
Watch Your Data Structures!

Dongliang Peng
1,2

, Alexander Wolff
1

1
Institute of Computer Science, University of Würzburg,

Am Hubland, D-97074 Würzburg, Germany

Telephone: +49 (0) 931-31-85055

Fax: +49 (0) 931-31-84600

alexander.wolff@uni-wuerzburg.de

http://www1.informatik.uni-wuerzburg.de/en/staff

2
Department of Geo-Informatics, Central South University, China

Abstract: When we plan to implement a program, there are always many data structures

we can use to achieve a certain goal. If the data structures are not used carefully, however,

inefficient programs may result. As an example, we consider the problem of searching pairs

of close points from a dataset. We consider two points to be close if they lie within a square

of pre-specified side length . We compare three obvious algorithms to solve the problem: a

sweep-line (SL) algorithm, an algorithm based on the Delaunay Triangulation (DT) of the

input points, and a hashing-like algorithm which overlays the input points with a rectangular

grid. We implemented the algorithms in C# and tested them on randomly generated and real-

world data. We used the DT available in ArcGIS Engine for the DT-based algorithm. We

used three different balanced binary search tree data structures to implement the SL algo-

rithm. However, the simple grid-based algorithm turned out to run faster than any of the oth-

er algorithms by a factor of at least .

Keywords: data structure, algorithms, sweep-line, Delaunay triangulation, grid, bal-

anced binary search tree

1. Introduction
In map generalization, data integration, or data conflation, one often needs to detect pairs of

points that are meant to be the same point but have slightly different coordinates due to

rounding coordinates or data imprecision. We model this problem as follows. We want to

find, in a given set of points, all pairs of close points. We consider two points to be close if

they lie within a square of pre-specified side length . In other words, and are close

if , where and .

When implementing and testing some ad-hoc solutions for this problem, we made a number

of observations that we found worth sharing with the GIS community. In other words, the

ultimate goal of this paper is not to identify the algorithm that performs best for the problem

at hand. Instead, we want to address the issues we had during implementation and testing,

and discuss the lessons we learned.

A brute-force approach for finding all pairs of close points requires time, where is

the number of points. This is worst-case optimal since the size of the output can be if

is sufficiently large. Typically, however, the size of the output is small. Hence, it is desirable

to use algorithms whose running time does not only depend on the size of the input (, the

mailto:alexander.wolff@uni-wuerzburg.de
http://www1.informatik.uni-wuerzburg.de/en/staff

number of points), but also on the size of the output, that is, the number of close pairs, which

we denote by . Such an algorithm is called output-sensitive.

We consider three obvious output-sensitive algorithms: a sweep-line (SL) algorithm, an algo-

rithm based on the Delaunay Triangulation (DT), and a hashing-like approach that uses a grid.

The SL-algorithm runs in worst-case time. The same holds for the DT-based

algorithm under the assumption that the input points are randomly and independently drawn

from the unit square. Under the same assumption regarding the distribution of the input, the

grid-based algorithm runs in time. We sketch the three algorithms in Section 2. We

have implemented them, and we have compared their performance on random data and real-

world data; see Section 3. We conclude the paper in Section 4.

We remark that we focus on methods that can be implemented easily. For this reason we

have not included a method that uses two-dimensional range trees, a two-level data structure

based on BBST. The method works as follows. We insert all input points into the range

tree and then query the tree, for each point , with a range of size , centered at . The

running time of this method is , the memory consumption (De

Berg, Cheong, Van Kreveld, & Overmars, 2008). The running time can be improved

to by the use of fractional cascading (De Berg, Cheong, Van Kreveld, &

Overmars, 2008), but this would mean additional implementational effort.

2. Algorithms
In the following, we sketch the three algorithms. We denote the set of input points by
 ; we denote the coordinates of point by . While the algorithms work

for any input, our running-time analyses will assume that the input points are uniformly and

independently distributed (u.i.d.) in the unit square . We do not record the pairs

of close points but just count them, thus we basically do not need any extra memory for the

output.

