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1 Introduction

Governments are confronted routinely with important policy decisions, not least with decisions

regarding spending and taxation (i.e., �scal policy) and about how to set a policy interest rate

(i.e., monetary policy). Following Kydland and Prescott (1977) it is now well-known that,

when private agents are forward-looking and rational, optimal policies are (invariably) not time-

consistent and that time-consistent policies are (invariably) not optimal. Absent a commitment

technology, attention focuses naturally on policies that are time-consistent or, more speci�cally,

on equilibria that are Markov-perfect and this focus has led to a large literature on �discre-

tionary� policymaking. While there are notable exceptions, the vast bulk of this literature

computes equilibrium using what is essentially linear-quadratic dynamic programming with the

policy problem approximated to have the required linear constraints and quadratic objective.

Although some policy problems can conceivably be well-approximated by linear constraints and

second-order accurate welfare approximations, such as policy problems for which the steady state

is e¢ cient, and for other problems, such as those where the model has many state variables,

only linear-quadratic methods may be feasible, for many interesting problems, such as prob-

lems involving distortionary taxes and/or imperfect competition, �rst-order accuracy cannot be

obtained through linear-quadratic methods. Moreover, some model characteristics, like occasion-

ally binding constraints, call out for nonlinear solution methods even when the policy objective is

quadratic (Adam and Billi, 2007; Nakata, 2012). Fortunately, it is becoming increasingly feasible

to analyze discretionary policymaking without turning to the linear-quadratic toolkit.

In this paper we present and compare three strategies for computing Markov-perfect optimal

policies in nonlinear stochastic business cycle models. These strategies apply to economies

populated by a large number of atomistic private agents and by a benevolent government, tasked

with conducting policy in order to maximize the welfare of the representative household. The

solution strategies include value function iteration, policy function iteration on generalized Euler

equations, and parameterized shadow prices. To illustrate the three strategies we apply them

to the canonical dynamic model of �scal policy taken from Klein, Krusell, and Ríos-Rull (2008),

augmented to include an transitory aggregate technology shock and extended to allow for capital

depreciation (as per Ambler and Pelgrin, 2010). In this model, government spending provides

households with utility and the �scal authority�s problem is to choose government spending

optimally, subject to a balanced-budget constraint, while lacking both a commitment technology

1



and the ability to impose lump-sum taxes. This balanced-budget �scal policy model provides the

ideal environment in which to illustrate the methods because this model, or closely related models,

have been studied by Stockman (2001), Benhabib and Rustichini (1997), Klein and Ríos-Rull

(2003), Ortigueira (2006), Klein, Krusell, and Ríos-Rull (2008), and Ambler and Pelgrin (2010).

However, with the exception of Ambler and Pelgrin (2010), each of these studies has looked only

at deterministic speci�cations and/or focused only on the model�s steady state behavior.1

For the canonical �scal policy model we �nd that value function iteration and the generalized

Euler equations solution method, both employing Chebyshev polynomials for function approxima-

tion and Gauss-Hermite quadrature for integration, perform well and are notably more accurate in

terms of Euler-equation errors than the parameterized shadow prices solution approach, which is

based on parameterized expectations and uses Monte Carlo integration. We extend the canonical

model to allow for a risk-sensitive �scal authority and for an inequality constraint on government

spending as a share of output and show how the equilibrium of these models can be computed eas-

ily, and relatively accurately, using the value function iteration solution method. We show that

the risk-sensitive �scal authority cuts government spending in order to reduce income taxation

and thereby mitigate the disincentive on household capital accumulation.

Our paper is related to several others. In particular, we take our main model� a balanced-

budget �scal policy problem� from Ambler and Pelgrin (2010), who show how a method of

parameterized expectations can be used to compute its time-consistent equilibrium. Our use of

Chebyshev polynomials for approximating functions is shared by a number of studies, including

Ortigueira (2006), Niemann, Pichler, and Sorger (2008, 2009), Ortigueira and Pereira (2009),

and Anderson, Kim, and Yun (2010). Our paper is also related to the important literature on

discretionary policymaking in linear-quadratic models, and to the computational strategies of

Kydland and Prescott (1977), Oudiz and Sachs (1985), Currie and Levine (1985, 1993), Backus

and Dri¢ ll (1986), Söderlind (1999), and Dennis (2007).

The remainder of the paper is organized as follows. Section 2 describes a simple balanced-

budget business cycle model of �scal policy. This model is interesting in its own right and

usefully serves as a vehicle for illustrating and comparing the various solution strategies. Section

3 presents the three solution strategies. Section 4 applies the various solution strategies to solve

1Benhabib and Rustichini (1997), Domínguez (2007), and Ortigueira and Pereira (2009) consider related models
in which the �scal authority�s balanced-budget restriction is relaxed. But these studies, too, focus on deterministic
models.
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the �scal policy model for its Markov-perfect equilibrium. Section 5 shows how features such as

occasionally binding constraints and risk-sensitivity can be accommodated. Section 6 discusses

computation times and the application of these methods to larger models. Section 7 o¤ers

concluding remarks.

