
Building a Heterogeneous Sensor Infrastructure using a schema-

less approach.

Neil Harris, Phil James

School of Civil Engineering and Geosciences, Newcastle University, NE1 7RU

Neil.Harris1@newcastle.ac.uk

Philip.James@newcastle.ac.uk

KEYWORDS: Heterogeneous Sensors, Open source, NOSQL

Background and motivation

One of the aims of is project was to define a single flexible data structure to manage all the

cross-sectorial heterogeneous data recorded. This is challenging as due to the diverse nature

of the data defining one ubiquitous data schema to suit all scenarios without numerous

redundancies is practically impossible.

Urban areas are complex systems, comprising many interacting infrastructure

sectors. Understanding these inter-relationships is essential to sustainable urban and

infrastructure development. Research focused on single sectors, or over limited timescales,

will inevitably fail to capture these interdependencies and dynamics. Consequently this

project is carrying out work to investigate these sectorial relationships. The initial facility

monitors a range of infrastructures and sectors such as water, earthworks, transport, climate,

waste. The concept of the system is displayed in figure 1.

Figure 1: Integrated spatial data system

(Source: http://portal.opengeospatial.org/files/?artifact_id=25562)

mailto:Neil.Harris1@newcastle.ac.uk
mailto:Philip.James@newcastle.ac.uk

In most modelling and monitoring systems where data is assembled of many heterogeneous

cross sectorial data sources, the data is often provided by different through a mixed bag of

real-time dynamic service systems from Geo-Web Services to aggregated files and simple

data streams. This isolation of the data means any unified analysis on more than one data

stream is impossible. However, making use of all available data sources is a prerequisite for

holistic and successful monitoring system that allows broad decision support in an urban

context. This applies to emergency situations as well as to the continuous monitoring of

urban parameters. Fleischer et al. (2010) describes the need to integrate several different

cross sectorial data sources in order to gain a further understanding for, in this case,

prediction of a tsunami wave .As each data source is not only diverse in the recordings being

made but also in the frequency and units in which it makes it reading, in order to integrate

these in a cohesive whole within a flexible data structure then a flexible architecture is

needed. As for example temperature maybe recording in Fahrenheit, Celsius and Kelvin but

to reduce any delay in storing the record it is more efficient to do the conversion when the

data is requested rather than when it is inserted. It also allows new data to be assimilated

effortlessly into the architecture without any prior knowledge

The multiple data sources will also allow the creation of real-time data visualisations and well

as feed directly into simulation models and qualitative interpretation to better understand

cities, infrastructure systems and urban activity to aid policy making and well as potential

disaster response.

In order to extract the appropriate data for these models and visualisations numerous queries

will have to take place on the data. Effective query management in databases is important in

order to enhance the speed of sensor interaction with networks that contain enormous sensor

nodes; this can be achieved by designing and implementing a middleware layer that not only

ensures effective queries but can also manages controls the data which is stored, i.e. flagging

extreme values, eliminating ambiguities such as “temperature” and “Temperature”.

Database Overview

Traditional database architectures create tables for each different “set” of data coming in (or

create large data tables with lots of redundancy). The approach adopted here is to use a key-

value pairs of semi-structured data. Key value stores allow the application developer to store

schema-less data. Seeger (2009) outlines this key value approach to storing data, describing it

as data usually consisting of a string which represents the key and the actual data which is

considered to be the value in the "key - value" relationship. The data itself is usually some

kind of primitive of the programming language (a string, an integer, an array) or an object

that is being marshalled by the programming languages bindings to the key value store. This

replaces the need for fixed data model and makes the requirement for properly formatted data

less strict.

Nakamura et al. (2011) designed and implemented a new database approach for storage and

delivery of sensor data called uTupleSpace. uTupleSpace is a schema-less style data store

consisting of key/value pairs. It was found by using this schema-less approach they were able

to meet increases in variety and quantity of sensor data.

