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Abstract

There is a vast literature that speci�es Bayesian shrinkage priors for vector
autoregressions (VARs) of possibly large dimensions. In this paper I argue that many
of these priors are not appropriate for multi-country settings, which motivates me to
develop priors for panel VARs (PVARs). The parametric and semi-parametric priors I
suggest not only perform valuable shrinkage in large dimensions, but also allow for soft
clustering of variables or countries which are homogeneous. I discuss the implications
of these new priors for modelling interdependencies and heterogeneities among di¤erent
countries in a panel VAR setting. Monte Carlo evidence and an empirical forecasting
exercise show clear and important gains of the new priors compared to existing popular
priors for VARs and PVARs.
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1 Introduction

Most issues that economists have to deal with when evaluating macroeconomic policies or
forecasting economic trends are inherently multivariate, involving analysis of variables such
as in�ation, GDP, the interest rate, and the unemployment rate. Since the seminal paper
of Sims (1980), possibly the most popular econometric tool for analyzing multivariate time
series data is the vector autoregressive (VAR) model; see Koop and Korobilis (2010) for
a recent review of this vast literature. In an increasingly globalized world characterized
by a post-�nancial crisis quagmire of elevated economic and political risk for several
individual countries (e.g. Iceland�s banking sector collapse) and unions (e.g. the Eurozone
debt crisis which peaked in 2010-2012, a¤ecting several countries in the periphery of the
European continent), turbulence in global oil markets, and unprecedented exchange rate
�uctuations, economists are faced with the challenge of having to monitor and model
the global rather than the local economy. Such events have given rise to a recent
literature which develops econometric methods for panel vector autoregressive (PVAR)
models; see Canova and Ciccarelli (2013) for a recent review. PVAR models extend vector
autoregressions for macroeconomic variables of a single country, to a setting with many
macroeconomic and/or �nancial variables for several countries. This feature allows one to
examine interactions, interdependencies, and linkages between di¤erent variables of di¤erent
countries. Considering that the VAR has been a powerful tool that allows macroeconomists
to link data to economic theories, measure impulse responses, and forecast, the panel VAR
can allow us to generalize such useful econometric exercises to the global dimension.

In this paper I propose Bayesian priors for panel VARs which allow for the examination
of the existence (or absence) of certain dependencies and homogeneities across countries.
I consider a setting where the researcher is faced with a possibly large number of
macroeconomic variables G for a large number of countries N . The de�nition of �large�here
means that the model is large enough so that it has a possibly sparse structure. Note that if
a VAR for a single country has G = 10 variables, then this would be of medium size. Once
we consider only, say, N = 5 such countries then the PVAR has 50 variables in total and
can be considered large dimensional. It is important to clarify, following ideas in Canova
and Ciccareli (2013) and Koop and Korobilis (2015), that sparsity in a PVAR is expected to
be of a very speci�c form which has to be re�ected when designing priors for such models.
For example, it might be the case that homogeneities exist between certain countries such
that some groups of PVAR coe¢ cients are similar among these countries. Similarly, lags
of macroeconomic variables of one country may not a¤ect the macroeconomic variables of
some other country, a case which re�ects the absence of dynamic interdependencies from
one country to the other. As I explain in detail in this paper, this type of restriction is
di¤erent in nature from typical variable shrinkage/selection procedures which rely on �nding
zero restrictions on the coe¢ cients of a certain regression model (e.g. VAR). Additionally,
priors should be speci�ed in such a way that re�ect our desire to be agnostic about which
(groups of) countries are homogeneous and which countries lack dynamic interdependencies.
For example, a researcher might impose interdependencies based on experience and come
up with premises such as �large economies (e.g. US) a¤ect smaller countries, but small
countries do not a¤ect larger countries". The recent experience of the European debt crisis,
where the default risk of smaller countries such as Greece, Ireland and Portugal kept the
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global economy in agony for several years, shows that in a complex, globalized economy
the econometrician cannot be certain apriori about the nature of interdependencies that
may hold in the data. In extreme cases, for the sake of parsimony and simplicity, many
researchers decide to estimate a single VAR for each country, thus, ignoring the possibilities
of any linkages between countries1.

The econometric literature has meticulously developed several priors that can impose
restrictions on single-country VARs. For example, Banbura et al. (2010) consider VARs
with 130 macroeconomic variables for US, leading to more than 200,000 autoregressive
coe¢ cients to estimate using only 700 monthly time series observations for each variable.
Banbura et al. (2010), as well as several other papers such as Carriero, Clark and Marcellino
(2011) and Carriero, Kapetanios and Marcellino (2009), rely on the traditional Minnesota
prior; see Littermann (1986). Giannone, Lenza and Primiceri (forthcoming) propose a
full Bayes treatment of the Minnesota prior by estimating its shrinkage hyperparameter
from the likelihood, rather than �ne-tuning it subjectively. George, Sun and Ni (2008)
and Korobilis (2008, 2013) develop Bayesian model selection priors which �nd elements
of the autoregressive coe¢ cients and/or the VAR covariance matrix which are zero; see
also Koop (2013) for an application. Villani (2010) and Giannone, Lenza and Primiceri
(2014) develop priors for the long-run/steady-state VAR, where both priors have shrinkage
properties2. One could argue that all these approaches could be readily used in the PVAR
setting in order to impose restrictions. Nevertheless, all these types of shrinkage priors
developed for the VAR model completely ignore the panel dimension of a PVAR and the
existence of homogeneities. This means that all the priors above will treat each of the N�G
with equal weight a-priori, ignoring that there are N copies of the same G variables in such
a VAR, and that many times macroeconomic and �nancial variables such as GDP, in�ation,
and asset prices for several countries tend to comove.

Following the contribution of Koop and Korobilis (2015), I de�ne parametric and
semiparametric Bayesian model selection priors, carefully tailored to incorporate panel
restrictions, and in particular I focus on �nding homogeneous coe¢ cients and lack of
dynamic interdependencies between countries. The set of priors I de�ne have di¤erent
properties and a range of trade-o¤s between �exibility and computational tractability.
Therefore, I implement a detailed Monte Carlo study which allows me to evaluate all
priors using arti�cially generated data. Both parametric and semi-parametric priors �nd the
correct panel restrictions in sparse PVARs of large dimensions. Additionally, in a forecasting
exercise which involves modeling three variables for ten Eurozone countries (i.e. 30-variable
panel VAR), I show that the priors proposed in this paper can signi�cantly improve mean
and density forecasts compared to the Minnesota prior and an automatic Bayesian model
selection prior for VARs, as well as existing competing priors for PVARs. Therefore, the
main contribution of this paper is to show that when panel structure is explicit in the
data and interdependencies and heterogeneities are present, there is clear theoretical and
empirical evidence that the proposed priors will signi�cantly improve inference. This result
cannot generalize, of course, to settings without panel structure (e.g. typical VAR for one

1A di¤erent extreme case is to allow unrestricted estimation of the large PVAR - such strategy will
inevitably lead to poor estimates due to the lack of degrees of freedom.