2 The model

We consider a production economy populated by a unit-mass of identical atomistic households,

a unit-mass of identical atomistic �rms, and a �scal authority. Firms rent capital and hire

labor from households and use these inputs to produce goods that are sold to households and the

�scal authority. Goods sold to the �scal authority are transformed costlessly into a government

consumption good while those sold to households are either consumed or used to augment the

capital stock. The �scal authority taxes household income, using the revenue to �nance the

provision of the government consumption good. Markets are assumed to be perfectly competitive.

This model follows Ambler and Pelgrin (2010) and extends Klein, Krusell, and Ríos-Rull (2008).

2.1 Households

Households own the capital stock. They receive income by renting their capital and supplying

their labor to �rms at prices rt and wt, respectively. After paying income tax, households use

their remaining income to purchase goods, which they use to o¤set capital-depreciation, to invest

in their capital stock, and to consume. The representative household�s lifetime utility function

is described by

E
1X
t=0

�tu (ct; Gt) ; (1)

where � 2 (0; 1) is the discount factor, ct denotes private consumption, Gt denotes government
consumption goods, and the momentary utility function u (ct; Gt) is assumed to be strictly increas-

ing, strictly concave, twice continuously di¤erentiable, and to satisfy the Inada (1963) conditions.

The capital owned by the representative household evolves over time according to

kt+1 + ct = kt + (1� � t) [(rt � �) kt + wt] ; (2)

where � 2 (0; 1) is the depreciation rate, � t > 0 is the tax rate applied to household income

(with a tax-allowance for capital-depreciation), and kt is the household�s stock of capital as of the

beginning of period t. Households maximize their expected lifetime utility, equation (1), subject
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to their �ow-budget constraint, equation (2), taking prices, taxes, and government consumption

goods as given.

2.2 Firms

Our stand-in aggregate �rm employs capital and labor to produce output according to the neo-

classical production technology

Yt = e
ztF (Kt; 1) = e

ztF (Kt) ; (3)

where Yt represents aggregate output, Kt denotes the aggregate capital stock as of the beginning

of period t, and zt is an aggregate technology shock that obeys the stochastic process

zt+1 = �zt + �t+1; (4)

where � 2 (0; 1) and �t � i:i:d:
�
0; �2�

�
.

Markets for capital and labor are perfectly competitive and clear at the prices

rt = eztFK (Kt) ; (5)

wt = eztF (Kt)� eztFK (Kt)Kt; (6)

respectively, with the stand-in �rm making zero-pro�ts in equilibrium.

2.3 Fiscal authority

The �scal authority cannot impose lump-sum taxes, but receives revenue by taxing household

income at marginal rate � t. These tax revenues are used to purchase goods that are costlessly

transformed into government consumption goods and provided to households at zero unit-cost.

The �scal authority has no outstanding liabilities and cannot issue bonds. As a consequence, the

�scal authority�s decisions about taxation and the provision of the public good, decisions made

to maximize the welfare of the representative household, are constrained by the balanced-budget

condition

Gt = � t [(rt � �)Kt + wt] ; (7)

where Gt denotes aggregate government consumption.
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2.4 Information, timing, and aggregation

With the current realization for the aggregate technology given by zt, we denote the history of

realizations for aggregate technology up to and including period t by zt = fzigti=0. Similarly,

using xt =
�
zt kt Kt

�0
to denote the economy�s state at the beginning of period t, we assume

that at the beginning of period t all agents are endowed with the information set given by the

history xt. After entering period t, and having observed xt, the �scal authority, �rms, and

households make their decisions simultaneously. This timing protocol is also considered by

Cohen and Michel (1988), Ortigueira (2006), and Ambler and Pelgrin (2010) and is relatively

common in the literature on optimal �scal policy.2 Our assumptions that all households and all

�rms are identical and that they are of unit-mass implies that Kt = kt and Ct = ct in aggregate.

3 Solving for Markov-perfect optimal policy

In this section we present three ways to solve this �scal-policy model for a Markov-perfect equi-

librium. More generally, however, this model is quite representative of the �scal- and monetary-

policy problems that we are interested in, and the solution methods presented here can be applied

quite broadly to these problems. As we shall see, the value function iteration method that we

describe can also be applied with relative ease to more sophisticated policy problems, ones in-

volving features such as Epstein-Zin preferences, risk-sensitive preferences, and/or occasionally

binding constraints.

