
Watch Your Data Structures! 
 

Dongliang Peng
1,2

, Alexander Wolff
1 

 
1
Institute of Computer Science, University of Würzburg,  

Am Hubland, D-97074 Würzburg, Germany  

Telephone: +49 (0) 931-31-85055 

Fax: +49 (0) 931-31-84600 

alexander.wolff@uni-wuerzburg.de 

http://www1.informatik.uni-wuerzburg.de/en/staff 

 
2
Department of Geo-Informatics, Central South University, China 

 

 

Abstract: When we plan to implement a program, there are always many data structures 

we can use to achieve a certain goal. If the data structures are not used carefully, however, 

inefficient programs may result. As an example, we consider the problem of searching pairs 

of close points from a dataset. We consider two points to be close if they lie within a square 

of pre-specified side length  . We compare three obvious algorithms to solve the problem: a 

sweep-line (SL) algorithm, an algorithm based on the Delaunay Triangulation (DT) of the 

input points, and a hashing-like algorithm which overlays the input points with a rectangular 

grid. We implemented the algorithms in C# and tested them on randomly generated and real-

world data. We used the DT available in ArcGIS Engine for the DT-based algorithm. We 

used three different balanced binary search tree data structures to implement the SL algo-

rithm. However, the simple grid-based algorithm turned out to run faster than any of the oth-

er algorithms by a factor of at least  . 
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1. Introduction 
In map generalization, data integration, or data conflation, one often needs to detect pairs of 

points that are meant to be the same point but have slightly different coordinates due to 

rounding coordinates or data imprecision. We model this problem as follows. We want to 

find, in a given set of points, all pairs of close points. We consider two points to be close if 

they lie within a square of pre-specified side length  . In other words,   and   are close 

if                     , where            and           . 

 

When implementing and testing some ad-hoc solutions for this problem, we made a number 

of observations that we found worth sharing with the GIS community. In other words, the 

ultimate goal of this paper is not to identify the algorithm that performs best for the problem 

at hand. Instead, we want to address the issues we had during implementation and testing, 

and discuss the lessons we learned. 

 

A brute-force approach for finding all pairs of close points requires       time, where   is 

the number of points. This is worst-case optimal since the size of the output can be       if   

is sufficiently large. Typically, however, the size of the output is small. Hence, it is desirable 

to use algorithms whose running time does not only depend on the size of the input ( , the 
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number of points), but also on the size of the output, that is, the number of close pairs, which 

we denote by  . Such an algorithm is called output-sensitive.  

 

We consider three obvious output-sensitive algorithms: a sweep-line (SL) algorithm, an algo-

rithm based on the Delaunay Triangulation (DT), and a hashing-like approach that uses a grid. 

The SL-algorithm runs in            worst-case time. The same holds for the DT-based 

algorithm under the assumption that the input points are randomly and independently drawn 

from the unit square. Under the same assumption regarding the distribution of the input, the 

grid-based algorithm runs in        time. We sketch the three algorithms in Section 2. We 

have implemented them, and we have compared their performance on random data and real-

world data; see Section 3. We conclude the paper in Section 4. 

 

We remark that we focus on methods that can be implemented easily.  For this reason we 

have not included a method that uses two-dimensional range trees, a two-level data structure 

based on BBST.  The method works as follows. We insert all   input points into the range 

tree and then query the tree, for each point  , with a range of size      , centered at  .  The 

running time of this method is            , the memory consumption          (De 

Berg, Cheong, Van Kreveld, & Overmars, 2008). The running time can be improved 

to            by the use of fractional cascading (De Berg, Cheong, Van Kreveld, & 

Overmars, 2008), but this would mean additional implementational effort. 

 

 

2. Algorithms 
In the following, we sketch the three algorithms. We denote the set of input points by   
            ; we denote the coordinates of point    by        . While the algorithms work 

for any input, our running-time analyses will assume that the input points are uniformly and 

independently distributed (u.i.d.) in the unit square            . We do not record the pairs 

of close points but just count them, thus we basically do not need any extra memory for the 

output. 

 

2.1 The SL Algorithm 
The SL paradigm is a common tool in computational geometry (De Berg, Cheong, Van 

Kreveld, & Overmars, 2008). Intuitively, a line sweeps the plane, stops at certain events and 

changes its internal status. One usually employs two data structures; the event queue and the 

status. For our problem, the search for close points, we sweep a horizontal line from top to 

bottom. Our sweep line         stops at the   -coordinates                      , 

which are stored (together with references to the corresponding points) in the event queue in 

decreasing order. The status contains all points in a horizontal strip of height   bounded by   

and           . We stores the points according to their  -coordinate using a balanced 

binary search tree (BBST). To implement the event queue, it suffices to store the     

coordinates in an array and sort it. 