2Villani�s (2010) prior is based on a modi�cation of the Minnesota prior, while Giannone, Lenza and
Primiceri (2014) rely on economic theory to provide an informative regularization prior.
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country), in which case less computationally complex priors such as the Minnesota prior
implementation of Giannone, Lenza and Primiceri (forthcoming) are expected to be more
e¢ cient and possibly more accurate.

In the next section I de�ne the Panel VAR framework and the type of restrictions a
researcher is interested in examining. Then in Section 3 I de�ne the parametric and semi-
parametric priors and in Section 4 I implement a Monte Carlo exercise where I compare
all these priors with typical shrinkage priors for large VARs (without panel structure). In
Section 5 I conclude the paper.

2 Vector autoregressions for panels of countries

Let yit denote a vector of G dependent variables for country i observed at time t, i = 1; ::; N ,
t = 1; ::; T . The VAR for country i can be written as:

yit = Ai1y1;t�1 + :::+Aiiyi;t�1 + :::+AiNyN;t�1 + "it; (1)

where Ai;j are G � G matrices for each i; j = 1; 2; :::; N , and "it � N (0;�ii) with �ii
covariance matrices of dimension G�G. I refer to the collection of such N country-speci�c
VARs, which is of the form

Yt = AYt�1 + "t; (2)

as a multivariate regression model for the NG � 1 vector of endogenous variables Yt =
(y01t; ::; y

0
Nt)

0.3 Throughout this paper I assume that "t � N (0;�) with � a full NG�NG
covariance matrix, meaning that cov ("it; "jt) = E ("it; "jt) = �ij 6= 0 where �ij is a the
ij-th G�G block of the matrix � that denotes the covariance matrix between the errors in
the VARs of country i and country j. If no further assumptions are made about the model
coe¢ cients, I refer to this speci�cation as the unrestricted PVAR.

Just by working with moderate values of N and G, the dimension of the PVAR will grow
quickly and shrinkage may be desirable. For instance, an application of the PVAR method-
ology for the currently 19 Eurozone countries using, say, three macroeconomic/�nancial
variables for each country, means that the VAR has NG = 57 endogenous variables and we
have to estimate 3249�p autoregressive coe¢ cients, for some choice of lag length p. Canova
and Ciccarelli (2013) and Koop and Korobilis (2015) argue that it is not optimal to treat the
PVAR in equation (2) as a large VAR, and shrink uniformly the NG�NG coe¢ cient matrix
A. This is because typical shrinkage priors for VARs would ignore the panel structure of
the PVAR model. Looking at equation (1) we should expect that lags of own variables for
country i have little probability of being zero. In that respect, there is more probability
that one or more of the remaining N � 1 countries�variables might not be relevant for the
equation of country i, that is, one or more of the matrices Ai1; :::; Aii�1; Aii+1; :::; AiN is
zero. When such a restriction exists, e.g. Aij = 0, then we say that there are no dynamic
interdependencies from country j to country i, i; j = 1; :::; N , i 6= j. Similarly, due to the
panel structure of the data, we would also expect that some coe¢ cients are homogeneous.

3For the sake of clarity in my presentation, I don�t introduce exogenous terms or lag lengths higher than
one. These can easily be added without changing the implications of my analysis.
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Koop and Korobilis (2015) note that such cross-sectional homogeneities might exist in
the own lags of di¤erent countries, that is, Aii = Ajj , i; j = 1; :::; N , i 6= j. Such a
restriction might not shrink parameters to zero, but also saves degrees of freedom and has
very important and interesting structural implications (it is a direct test for heterogeneities
among countries).

Note that there are N � 1 dynamic interdependency restrictions for each country i,
meaning that in the PVAR of equation (2) we can impose a maximum of N (N � 1) such
restrictions. Additionally, according to the de�nition of Koop and Korobilis (2015) we
can impose a maximum of N(N�1)

2 cross-sectional homogeneity restrictions. Koop and
Korobilis (2015) develop a stochastic search algorithm, that explicitly tests all possible
2N(N�1) dynamic interdependency restrictions, and all the possible 2N(N�1)=2 cross-sectional
homogeneity restrictions4. In their application of just 10 Euro-Area countries, the total
number of restrictions they search using the Gibbs sampler is 290 � 245 which is a very
large number. It is clear that such interdependency and homogeneity restrictions take into
account explicitly the panel structure of the VAR.

The Stochastic Search Speci�cation (S4) algorithm of Koop and Korobilis (2015)
builds on the Stochastic Search Variable Selection prior of George and McCullogh (1993)
and George et al (2008) for VARs, but it takes into account the panel restrictions described
above. The S4 prior for the dynamic interdependency (denoted with the superscript DI)
restrictions is

vec (Aij) �
�
1� 
DIij

�
N
�
0; �21 � I

�
+ 
DIij N

�
0; �22 � I

�
; (3)


DIij � Bernoulli
�
�DI

�
; 8 j 6= i; (4)

where �21 is �small�and �
2
2 �large�so that, if 


DI
ij = 0, Aij is shrunk to be near zero and,

and if 
DIij = 1, a relatively uninformative prior is used. The S4 prior for the cross-sectional
homogeneity (denoted with the superscript CSH) restrictions is

vec (Aii) �
�
1� 
CSHij

�
N
�
Ajj ; �

2
1
� I

�
+ 
CSHij N

�
Ajj ; �

2
2
� I

�
; (5)


CSHij � Bernoulli
�
�CSH

�
; 8 j 6= i; (6)

where �2
1
is �small� and �2

2
is �large� so that, if 
CSHij = 0, Aii is shrunk to be near Ajj ,

and if 
CSHij = 1, a relatively uninformative prior is used.
While application of the DI restrictions is relatively simple, application of the CSH

restrictions is non-trivial. This is because with the CSH prior we seek to test equality of two
matrices (Aii = Ajj) and do so for all possible combinations of i and j, i; j = 1; :::; N . The
authors provide a novel solution to this sampling problem, and more details can be found in
their Appendix. At the same time, there are two important limitations of this prior. First,
the kind of restrictions that we want to look at involve matrices with G2 elements which are

4Note that we can have di¤erent combinations of restrictions holding in a PVAR. For example, for the
VAR of country i we can have any one of the dynamic restrictions Aij = 0. However, we can also have
any combinations of two restrictions holding at the same time, e.g. Aij = 0, Ail = 0, for j 6= l. Similar
arguments can be made for combinations of three or more restrictions holding at the same time. Therefore,
this reasoning explains the large number of possible dynamic and homogeneity restrictions.
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either zero (Aij = 0) or equal to each other (Aii = Ajj). This prior cannot account for the
fact that, say, only some elements of Aii could be equal to zero. Additionally, because of this
group model selection procedure, it is very hard to test the actual restrictions. This would
be equivalent to setting �21 = �

2
1
= 0. However, for computational reasons5 the authors set

� > �21; �
2
1
> 0 for some positive � being very small but not exactly zero. But that means

that the DI and CSH restrictions will only hold approximately, in particular these priors
will allow to test the hypothesis Aij � 0 and Aii � Ajj . In the next Section I motivate
model selection priors for PVARs that do not su¤er from these two shortcomings of the S4

prior.