3.1 Value function iteration

The problem facing the representative household can be represented by the Bellman equation

v (zt; kt;Kt) = max
ct;kt+1

[u (ct; Gt) + �Et [v (zt+1; kt+1;Kt+1)]] ; (8)

with the constraints given by the laws-of-motion for household-level and aggregate capital, re-

spectively,

kt+1 = kt +

�
1� Gt

eztF (Kt)� �Kt

�
[(eztFK (Kt)� �) kt + eztF (Kt)� eztFK (Kt)Kt]� ct;(9)

Kt+1 = (1� �)Kt + eztF (Kt)� Ct �Gt: (10)

2 In the monetary policy literature it is more common to assume that the government has a �rst-mover advantage
within the period. See for example Clarida, Galí, and Gertler (1999) and Woodford (2003). Martin (forthcoming)
uses a model related to Klein, Krusell, and Ríos-Rull (2008) to study the e¤ect on welfare of di¤erent timing
protocols.
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taking Gt and Ct as given, and with the initial conditions zt > 0 and kt = Kt > 0, known.

Notice that equations (5) and (6) have been used so that equation (9) does not contain prices.

Combining the �rst-order condition with respect to consumption, ct, and the Benveniste and

Scheinkman (1979) condition, and aggregating across identical households gives the consumption-

Euler equation

uc (Ct; Gt) = �Et

�
uc (Ct+1; Gt+1)

�
1 +

�
1� Gt+1

ezt+1F (Kt+1)� �Kt+1

�
(ezt+1FK (Kt+1)� �)

��
:

(11)

The �scal authority�s problem is described by the Bellman equation

V (zt;Kt) = max
Gt;Kt+1

[u (Ct; Gt) + �Et [V (zt+1;Kt+1)]] ; (12)

with the constraints given by equation (10) with the initial conditions zt > 0 and Kt > 0, known.

3.2 Equilibrium

A Markov-perfect Nash equilibrium for this model is a collection of household decision rules,

fc (zt; kt;Kt) ; k (zt; kt;Kt)g, a collection of aggregate decision rules, fC(zt;Kt); G(zt;Kt);K(zt;Kt)g,
and a collection of value functions, fv(zt; kt;Kt); V (zt;Kt)g, such that

1. The collection fv(zt; kt;Kt); c(zt; kt;Kt); k(zt; kt;Kt)g solves the household�s decision prob-
lem described by the Bellman equation, equation (8), and the constraints, equations (9)

and (10).

2. The collection fV (zt;Kt); C(zt;Kt);K(zt;Kt); G(zt;Kt)g solves the �scal authority�s deci-
sion problem described by the Bellman equation, equation (12), and the constraint, equation

(10).

3. kt = Kt, C(zt;Kt) = c(zt;Kt;Kt), and k(zt;Kt;Kt) = K(zt;Kt).

As we describe later, to solve numerically the �scal authority�s problem we conjecture func-

tions for aggregate consumption, C (zt;Kt), aggregate government spending, G (zt;Kt), and the

value function, V (zt;Kt). Based on these conjectured functions and the law-of-motion for ag-

gregate capital, we solve the �scal authority�s problem using a hill-climber, obtaining updates

for G (zt;Kt) and V (zt;Kt), the former of which, when combined with equation (11) delivers an

update for C (zt;Kt). Iterating to convergence we arrive at a Markov perfect equilibrium for this

policy problem.
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3.3 Generalized Euler equations

To solve the model for a Markov-perfect equilibrium using generalized Euler equations, we return

to the �scal authority�s decision problem, which is described by the Bellman equation

V (zt;Kt) = max
Gt;Kt+1

[u (Ct; Gt) + �Et [V (zt+1;Kt+1)]] ; (13)

and the constraint

Kt+1 = (1� �)Kt + eztF (Kt)� Ct �Gt: (14)

The �rst-order condition with respect to Gt gives

uG (Ct; Gt) = �Et [VK (zt+1;Kt+1)] ; (15)

while the Benveniste-Scheinkman condition yields

VK (zt;Kt) = uC (Ct; Gt)CK (zt;Kt) + uG (Ct; Gt)GK (zt;Kt)

+�Et [VK (zt+1;Kt+1)] (1� � + eztFK (Kt)� CK (zt;Kt)�GK (zt;Kt)) ;(16)

and together equations (15) and (16) imply the generalized Euler equation

uG (Ct; Gt) = �Et [(uC (Ct+1; Gt+1)� uG (Ct+1; Gt+1))CK (zt+1;Kt+1)]

+�Et [uG (Ct+1; Gt+1) (1� � + ezt+1FK (Kt+1))] ; (17)

which is �generalized�because it contains both the level and the derivative of C (zt+1;Kt+1).

To solve for a Markov-perfect equilibrium one needs to solve the system consisting of equations

(14), (17), and (11) from the household�s problem, with the process for the aggregate technology

shock given by equation (4). To solve this system we conjecture functions for aggregate con-

sumption, C (zt;Kt), aggregate government spending, G (zt;Kt), and iterate on the system until

a �xed-point is reached.

