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1. Introduction 

Nowadays, spatio-temporal datasets are being collected in unprecedented volumes at 

increasingly fine scales. This creates opportunities to develop more accurate forecasting 

models, but exposes the weaknesses of traditional methods. The traditional way to 

incorporate spatial and temporal structure into a forecasting model is to assume that the 

spatio-temporal relationship can be described by a linear model with global set of parameters, 

which requires the space-time process to be weakly stationary (Cressie and Wikle, 2011). 

This is the approach taken in, for example, the space time autoregressive integrated moving 

average (STARIMA) modelling framework (Pfeifer and Deutsch, 1980). However, such 

models typically cannot deal with the nonstationary and nonlinear properties of fine grain 

spatio-temporal datasets, which may be highly dynamic (Kamarianakis and Prastacos, 2005; 

Cheng et al., 2011).  

In response to this, statistical modelling frameworks have been extended to model local 

and/or dynamic space-time structures recently (Min et al., 2009; Ding et al., 2010; Min and 

Wynter, 2011; Kamarianakis et al., 2012; Cheng et al., 2014). The improvement that these 

models gain over global model specifications is striking, and clearly motivates the use of 

local model structures. In parallel to this, researchers are turning towards less conventional 

techniques, often with their roots in the machine learning (ML) and data mining 

communities. Examples of such models include artificial neural networks (ANNs) and 

support vector machines (SVMs), which have become popular in the environmental sciences 

due to their ability to model complex, nonlinear spatial/spatio-temporal relationships 

(Kanevski et al., 2009).  

In each case, the problem exists to determine the spatio-temporal neighbourhood (STN) of 

features that is useful for forecasting the value of a space-time series at a given point in space 

and time, which consists of spatially and/or temporally lagged observations of the dependent 

variable in the autoregressive setting. Various feature selection methods exist, including 

autocorrelation analysis, principal components analysis etc. The simplest approach is to test 

all combinations of the STN and use the model that minimises the empirical error. However, 

in high dimensional data this is computationally infeasible, and more sophisticated variable 

selection methods may aid model selection (Guyon and Elisseeff, 2003). In this study, a 

recent machine learning method, namely the graphical least adaptive shrinkage and selection 

operator (GLASSO) is applied to the selection of local STNs. The results are verified using a 

more traditional cross-correlation (CC) analysis, which demonstrates the validity of the 

observed relationships. 

 



2. Methodology 

2.1. GLASSO 

GLASSO is a method for extracting a sparse graph from an inverse covariance matrix using a 

lasso      penalty (Friedman et al., 2008). GLASSO is similar in motivation to 

autocorrelation analysis (see, e.g., Box et al., 1994), but has the advantage that it considers 

the influence of all the spatio-temporal information simultaneously. Let        denote a set 

of normally distributed data with   observations,    variables, mean   and covariance  . Let 

  denote the empirical covariance matrix, and   the inverse covariance matrix. The 

maximum likelihood estimate of   can be found by maximising the following: 

                      
 

(1) 

Which has the intuitive solution       . An    penalty can be added to the off diagonal 

elements of   to give the following maximisation problem: 

                           
 

(2) 

Where      is the sum of absolute values of off-diagonal elements of  , and   is a positive 

tuning parameter. Solving Eq. 2 with an appropriate value of   leads to a sparse 

representation of   , and variables can be estimated as conditionally independent (Rasmussen 

and Bro, 2012). By considering all variables together, the GLASSO approach reveals 

information concerning partial correlations between variables. Small partial correlations are 

considered to be insignificant and are set to zero, as determined by the value of  .  

2.2. Local spatio-temporal GLASSO 

GLASSO has been used for feature selection in the context of traffic flow forecasting (Gao et 

al., 2011). In their approach, Gao et al. use GLASSO to define the STN of SCOOT (split 

cycle offset optimisation technique) flow detectors. The resulting STN is used to produce 

forecasts with an ANN model. The assumption is made that the spatial and temporal 

composition of the STN is fixed in time. However, this is not necessarily a realistic 

assumption. The size and composition of the STN may vary with traffic states. Recent 

developments in the literature have attempted to address this, either by drawing from a set of 

models that each pertain to a certain traffic state (Stathopoulos and Karlaftis, 2003; Min and 

Wynter, 2011; Kamarianakis et al. 2012) or by changing the composition of the STN based 

on the prevailing traffic condition (Min et al., 2009; Ding et al. 2010; Cheng et al., 2013). 

In this study, GLASSO is used to determine the time-varying STN in the context of traffic 

forecasting. First, let           denote an index of the regular seasonal component in the 

data (i.e. the number of observations collected in a single day), let   denote the maximum 

spatial extent (lag) of the STN, and let   denote the maximum temporal extent (lag) of the 

STN. Let                      denote a space-time series in spatial domain   and 

temporal interval  , collected at times           and locations          . GLASSO is 

used to estimate a sparse graph centred on each time point of the index  . Therefore,   

sparse graphs are estimated from   covariance matrices with structure shown in figure 1. 



 

 

 

 

 

   

 

 
 
 
 
 
 
 
 

                                                                            

                                                                                

          
                                                                                

                                                                            

                                                                                          

          
                                                                                          

          
                                                                                           

 
 
 
 
 
 
 
 

 

Figure 1 – Diagram of covariance matrix 



The matrix    contains the covariance between observations recorded at time of day   at 

location 0, and the lagged observations up to temporal lag   and spatial lag  , for all days 

    (assuming complete data for all days). The first row of the sparse graph created from    

is used to define the STN of location 0 at  . Spatial and temporal lags with nonzero 

coefficients are included in the STN.  