3 Flexible model selection priors

In order to de�ne the relevant priors I propose in this paper, I de�ne an alternative form of
the PVAR which is

Yt = Zt�+ "t; (7)

where Zt = ING
Yt�1, � = vec (A0) is the K�1 vector of all PVAR coe¢ cients, K = NG2.
The models in equations (2) and (7) are observationally equivalent; the di¤erence in their
speci�cations serves as a means of using alternative expressions for posterior estimation.
Finally, in the hierarchical priors I introduce, some prior hyperparameters have to be selected
by the researcher and some prior hyperparameters will have their own priors. I use an
underscore in order to distinguish between these two sets of prior hyperparameters, that is,
m is a �xed hyperparameter selected by the researcher, and m showing up in a prior is a
hyperparameter which is a random variable.

3.1 A parametric PVAR prior

The �rst prior I consider is inspired by Canova and Ciccarelli (2009) who, in the context
of time-varying parameter VARs, extract latent factors from the VAR coe¢ cients. These
factors are lower dimensional representation of the coe¢ cient and also serve the purpose
of grouping relevant coe¢ cients. For example, Canova and Ciccarelli (2009) show that we
might want to exatract one factor from each of the G2 coe¢ cients of the own lags for each
country i - these are the coe¢ cients in the matrix Aii in equation (1). Similarly, we can
cluster all (N � 1)G2 in the matrices (Ai1; :::; Ai;i�1; Ai;i+1; :::; AiN ) into a separate factor
for each country i. Finally, we can extract a single factor from all K = NG2 coe¢ cients.
This structure can be represented using the following equation

� = �� + v;

where � is a K � s matrix of predetermined loadings6, � is an s � 1 lower dimensional
parameter vector (�factors�) with s � K, and v � N

�
0;�
 �2I

�
. This hierarchical

structure implies that the prior for a is � � N
�
��;�
 �2I

�
, and is indeed a conjugate

prior since the error variance � shows up in the prior variance term.

5See also the discussion in George and McCullogh (1997).
6See Canova and Ciccarelli (2013, page 22) for an example of how these ��s look like in a PVAR with

N = 2, G = 2.
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Canova and Ciccarelli (2009) do not consider the possibility that a coe¢ cient might be
zero, so that their prior can be quite restrictive: it assumes that a single coe¢ cient �k is
always clustered with some other non-zero coe¢ cient �l, even if the �true�value of �k is
zero. In order to deal this culprit of the Canova and Ciccarelli (2009) prior, I propose a
modi�cation based on spike and slab priors leading to a Bayesian Factor Clustering
and Selection (BFCS) prior which is of the form

�k � (1� 
k) �0 (�) + 
k�k; (8)

� � N
�
��;�
 �2I

�
; (9)

� � N (0; c) (10)


k � Bernoulli (�) : (11)

Therefore, with probability 1� � the coe¢ cient �k has prior a point mass at zero, denoted
using the Dirac delta �0. With probability � the same coe¢ cient might come from the
clustering/factor structure a-la Canova and Ciccarelli, which is fully described in equation
(9).

3.2 A nonparametric PVAR prior

Following ideas from Dunson et al. (2008) we can use in�nite mixtures, by means of Dirichlet
process priors, in order to generalize spike and slab priors and at the same time allow for
soft clustering of similar coe¢ cients. Dunson et al. (2008) and MacLehose et al. (2007)
propose the speci�cation

�k � (1� 
k) �0 (�) + 
kDP (�F0) ;

where DP (�F0) is a Dirichlet process with base measure F0, typically a Gaussian
distribution N (0; c). The formulation above allows a coe¢ cient either to shrink to zero
or belong in one of many (in�nite) other Gaussian mixture components. Note, however,
that all non-zero coe¢ cients will be clustered in N (0; c) components. That is, this prior
does not allow to obtain more information about common prior locations for homogeneous
coe¢ cients, and allow sharper posterior inference when the information in the likelihood is
weak. To solve this issue, I propose a prior which allows similar coe¢ cients to be shrunk to
a common prior location, which can be di¤erent for di¤erent groups of similar coe¢ cients.
In particular, I de�ne the following Bayesian Mixture Shrinkage (BMixS) prior

�k � N
�
�k; �

2
k

�
; (12)

�k; �
�2
k � ��0 (�)� �1010

�
��2

�
+ (1� �)F (13)

F � DP (�F0) ; (14)

F0 � N (0; �)�Gamma
�
1

2
;
1

2

�
; (15)

� � Beta
�
1; '

�
: (16)

The coe¢ cients �k have a typical Normal prior, but now there is a multitude of prior
location and scale parameters, which are de�ned by the Dirichlet process in equation (13).
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Therefore, this prior can achieve shrinkage towards multiple prior locations - one being the
point zero which is of interest for model selection, but other locations �k 6= 0 can exist. The
fact that ��2k has a Gamma prior7 implies that it can obtain a range of values that will allow
to achieve such shrinkage towards the prior location parameter �k. Therefore, this prior is
more �exible than the Dunson et al. (2008) prior as it can achieve more complex patterns
of clustering of relevant parameters. At the same time it can help decrease estimation in
the PVAR model by providing more informative prior means and variances.