3.4 Parameterized shadow prices

To solve the model for a time-consistent equilibrium using parameterized shadow prices (Ambler

and Pelgrin, 2010), we formulate the household�s problem in terms of a Lagrangian

E
1X
t=0

�t

"
u (ct; Gt)

+�t

�
kt +

�
1� Gt

eztF (Kt)��Kt

�
[(eztFK (Kt)� �) kt + eztF (Kt)� eztFK (Kt)Kt]� ct � kt+1

� # ;
(18)
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and derive the �rst-order conditions with respect to ct, kt+1, and �t, which after aggregating

across identical households (implying �t = �t) are, respectively,

uC (Ct; Gt) = �t;

�t = �Et

��
1 +

�
1� Gt+1

ezt+1F (Kt+1)� �Kt+1

�
(ezt+1FK (Kt+1)� �)

�
�t+1

�
;

Kt+1 = Kt +

�
1� Gt

eztF (Kt)� �Kt

�
[(eztFK (Kt)� �) kt + eztF (Kt)� eztFK (Kt)Kt]� Ct:

Now recognizing that the shadow price �t will be a function of only zt andKt in a simultaneous-

move time-consistent equilibrium, the �scal authority�s problem is formulated using the La-

grangian

E
1X
t=0

�t
�

u (Ct; Gt) + �t (uC (Ct; Gt)� � (zt;Kt))
+	t ((1� �)Kt + eztF (Kt)� Ct �Gt �Kt+1)

�
: (19)

The �rst-order conditions from the �scal authority�s decision problem yield

uC (Ct; Gt) = 	t � uCC (Ct; Gt) �t; (20)

uG (Ct; Gt) = 	t � uCG (Ct; Gt) �t; (21)

	t = �Et [(1� � + ezt+1FK (Kt+1))	t+1 � �K (zt+1;Kt+1) �t+1] ; (22)

uC (Ct; Gt) = �Et

��
1 +

�
1� Gt+1

ezt+1F (Kt+1)� �Kt+1

�
(ezt+1FK (Kt+1)� �)

�
uC (Ct+1; Gt+1)

�
;(23)

Kt+1 = (1� �)Kt + eztF (Kt)� Ct �Gt: (24)

The time-consistent equilibrium is now obtained by solving equations (20)� (24), and (4)

using parameterized expectations (Marcet and Lorenzoni, 1999), to approximate the expectation

terms in equations (22) and (23).

4 Solving the model

In this section we solve the model presented in Section 2 using the three methods discussed in

Section 3. For this exercise, we assume that the representative household�s momentary utility

function is of the additively separable form

u (ct; Gt) =
c1��t � 1
1� � + �

G1��t � 1
1� � ; (25)

where f�; �; �g > 0, and that the production function is

Yt = e
ztK�

t ; (26)
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where � 2 (0; 1).
Our parameterization of the model follows Ambler and Pelgrin (2010) and is summarized in

Table 1.3

Table 1: Benchmark Parameterization
Parameter Value Interpretation
� 0:987 Household discount factor
� 1:000 Utility curvature of private consumption
� 0:300 Utility weight on government services
� 1:000 Utility curvature of government services
� 0:300 Capital-share of output
� 0:050 Depreciation rate
� 0:950 Persistence of technology shock
�� 0:030 Standard deviation of technology shock

To compute the Markov-perfect equilibrium using value function iteration (VFI) and gen-

eralized Euler equations (GEE) we use Chebyshev polynomials to approximate the conjectured

functions. In the case of GEE, the procedure requires introducing polynomials to approximate

the decision rules for consumption, C (zt;Kt), and government spending, G (zt;Kt), while VFI

requires, in addition, a polynomial to approximate the value function, V (zt;Kt). For a generic

function, X (zt;Kt), these polynomial approximations take the form

X (zt;Kt) '
nzX
j=1

nkX
i=0

wij�i (Kt) �j (zt) ; (27)

where �i (Kt) represents the i�th term of the Chebyshev polynomial in aggregate capital, �j (zt)

represents the j�th term of the Chebyshev polynomial in aggregate technology, nk and nz represent

the orders of the Chebyshev polynomials, and wij represents the Chebyshev weights.

For VFI, at each node for capital and technology we use a Newton-based hill climber to solve

V (zt;Kt) = max
Gt;Kt+1

"
C (zt;Kt; Gt)

1�� � 1
1� � + �

G1��t � 1
1� � + �Et [V (zt+1;Kt+1)]

#
;

subject to4

Kt+1 = (1� �)Kt + eztK�
t � C (zt;Kt; Gt)�Gt;

3There is a typo in Ambler and Pelgrin (2010, Table 1) in which their depreciation rate is reported to be 0.025.
4When optimizing the Bellman equation we substitute the constraint into the continuation value and maximize

with respect to Gt.
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computing conditional expectations using Gauss-Hermite quadrature. This maximization yields

the policy rule for government spending, G (zt;Kt), and the associated value function, V (zt;Kt).