 

We have only two types of events: enter and leave. A point    enters the status when the 

sweep line hits it, that is, when      . At the same time, we report each pair        , where 

   is a point in the status with             . Such a points-in-interval query is 

supported by BBSTs; it takes            time, where    is the number of points that are 

reported for   . Then we add    to the status. The point    leaves the status when the sweep 

line reaches the   -coordinate     . Summing up yields a total running time of     



      , where   is the size of the output, that is, the number of close point pairs. The 

memory consumption of the SL algorithm is     . 

 

Unfortunately, the C# implementation of BBST based SortedDictionary does not offer a 

specific points-in-interval query. Instead, the interface offers the method where, which takes 

an arbitrary predicate as argument and returns all currently stored objects that fulfil the 

predicate – but this method takes linear time. This is not a problem as long as   is so small 

that the height-  strip above the sweep line never contains many points. In the worst case, 

however, the running time becomes quadratic even if there are no close pairs at all. Luckily, 

the BBST implementations SortedSet in .NET Framework 4.0 and TreeSet in the open-

source C# data-structure library C5 (Kokholm & Sestoft, 2007) both support the points-in-

interval query that we need (and so does, e.g., TreeSet in Java). 

 

2.2 The DT-Based Algorithm 
The DT is a useful tool to partition the plane such that spatially close points are connected. 

For example, it is well-known that the DT always connects a closest point pair. Given the DT, 

we go through the points and start a modified breadth-first search (BFS) from each of them. 

BFS is a well-known graph traversal algorithm (Cormen, Leiserson, Rivest, & Stein, 2009). 

For an input point  , our BFS considers every point     with                  . 

We say that                   is the radius of our BFS. The reason for using    is 

simply that a radius of   is not sufficient; we may, in rare cases, oversee some close pairs. In 

Figure 1, for an instance, if we set        , then   and   are a pair of close points. But we 

cannot find this pair if we only check points within a distance of  , because there is at least 

one point lying outside the square in every path from   to   or from   to  . It is not hard to 

see that    is necessary. Unfortunately, we could not prove that    is sufficient. We conjecture 

that    is indeed sufficient. This conjecture is supported by our experiments where we found 

all pairs of close points by using radius   . 

 

 

Here, we show that a radius                   is sufficient. According to Xia (2013), 

the DT contains, for any two input points   and  , a path of length less than       connecting 

  and  . Observe that such a path is contained in the ellipse     with foci   and   and major 

axis      . We are interested in the maximum  - or  -coordinate of     for a fixed point   

(say        ) and any point   of   -distance at most  . One can show that the maximum 

 -coordinate of     is maximized if        ; see Figure 2 (a). In this case, the maximum 

 -coordinate of     is          , which is the value we used for   . This can be seen by 

some elementary geometry; see Figure 2 (b). We move   to          and    to         . 

 

Figure 1. An instance of the DT. The line segments between the points are the edges of 

the DT. The side length of the square is         ;            ,            , 

           , and            , thus                 and        

        . 

  

  



Then     is described by the equation          , and the right tangent of   with slope 1 

has the equation         . In the original coordinate system (Figure 2 (a)), this tangent 

corresponds to the vertical line            . 

 

 

Figure 2. Among all points of   -distance at most   from  , the point         gives 

rise to an ellipse     whose right vertical tangent   has maximum  -coordinate (a). For 

computing the equation of   more easily, we transform  ,  ,    , and   into the         

coordinate system (b). 

 

Constructing the DT takes          time and      memory (De Berg, Cheong, Van 

Kreveld, & Overmars, 2008). (Actually, under our assumption concerning the input 

distribution, the DT can be constructed in linear time (Buchin, 2009), but we will not exploit 

this here.) Assuming that the points are u.i.d. in the unit square, the running time of the DT-

based algorithm is           . The memory consumption of the DT-based algorithm is 

    . 

 

2.3 The Grid-Based Algorithm 
The third algorithm that we consider overlays the input points with a regular rectangular grid. 

It makes sense to set the side length   of the grid cells to at least  . Then, for each input 

point  , it suffices to compute the cell that contains   and to check the points in that cell and 

in the at most eight neighboring cells. To represent the grid, we use a two-dimensional array 

of size                            , where       denotes the maximum  -

coordinate among all the points;     ,     , and      are defined analogously to     . 