3. Data description and experimental procedure 

The data are unit travel times (seconds/metre) collected using automatic number plate 

recognition (ANPR) on London’s road network as part of Transport for London’s (TfL’s) 

London Congestion Analysis Project (LCAP). Observations are made every 5 minutes. The 

data used here are collected between 6AM and 9PM (180 observations per day, so      ) 

on 274 consecutive days, beginning in January 2011. The time varying mean is subtracted 

from the data prior to analysis. For illustrative purposes, a single road link was chosen for 

analysis, which is link 442, shown in figure 2 in red. Details of the link are shown in table 1. 

Three values of   are tested: 0.001, 0.005 and 0.01.   is set to 10 and   is set to 3. All 

experiments are carried out using R (R Core Team, 2014) with the glasso package (Friedman 

et al, 2011).  

 

Figure 2 – Map of the study area: The link coloured in red is the test link. The other 

coloured links are its ten nearest neighbours in terms of network distance (calculated 

from link midpoint). 

 

 



Table 1 – Details of link 442 

LCAP ID Direction LENGTH (metres) Name 

442 South 899.4 A201 Farringdon / A201 Blackfriars Bridge SEB 

 

4. Results 

Figures 3 – a)-c) show the nonzero coefficients at the three values of   for link 442. Larger values of   

result in fewer variables being selected. A number of points can be noted from the results. Firstly, 

those members of the STN with non-zero coefficients are not necessarily those that are closest in 

terms of network distance. For example, the first and second nearest neighbours of link 442 have no 

non-zero coefficients when the value of   is set to 0.005 or 0.01. Interestingly, the third and eighth 

nearest neighbours provide the most meaningful information. This is because the overlapping spatial 

layout of the network complicates the proximity measure; GLASSO automatically accounts for this. 

Secondly, the coefficients with nonzero values, and hence the composition of the STN, changes 

throughout the day. Examining figure 3 b) and c), it can be seen that their coefficients are only 

nonzero during the AM and PM peak periods. The implication of this is that the size of the STN 

increases as congestion increases. This motivates the use of temporally local model forms. 

 



 

Figure 3 – Nonzero GLASSO coefficients   values of a) 0.001, b) 0.005 and c) 0.01. On 

the x-axis, the first 3 cells are temporal lags 1,2 and 3 of spatial lag 1, and so on. 

5. Comparison autocorrelation analysis 

To assess the validity of the observed results, the pairwise cross correlation (CC) is calculated 

between link 442 and its 10 nearest neighbours. The cross-correlation function is an extension 

of the Pearson coefficient to bivariate data (see, e.g. Kendall and Ord, 1990). It measures the 

correlation between observations of two series separated by time lags. To assess the direction 

of dependence, the CCF is usually calculated in both directions, i.e. CC of series X with 

series Y and series Y with series X. The temporal lag at which the CC peaks can be used to 

determine a transfer function, provided it is nonzero. A peak at lag zero indicates 

contemporaneous correlation. A first difference is applied before the CC is calculated to 

ensure temporal stationarity. 

a) b) 

c) 



 

Temporal Lag 

Figure 4 – Empirical cross-correlations between UTT at link 442 and each of its 

neighbours: a) is the first neighbour and j) is the 10
th

 neighbour bottom right etc. Blue 

lines are 95% confidence interval 

Figure 4 shows the results of the cross-correlation analysis. On the plots, lag zero is at the 

centre. The blue lines represent the 95% confidence interval for significant CC. It can be seen 

that most of the links (1,2,4,5,6,7,9,10) exhibit negligible CC with link 442. There are a few 

statistically significant spikes but the actual value of the CC coefficient is too low to indicate 

that these represent true statistical relationships. The spikes are more due to the fact that the 

long series length leads to a very low threshold for statistical significance. The exceptions to 

this pattern are links 3 and 8, which display significant, positive CC with link 442 at lags -1, 

0 and 1. The peak CC is contemporaneous on link 1622 but occurs at lag -1 on link 8.  

Although the level of CC is moderate, the results suggest directional dependence between 

CC 



links 442 and 454. This is reflected in the results of GLASSO, in which link 454 is the only 

link with nonzero coefficients when       . Link 1622’s coefficients shrink to zero 

because the contemporaneous CC provides comparatively less information, given information 

about link 442. 

GLASSO has a number of advantages over using CC alone. Firstly, CC is a global indicator 

that measures the average pairwise CC between links at all times. Therefore, it is not able to 

quantify how the relationship between links changes over the course of the day. Secondly, 

CC measures correlations directly without accounting for correlation between variables. In 

time series analysis, the partial autocorrelation function is used to account for this, but this 

requires specification of the ordering of the variables. GLASSO considers all variables 

together. 

6. Conclusion and future work 

In this study, the use of GLASSO for the identification of local STNs for use in spatio-

temporal models has been investigated. The STNs determined by GLASSO can be used as 

input variables to a variety of statistical and machine learning models. This entails a model 

structure that varies with time of day. A local kernel based model or a graphical model could 

be used to achieve this type of structure. Furthermore, it would be simple to apply the method 

to larger time periods following a similar approach to Kamarianakis et al. (2012), which 

would enable the creation of a model that varies with traffic states. Future work will involve 

the development of forecasting models based on the STNs defined here. The appropriate 

values of   can be determined through cross-validation, where the neighbourhood that 

produces the lowest error is selected. 
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