2.1 The SL Algorithm
The SL paradigm is a common tool in computational geometry (De Berg, Cheong, Van

Kreveld, & Overmars, 2008). Intuitively, a line sweeps the plane, stops at certain events and

changes its internal status. One usually employs two data structures; the event queue and the

status. For our problem, the search for close points, we sweep a horizontal line from top to

bottom. Our sweep line stops at the -coordinates ,

which are stored (together with references to the corresponding points) in the event queue in

decreasing order. The status contains all points in a horizontal strip of height bounded by

and . We stores the points according to their -coordinate using a balanced

binary search tree (BBST). To implement the event queue, it suffices to store the

coordinates in an array and sort it.

We have only two types of events: enter and leave. A point enters the status when the

sweep line hits it, that is, when . At the same time, we report each pair , where

 is a point in the status with . Such a points-in-interval query is

supported by BBSTs; it takes time, where is the number of points that are

reported for . Then we add to the status. The point leaves the status when the sweep

line reaches the -coordinate . Summing up yields a total running time of

 , where is the size of the output, that is, the number of close point pairs. The

memory consumption of the SL algorithm is .

Unfortunately, the C# implementation of BBST based SortedDictionary does not offer a

specific points-in-interval query. Instead, the interface offers the method where, which takes

an arbitrary predicate as argument and returns all currently stored objects that fulfil the

predicate – but this method takes linear time. This is not a problem as long as is so small

that the height- strip above the sweep line never contains many points. In the worst case,

however, the running time becomes quadratic even if there are no close pairs at all. Luckily,

the BBST implementations SortedSet in .NET Framework 4.0 and TreeSet in the open-

source C# data-structure library C5 (Kokholm & Sestoft, 2007) both support the points-in-

interval query that we need (and so does, e.g., TreeSet in Java).

2.2 The DT-Based Algorithm
The DT is a useful tool to partition the plane such that spatially close points are connected.

For example, it is well-known that the DT always connects a closest point pair. Given the DT,

we go through the points and start a modified breadth-first search (BFS) from each of them.

BFS is a well-known graph traversal algorithm (Cormen, Leiserson, Rivest, & Stein, 2009).

For an input point , our BFS considers every point with .

We say that is the radius of our BFS. The reason for using is

simply that a radius of is not sufficient; we may, in rare cases, oversee some close pairs. In

Figure 1, for an instance, if we set , then and are a pair of close points. But we

cannot find this pair if we only check points within a distance of , because there is at least

one point lying outside the square in every path from to or from to . It is not hard to

see that is necessary. Unfortunately, we could not prove that is sufficient. We conjecture

that is indeed sufficient. This conjecture is supported by our experiments where we found

all pairs of close points by using radius .

Here, we show that a radius is sufficient. According to Xia (2013),

the DT contains, for any two input points and , a path of length less than connecting

 and . Observe that such a path is contained in the ellipse with foci and and major

axis . We are interested in the maximum - or -coordinate of for a fixed point

(say) and any point of -distance at most . One can show that the maximum

 -coordinate of is maximized if ; see Figure 2 (a). In this case, the maximum

 -coordinate of is , which is the value we used for . This can be seen by

some elementary geometry; see Figure 2 (b). We move to and to .

Figure 1. An instance of the DT. The line segments between the points are the edges of

the DT. The side length of the square is ; , ,

 , and , thus and

 .

Then is described by the equation , and the right tangent of with slope 1

has the equation . In the original coordinate system (Figure 2 (a)), this tangent

corresponds to the vertical line .

Figure 2. Among all points of -distance at most from , the point gives

rise to an ellipse whose right vertical tangent has maximum -coordinate (a). For

computing the equation of more easily, we transform , , , and into the

coordinate system (b).

Constructing the DT takes time and memory (De Berg, Cheong, Van

Kreveld, & Overmars, 2008). (Actually, under our assumption concerning the input

distribution, the DT can be constructed in linear time (Buchin, 2009), but we will not exploit

this here.) Assuming that the points are u.i.d. in the unit square, the running time of the DT-

based algorithm is . The memory consumption of the DT-based algorithm is

 .