4 Monte Carlo simulations

In this section I evaluate the ability of the two newly-developed priors to pick up the correct
restrictions in PVARs. I compare these priors to unrestricted least squares, two priors for
panel vector autoregressions and two popular priors for general vector autoregressions. The
PVAR priors are the ones by Koop and Korobilis (2015) and Canova and Ciccareli (2009),
both of which are described above in detail.The �rst general VAR prior is the popular
Minnesota prior which Banbura, Giannone and Reichlin (2010) and Koop and Korobilis
(2013) have used to estimate large VAR systems. The Minnesota prior is based on a
shrinkage hyperparameter, which these two studies optimize on a grid based on goodness-
of-�t measures8. Here I use the algorithm of Giannone, Lenza and Primiceri (forthcoming)
who develop a full-Bayes approach to estimating the Minnesota shrinkage hyperparameter.
The second prior for imposing restrictions on the VAR is the one by George, Sun and
Ni (2008). This algorithm is a generalization of the popular Stochastic Search Variable
Selection (SSVS) algorithm of George and McCulloch (1993) for univariate regressions.
Note that the SSSS of Koop and Korobilis (2015) also builds on the SSVS of George, Sun
and Ni (2008). The SSSS algorithm takes into account possible panel restrictions in the VAR
and is computationally e¢ cient in very high dimensions. In contrast, the SSVS examines
all possible 2K restrictions in VAR coe¢ cients and, as a result, it can only be used in VARs
of moderate dimensions. Therefore, we compare the performance of the following priors
proposed in this paper:

1. BFCS: Bayesian Factor Clustering and Selection,

2. BMixS: Bayesian Mixture Shrinkage,

with the following priors which are speci�cally developed for PVARs:

3. CC: Factor shrinkage prior of Canova and Ciccareli (2009),

4. SSSS: Stochastic Search Speci�cation Selection prior of Koop and Korobilis (2015),

and, �nally, the following priors which are developed for general large VARs:

7 In fact, the ��2k � Gamma
�
1
2
; 1
2

�
induces a heavy-tailed Cauchy prior marginally for coe¢ cient �k.

8Banbura, Giannone and Reichlin (2010) use the MSFE in a training sample in order to select the
Minnesota shrinkage hyperparameter. Koop and Korobilis (2013) work with a time-varying parameter VAR
so they maximize the Minnesota hyperparameter at each point in time by means of the predictive likelihood
obtained from the Kalman �lter recursions.
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6. SSVS: Stochastic Search Variable Selection as in George, Sun and Ni (2008),

7. GLP: Hierarchical Minnesota prior with data-based estimation of shrinkage factor,
as in Giannone, Lenza and Primiceri (forthcoming),

8. OLS: Unrestricted estimator, equivalent to a di¤use prior for VARs; see Kadiyala and
Karlsson (1997).

I implement two Monte Carlo experiments: one using a small panel VAR where we
impose speci�c interdependency and homogeneity restrictions among di¤erent countries;
and one using a larger system with exactly the same VAR structure for each country (full
homogeneity imposed). In both experiments I use the same default hyperparameters for
all priors (uninformative, where possible). For the BFCS and Canova and Ciccarelli (2009)
priors I specify � following Canova and Ciccarelli (2013, page 22), and I set c = 4. For the
additional hyperaparameter of the BFCS prior I set � = 0:5. For the BMixS prior I set
� = 4 and ' = 1, which are also fairly uninformative choices. For the GLP and S4 priors
I use the default settings described by the authors. Finally, for the SSVS of George, Sun
and Ni (2008) I set �21 = 0:0001, �

2
2 = 4 and � = 0:5; see the Technical Appendix for more

details. I also simplify estimation by plugging in the OLS estimate of the PVAR covariance
matrix, which allows to reduce uncertainty regarding covariance matrix estimates9. This is
a typical thing to do in Bayesian analysis of large systems, and has been extensively used
in the �rst Bayesian VAR applications of the Minnesota prior; see Kadiyala and Karlsson
(1997) for more details and references. In this Monte Carlo exercise interest lies in the large
dimensional vector of coe¢ cients � so I use the OLS estimate of the covariance matrix in
order to control for uncertainty regarding (MCMC) sampling of �.

Performance of each of the eight estimators/priors is assessed using the Mean Absolute
Deviation (MAD). In particular, if b� is an estimate of � based on any of the eight priors,
and e� is its true value from the DGP, then I de�ne

MAD =
1

K

KX
i=1

jZib�i � Zie�ij ;
where K denotes the number of VAR coe¢ cients and Zi denotes the i-th column of Z. For
each of the exercises below I generate S = 500 datasets and, therefore, I calculate 500 such
MAD statistics which I summarize using boxplots.

4.1 Simulation 1: small panel VAR

I generate data from a panel VAR with N = 3 countries and G = 2 series for each country,
p = 1 lags, and T = 50 observations. Therefore, we have 36 autoregressive coe¢ cients
to estimate with just 50 time series observations. The model I generate has the following

9For smaller systems we can simply integrate out the covariance matrix by using a noninformative prior.
For large systems it is more e¢ cient to �x the covariance matrix to a point estimate (OLS).
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parameters

A =

26666664

a1 0 d1 0 e1 0
0 a2 0 d2 0 e2
b1 0 a3 0 d3 0
0 b2 0 a4 0 d4
c1 0 b3 0 a5 0
0 c2 0 b4 0 a6

37777775 ; 	 =
26666664

1 :5 :5 :5 :5 :5
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

37777775 ;

where ai � U (0:5; 0:9), bj ; dj ; ck; ek � U (�0:5; 0:5), i = 1; :::; 6, j = 1; :::; 4, k = 1; 2, and
� = 	�1	�1010. The structure for the VAR coe¢ cients A does imply any consistent pattern
of cross-sectional homogeneities or absence of dynamic interdependencies. Nevertheless,
this speci�c con�guration for the VAR coe¢ cients A is used in order to test the general
shrinkage performance of the various priors compared in this simulation, regardless of
whether heterogeneities and interdependencies occur or not in the (P)VAR model.

Figure 1 presents boxplots of the MAD statistic over the 100 samples. All six Bayesian
shrinkage priors (BFCS, BMS, CC, SSSS, GLP and SSVS) introduce some bias in order
to achieve a larger reduction in variance, based on the expectation that many coe¢ cients
are zero. The four panel priors introduce a much larger bias since they incorporate the
expectation that groups/clusters of parameters are zero or identical to each other, and their
performance is suboptimal, based on theMAD, compared to unrestricted OLS. In fact, the
shrinkage GLP and SSVS priors only marginally improve over OLS, showing that in small
systems there are no substantial bene�ts from shrinkage.

4.2 Simulation 2: large panel VAR

In the second DGP I consider the case with N = 10, G = 4, p = 1 and T = 100. There are
1600 autoregressive coe¢ cients to estimate in this model. This model has true parameters

Aij = 0:3� dji�jj; d � U (0; 0:5) ;

	ij =

8<:
1, if i = j
0:5, if i < j
0, if i > j

;

where i; j = 1; :::; N �G. This DGP does not have an explicit panel structure, but a closer
look reveals that several panel restrictions can hold under this form. The VAR coe¢ cient
matrix A has a form similar to a correlation matrix, where elements which have more
distance from the diagonal are essentially zero (thus implying dynamic interdependencies).
At the same time, several coe¢ cients around the main diagonal, that is, coe¢ cients which
describe the evolution of the own VAR for each country, will inevitably be similar even
when d is generated randomly from a Uniform distribution (thus implying cross-sectional
homogeneities). Finally, the factor 0:3 is chosen so as to ensure that the generated PVAR
is stationary.

