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Background and motivation 

One of the aims of is project was to define a single flexible data structure to manage all the 

cross-sectorial heterogeneous data recorded.  This is challenging as due to the diverse nature 

of the data defining one ubiquitous data schema to suit all scenarios without numerous 

redundancies is practically impossible.  

 

Urban areas are complex systems, comprising many interacting infrastructure 

sectors.  Understanding these inter-relationships is essential to sustainable urban and 

infrastructure development.  Research focused on single sectors, or over limited timescales, 

will inevitably fail to capture these interdependencies and dynamics. Consequently this 

project is carrying out work to investigate these sectorial relationships. The initial facility 

monitors a range of infrastructures and sectors such as water, earthworks, transport, climate, 

waste. The concept of the system is displayed in figure 1. 

 

 
Figure 1: Integrated spatial data system                                                                                    

(Source: http://portal.opengeospatial.org/files/?artifact_id=25562) 
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In most modelling and monitoring systems where data is assembled of many heterogeneous 

cross sectorial data sources, the data is often provided by different through a mixed bag of 

real-time dynamic service systems from Geo-Web Services to aggregated files and simple 

data streams. This isolation of the data means any unified analysis on more than one data 

stream is impossible. However, making use of all available data sources is a prerequisite for 

holistic and successful monitoring system that allows broad decision support in an urban 

context. This applies to emergency situations as well as to the continuous monitoring of 

urban parameters. Fleischer et al. (2010) describes the need to integrate several different 

cross sectorial data sources in order to gain a further understanding for, in this case, 

prediction of a tsunami wave .As each data source is not only diverse in the recordings being 

made but also in the frequency and units in which it makes it reading, in order to integrate 

these in a cohesive whole within a flexible data structure then a flexible architecture is 

needed. As for example temperature maybe recording in Fahrenheit, Celsius and Kelvin but 

to reduce any delay in storing the record it is more efficient to do the conversion when the 

data is requested rather than when it is inserted. It also allows new data to be assimilated 

effortlessly into the architecture without any prior knowledge 

 

The multiple data sources will also allow the creation of real-time data visualisations and well 

as feed directly into simulation models and qualitative interpretation to better understand 

cities, infrastructure systems and urban activity to aid policy making and well as potential 

disaster response.  

 

In order to extract the appropriate data for these models and visualisations numerous queries 

will have to take place on the data. Effective query management in databases is important in 

order to enhance the speed of sensor interaction with networks that contain enormous sensor 

nodes; this can be achieved by designing and implementing a middleware layer that not only 

ensures effective queries but can also manages controls the data which is stored, i.e. flagging 

extreme values, eliminating ambiguities such as “temperature” and “Temperature”.  

Database Overview 

Traditional database architectures create tables for each different “set” of data coming in (or 

create large data tables with lots of redundancy).  The approach adopted here is to use a key-

value pairs of semi-structured data. Key value stores allow the application developer to store 

schema-less data. Seeger (2009) outlines this key value approach to storing data, describing it 

as data usually consisting of a string which represents the key and the actual data which is 

considered to be the value in the "key - value" relationship. The data itself is usually some 

kind of primitive of the programming language (a string, an integer, an array) or an object 

that is being marshalled by the programming languages bindings to the key value store. This 

replaces the need for fixed data model and makes the requirement for properly formatted data 

less strict. 

 

Nakamura et al. (2011) designed and implemented a new database approach for storage and 

delivery of sensor data called uTupleSpace. uTupleSpace is a schema-less style data store 

consisting of key/value pairs. It was found by using this schema-less approach they were able 

to meet increases in variety and quantity of sensor data. 

 

As well as the ability to deal with variations in heterogeneous sensor data this schema-less 

approach is designed to allow for the fluid nature of a system designed to organically grow as 

more sensors come online. This is due to the fact that unlike in a strict schema approach there 

is no initial rigid encoding and therefore a priori knowledge of entity associations is not 



required. This advantage was noted in Pulsifer et al. (2010) whereby a database driven web 

application for sea ice monitoring was developed which was able to scale up dynamically as 

more data was integrated.  