2.3 The Grid-Based Algorithm
The third algorithm that we consider overlays the input points with a regular rectangular grid.

It makes sense to set the side length of the grid cells to at least . Then, for each input

point , it suffices to compute the cell that contains and to check the points in that cell and

in the at most eight neighboring cells. To represent the grid, we use a two-dimensional array

of size , where denotes the maximum -

coordinate among all the points; , , and are defined analogously to .

Each entry of the grid has a reference to a list (LinkedList in C#) that stores the points that lie

in the corresponding cell. In order to ensure a memory consumption of , we set to

 , where is a constant.

After we have computed the size of the grid cells, we go through the input points once to

compute the two indices of the cell that contains each input point . This corresponds to

(i) dividing the coordinates of by and (ii) applying the floor function. If we assume that

the input is u.i.d. in the unit square, the expected number of point pairs we check in total is

 , and our algorithm runs in time.

3. Case Study
We implemented the three algorithms in C# (using the .NET Framework 4.0). We ran our

experiments under Windows 7 on a 3.3 GHz quad core CPU with 8 GB RAM. We measured

time and memory consumption by using the built-in C# methods Sys-

tem.Environment.TickCount and GC.GetTotalMemory(true), respectively. For the DT, we

took advantage of an implementation available in ArcGIS Engine 10.1. As we did not find a

way to measure the memory consumption of the DT directly, we saved the files for the DT,

i.e., files in .adf format from ArcGIS Engine 10.1 (an instance of the DT consists of files),

to the hard disk and measured the sum of the sizes of the files. We show the results

obtained by the DT-based algorithm with both radii and ; we use DT total r1 and DT

total r2 to denote the respective total running times. We use DT total to denote the memory

consumption of the DT-based algorithm and DT constr. to denote the time or memory

consumption of the DT construction; these values are independent of the radius.

We tested the three algorithms on both random data and real-world data. There were ten sets

of points for each type of data. We used to denote the number of points in the set that had

most points among the ten sets. We considered two different ways to set . One way was that

we set to a certain value, say , independently of the instance size. This means that the size

of the output, , grows quadratically. The other way was that we set ,

which means that decreases from to and grows linearly.

3.1 Case Study on Random Data
We randomly generated ten point sets u.i.d. in the unit square. The sizes of the point sets

range from to with steps of size . We set , and according

to our description . We set the side length to for the grid-based

algorithm.

3.1.1 Time Consumption

In the experiment with (see Figure 3), the quadratic size of the output dominates the

actual time consumption of the DT-based algorithm. The same holds for the C#

SortedDictionary implementation of the SL algorithm. The corresponding C# SortedSet and

C5 TreeSet implementations perform linearithmically, and the grid-based algorithm performs

linearly: in these cases, the actual time consumption is dominated by the term that depends

on the size of the input.

In the experiment with (see Figure 4), the DT-based algorithm, however, now

shows a (near-) linear time consumption. Still, it is much slower than the other four imple-

mentations. Interestingly, the C# SortedDictionary implementation still shows a quadratic

behavior. This is due to the fact that the height- strip above the sweep line contains an ex-

pected linear number of points (), which are traversed by the where method of the

SortedDictionary data structure. The C# SortedSet, C5 TreeSet, and the grid-based imple-

mentations perform similarly as in the experiment with . In both experiments, the sim-

ple grid-based algorithm is by far (by a factor of roughly) the fastest.

We also observe that in both experiments the time it took to only compute the DT was about

the same as the running times of the two implementations of the SL algorithms. In addition,

The DT-based algorithm with radius is faster than that with radius by a factor of .

Figure 3. Time consumption of the algorithms for . The DT-based algorithm took

 with radius ("DT total r1") and with radius ("DT total r2")

for . In both graphs, the -axis displays the size of the input ()

and the -axis displays the time consumption in seconds.