10The covariance matrix structure is borrowed from the Monte Carlo simulations of George, Sun and Ni
(2008).
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Figure 1: Boxplots of MAD statistics in the �rst Monte Carlo exercise (small VAR model)
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Figure 2 clearly shows that the reduction from the panel VAR priors is substantial. The
best performance on average is obtained from the BFCS prior, although the BMS prior has
much smaller standard deviation of MADs over the 100 Monte Carlo samples. The GLP
and SSVS priors are also performing. In fact the SSVS turns out to have less uncertainty
around posterior estimates compared to the SSSS. This is to be expected given that the
SSSS only examines prespeci�ed groups of restrictions, so unless such groupings hold, the
SSVS will do better since it examines restrictions on each individual VAR coe¢ cient 11.
The bene�ts of data-based shrinkage plus adding some information about possible grouping
of variables results in vast improvements over unrestricted estimation (OLS) and very good
improvements compared to typical VAR priors. As a matter of fact, the two panel VAR
priors proposed in this paper are by far the best performing when a lare (panel) VAR model
has generated our data.

0.25
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0.45

0.5

0.55

0.6

BFCS BMS CC SSSS GLP SSVS OLS

Figure 2: Boxplots of MAD statistics in the second Monte Carlo exercise (large VAR model)

11 In that respect, and given the quite similar performance of the two algorithms, the SSSS is to be preferred
from a computational point of view. In this example with N = 10, G = 4, the algorithm stochastically
examines 290+45 possible DI and CSH restrictions, while the SSVS examines 21600 possible restrictions.
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5 Forecasting EuroZone bond yields

In this Section I present evidence on the ability of the priors suggested in this paper to
provide a parsimonious representation of the PVAR, prevent over�tting and give superior
forecasts. For this reason, I work with G = 3 monthly variables for N = 10 Eurozone
countries for the period 1999M1-2012M12. The series I use are the 10 year bond yields
(variable of interest during the EuroZone crisis), total industrial production (a macro
fundamental), and the average bid-ask spread (a liquidity measure), for Austria, Belgium,
Finland, France, Greece, Ireland, Italy, Netherlands, Portugal and Spain. All series are
expressed as spreads from the respective series of Germany. In this exercise the variable of
interest is the spread of the 10 year bond yields of each country compared to the yield of the
10 year German bund. These spreads have been the focus of popular press and academic
research for the duration of the Eurozone debt crisis.

For the purpose of this paper, a more important aspect is that this dataset is
a representative example of panel structure, that is, of possible existence or absence
of homogeneities and interdependencies, along with other random groupings between
countries. For example, many analysts and policy-makers when looking at these data
have been using a grouping between core (Austria, Belgium, Finland, France, Netherlands)
and periphery (Greece, Ireland, Italy, Portugal, Spain), in order to show that peripheral
countries were exposed to higher sovereign default risk. The kind of comovements in these
data can be seen in Figure 3. The priors suggested in this paper could be used to provide
a formal data-based grouping of countries and variables, rather than relying on arbitrary
groupings. 12

Forecasts are generated iteratively for horizons h = 1; :::; 12 and evaluated recursively
for the period 2007M1-2012M12, starting with the estimation sample 199M1-2006M12 and
adding one observation at a time. Here, I follow Korobilis (2013) and rely on the mean
square forecast error (MSFE) and the average predictive likelihood (APL), the former being
a measure of accuracy of point forecasts and the latter being a measure of accuracy of the
whole predictive distribution (thus, incorporating parameter and estimation uncertainty).
Here I consider the exact same priors/estimators I de�ned in the Monte Carlo Section,
namely BFCS and BMixS proposed in this paper, the CC and SSSS panel VAR priors, the
GLP and SSVS priors for VARs, and �nally the unrestricted OLS estimator (noninformative
prior). Note that comparisons should be straightforward and meaningful since all models
have exactly the same likelihood, and any di¤erences in posterior predictions are coming
from the speci�cation of prior distributions.

Table 1 presents MSFEs for each of the six priors relative to the MSFE of the OLS.
Values lower (higher) than one mean that a method is performing better (worse) compared
to OLS. Results are presented for the representative horizons h = 1; 3; 6; 12, in order to
evaluate monthly, quarterly, bi-annual and annual forecasts. The results are quite clear and
give full support for the following observations

1. All panel priors other than the SSSS (i.e. BFCS, BMix and CC) are consistently
better than the Minnesota prior for the VAR.

12For instance, during the Eurozone crisis, many people have argued that some core countries, such as
France or Belgium, might be exposed to higher risk (hence, such countries could form a separate group).

13



2000M9 2002M5 2004M1 2005M9 2007M5 2009M1 2010M9 2012M5
­10

0

10

20

30
10y bond yield spreads

2000M9 2002M5 2004M1 2005M9 2007M5 2009M1 2010M9 2012M5
­40

­20

0

20

40
Industrial production spread

2000M9 2002M5 2004M1 2005M9 2007M5 2009M1 2010M9 2012M5
0

200

400

600

800
Bid­Ask spread

Figure 3: The data used in the empirical forecasting exercise
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2. The other VAR prior, the SSVS, seems to be performing relatively well, but it has
the lowest MSFEs only in 10% of the cases. Additionally, whenever the SSVS is
performing well the BFCS and BMixS priors are very close in terms of performance
(only exception is Greece for h = 3). In contrast, in many of the cases that either the
BFCS or the BMixS priors are performing well, this performance is far more superior
than the SSVS (e.g. Ireland for h = 1). This shows that there is sparsity in the
data, which the three model selection priors capture, but at the same time there are
homogeneities that the SSVS prior cannot capture (and the two priors suggested in
this paper do capture).