 

Openstreetmap also adopt a schema-less approach to storing their data, referred by them as 

tags  (OSM, 2013b). In order to store this information they make use of the hstore 

(PostgreSQL, 2011) extension in postgres (OSM, 2013a). This module implements the hstore 

data type for storing sets of key value pairs within a single PostgreSQL column. This allows a 

No-SQL/schema-less style storage method to sit within PostgreSQL database. Consequently 

Openstreetmap has a flexible data store which allows attributes to be added on the fly without 

schema changes.  

 

Further implementations of key-value pairs for sensor data include Brunette et al. (2012), 

Thantriwatte and Keppetiyagama (2011) and Amirian et al. (2013) who found that the less 

strict approach was able to deal with the high volume, high frequency of change (in both data 

content and data structure) and variety of structures, that conventional data storage systems 

cannot provide.  

 

The goal of this system is to enable seamless access to sensor (in the widest sense) data 

through attribute, temporal and spatial queries to provide answers to questions such as what 

effect is the urban heat island having? At which locations is the air quality poorest? Whether 

there is a direct correlation between area of poor air quality and noise levels? Therefore the 

system needed to store information about where sensors are located (or the position of a 

reading in the case of a mobile sensor).  In order to meet the dual requirements of a schema 

less approach to sensor data and the ability to analyse and query the data spatially a system 

was implemented in the PostgreSQL relational database using the PostGIS spatial extension 

using the HSTORE data type described above. 

 

The database structure is straightforward; sensors are stored in one table, and sensor data in 

another. These both consisted of simply 2 columns, a row id and a hstore row, Examples of 

both are shown in tables 1 and 2. As hstore only stores strings the POSTGIS geometry is 

created on insert, via the middleware library, and then stored as a string as part of the hstore. 

This allows POSTGIS functions to be utilised on the sensors if necessary. 

 

These tables show the key values pairs of both the sensors and the sensor data tables.  The 

sensor_id value is used as the foreign key to link the two tables. The flexible approach of the 

schema also allows unlimited tags to be added to the readings, for example you can see that 

row 595770 has been flagged as suspect, this is due to the negative CO reading.  

 

 

Table 1: Sensors table 

 

Sensors 

259 "geom"=>"0101…A4B40", "sensor_id"=>"ITYNEAND10", 

"type"=>"Weather", "active"=>"True", "source"=>"Wunderground", 

"auth_needed"=>"True" 

 

258 "geom"=>"0101…D4B40", "sensor_id"=>"123", "type"=>"Air Quality", 

"active"=>"True", "source"=>"emotes", "auth_needed"=>"True" 

 



Table 2: Sensor_data table 

 

Sensor_data 

595770 "flag"=>"suspect", "theme"=>"Air Quality", "units"=>"ppm",  

"value"=>"-2.02284329081", "reading"=>"CO", "sensor_id"=>"181", 

"timestamp"=>"2014-01-06 14:50:00" 

 

595769 "theme"=>"Environment", "units"=>"db", "value"=>"74.9973862442", 

"reading"=>"Sound", "sensor_id"=>"181", "timestamp"=>"2014-01-06 

14:50:00" 

 

 

 

This approach also allows simple integration of metadata with sensors being linked to 

relevant documents stored in metadata tables describing relevant second order information 

about the sensor such as their specifications. Data entries can also been themed dynamically, 

for example sensor 181 is producing both Environmental and Air Quality theme data entries.  

Theme keywords are stored in a separate data table. 

 

The challenge with this limitless tag system is to ensure that different sensor networks 

recording the same variable contain the same tag to allow integration i.e. 2 sensors may 

record noise level but one may refer to it as sound but the other as noise. This is achieved by 

using a simple metadata table, also using hstore, to store the tags and the agreed upon 

possible values.  