As well as the ability to deal with variations in heterogeneous sensor data this schema-less

approach is designed to allow for the fluid nature of a system designed to organically grow as

more sensors come online. This is due to the fact that unlike in a strict schema approach there

is no initial rigid encoding and therefore a priori knowledge of entity associations is not

required. This advantage was noted in Pulsifer et al. (2010) whereby a database driven web

application for sea ice monitoring was developed which was able to scale up dynamically as

more data was integrated.

Openstreetmap also adopt a schema-less approach to storing their data, referred by them as

tags (OSM, 2013b). In order to store this information they make use of the hstore

(PostgreSQL, 2011) extension in postgres (OSM, 2013a). This module implements the hstore

data type for storing sets of key value pairs within a single PostgreSQL column. This allows a

No-SQL/schema-less style storage method to sit within PostgreSQL database. Consequently

Openstreetmap has a flexible data store which allows attributes to be added on the fly without

schema changes.

Further implementations of key-value pairs for sensor data include Brunette et al. (2012),

Thantriwatte and Keppetiyagama (2011) and Amirian et al. (2013) who found that the less

strict approach was able to deal with the high volume, high frequency of change (in both data

content and data structure) and variety of structures, that conventional data storage systems

cannot provide.

The goal of this system is to enable seamless access to sensor (in the widest sense) data

through attribute, temporal and spatial queries to provide answers to questions such as what

effect is the urban heat island having? At which locations is the air quality poorest? Whether

there is a direct correlation between area of poor air quality and noise levels? Therefore the

system needed to store information about where sensors are located (or the position of a

reading in the case of a mobile sensor). In order to meet the dual requirements of a schema

less approach to sensor data and the ability to analyse and query the data spatially a system

was implemented in the PostgreSQL relational database using the PostGIS spatial extension

using the HSTORE data type described above.

The database structure is straightforward; sensors are stored in one table, and sensor data in

another. These both consisted of simply 2 columns, a row id and a hstore row, Examples of

both are shown in tables 1 and 2. As hstore only stores strings the POSTGIS geometry is

created on insert, via the middleware library, and then stored as a string as part of the hstore.

This allows POSTGIS functions to be utilised on the sensors if necessary.

These tables show the key values pairs of both the sensors and the sensor data tables. The

sensor_id value is used as the foreign key to link the two tables. The flexible approach of the

schema also allows unlimited tags to be added to the readings, for example you can see that

row 595770 has been flagged as suspect, this is due to the negative CO reading.

Table 1: Sensors table

Sensors

259 "geom"=>"0101…A4B40", "sensor_id"=>"ITYNEAND10",

"type"=>"Weather", "active"=>"True", "source"=>"Wunderground",

"auth_needed"=>"True"

258 "geom"=>"0101…D4B40", "sensor_id"=>"123", "type"=>"Air Quality",

"active"=>"True", "source"=>"emotes", "auth_needed"=>"True"

Table 2: Sensor_data table

Sensor_data

595770 "flag"=>"suspect", "theme"=>"Air Quality", "units"=>"ppm",

"value"=>"-2.02284329081", "reading"=>"CO", "sensor_id"=>"181",

"timestamp"=>"2014-01-06 14:50:00"

595769 "theme"=>"Environment", "units"=>"db", "value"=>"74.9973862442",

"reading"=>"Sound", "sensor_id"=>"181", "timestamp"=>"2014-01-06

14:50:00"

This approach also allows simple integration of metadata with sensors being linked to

relevant documents stored in metadata tables describing relevant second order information

about the sensor such as their specifications. Data entries can also been themed dynamically,

for example sensor 181 is producing both Environmental and Air Quality theme data entries.

Theme keywords are stored in a separate data table.

The challenge with this limitless tag system is to ensure that different sensor networks

recording the same variable contain the same tag to allow integration i.e. 2 sensors may

record noise level but one may refer to it as sound but the other as noise. This is achieved by

using a simple metadata table, also using hstore, to store the tags and the agreed upon

possible values.