Each entry of the grid has a reference to a list (LinkedList in C#) that stores the points that lie 

in the corresponding cell. In order to ensure a memory consumption of     , we set   to 

           , where   is a constant. 

 

After we have computed the size of the grid cells, we go through the input points once to 

compute the two indices of the cell that contains each input point  . This corresponds to 

(i) dividing the coordinates of   by   and (ii) applying the floor function. If we assume that 

the input is u.i.d. in the unit square, the expected number of point pairs we check in total is 

            , and our algorithm runs in        time. 

 

 



3. Case Study 
We implemented the three algorithms in C# (using the .NET Framework 4.0). We ran our 

experiments under Windows 7 on a 3.3 GHz quad core CPU with 8 GB RAM. We measured 

time and memory consumption by using the built-in C# methods Sys-

tem.Environment.TickCount and GC.GetTotalMemory(true), respectively. For the DT, we 

took advantage of an implementation available in ArcGIS Engine 10.1. As we did not find a 

way to measure the memory consumption of the DT directly, we saved the files for the DT, 

i.e., files in .adf format from ArcGIS Engine 10.1 (an instance of the DT consists of    files), 

to the hard disk and measured the sum of the sizes of the    files. We show the results 

obtained by the DT-based algorithm with both radii    and   ; we use DT total r1 and DT 

total r2 to denote the respective total running times. We use DT total to denote the memory 

consumption of the DT-based algorithm and DT constr. to denote the time or memory 

consumption of the DT construction; these values are independent of the radius. 

 

We tested the three algorithms on both random data and real-world data. There were ten sets 

of points for each type of data. We used   to denote the number of points in the set that had 

most points among the ten sets. We considered two different ways to set  . One way was that 

we set   to a certain value, say   , independently of the instance size. This means that the size 

of the output,          , grows quadratically. The other way was that we set         , 

which means that   decreases from        to    and   grows linearly. 

 

3.1 Case Study on Random Data 
We randomly generated ten point sets u.i.d. in the unit square. The sizes of the point sets 

range from        to         with steps of size       . We set         , and according 

to our description          . We set the side length   to        for the grid-based 

algorithm. 

 

3.1.1 Time Consumption 

In the experiment with      (see Figure 3), the quadratic size of the output dominates the 

actual time consumption of the DT-based algorithm. The same holds for the C# 

SortedDictionary implementation of the SL algorithm. The corresponding C# SortedSet and 

C5 TreeSet implementations perform linearithmically, and the grid-based algorithm performs 

linearly: in these cases, the actual time consumption is dominated by the term that depends 

on the size   of the input. 

 

In the experiment with          (see Figure 4), the DT-based algorithm, however, now 

shows a (near-) linear time consumption. Still, it is much slower than the other four imple-

mentations. Interestingly, the C# SortedDictionary implementation still shows a quadratic 

behavior. This is due to the fact that the height-  strip above the sweep line contains an ex-

pected linear number of points (  ), which are traversed by the where method of the 

SortedDictionary data structure. The C# SortedSet, C5 TreeSet, and the grid-based imple-

mentations perform similarly as in the experiment with     . In both experiments, the sim-

ple grid-based algorithm is by far (by a factor of roughly  ) the fastest. 

 

We also observe that in both experiments the time it took to only compute the DT was about 

the same as the running times of the two implementations of the SL algorithms. In addition, 

The DT-based algorithm with radius    is faster than that with radius    by a factor of  . 

 



  
Figure 3. Time consumption of the algorithms for     . The DT-based algorithm took 

       with radius    ("DT total r1") and        with radius    ("DT total r2") 

for          . In both graphs, the  -axis displays the size of the input (       ) 

and the  -axis displays the time consumption in seconds.  

 

 

 

3.1.2 Output Size and Memory Consumption 

The curves of the output size perform as expected. The output size grows quadratically when 

we set     , and grows linearly when we set         ; see Figure 5(a). As said before, 

we did not record the pairs of close points but just counted the number of pairs, we basically 

did not need any extra memory for the output. Therefore, the two experiments with different 

values of   need the same amount of memory. Figure 5(b) shows that the memory consump-

tion of all our methods grows linearly. Among the five implementations, the grid-based algo-

rithm uses the least amount of memory, which is less than the DT-based algorithm by a fac-

tor of    . We can also see that the C# SortedSet BBST needs the least memory to implement 

the SL algorithm; about     less than the C5 TreeSet implementation.  
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Figure 4. Time consumption of the algorithms for         . The DT-based algo-

rithm took        with radius    ("DT total r1") and        with radius    ("DT total 

r2") for          . The axes and the notations are as in Figure 3. 
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3.2 Case Study on Real-World Data 
We use a set   of         points from OpenStreetMap that represent bus stops, milestones, 

hotels, post boxes etc. in the state of Bavaria, Germany; see Figure 6. After deleting dupli-

cates, we had           points left. We computed the average distance as 

 

                                    
 

where     ,     ,     , and      are defined as in Section 2.3. 