Conceptual Overview 

The work carried out in this project (Establishing a long term Urban Research Facility, 2012) 

makes use of long-term datasets generated by using multiple methodologies that observes 

phenomena at the individual, building, campus and through to city-wide and regional scales. 

This involved integrating a number of new and existing sensors into one data system. As well 

as this existing third party data sources were utilized such as Split Cycle Offset Optimisation 

Technique (SCOOT) which monitor traffic flow at junctions and are used to control traffic 

light systems. In addition the system integrates social media “sensors” into the same 

framework (currently only Twitter) utilising geotags in messages and the ability to store 

relevant data by searching on hashtags. 

 

The Open Geospatial Consortium (OGC) has carried out work to create a fully integrated 

sensing system by developing a set of standard called Sensor Web Enablement (SWE) 

standards (Botts et al., 2008). These enable developers to make all types of sensors, 

transducers and sensor data repositories discoverable, accessible and useable via the Web. 

However as Funk et al. (2011) points on due to the large communication overhead that comes 

along with the XML descriptions of the SWE protocols this was not deemed a sensible 

approach. Instead a new middleware layer has been developed. SWE extensions to the 

middleware layer could be developed at a future date. 

 

A middleware layer has been developed to handle input and output to the database stores, 

adding additional metadata and descriptive information automatically. Further work is to be 

carried out on this middleware layer to create functionality to perform tasks such as 

generalising the data either temporally or spatially or conversion between measurement units. 

This middleware layer means that a user is able to extract all temperature values without 



needing to know that these values could potentially be from a variety of different sensor 

platforms. It also allow the system to grow organically as new sensor technology comes 

online or is made available 

Middleware and Outputs 

To facilitate data I/O and to provide an extensible API for interaction with the data streams 

for visualisation e.g. on the web and analysis in third party software a python based 

middleware layer has been developed. The concept of this middleware layer is depicted in 

figure 2  

 

 
Figure 2: Middleware Conceptual Model 

 

As well as assisting the data interaction current functionality also includes: 

 

 Fetch sensor geometry in various formats such as geojson (example of this shown in 

Figure 3)  

 Fetch sensors in bounding box 

 Fetch the latest reading for an individual sensor 

 Fetch data for sensor between 2 times 

 Format sensor data to be compatible with various application, such as HighCharts  

(Highcharts 3.0 released, 2013), a JavaScript graphing library. 

 

 



 
Figure 3: Example middleware use 

 

These functions are to aid the creation of visualisations and feeding the data into models in 

order to carry out further research.   Using this python middleware layer in conjunction with 

Django (The Web framework for perfectionists with deadlines | Django, 2013), a live 

dashboard site was created display the data in real-time, figure 4. This was able to display the 

live data on an OpenLayers (What is OpenLayers?, 2008) map and make uses of Highcharts 

(Highcharts 3.0 released, 2013) to display the data in various charts.  

 

  
Figure 4: example web visualisation 

  

Conclusion 

The NOSQL schema-less approach for storing heterogeneous sensor networks has worked 

well allowing effective and efficient data management and exploration.  The hstore module 

proved to work well as a key-value data type. It also maps neatly to a python array allowing 

the easy creation of the python based middleware layer. This has successfully been able to 

manage the data storage as well as feed data into a number of APis needed for the real-time 

visualisation. 

import nclsensorweb 
import datetime 
sensorweb = nclsensorweb.SensorWeb(database_host,database,user,passwd) 
sensors =   sensorweb.Sensors.get_all() 
end_time  = datetime.datetime.now() 
start_time = end_time - datetime.timedelta(hours=6) 
sensorjson =[ ] 
for sensor in sensors: 

sensorjson.append(sensor.geojson()) 
 
 



Future Work  

This work is ongoing with 300+ additional sensors being rolled out in the upcoming months.  

In addition the platform underpins the new £50 million Science Central development in 

Newcastle which will allow for a very dense network of internal and external environmental 

sensors and monitoring platforms linking data to policy makers and scientists through 

visualisations, a data API and the provision of a Decision Theatre. 
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