3. The CC and SSSS priors can do well in some cases, but they are very volatile and
unreliable in the sense that for some countries and horizons the forecasts can be
extremely bad (this problem is more pronounced in the case of the SSSS prior). Note
that both these priors specify in advance grouping possibilities between countries. In
contrast, the priors proposed in this paper can allow the possibility for more complex
groupings. The BFCS prior does this by generalizing the CC prior and allowing for
sparsity , thus, elements which the CC prior might have wrongly grouped can now
be zero (if the relevant variable is not important). The BMixS prior allows for both
zero restrictions to occur, as well as data-based clustering of coe¢ cients through the
Dirichlet process.
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Table 1. rMSFEs of Eurozone 10-y bond yield spreads forecasts
Forecast horizon h = 1:

AT BE FI FR GR IE IT NL PT ES
BFCS 0.56 0.77 0.40 0.76 0.72 0.57 0.70 0.48 0.83 0.61
BMixS 0.50 0.81 0.41 0.76 0.64 0.60 0.69 0.62 0.84 0.60

CC 0.59 0.76 0.44 0.81 0.72 0.57 0.70 0.47 0.83 0.63
SSSS 0.75 2.16 1.72 1.07 1.01 0.88 0.72 0.63 0.84 0.62
GLP 0.83 0.97 0.78 0.97 0.90 0.94 1.00 0.89 0.93 0.96
SSVS 0.58 0.75 0.45 0.74 0.78 0.76 0.75 1.00 1.01 0.59

Forecast horizon h = 3:
AT BE FI FR GR IE IT NL PT ES

BFCS 0.64 0.67 0.61 0.57 1.31 0.74 0.71 0.53 0.83 0.70
BMixS 0.62 0.62 0.62 0.61 1.22 0.67 0.73 0.57 0.84 0.67

CC 0.78 0.72 1.09 0.70 1.31 0.67 0.74 1.07 0.82 0.68
SSSS 0.79 0.83 1.12 1.26 1.41 0.76 0.80 2.74 0.88 1.41
GLP 0.90 0.80 0.85 0.76 1.11 0.93 0.90 0.78 0.93 0.97
SSVS 0.65 0.71 0.66 0.63 1.03 0.78 0.76 0.54 0.88 0.83

Forecast horizon h = 6:
AT BE FI FR GR IE IT NL PT ES

BFCS 0.86 0.94 0.68 0.91 0.88 0.83 0.78 0.80 0.59 0.79
BMixS 0.86 0.93 0.69 0.89 0.89 0.83 0.78 0.74 0.62 0.80

CC 1.11 1.10 1.51 0.81 0.87 0.78 0.77 1.58 0.60 0.79
SSSS 1.05 1.35 1.34 1.58 1.04 0.76 0.87 2.94 0.71 0.92
GLP 0.96 0.93 0.87 0.90 0.95 1.02 0.97 0.84 0.88 1.03
SSVS 0.91 0.93 0.76 0.94 1.01 0.74 0.80 0.87 0.65 0.80

Forecast horizon h = 12:
AT BE FI FR GR IE IT NL PT ES

BFCS 0.72 0.78 0.58 0.75 0.83 0.74 0.68 0.46 0.79 0.83
BMixS 0.72 0.78 0.61 0.75 0.84 0.77 0.69 0.52 0.72 0.84

CC 0.95 0.89 1.13 0.65 0.83 0.73 0.65 0.70 0.75 0.80
SSSS 0.93 1.15 0.81 1.51 0.86 0.77 0.78 1.62 0.92 1.11
GLP 0.97 0.91 0.93 0.89 0.94 0.96 0.95 0.86 0.95 0.90
SSVS 0.83 0.85 0.67 0.83 0.89 0.82 0.76 0.56 0.74 0.85
Notes: Entries are MSFEs for each model relative to OLS, and lower values
signify better performance. Entries should be compared column-wise, that is,
for each country compare the best performing model.

Table 2 shows average predictive likelihoods (APLs), which are obtained by evaluating
the posterior predictive density at the true observation yt+h, hence, higher values signify
better perormance. This table says exactly the same story and provides further support
for the MSFE results. In particular, the APL results favor the BFCS and BMixS priors
for producing accurate density forecasts. Note that the BFCS prior has consistently higher
APL compared to the BMixS. This is to be expected, because the former prior has fewer
parameters since it is a mixture of two distributions, while the BMixS is based on an
�in�nite�mixture which implies higher parameter uncertainty that feeds in the posterior
predictive density.
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Table 2. APLs of Eurozone 10-y bond yield spreads forecasts
Forecast horizon h = 1:

AT BE FI FR GR IE IT NL PT ES
BFCS 5.06 4.11 6.33 7.56 1.48 2.97 3.35 7.19 2.99 3.40
BMixS 4.87 4.17 5.66 7.10 1.20 3.09 3.01 6.64 2.61 3.15

CC 4.06 3.61 3.90 5.24 1.36 2.42 3.13 4.16 2.45 3.36
SSSS 3.88 4.01 4.50 4.37 1.12 2.68 2.48 4.99 2.54 2.79
GLP 3.75 3.88 4.06 5.47 1.37 2.65 2.53 4.97 2.17 2.81
SSVS 4.72 3.80 5.40 7.11 1.22 3.12 2.80 6.14 2.61 2.80

Forecast horizon h = 3:
AT BE FI FR GR IE IT NL PT ES

BFCS 4.53 3.92 6.25 7.22 1.35 2.45 3.19 7.24 2.49 3.16
BMixS 4.59 3.84 5.87 6.85 1.24 2.50 3.10 6.62 2.40 3.16

CC 3.76 3.24 3.99 5.42 1.33 2.35 2.79 4.85 2.22 3.06
SSSS 3.76 3.30 4.47 4.39 1.17 2.02 2.78 4.67 2.28 2.58
GLP 3.94 3.47 4.55 5.64 1.02 2.39 2.55 5.27 2.17 2.73
SSVS 4.65 4.20 5.86 6.65 1.24 2.59 3.09 6.45 2.27 2.96

Forecast horizon h = 6:
AT BE FI FR GR IE IT NL PT ES

BFCS 3.96 3.51 6.10 6.62 1.18 2.04 2.94 6.79 2.08 2.82
BMixS 3.90 3.42 5.73 6.58 1.04 1.92 2.81 6.54 1.93 2.74

CC 3.22 2.85 3.80 4.81 1.13 1.90 2.55 4.34 1.94 2.64
SSSS 3.04 2.86 4.82 4.12 0.89 1.70 2.20 4.45 1.95 2.65
GLP 3.00 2.64 4.15 5.06 0.85 1.73 2.30 4.75 1.67 2.43
SSVS 3.77 3.40 5.40 6.24 0.97 1.90 2.86 6.20 2.15 2.47

Forecast horizon h = 12:
AT BE FI FR GR IE IT NL PT ES

BFCS 3.61 3.14 5.59 5.57 0.91 1.41 2.48 6.29 1.32 2.29
BMixS 3.59 3.10 5.22 5.57 0.83 1.43 2.35 6.08 1.39 2.17

CC 2.99 2.71 3.52 4.37 0.92 1.36 2.10 4.43 1.35 2.18
SSSS 2.96 2.69 4.27 3.19 0.73 1.31 1.75 4.74 1.57 1.58
GLP 2.78 2.83 3.57 4.43 0.85 1.19 2.02 4.37 1.27 1.93
SSVS 3.58 3.26 4.74 5.52 0.83 1.39 2.16 5.64 1.52 2.30
Note: Entries are Average Predictive Likelihoods (APLs), and higher values
signify better performance. Entries should be compared column-wise, that is,
for each country compare the best performing model.