Conceptual Overview

The work carried out in this project (Establishing a long term Urban Research Facility, 2012)

makes use of long-term datasets generated by using multiple methodologies that observes

phenomena at the individual, building, campus and through to city-wide and regional scales.

This involved integrating a number of new and existing sensors into one data system. As well

as this existing third party data sources were utilized such as Split Cycle Offset Optimisation

Technique (SCOOT) which monitor traffic flow at junctions and are used to control traffic

light systems. In addition the system integrates social media “sensors” into the same

framework (currently only Twitter) utilising geotags in messages and the ability to store

relevant data by searching on hashtags.

The Open Geospatial Consortium (OGC) has carried out work to create a fully integrated

sensing system by developing a set of standard called Sensor Web Enablement (SWE)

standards (Botts et al., 2008). These enable developers to make all types of sensors,

transducers and sensor data repositories discoverable, accessible and useable via the Web.

However as Funk et al. (2011) points on due to the large communication overhead that comes

along with the XML descriptions of the SWE protocols this was not deemed a sensible

approach. Instead a new middleware layer has been developed. SWE extensions to the

middleware layer could be developed at a future date.

A middleware layer has been developed to handle input and output to the database stores,

adding additional metadata and descriptive information automatically. Further work is to be

carried out on this middleware layer to create functionality to perform tasks such as

generalising the data either temporally or spatially or conversion between measurement units.

This middleware layer means that a user is able to extract all temperature values without

needing to know that these values could potentially be from a variety of different sensor

platforms. It also allow the system to grow organically as new sensor technology comes

online or is made available

Middleware and Outputs

To facilitate data I/O and to provide an extensible API for interaction with the data streams

for visualisation e.g. on the web and analysis in third party software a python based

middleware layer has been developed. The concept of this middleware layer is depicted in

figure 2

Figure 2: Middleware Conceptual Model

As well as assisting the data interaction current functionality also includes:

 Fetch sensor geometry in various formats such as geojson (example of this shown in

Figure 3)

 Fetch sensors in bounding box

 Fetch the latest reading for an individual sensor

 Fetch data for sensor between 2 times

 Format sensor data to be compatible with various application, such as HighCharts

(Highcharts 3.0 released, 2013), a JavaScript graphing library.

Figure 3: Example middleware use

These functions are to aid the creation of visualisations and feeding the data into models in

order to carry out further research. Using this python middleware layer in conjunction with

Django (The Web framework for perfectionists with deadlines | Django, 2013), a live

dashboard site was created display the data in real-time, figure 4. This was able to display the

live data on an OpenLayers (What is OpenLayers?, 2008) map and make uses of Highcharts

(Highcharts 3.0 released, 2013) to display the data in various charts.

Figure 4: example web visualisation

Conclusion

The NOSQL schema-less approach for storing heterogeneous sensor networks has worked

well allowing effective and efficient data management and exploration. The hstore module

proved to work well as a key-value data type. It also maps neatly to a python array allowing

the easy creation of the python based middleware layer. This has successfully been able to

manage the data storage as well as feed data into a number of APis needed for the real-time

visualisation.

import nclsensorweb
import datetime
sensorweb = nclsensorweb.SensorWeb(database_host,database,user,passwd)
sensors = sensorweb.Sensors.get_all()
end_time = datetime.datetime.now()
start_time = end_time - datetime.timedelta(hours=6)
sensorjson =[]
for sensor in sensors:

sensorjson.append(sensor.geojson())

Future Work

This work is ongoing with 300+ additional sensors being rolled out in the upcoming months.

In addition the platform underpins the new £50 million Science Central development in

Newcastle which will allow for a very dense network of internal and external environmental

sensors and monitoring platforms linking data to policy makers and scientists through

visualisations, a data API and the provision of a Decision Theatre.