From G (zt;Kt) and C (zt;Kt; Gt) we compute C (zt;Kt). For GEE, at each node for capital

and technology we use direct iteration over equations (14), (17), and (11), again computing

conditional expectations using Gauss-Hermite quadrature. For both VFI and GEE, the weights

in the Chebyshev polynomials are constructed through Chebyshev-regression with capital and

technology constrained to the intervals Kt 2 [5; 15] and zt 2
h
� 3�2�
1��2 ;

3�2�
1��2

i
. To solve the model

under its benchmark parameterization we set nz = 6 and nk = 9, and use 50 Chebyshev nodes

for the capital stock and 21 Chebyshev nodes for aggregate technology. For the quadrature step,

21 Gauss-Hermite nodes were used.

For the parameterized shadow prices (PSP) method we parameterized the shadow prices

according to5

� (zt;Kt) ' e� (zt;Kt) = e(�1+�2 ln(Kt)+�3zt); (28)

	(zt;Kt) ' e	(zt;Kt) = e(�1+�2 ln(Kt)+�3zt); (29)

and performed Monte Carlo integration using 1; 000; 000 simulated observations.

To evaluate the accuracy of each solution we computed the Euler-equation errors (Judd, 1992)

EE (zt;Kt) = 1�

n
�Et

h
C (zt+1;Kt+1)

��
�
1 +

�
1� G(zt+1;Kt+1)

ezt+1K�
t+1��Kt+1

� �
�ezt+1K��1

t+1 � �
��io� 1

�

C (zt;Kt)
;

(30)

employing uniform grids for capital and technology over their intervals and using 1000 grid-points

in each dimension.

4.1 Results comparison

Table 2 presents some summary statistics from the solutions; the stochastic steady state values

were computing by simulating data (1; 000; 000 observations) from each solution and taking the

unconditional mean.
5Equations (28) and (29) describe Ambler and Pelgrin�s �rst-order approximation; they also consider a second-

order approximation, obtaining very similar results.
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Table 2: Stochastic steady state solutions and accuracy
Variable VFI GEE PSP

Output 1:92262 1:92262 1:92262
Consumption 1:15960 1:15960 1:15959
Government spend. 0:32907 0:32906 0:32910
Investment 0:43396 0:43396 0:43394
Capital 8:67923 8:67921 8:67889

log10 kEEk1 �6:75093 �7:41723 �2:06101

For the PSP method, the approximated shadow prices that we obtained were

e� (zt;Kt) = e(0:923�0:495 ln(Kt)�0:473zt);e	(zt;Kt) = e(1:085�0:544 ln(Kt)�0:457zt);

which are very similar to the �rst-order solution presented in Ambler and Pelgrin (2010, Table

2).6

Comparing the solutions shown in Table 2, it is clear that the three procedures produce very

similar results, at least in terms of the model�s stochastic steady state. To the extent that there

are di¤erences, however, it is the PSP method whose results di¤er, which is consistent with the

PSP method being generally less accurate and having larger Euler-equation errors.7 It should

be emphasized, however, that the di¤erences among the three solutions are minor, a �nding

that carries over to the unconditional densities shown in Figure 1. Indeed, looking at Figure

1, although PSP produces Euler-equation errors (panel C) that are somewhat larger than either

VFI or GEE, because these errors are not particularly systematic (such as being mostly of the

same sign) they largely wash-out when computing the unconditional densities (panels D� I). To

the extent that di¤erences between PSP and the other two methods are apparent, they reside

chie�y in the decision rule for government spending (panel B), where it is apparent that PSP

tends to understate government spending when capital is large.8

6The results that we obtain from a second-order version in which equations (28) and (29) also contain the
squares of ln (Kt) and zt and the interaction between ln (Kt) and zt, are very similar to those presented in Table
2 and Figure 1.

7The Euler-equation errors presented in Figure 1 di¤er from those presented in Ambler and Pelgrin (2010). We
suspect that the source of this di¤erence resides in the procedure used to numerically integrate the technology
shock. If we simply set the technology shock to its unconditional mean when computing the Euler-equation errors,
then we obtain results very similar to theirs.

8The decision rules for shown in Figure 1 (panels A and B), depict consumption and government spending,
respectively, as a function of capital, holding zt = 0.
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Figure 1: Comparing solutions

4.2 The numerical accuracy of the PSP approach

We saw in Figure 1 that the PSP solution method obtained using parameterized expectations was

less accurate in terms of Euler equation errors that either GEE or VFI. To explore the reason

for this decline in accuracy, we compute an alternative PSP solution (PSP-alt) in which the
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approximating function is a Chebyshev polynomial and expectations are computed using Gauss-

Hermite quadrature rather than Monte Carlo integration. For PSP-alt, therefore, we replace

equations (28) and (29) with polynomials in the form of equation (27), and use the same grid as

used for VFI and GEE. The results are shown in Figure 2.