6 Conclusions

Given the increased need to model interactions among di¤erent economies or di¤erent
�niancial markets (e.g. for stocks, exchange rates, or other assets), panel VARs are meant
to become a major tool of empirical analyses and a very natural extension of the benchmark
single-country VAR framework. There are, of course, other models for multi-country data
such as factor models (Kose, Otrok and Whiteman, 2003) or Global VARs (Dees et al, 2007).
However, such alternative methods impose shrinkage by projecting the data into a lower
dimensional space. Factor models do this in a data-based way, while GVARs model weakly
exogenous variables using weights obtained from billateral trades between the countries
involved in the dataset.

In contrast, the panel VAR approach is the only one that allows to potentially uncover
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all possible interdependencies and homogeneities among countries, since all the original
N�G series (N countries, G macroeconomic variables) are modelled as a VAR. The culprit
of this increased �exibility is that panel VARs can be heavily parametrized. So instead of
shrinking the dimension of the original data (as is the case with factor or GVAR models), in
this paper I follow the vast literature on Bayesian VARs and I propose shrinkage priors on
the autoregressive coe¢ cients. The kind of relationships that may hold among di¤erent
countries motivate my choices of priors. In particular, I propose priors which restrict
coe¢ cients to be zero, while allow unrestricted coe¢ cients to be clustered in di¤erent
directions. The empirical results clearly suggest the bene�ts of the proposed approach
compared to traditional prior choices such as the Minnesota prior.
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A. Techincal Appendix

Consider the parametrization of the PVAR of the form

Yt = Zt�+ "t; (A.1)

where Zt = ING
Xt, Xt = Yt�1, � = vec (A0) is the K � 1 vector of all PVAR coe¢ cients,
K = 1; :::; NG2. The parmeter vector of interest is now �, but once we know this vector we
can easily rearrange its elements to construct the original PVAR matrix A.

A.1 Posterior inference in the PVAR using the Bayesian Factor Clustering
and Selection (BFCS)

The Bayeian Factor Clustering and Selection prior has the following structure

�k � (1� 
k) �0 (�) + 
k�k; (A.2)

� � N
�
��;�
 �2I

�
(A.3)

� � N (0; cI) (A.4)


k � Bernoulli (�) ; (A.5)

� � Beta
�
1; '

�
: (A.6)

However, this structure implies the following speci�cation for the vector of PVAR coe¢ cients
�

� = �� (��) + v; (A.7)

where v � N
�
0;�
 �2I

�
and � is a K � K diagonal matrix with element �ii = 
i,

i = 1; :::;K. Here I follow the recommendation of Canova and Ciccarelli (2009) and use the
exact decomposition for �, observed without error. This is the case where �2 = 0.

Gibbs sampling algorithm for the BMixS algorithm

1. Sample � from
(�j�) � N (E�; V�) ; (A.8)

where E� = V�

� eZ 0 �I 
 e���1 Y � and V� = �c�1I + eZ 0 �I 
 e���1 eZ��1, where eZ =
Z � �� � and e� = �I + �2Z 0Z��.

2. Recover � from
(�j�) � N

�
�� (��) ;�
 �2I

�
: (A.9)

3. Sample 
kj
�k , where 
�k denotes the vector 
 with its k-th element removed, from�

kj
�k;�

�
� Bernoulli (!k) ; (A.10)

where !k = l1k
l0k+l1k

, and l0k = p
�
Y j�k; 
�k; 
k = 0

�
�,

l1k = p
�
Y j�k; 
�k; 
k = 1

�
(1� �). Note that evaluation of p

�
Y j�k; 
�k; 
k = 0

�
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and p
�
Y j�k; 
�k; 
k = 1

�
is very costly (see exact equations in Korobilis, 2013),

and can also be subject to over�ow/under�ow problems. In this case, one can
use an approximate algorithm and update all 
k at once (not conditional on 
�k)
and calculate l0k � N (�kj0; 1e� 8)� and l0k � N (�kj0; c) (1� �), where N (xja; b)
denotes the Normal density with mean a and variance b evaluated at the observations
x.

4. Sample � from

(�j�) � Beta
�
1 +

X

k; '+

X
(1� 
k)

�
: (A.11)

5. Sample � conditional on � using standard expressions (see e.g. Koop, 2003).

A.2 Posterior inference in the PVAR using the BayesianMixture Shrinkage
(BMixS) prior

The Bayesian Mixture Shrinkage (BMixS) prior has the following hierarchical strucure

�k � N
�
�k; �

2
k

�
; (A.12)

�k; �
�2
k � ��0 (�)� �1e+10

�
��2

�
+ (1� �)F; (A.13)

F � DP (�F0) ; (A.14)

F0 � N
�
0; �2

�
�Gamma

�
1

2
;
1

2

�
; (A.15)

� � Beta
�
1; '

�
: (A.16)

Given C� mixture components, the equivalent stick breaking representation of this prior
is

�k � N
�e�l;e�2l � ; k = 1; :::;K; l = 1; :::; C�; (A.17)�e�l;e��2l � � w0�0 (�)� �1e+10

�
��2

�
+

C�X
l=2

wlN
�
0; �2

�
�Gamma

�
1

2
;
1

2

�
; (A.18)

where w0 = � and wl = !l
Y

h<l
(1� !h) with !l � Beta

�
1; '

�
, l = 2; :::; C�. Here it

greatly simpli�es computation if we pre-�x the maximum number of clusters C�; otherwise a
Metropolis-Hastings step is required in order to sample the number of cluster con�gurations.
We don�t need to be very informative and set C� to a very low value (e.g. one or two
clusters), but it generally helps if C� � K.

Gibbs sampling algorithm for the BMixS algorithm

1. Sample � from
(�j�) � N (E�; V�) ; (A.19)

where E� = V�
h
T�1M + Z 0 (I 
 �)�1 Y

i
and V� =

h
T�1 + Z 0 (I 
 �)�1 Z

i�1
, with

T = diag
�
�21; :::; �

2
K

�
and M = (�1; :::; �K)

0.
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2. Sample e�l, l = 1; :::; C�, from
(e�lj�) � � �0 (e�l) ; if l = 1

N (E�; V�) ; otherwise
; (A.20)

where �0 (e�l) is the Dirac delta at zero for parameter e�l, E� = V��XK

j=1;j2l
�j�

�2
j

�
,

and V� =
�
1=�2 +

XK

j=1;j2l
��2j

��1
.

3. Sample e�2l , l = 1; :::; C�, from
�e�2l j�� �

(
�1010 (e� l) ; if l = 1

iGamma
�
1
2 + nl;

1
2 +

PC�
l=2;k2l (�k��l)

2
�
; otherwise

; (A.21)

where nl is the number of coe¢ cients (elements) that belong in cluster l.