References

AMIRIAN, P., WINSTANLEY, A. AND BASIRI, A. (2013) 'NoSQL storage and

management of geospatial data with emphasis on serving geospatial data using standard

geospatial web services'.

BOTTS, M., PERCIVALL, G., REED, C. AND DAVIDSON, J. (2008) 'OGC® sensor web

enablement: Overview and high level architecture', in GeoSensor networks. Springer, pp.

175-190.

BRUNETTE, W., SODT, R., CHAUDHRI, R., GOEL, M., FALCONE, M., VANORDEN, J.

AND BORRIELLO, G. (2012) 'Open data kit sensors: a sensor integration framework for

android at the application-level', MobiSys. ACM. Available at: http://dblp.uni-

trier.de/db/conf/mobisys/mobisys2012.html#BrunetteSCGFVB12.

Establishing a long term Urban Research Facility (2012). Available at:

http://www.ncl.ac.uk/ceg/about/news/item/establishing-a-long-term-urban-research-facility

(Accessed: 08/01/2014).

FLEISCHER, J., HÄNER, R., HERRNKIND, S., KLOTH, A., KRIEGEL, U.,

SCHWARTING, H. AND WÄCHTER, J. (2010) 'An integration platform for heterogeneous

sensor systems in GITEWS–Tsunami Service Bus', Natural Hazards and Earth System

Science, 10(6), pp. 1239-1252.

FUNK, A., BUSEMANN, C., KUKA, C., BOLL, S. AND NICKLAS, D. (2011) 'Open

Sensor Platforms: The Sensor Web Enablement Framework and Beyond', MMS. pp. 39-52.

Highcharts 3.0 released (2013). Available at:

http://www.highcharts.com/component/content/article/2-news/54-highcharts-3-0-released

(Accessed: 08/01/2014).

NAKAMURA, T., KASHIWAGI, K., ARAKAWA, Y. AND NAKAMURA, M. (2011)

Applications and the Internet (SAINT), 2011 IEEE/IPSJ 11th International Symposium on.

18-21 July 2011.

OSM (2013a) Databases and data access APIs. Available at:

http://wiki.openstreetmap.org/wiki/Databases_and_data_access_APIs (Accessed:

08/01/2014).

OSM (2013b) Map Features. Available at: http://wiki.openstreetmap.org/wiki/Map_Features

(Accessed: 08/01/2014).

http://dblp.uni-trier.de/db/conf/mobisys/mobisys2012.html#BrunetteSCGFVB12
http://dblp.uni-trier.de/db/conf/mobisys/mobisys2012.html#BrunetteSCGFVB12
http://www.ncl.ac.uk/ceg/about/news/item/establishing-a-long-term-urban-research-facility
http://www.highcharts.com/component/content/article/2-news/54-highcharts-3-0-released
http://wiki.openstreetmap.org/wiki/Databases_and_data_access_APIs
http://wiki.openstreetmap.org/wiki/Map_Features

PostgreSQL (2011) hstore. Available at:

http://www.postgresql.org/docs/9.1/static/hstore.html (Accessed: 08/01/2014).

PULSIFER, P.L., KAUFMAN, M., YOUNG, D., COLLINS, J.A., EICKEN, H. AND

GEARHEARD, S. (2010) 'Using Schema-less Database Technology to Develop a Web

Application for Sea Ice Monitoring', AGU Fall Meeting Abstracts, 31, p. 1292.

SEEGER, M. (2009) 'Key-Value stores:a practical overview'.

THANTRIWATTE, T.A.M.C. AND KEPPETIYAGAMA, C.I. (2011) Advances in ICT for

Emerging Regions (ICTer), 2011 International Conference on. 1-2 Sept. 2011.

The Web framework for perfectionists with deadlines | Django (2013). Available at:

https://www.djangoproject.com/.

What is OpenLayers? (2008). Available at: http://docs.openlayers.org/.

http://www.postgresql.org/docs/9.1/static/hstore.html
http://www.djangoproject.com/
http://docs.openlayers.org/