3.1.2 Output Size and Memory Consumption

The curves of the output size perform as expected. The output size grows quadratically when

we set , and grows linearly when we set ; see Figure 5(a). As said before,

we did not record the pairs of close points but just counted the number of pairs, we basically

did not need any extra memory for the output. Therefore, the two experiments with different

values of need the same amount of memory. Figure 5(b) shows that the memory consump-

tion of all our methods grows linearly. Among the five implementations, the grid-based algo-

rithm uses the least amount of memory, which is less than the DT-based algorithm by a fac-

tor of . We can also see that the C# SortedSet BBST needs the least memory to implement

the SL algorithm; about less than the C5 TreeSet implementation.

0

20

40

60

80

0 50 100 150 200

SL C# SortedDic.
DT total r1
DT total r2

0

1

2

3

4

0 50 100 150 200

SL C# SortedSet
SL C5 TreeSet
Grid
DT constr.

Figure 4. Time consumption of the algorithms for . The DT-based algo-

rithm took with radius ("DT total r1") and with radius ("DT total

r2") for . The axes and the notations are as in Figure 3.

0

20

40

60

80

0 50 100 150 200

SL C# SortedDic.
DT total r1
DT total r2

0

1

2

3

4

0 50 100 150 200

SL C# SortedSet
SL C5 TreeSet
Grid
DT constr.

3.2 Case Study on Real-World Data
We use a set of points from OpenStreetMap that represent bus stops, milestones,

hotels, post boxes etc. in the state of Bavaria, Germany; see Figure 6. After deleting dupli-

cates, we had points left. We computed the average distance as

where , , , and are defined as in Section 2.3.

We perturbed the points according to a Gaussian distribution. For each point, we generated a

pair of normally distributed numbers and by the Box-Muller method (Box & Muller,

1958). Then we set the new coordinates as

where and are the original coordinates, and we use the standard deviation .

After perturbing, we had two points sets, i.e., the original set and a perturbed set . This

models the problem that we have two point sets from different sources, and we try to find the

corresponding points. In order to extract from ten data sets of different sizes, we

selected for each point in with probability . Hence, and .

(a) Output size: the -axis displays ,

where is the number of pairs of close points.

(b) Memory consumption: the -axis displays

the memory consumption in .

Figure 5. Output size and memory consumption of the algorithms.

The -axis displays the size of the input (). Sqrt means square root.

Figure 6. The point data of Bavaria.

0

200

400

600

800

0 50 100 150 200

ɛ = 0.003·Sqrt(N/n)

ɛ = 0.003

0

15

30

45

60

75

0 50 100 150 200

SL C# SortedDic.
SL C# SortedSet
SL C5 TreeSet
Grid
DT total
DT constr.

For , let
 where

 is the set of perturbed points corresponding to the

points in . These are the sets we used in our experiments; see Figure 7–9.

We set , and according to our description . For the grid-

based algorithm, setting to would yield too many grid cells (times the number

of points). This would occupy a lot of memory and take a lot of time to initialize the

LinkedList entries. Instead, we set to

 , which means that we have roughly the

same numbers of grid cells and points.

3.2.1 Time Consumption

Basically, we get similar results as in Section 3.1.1. An interesting difference is that although

the grid-based algorithm is still the fastest, the factor decreases to roughly . There are two

reasons. One is that the ratio of to changes. When , it is for the case study on

real-world data while it is for the case study on random data. This leads the grid-based

algorithm to check more points in the case study on real-world data. The other reason is that

the size of the real-world output dominates the running time a little bit more. There are on

average close points for one point in the case study on real-world data when
 and , while the number is for the case study on random data when

 and . Also note that now the construction time of the DT is less than

the running time of the two implementations of the SL algorithm. The DT-based algorithm

with radius is faster than that with radius by a factor of roughly .

Figure 7. Time consumption of the algorithms for . The DT-based algorithm took

 with radius ("DT total r1") and with radius ("DT total r2")

for . The axes and the notations are as in Figure 3.

3.2.2 Output Size and Memory Consumption

Also, the curves of the output size perform as expected; see Figure 9(a). For the grid-based

algorithm, when we try to promise that there are roughly the same numbers of entries and

points, we need more memory compared to the case study on random data. However, the

grid-based algorithm still uses less memory than the DT-based algorithm by a factor of ,

and it also still uses less than the SL implementations by a factor of .