4. Sample wl from
(wlj�) � !l

Y
h<l

(1� wh) ; (A.22)

where !l is sampled from

(!lj�) � Beta
�
nl + 1; C� �

Xl

j=1
nj + '

�
: (A.23)

5. Sample � conditional on � using standard expressions (see e.g. Koop, 2003).

A.3 Posterior inference in the PVAR using the Stochastic Search Speci�-
cation Selection (S4) prior of Koop and Korobilis (2015)

Following the main text, the VAR for country i is

yit = Ai1y1;t�1 + :::+Aiiyi;t�1 + :::+AiNyN;t�1 + "it; (A.24)

and the compact form of the PVAR (in matrix form) is

Y = XA+ ";

where Y = (Y 01 ; :::; Y
0
T )
0, X = (X 0

1; :::; X
0
T )
0 and " = ("01; :::; "

0
T )
0. Note that for notational

simplicity I have de�ned Xt = Yt�1, however, the formulae below remain the same if
we generalize to Xt = (I; Yt�1; Yt�2; :::; Yt�p;Wt�1; Gt�1) where Wt are country-speci�c
exogenous variables and Gt are global exogenous variables.

We pre-specify two groups of panel-type restrions: dynamic interdependencies (DI), and
cross-sectional homogeneity (CSH). The existence (or absence) of DI can be tested using
the prior
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vec (Aij) �
�
1� 
DIij

�
N
�
0; �21 � IG2

�
+ 
DIij N

�
0; �22 � IG2

�
; (A.25)


DIij � Bernoulli
�
�DIij

�
; 8 j 6= i; (A.26)

�DIij � Beta
�
1; '

�
; (A.27)

while the existence (or absence) of cross-sectional homogeneity can be tested using the prior

vec (Aii) �
�
1� 
CSHij

�
N
�
Ajj ; �

2
1
� IG2

�
+ 
CSHij N

�
Ajj ; �

2
2
� IG2

�
; (A.28)


CSHij � Bernoulli
�
�CSHij

�
; 8 j 6= i; (A.29)

�CSHij � Beta
�
1; '

�
: (A.30)

We take the hypeparameters with an underscore ('; �21; �
2
2; �

2
1
; �2
2
) as given, that is,

prespeci�ed by the researcher. Additionally, as explained in detail in Koop and Korobilis

(2015) we de�ne a matrix � =
N�1Y
i=1

NY
j=i+1

�i;j , where �i;j are K � K matrices constructed

using the CSH restriction indicators 
CSHij . First note that 
CSHij = 0 implies that countries
i and j have similar coe¢ cients (i.e. the homogeneity restriction Aii � Ajj holds), and the
opposite is true when 
CSHij = 1. The matrix �i;j is the identity matrix (i.e. ones on the
diagonal zeros elsewhere) with the restriction that its fi; ig diagonal element is equal to 
CSHij

and its fi; jg non-diagonal element is equal to
�
1� 
CSHij

�
. Therefore, each of the possible

N (N � 1) =2 matrices �i;j allow us to impose on the PVAR coe¢ cients the CSH restriction

between countries i and j, and their product, which is the matrix � =
N�1Y
i=1

NY
j=i+1

�i;j , allows

us to index all 2N(N�1)=2 possible CSH restrictions among the N countries. Therefore, if
�� denotes the posterior mean of the unrestricted vectorized PVAR coe¢ cients (i.e. using

a noninformative prior), then e�� = ��� =

N�1Y
i=1

NY
j=i+1

�i;j�� is simply the K � 1 vector of

posterior means of the PVAR coe¢ cients with the cross-sectional homogeneity restrictions
imposed; see Koop and Korobilis (2015) for further details.

Gibbs sampler algorithm for the S4 algorithm

1. Sample vec (A) from
(vec (A) j�) � N (�� ��; D�) ; (A.31)

where D� =
�
��1 
X 0X + V 0V

��1 and �� = D� ����1 
X 0X
�
�OLS

�
, where �OLS

is the OLS estimate of �, and V is a diagonal matrix which has its respective diagonal
block of G2 elements equal to �21 � 1 if 
DIij = 0 or equal to �22 � 1 if 
DIij = 1, where
1 is a G2 � 1 vector of ones.

2. Sample 
DIij from �

DIij j�

�
� Bernoulli

�
!DIij

�
; (A.32)
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where !DIij =
u2;ij

u1;ij+u2;ij
with u1;ij = N

�
vec (Aij) j0; �21IG2

�
�DIij and u2;ij =

N
�
vec (Aij) j0; �22IG2

� �
1� �DIij

�
, and N (xja; b) denotes the Normal density with

mean a and variance b evaluated at the observations x.

3. Sample �DIij from�
�DIij j�

�
� Beta

�
1 +

X

DIij ; '+

X�
1� 
DIij

��
: (A.33)

4. Sample 
CSHij from �

CSHij j�

�
� Bernoulli

�
!CSHij

�
; (A.34)

where !CSHij =
v2;ij

v1;ij+v2;ij
with v1;ij = N

�
vec (Aii) jvec (Ajj) ; �21IG2

�
�CSHij and

v2;ij = N
�
vec (Aii) jvec (Ajj) ; �22IG2

��
1� �CSHij

�
, and N (xja; b) denotes the Normal

density with mean a and variance b evaluated at the observations x.

5. Sample �CSHij from�
�CSHij j�

�
� Beta

�
1 +

X

CSHij ; '+

X�
1� 
CSHij

��
: (A.35)

6. Sample � conditional on A using standard expressions (see e.g. Koop, 2003).

A.4 Posterior inference in other models examined in this paper

For the SSVS prior for VAR developed by George, Sun and Ni (2008), see the Appendix
of their paper. This prior is similar to the S4 prior with the exception that it does not
distinguish between DIs and CSHs, rather it treats restrictions on each VAR coe¢ cient
uniformly (meaning that each VAR coe¢ cient has equal prior weight of importance and
only the data will determine which coe¢ cients should be shrunk to zero). This prior can
be written as

�k �
�
1� 
ij

�
N
�
0; �21

�
+ 
ijN

�
0; �22

�
; (A.36)

where in this paper I set �1 = 0:01 and �2 = 4.
In the case of the Minnesota prior of Giannone et al.(forthcoming) I use the code

provided by D. Giannone (http://homepages.ulb.ac.be/~dgiannon/GLPreplicationWeb.zip)
and I work with their default settings. Note that this code allows to work only with posterior
medians. In order to have better comparability with all other priors in this paper, I allow
MCMC updates for this prior in order to account for approximation error when using the
Gibbs sampler.

The prior of Canova and Ciccareli (2009) can be obtained as a special case of the BFCS
prior, by setting 
k = 1 for all k = 1; :::;K and by not updating this parameter from its
posterior.
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