Figure 2: Numerical accuracy of PSP solution method

It is clear from Figure 2 that PSP-alt remains inferior in terms of Euler-equation accuracy

than either GEE or VFI, but improves upon the benchmark PSP-solution described in Section 3.3

(which follows Ambler and Pelgrin, 2010). This implies, therefore, that the decline in numerical

accuracy associated with PSP stems less from the choice of approximating function or from the
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method of integration, and more on the object being approximated. Speci�cally, comparing PSP-

alt with GEE the essential di¤erence is that GEE approximates the decision rules for consumption

and government spending whereas PSP-alt approximates convolutions of these decision rules as

part of a more general function.

5 More sophisticated policy-problems

In this section we consider two policy problems that are more sophisticated than the benchmark

model considered above. The �rst of these policy problems introduces a constraint on government

spending (as a share of output), a constraint that is occasionally binding in that it binds in

some regions of the state-space, but not in others. In many respects, this occasionally binding

constraint is not unlike those that appear in monetary policy models with a zero-lower bound

on the nominal interest rate or in models with occasionally binding collateral constraints. The

second of these policy problems assumes that the �scal authority is a risk-sensitive decisionmaker.

We consider these two variations on the benchmark model because they each pose problems for

GEE and PSP� particularly risk-sensitivity� but can be accommodated easily through VFI. In

particular, although models containing inequality constraints like that described in section 5.1 can

be solved using the PSP and GEE solution methods, using the techniques described in Christiano

and Fisher (2000), for example, these techniques are somewhat more di¤cult to implement than

simply imposing box-constraints within a hill-climber, which is all that is required for VFI. In

regard to models with risk-sensitive preferences, �rst-order methods such as GEE and PSP are

generally inappropriate for such problems precisely because they do not retain the level of the

value function.

5.1 Constraints on government spending or taxes

Using VFI it is straightforward to impose inequality constraints on government spending by

employing a constrained hill-climber when optimizing the �scal authority�s value function with

respect to Gt. Accordingly, if one wants to constrain government spending as a share of output,

such as

�he
ztK�

t � Gt � �leztK�
t ; (31)

where �h > �l > 0, then one simply determines the upper and lower bound on Gt for each

node in the state space and determines G (zt;Kt) and V (zt;Kt) using constrained optimization.

14



Inequality constraints on the tax rate can be similarly accommodated. For example, to constrain

� t to reside in the interval � t 2 [� l; �h], we translate this inequality constraint on the tax rate
into one on government spending, as per

�h (e
ztK�

t � �Kt) � Gt � � l (eztK�
t � �Kt) ; (32)

and then, as before, maximize the value function at each node in the state space using a con-

strained hill-climber.

For illustrative purposes, the model that we consider is one in which government spending

is constrained to be no less than 16:5 percent of output, with this percent chosen so that the

spending constraint would bind occasionally, but not predominantly. We refer to this model as

the �scally constrained model.

5.2 Risk-sensitive preferences

VFI can also be used to solve decision problems in which the policymaker has risk-sensitive

preferences, perhaps motivated by ambiguity aversion or by an aversion to model uncertainty

(Hansen and Sargent, 2008). In place of equation (12), a risk-sensitive �scal authority will

conduct �scal policy based on the Bellman equation

V (zt;Kt) = max
Gt;Kt+1

"
C (zt;Kt; Gt)

1�� � 1
1� � + �

G1��t � 1
1� � +

�

�
ln
h
Ete[�V (zt+1;Kt+1)]

i#
; (33)

where � < 0 is the risk-sensitivity parameter and the constraint continues to be given by equation

(10). An application of L�Hôpitals�rule establishes that equation (12) is restored in the limit as

� " 0 while the e¤ects of � < 0 are to distort the continuation value in the Bellman equation, a
distortion arising from the �scal authority�s aversion to risky life-time utility. Because the value

function is an object that VFI retains and delivers, risk-sensitive preferences are straightforward

to analyze. To illustrate this point, and to examine the e¤ects that risk-sensitive preferences have

on Markov-perfect �scal policy, we consider a decision problem for which the �scal authority�s

Bellman equation is described by equation (33) with � = �1:0. We refer to this model as the

risk-sensitive preferences model.

