number testing at ETW enables the designer to
exploit physical limits at high prediction accuracy

Thus, the designer may e.g. increase range performance by
> Improving the aerodynamic efficiency through
— maximising lift of all lifting components,

— minimising lift loss of non-lifting components and propulsion
integration, and

— minimising drag for all components

> Reducing empty weight for a given volume by allowing higher
recompression gradients

— Relatively thicker and thus lighter wings
— Reduced length and thus shorter fuselage, and fairings
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Aerodynamic Drag Components

Typical cruise flight drag breakdown

100% = B Trim

80% 0 Wave

O Nacelle Interference
B Qther Interference
40% m Parasitic

20% D Vortex

B Profile

60%

Total Drag

0%
> Optimum wing design achieves a low profile, wave and induced
drag while providing sufficient volume for hosting the load

carrying structure, movables, and fuel tanks

> Apart from these main drag types, trim drag, interference drag, and
parasitic drag have to be minimised

> Accurate lift and drag prediction requires proper representation
of the boundary layer status (laminar, turbulent, separation)
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WI/T Test Objectives & Interfaces

Validation & Verification

= Geometries Proof of concepts
ndEnnelkeetinG < Concept optimisation
WT Data Characteristics

Verification of CFD/CAE

Performance:

= Field Performance
= Range / Mission Profiles
= Noise

Handling Qualities:
= Flight Controls

Control Laws / Simulator

Loads:
= Component Loads for

Structural Dimensioning

GLASGOW Aerospace Symposium 2015 2015 © ETW GmbH. All rights reserved.



V= /7 /4

EUROPEAN TRANSONIC WINDTUNNEL

Measurement Techniques (steady)

measurement type technique type technique
Force & Integral balance
Moment J
Pressure local tap / PSI area PSP
Flow vector local tufts area PIV
Separation local tufts area litite
crystal
Wing . local SPT area IPCT
Deformation
Boundary local PSQ area TSP
Layer hot-film
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Buffet-Onset Boundary — Comparison with flight-test data

Flight-test data

Buffet-Onset C, depends on:
> Mach Number
> Reynolds Number
> Wing Deformation
— ETW capabilities required ' ' Ma

0.05

Classified

A
v
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Bend and Twist Evaluation — Wing Example

Wing deformation of the NASA Common Research Model during
the ESWIRP test campaign in 2014

Test conditions: Ma =0.85, Ptot = 200 kPa, Ttot = 117K, Re = 20*10°
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Using SPT for Capturing Flap-Gap Effects

Ma, 0.2,
Re, 16.7 Mio.

P, 411 kPa
8.8%

6.6%
4.4%
2.2%
0%
-2.2%

0.6

BB eta

> Flap-gap change versus wingspan and AoA
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Full-Span Model Options

ETSR SUPPORTED MODEL WITH DUMMY STING

| Cost Optimized I |Quality Optimized I

> Performance data based on
corrected low & high Reynolds data

> Single-sting data complete model /
body alone plus deformation data

> Assessment of sting interference
using CFD for the body alone config.

> Wind-tunnel calibration data & robust w

> Absolute performance data. bocas
fu”V Cﬂl‘ro,u-, P

rrerence correction methodology
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Alternative Supports
for Rear End Measurement

> Z-Sting
> Fin Sting
> Front Blade Sting
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TSP Capability to identify Flow Separation

KH3Y-DS21 OPT : TSP -81 19:46:27 25.09.2012 28
Conditions Tflow [K] Assignment A
Ma = 0.20 Ttot = 198.8 Polar = 0187 S 2.8
Re = 7.5 Trun0= 187.3 DPNO= 0089 ﬁﬁji’
AoA = 13.6 Trunx=_196.4 DPNx= 0099 DLR
27
28
25
-
Q
24
23
22
21
20

8 10 12 14 16 18 20 2I2 24
ALFA

Vigwing angle:30 deg

TSP-Image Balance data
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Natural Laminar Flow Half Model

SEVETH AR
PROGARMAL

model
cleaning

1" Image

5th Japanese-German Joint Seminar MIT, Tsukuba, 23. September 2015

detachable leading edge —————

Pressure taps

joint

3.5 hours
continuous testing

This work receives funding from the European Union FP7/2007-2013 under grant agreement no 323452. ETW GmbH/CleanSky has sole copyright af all the contents of this document which must therefore not be copied or reproduced in any way withaut the prior written permissian of ETW GmbH.
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Measured Velocity distributions
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ETW Aeroacoustic Measurements

GLASGOW Aerospace Symposium 2015

Flight

Engine idle (30%), landing config, gear in

-

~ea\!

2015 © ETW GmbH. All rights reserved.

St 06 = 120 (18.06 kHz)
High Re
20M
St o = 185 (27.84 kHz)
nclassified
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Independent Variation of Re-Number & Structural Loads
Lift, drag, pitching-moment characteristics Falcon 7X (1:10)

Reynolds Variation at const. Airloads Airloads Variation at const. Reynolds

Flight Re = 16 Mio. Flight Re = 16 Mio.

Unclassified

> Reynolds Number strongly affects
aircraft performance

> Aeroelastic distortion strongly
affects aircraft stability
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Important: ETW Model Jig Shape TBD

Goal: At the ETW model design point (MDP) test condition,
the model wing bending and twist resembles
wing’s flight shape of full-scale A/C 1g cruise design point

> Calculate the wing shape for the full-scale aircraft at 1 g cruise design
point (design Mach number and design CL, i.e. the “flight shape”

> Estimate the change in wing shape between the ETW MDP and the
corresponding wind-off test conditions, by e.g.

a) Static aeroelastic analysis, or

b) Scaling of existing deformation data from previous test entries
(more simple but potentially less accurate)

Apply resulting difference (twist & bending) to the flight shape for
defining the model-manufacturing wing shape, i.e. “ETW model jig
shape”. NB: The resulting model-manufacturing wing shape may
not be the same as the full-scale “jig shape”!

GLASGOW Aerospace Symposium 2015 2015 © ETW GmbH. All rights reserved.
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Smart Model Design Improves Test Productivity

v y Conceptual design fixed
y Einal geometry fixed
Model size fixed
y Final inspection & acceptance
v Final checkout
g y Final data delivery
test
€s v
75% 25% | Report delivery

Concurrent preparation Wrap/Up

Close collaboration of ETW experts and clients required
In order to achieve a model design that

> Can be manufactured quickly at appropriate quality
> Enables fast and reproducible model rigging and changes
> WOI’kS rellably a.t ETW Unclassified
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ETW vs. Conventional Wind-Tunnel and Flight Testing

> A _

S ETW Testing

3 ‘ Flight Testing

Q o

M L/

s

® i

© et

& 7 > ETW comes close to Flight-Test
O accuracy at much lower costs
e

= —> Significant cost-quality benefit
GJ ,/

CICJ Conventional WTT

CD ..// >

Costs per Day
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Airbus Approach to Aircraft Aerodynamic Development

Wind-tunnel
testing days

-40%

A380 A350XWB

Integrated design process “5As” advances maximum synergy
between wind-tunnel testing & numerical simulation:

> “More simulation, less testing” - specific physical testing
> “First time right” - early reliable verification & validation
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ETW Testing Enables Designers to Exploit Physical Limits
“Design for Flight Reynolds Numbers”

> Bettertake-offi&jlanding perfor
b QYDW n mteg f‘ﬂ«m
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