 

 

We perturbed the points according to a Gaussian distribution. For each point, we generated a 

pair of normally distributed numbers   and   by the Box-Muller method (Box & Muller, 

1958). Then we set the new coordinates as 

 

           
           
 

where   and   are the original coordinates, and we use the standard deviation           . 

After perturbing, we had two points sets, i.e., the original set   and a perturbed set   . This 

models the problem that we have two point sets from different sources, and we try to find the 

corresponding points. In order to extract from   ten data sets          of different sizes, we 

selected for    each point in   with probability     . Hence,               and          . 
 

  
(a) Output size: the  -axis displays        , 

where   is the number of pairs of close points. 

(b) Memory consumption: the  -axis displays 

the memory consumption in   . 

  
Figure 5. Output size and memory consumption of the algorithms.  

The  -axis displays the size of the input (       ). Sqrt means square root. 

 

Figure 6. The point data of Bavaria. 
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For         , let          
  where   

  is the set of perturbed points corresponding to the 

points in   . These are the sets we used in our experiments; see Figure 7–9. 

 

We set     , and according to our description                    . For the grid-

based algorithm, setting   to        would yield too many grid cells (   times the number 

of points). This would occupy a lot of memory and take a lot of time to initialize the 

LinkedList entries. Instead, we set   to 
      

  
    , which means that we have roughly the 

same numbers of grid cells and points. 

 

3.2.1 Time Consumption 

Basically, we get similar results as in Section 3.1.1. An interesting difference is that although 

the grid-based algorithm is still the fastest, the factor decreases to roughly  . There are two 

reasons. One is that the ratio of   to   changes. When    , it is     for the case study on 

real-world data while it is   for the case study on random data. This leads the grid-based 

algorithm to check more points in the case study on real-world data. The other reason is that 

the size of the real-world output dominates the running time a little bit more. There are on 

average       close points for one point in the case study on real-world data when   
        and    , while the number is      for the case study on random data when 

          and        . Also note that now the construction time of the DT is less than 

the running time of the two implementations of the SL algorithm. The DT-based algorithm 

with radius    is faster than that with radius    by a factor of roughly  . 

 

  
Figure 7. Time consumption of the algorithms for    . The DT-based algorithm took 

       with radius    ("DT total r1") and        with radius    ("DT total r2") 

for          . The axes and the notations are as in Figure 3. 

 

 

3.2.2 Output Size and Memory Consumption 

Also, the curves of the output size perform as expected; see Figure 9(a). For the grid-based 

algorithm, when we try to promise that there are roughly the same numbers of entries and 

points, we need more memory compared to the case study on random data. However, the 

grid-based algorithm still uses less memory than the DT-based algorithm by a factor of    , 

and it also still uses less than the SL implementations by a factor of    . 
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4. Concluding Remarks 
Although the grid-based algorithm was the clear winner of our comparison, we were more 

interested in the results of the three implementations of the SL algorithm. The SL paradigm 

can be used to solve many problems (e.g., computing the Voronoi diagram) for which the 

grid approach would not work. When implementing the SL algorithm, it was tempting to use 

the data structures available in C# (for example, the method where of SortedDictionary), but 

we have seen that it is worth to read the fine print. 

 

Even from the slowest algorithm, based on the DT, we have learned something. By compari-

son with the other implementations, we noticed that the radius-  BFS missed a few close 

pairs in the case study on random data (just   out of the         close pairs that were re-

ported in the        -point instance for        ). Then we conjectured that a radius of 

          is sufficient, which was supported by our experiments where we found all pairs 

of close points. We also proved that a radius of           is sufficient. Of course, enlarg-

ing the radius slowed down our code. It turned out, however, that a radius of           is 

sometimes necessary. 

 

 

  

Figure 8. Time consumption of the algorithms for        . The DT-based algorithm 

took        with radius    ("DT total r1") and        with radius    ("DT total r2") 

for          . The axes and the notations are as in Figure 3. 

  
(a) Output size. (b) Memory consumption. 

  
Figure 9. Output size and memory consumption of the algorithms.  

The axes and the notations are as in Figure 5. 
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