5.3 First-best

As a baseline against which to contrast the Markov-perfect equilibria obtained from the bench-

mark model, the �scally constrained model, and the risk-sensitive preferences model, we also solve
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for the �rst-best equilibrium in the benchmark model. To compute this �rst-best equilibrium we

formulate the decision problem for the �scal authority in terms of the Bellman equation

V (zt;Kt) = max
fCt;Gt;Kt+1g

"
C1�� � 1
1� � + �

G1��t � 1
1� � + �Et [V (zt+1;Kt+1)]

#
; (34)

with the constraint given by equation (10) and with technology evolving according to equation

(4). Although there are two choice variables, this is a standard dynamic programming problem

and can be solved using the VFI strategy described above. For the benchmark model, the

�rst-best equilibrium must satisfy the resource constraint

Kt+1 = (1� �)Kt + eztK�
t � Ct �Gt;

and the �rst-order conditions

C��t = �Et
�
C��t+1

�
1� � + �ezt+1K��1

t+1

��
; (35)

C��t = �G��t : (36)

We use equation (35) to construct the Euler-equation errors in our accuracy test, which, because

it is not imposed in obtaining the solution, leads to a relatively stringent test of accuracy.

5.4 Results

In this section we solve for the Markov-perfect equilibrium of the benchmark model, the �scally

constrained model, and the risk-sensitive preferences model. We contrast these equilibria with

the �rst-best equilibrium obtained from the benchmark model. Table 3 and Figure 2 contain

a summary of the main results. The �deterministic� steady state results shown in Table 3

correspond to the steady state in a Markov-perfect equilibrium of a deterministic version of the

benchmark model. However, because risk-sensitivity generates no risk-adjustment when the

model is deterministic and because the government spending constraint that we impose in the

�scally constrained model does not bind at the deterministic steady state, the deterministic steady

state values reported apply equally to the �scally constrained model and to the risk-sensitive

preferences model.
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Table 3: Steady state solutions and numerical accuracy
Variable Deterministic Benchmark Fiscally const. Risk-sensitive First-best

Output 1:90236 1:92262 1:9223076 1:92869 1:96881
Consumption 1:15008 1:15960 1:1587733 1:19650 1:15329
Government spend. 0:32575 0:32907 0:3298144 0:29366 0:34599
Investment 0:42653 0:43396 0:4337198 0:43853 0:46953
Capital 8:53053 8:67923 8:6744408 8:77060 9:39064

log10 kEEk1 �7:46797 �6:75093 �4:97567 �7:03006 �4:75445

Table 3 shows that the deterministic steady state for capital is just over 8:53. Allowing

for stochastic aggregate technology, as per the benchmark model, the (stochastic) steady state

for capital rises to about 8:68. This rise in steady-state capital occurs through a standard

precautionary saving motive whereby risk-averse households increase their saving and accumulate

capital as a bu¤er to self-insure against adverse technology shocks. Consistent with a higher

steady state capital stock, the steady state values for output, consumption, and investment are

all higher in the benchmark model than they are in its deterministic counterpart.

The constraint that government spending as a share of output be no smaller than 0:165 has

little e¤ect on the model�s stochastic steady state, which is very similar to that of the benchmark

model, but it does lead to a decline in numerical accuracy. Nonetheless, with the log10 of the max-

imum Euler-equation error at about �5 the maximal solution error amounts to about one dollar
out of every one hundred thousand dollars spent, which certainly seems acceptable. Comparing

the benchmark model to the risk-sensitive preferences model, it is clear that the �scal author-

ity�s risk-sensitivity is having a profound e¤ect on �scal policy. Speci�cally, at the (stochastic)

steady state the risk-sensitive �scal authority chooses less government spending than does the

�scal authority in the benchmark model. With less government spending the risk-sensitive �scal

authority also imposes a smaller income tax rate, reducing some of the disincentive households�s

face to accumulate capital. As a consequence, the (stochastic) steady state for capital in the

risk-sensitive preferences model is almost 8:8, somewhat higher than in the benchmark model.

Table 3 also presents summary statistics for the �rst-best equilibrium, quantifying the e¤ects of

distortionary taxation and the time-inconsistency problem that these distortions produce.
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Figure 3: Solution and accuracy

Where Table 3 presents information about steady state outcomes, Figure 3 presents the con-

sumption function, the government spending function, the densities of the key model-variables,

and additional information about numerical accuracy. As earlier, we construct the densities by

simulating data from each solution, we report the decision rules for consumption and government

spending holding zt = 0, and we use equation (30) to compute the Euler-equation errors (suitably
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modi�ed in the case of the �rst-best equilibrium).

Perhaps unsurprisingly, the consumption functions for the benchmark model and the �scally

constrained model are very similar. The di¤erences between these two models are re�ected more

prominently in their respective government spending functions, where the constraint on govern-

ment spending binds occasionally to force higher government spending in the �scally constrained

economy. The e¤ects of risk-sensitivity are evident in both the consumption function and the

government spending function. Because the risk-sensitive �scal authority is especially concerned

about risk, she wishes households to build up a bu¤er-stock of capital, keeping government spend-

ing and hence income taxes low in order to encourage households to do so. Of course, the income

e¤ect associated with the lower lifetime tax liability (the model is Ricardian) induces households

to also consume more, leading households to consume more in the risk-sensitive model relative

to the benchmark model.