0

50

100

150

200

0 200 400 600

SL C# SortedDic.
DT total r1
DT total r2

0

5

10

15

20

0 200 400 600

SL C# SortedSet
SL C5 TreeSet
Grid
DT constr.

4. Concluding Remarks
Although the grid-based algorithm was the clear winner of our comparison, we were more

interested in the results of the three implementations of the SL algorithm. The SL paradigm

can be used to solve many problems (e.g., computing the Voronoi diagram) for which the

grid approach would not work. When implementing the SL algorithm, it was tempting to use

the data structures available in C# (for example, the method where of SortedDictionary), but

we have seen that it is worth to read the fine print.

Even from the slowest algorithm, based on the DT, we have learned something. By compari-

son with the other implementations, we noticed that the radius- BFS missed a few close

pairs in the case study on random data (just out of the close pairs that were re-

ported in the -point instance for). Then we conjectured that a radius of

 is sufficient, which was supported by our experiments where we found all pairs

of close points. We also proved that a radius of is sufficient. Of course, enlarg-

ing the radius slowed down our code. It turned out, however, that a radius of is

sometimes necessary.

Figure 8. Time consumption of the algorithms for . The DT-based algorithm

took with radius ("DT total r1") and with radius ("DT total r2")

for . The axes and the notations are as in Figure 3.

(a) Output size. (b) Memory consumption.

Figure 9. Output size and memory consumption of the algorithms.

The axes and the notations are as in Figure 5.

0

50

100

150

200

0 200 400 600

SL C# SortedDic.

DT total r1

DT total r2

0

5

10

15

20

0 200 400 600

SL C# SortedSet
SL C5 TreeSet
Grid
DT constr.

0

750

1,500

2,250

3,000

0 200 400 600

ɛ = δ·Sqrt(N/n)

ɛ = δ

0

50

100

150

200

250

0 200 400 600

SL C# SortedDic.
SL C# SortedSet
SL C5 TreeSet
Grid
DT total
DT constr.

5. Acknowledgments
We thank Thomas van Dijk for pointing us to the grid-based algorithm. This research was

partly supported by the China Scholarship Council (CSC).

6. References
BOX, G., & MULLER, M. (1958). A note on the generation of random normal deviates. The

Annals of Mathematical Statistics, 29(2), 610-611.

BUCHIN, K. (2009). Delaunay triangulations along space-filling curves. In A. Fiat, & P.

Sanders (Ed.), Proc. 17th Annu. Europ. Symp. Algorithms (ESA'09). 5757, pp. 119-

130. Springer.

CORMEN, T. H., LEISERSON, C. E., RIVEST, R. L., & STEIN, C. (2009). An introduction

to algorithms (Third edition ed.). MIT Press.

DE BERG, M., CHEONG, O., VAN KREVELD, M., & OVERMARS, M. (2008).

Computational geometry: algorithms and applications (Third edition ed.). Berlin

Heidelberg: Springer-Verlag.

KOKHOLM, N., & SESTOFT, P. (2007). The C5 generic collection library. A .NET 2.0

collection library that supports advanced functionality. Dr. Dobb's Journal, 50-56.

XIA, G. (2013). The stretch factor of the delaunay triangulation is less than 1.998. SIAM

Journal on Computing, 42(4), 1659-1620.

Biography
Dongliang Peng MEng received a bachelor degree in Mapping Engineering and a master

degree in Cartography and Geographic Information Engineering from Central South Uni-

versity, respectively in 2009 and 2012. He is currently a PhD student in the Institute of Com-

puter Science, University of Würzburg. His research focuses on morphing algorithms for

maps, cartographic generalization, and algorithms for GIS.

Prof. Dr. Alexander Wolff received a PhD degree in Computer Science from Freie

Universität Berlin in 1999. He did his habilitation at the Faculty of Informatics of Karlsruhe

University (now KIT). He is currently the vice dean of the Faculty for Mathematics and

Computer Science, University of Würzburg. His research focuses on graph drawing, compu-

tational geometry, geometric networks, algorithms for GIS, and graph algorithms.