Interestingly, each of the models produces similar densities for output and, to a lesser extent,

for consumption. The four models di¤er importantly, however, with respect to the densities for

investment, capital, government spending, and government spending as a share of output. With

distortionary taxes, government spending is too low, both in absolute terms and as a share of

output, relative to the �rst-best equilibrium. The constraint on government spending in the

�scally constrained economy is evident in the density for government spending as a share of

output, but has relatively little e¤ect on the density for government spending itself.

Having shown the densities for output, consumption, etc, in Figure 3, Figure 4 presents

the impulse response functions for the key model variables following a positive one standard

deviation technology shock; Figure 5 displays analogous responses, but for a negative one standard

deviation technology shock. Looking at Figure 4, there are notable di¤erences in how the various

model�s respond, particularly in regard to government spending and consumption. In the �scally

constrained economy, with output rising in response to the technology shock the constraint on

government spending binds pushing up government spending at the expense (primarily) of lower

private consumption. At the same time, interestingly, the benchmark equilibrium, the risk-

sensitive equilibrium, and the �rst-best equilibrium respond similarly to the shock.
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Figure 4: Responses to a positive 1 s.d. technology shock

In response to a negative technology shock, Figure 5 reveals some asymmetries relative to the

responses to a positive shock shown in Figure 4. In particular, unlike a positive technology shock,

the constraint on government spending does not bind following a negative technology shock and

there are greater di¤erences between the �rst-best equilibrium and the benchmark model. Other

than for the �scally constrained economy, for which there is a clear asymmetry in the government
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spending response, the models�responses are relatively symmetric

Figure 5: Responses to a negative 1 s.d. technology shock

To better identify asymmetries in the impulse response functions we plot in Figure 6 the sum of

the responses to the positive and negative shock for each variable. To the extent that each model

is asymmetric the sum of the responses di¤ers from zero. Looking at Figure 6 (panel E) we see

a notable asymmetry in the capital stock�s reponses to technology shocks, with this asymmetry
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propagated through capital role as a state variable into the remaining variables. In addition to

this asymmetry, Figure 5 also reveals the asymmetries present in the �scally constrained economy

and shows how the occasionally binding constraint on government spending induces asymmetric

behavior in consumption and investment.

Figure 6: Impulse response asymmetries

22



6 Discussion

The models solved above are relatively small in that they contain only one endogenous state

variable and one shock. With only two state variables and the need to integrate over a single

shock these models can be solved relatively quickly by all three methods, although with varying

accuracy. Excluding coding time, which is an important consideration, GEE and PSP-alt were

the quickest, followed by VFI and then PSP.9 However, each of these methods su¤ers from the

curse of dimensionality. As a consequence, solving larger models, ones containing a handful of

state variables or more, can be very time-consuming. For such models, it may be advantageous

to employ complete polynomials rather than tensor-product polynomials or to use sparse-grid

methods (Smolyak, 1963), as described in Malin, Krueger, and Kubler (2011), for example, or

monomial-methods (Pichler, 2011).

7 Conclusion

This paper has presented and compared three methods for computing Markov-perfect optimal

policies in nonlinear business cycle models. Of these methods, two were based on Euler equations

while the third was based on value function iteration. We illustrated these solution methods by

applying them to a canonical business cycle model of government-good provision in which a �scal

authority must determine optimally the provision of government goods, subject to distortionary

taxation, a balanced-budget constraint, and while lacking a commitment technology. For this

benchmark model we found that all three methods worked well, that the use of generalized Euler

equations and value function iteration gave essentially identical results, and that the parameter-

ized shadow price method was the less accurate of the three. We further showed that the value

function iteration solution method could easily be extended to accommodate model features such

as risk-sensitive preferences and certain forms of occasionally binding constraints, such as bounds

on government spending or the tax rate.

Although our application focused on �scal policy, many economic decision problems can be

tackled using the solution procedures described in this paper. In particular, problems relating to

monetary policy design, both with and without a zero-bound on nominal interest rates, monetary

9This ordering simply re�ects our experience with these methods, without attempting to optimize them for
speed. A comprehensive study of solution times, one that optimized the solution methods, conditioned them
upon identical initial conditions (to the extent possible), and the requirement that they produce the same level of
accuracy, is beyond the scope of this paper.
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and �scal policy coordination, exchange rate management, and international lending. These

solution procedures can also be used to examine the e¤ects of risk-sensitivity on allocations and

asset prices in economies where policymakers cannot commit.
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